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representation of the variables in a problem domain and the relations be-tween them, with (
onditional) probabilities that represent the un
ertaintiesinvolved [17℄. More spe
i�
ally, the graphi
al representation takes the form of adire
ted graph where ea
h variable represents a variable, and an ar
 expressesa possible probabilisti
 dependen
e between the variables; these dependen
esare quanti�ed by a 
onditional probability distribution for ea
h variable giventhe possible 
ombinations of values for its prede
essors in the digraph. Forreasoning with these probabilities in a mathemati
ally 
orre
t way, powerfulalgorithms are available. Appli
ations of probabilisti
 networks 
an be found insu
h �elds as (medi
al) diagnosis and prognosis, planning, monitoring, vision,information retrieval, natural language pro
essing, and e-
ommer
e.Qualitative probabilisti
 networks are qualitative abstra
tions of probabilisti
networks [21℄, introdu
ed for probabilisti
 reasoning in a qualitative way. Justlike a probabilisti
 network, a qualitative network en
odes statisti
al variablesand the probabilisti
 relationships between them in a dire
ted a
y
li
 graph.Ea
h variableA in this digraph on
e again represents a variable. An ar
 A! Bagain expresses a probabilisti
 in
uen
e of the variable A on the probabilitydistribution of the variable B. Rather than quanti�ed by 
onditional probabil-ities as in a probabilisti
 network, however, the in
uen
e is summarised by aqualitative sign. This sign indi
ates the dire
tion of shift in B's (
umulative)probability distribution that would be o

asioned by an observation for A.For example, a positive in
uen
e of A on B expresses that observing highervalues for A renders higher values for B more likely. The signs of a qualita-tive network have a well-de�ned foundation in the mathemati
al 
on
ept ofsto
hasti
 dominan
e. Building upon this foundation, it is possible to reasonwith qualitative signs in a mathemati
ally 
orre
t way. To this end, an eÆ-
ient algorithm, based upon the idea of propagating and 
ombining signs, isavailable [5℄.Qualitative probabilisti
 networks 
an play an important role in the 
onstru
-tion of probabilisti
 networks for real-life appli
ation domains. While 
on-stru
ting the digraph of a probabilisti
 network requires 
onsiderable e�ort,it is generally 
onsidered feasible. The assessment of all probabilities requiredis a mu
h harder task, espe
ially if it has to be performed with the helpof human experts. The quanti�
ation task is, in fa
t, often referred to as amajor obsta
le in building a probabilisti
 network [8,10℄. Assessment of thesigns for a qualitative probabilisti
 network tends to require 
onsiderably lesse�ort from the domain experts, however [5℄. Now, by eli
iting signs from do-main experts for the digraph of a probabilisti
 network under 
onstru
tion, aqualitative probabilisti
 network is obtained. This qualitative network 
an beused to study and validate the reasoning behaviour of the network prior toprobability assessment. The signs 
an further be used as 
onstraints on theprobabilities to be assessed [7,13℄. 2



Qualitative networks model the un
ertainties involved in an appli
ation do-main at the high level of variables, as opposed to probabilisti
 networks whereun
ertainties are represented at the level of the variables' values. Due to this
oarse level of representation detail, reasoning with a qualitative probabilisti
network often leads to results that are weaker than stri
tly ne
essary and mayin fa
t be rather uninformative. To be able to fully exploit a qualitative prob-abilisti
 network as outlined above, we feel that it should 
apture and exploitas mu
h qualitative information from the appli
ation domain as possible. Firstintrodu
ed by M.P. Wellman [21℄ and later extended by M. Henrion and M.J.Druzdzel [5,6,9℄, qualitative networks have been re�ned to enhan
e their ex-pressiveness, by various resear
hers. S. Parsons [14,16℄ introdu
ed the 
on
eptof qualitative derivative where the in
uen
e of a variable A on a variable Bis summarised by a set of signs, one for ea
h value of B; he also studied theuse of other approa
hes to un
ertain reasoning, su
h as order-of-magnitudereasoning, within qualitative probabilisti
 networks [15℄. S. Renooij and L.C.van der Gaag [18℄ have enhan
ed qualitative probabilisti
 networks by addinga qualitative notion of strength. Renooij et al. [19℄ further fo
used on identi-fying and resolving troublesome parts of a network. In this paper, we proposeadding a notion of 
ontext as an extension to the basi
 formalism of qualitativenetworks in order to enhan
e its expressive power.By means of their digraph, probabilisti
 networks provide a qualitative rep-resentation of the 
onditional independen
es that are embedded in a jointprobability distribution. The digraph in essen
e 
aptures independen
es be-tween variables, that is, it models independen
es that hold for all values ofthe variables involved. The independen
es that hold only for spe
i�
 valuesare not represented in the digraph but are 
aptured instead by the 
onditionalprobabilities asso
iated with the variables. Knowledge of these latter indepen-den
es allows further de
omposition of 
onditional probabilities and 
an beexploited to speed up inferen
e. For this purpose, a notion of 
ontext-spe
i�
independen
e was introdu
ed [2,22℄. Context-spe
i�
 independen
e o

urs of-ten enough that some well-known tools for the 
onstru
tion of probabilisti
networks have in
orporated spe
ial me
hanisms to allow the user to moreeasily spe
ify the 
onditional probability distributions for the variables in-volved [2℄.A qualitative probabilisti
 network also 
aptures independen
es between vari-ables by means of its digraph. Sin
e its qualitative in
uen
es are spe
i�ed atthe level of variables as well, independen
es that hold only for spe
i�
 valuesof the variables involved 
annot be represented. In fa
t, qualitative in
uen
esimpli
itly hide su
h 
ontext-spe
i�
 independen
es: if the in
uen
e of a vari-able A on a variable B is positive in one 
ontext, that is, for one 
ombinationof values for some other variables, and zero in all other 
ontexts | indi
at-ing independen
e | then the in
uen
e is 
aptured by a positive sign. Also,positive and negative in
uen
es may be hidden: if a variable A has a positive3



in
uen
e on a variable B in some 
ontext and a negative in
uen
e in another
ontext, then the in
uen
e of A on B is modelled as being ambiguous.As 
ontext-spe
i�
 independen
es basi
ally are qualitative by nature, we feelthat they 
an and should be 
aptured expli
itly in a qualitative probabilisti
network. For this purpose, we introdu
e a notion of 
ontext-spe
i�
 sign. A
ontext-spe
i�
 sign is basi
ally a fun
tion assigning di�erent signs to an in
u-en
e for di�erent 
ontexts. Upon inferen
e, for ea
h in
uen
e with a 
ontext-spe
i�
 sign, the sign is propagated that is assigned to the 
ontext 
orrespond-ing to the observed variables' values. We thus extend the basi
 formalism ofqualitative networks by providing for the in
lusion of 
ontext-spe
i�
 informa-tion about in
uen
es and show that exploiting this information upon inferen
e
an prevent unne
essarily weak results.The paper is organised as follows. In Se
tion 2, we provide some preliminar-ies 
on
erning probabilisti
 networks and qualitative probabilisti
 networks.We present two examples of the type of information that 
an be hidden inqualitative in
uen
es, in Se
tion 3. We present our extended formalism andasso
iated algorithm for exploiting 
ontext-spe
i�
 information upon inferen
ein Se
tion 4. In Se
tion 5, we dis
uss the 
ontext-spe
i�
 information that ishidden in the qualitative abstra
tions of two real-life probabilisti
 networks.The paper ends with some 
on
luding observations in Se
tion 6.2 PreliminariesBefore introdu
ing qualitative probabilisti
 networks, we brie
y review theirquantitative 
ounterparts.2.1 Probabilisti
 networksA probabilisti
 network B = (G;Pr) is a 
on
ise representation of a jointprobability distribution Pr on a set of statisti
al variables. It en
odes the vari-ables 
on
erned, along with their probabilisti
 interrelationships, in an a
y
li
dire
ted graphG = (V (G); A(G)). Ea
h variableA 2 V (G) represents a statis-ti
al variable. Variables will be indi
ated by 
apital letters from the beginningof the alphabet; values of these variables will be denoted by small letters,possibly with a subs
ript. As there is a one-to-one 
orresponden
e betweenvariables and variables, we will use the terms `variable' and `variable' inter-
hangeably. The probabilisti
 relationships between the represented variablesare 
aptured by the set of ar
s A(G) of the digraph. Informally speaking, wetake an ar
 A! B in G to represent an in
uential relationship between the4



variables A and B, designating B as the e�e
t of 
ause A. The absen
e of anar
 between two variables means that they do not in
uen
e ea
h other dire
tly.More formally, the set of ar
s 
aptures probabilisti
 independen
e among therepresented variables by means of the d-separation 
riterion. Two variables aresaid to be d-separated if all 
hains between them are blo
ked by the availableeviden
e. We say that a 
hain between two variables is blo
ked if it in
ludeseither an observed variable with at least one outgoing ar
 or an unobservedvariable with two in
oming ar
s and no observed des
endants; a 
hain thatis not blo
ked is 
alled a
tive. If two variables are d-separated then they are
onsidered 
onditionally independent given the available eviden
e [17℄.Asso
iated with ea
h variable A 2 V (G) is a set of 
onditional probabilitydistributions Pr(A j �(A)) that des
ribe the probabilisti
 relationship of thisvariable with its (immediate) prede
essors �(A) in the digraph. As an illus-tration, the following example introdu
es a small probabilisti
 network.Example 1 We 
onsider the small probabilisti
 network shown in Fig. 1. TheT FDA
Pr(a) = 0:70Pr(t j a) = 0:01Pr(t j �a) = 0:35 Pr(f j a) = 0:50Pr(f j �a) = 0:45Pr(d j tf) = 0:95Pr(d j �tf) = 0:15 Pr(d j t �f ) = 0:80Pr(d j �t �f ) = 0:01Fig. 1. The antibioti
s network.network represents a fragment of �
titious and in
omplete medi
al knowledge,pertaining to the e�e
ts of administering antibioti
s on a patient. Variable Arepresents whether or not a patient has been taking antibioti
s. Variable Tmodels whether or not the patient is su�ering from typhoid fever and variableD represents presen
e or absen
e of diarrhoea in the patient. Variable F , to
on
lude, des
ribes whether or not the 
omposition of the ba
terial 
ora in thepatient's gastrointestinal tra
t has 
hanged. Typhoid fever and a 
hange in thepatient's ba
terial 
ora are modelled as the possible 
auses of diarrhoea. An-tibioti
s 
an 
ure typhoid fever by killing the ba
teria that 
ause the infe
tion.However, antibioti
s 
an also 
hange the 
omposition of the patient's ba
terial
ora, thereby in
reasing the risk of diarrhoea. �A probabilisti
 network B = (G;Pr) de�nes a unique joint probability distri-bution Pr on V (G) withPr(V (G)) = YA2V (G)Pr(A j �(A))that respe
ts the independen
es portrayed in the digraph G. Sin
e a prob-abilisti
 network 
aptures a unique distribution, it provides for 
omputing5



any prior or posterior probability over its variables. Exa
t 
omputation ofthese probabilities is known to be NP-hard [3℄. However, various algorithmsare available that have a polynomial runtime 
omplexity for most realisti
networks [12,17℄.2.2 Qualitative probabilisti
 networksQualitative probabilisti
 networks bear a strong resemblan
e to their quanti-tative 
ounterparts. A qualitative probabilisti
 network Q = (G;�) also 
om-prises an a
y
li
 digraph G = (V (G); A(G)) modelling variables and the prob-abilisti
 relationships between them. The set of ar
s A(G) again models prob-abilisti
 independen
e. Instead of 
onditional probability distributions, how-ever, a qualitative probabilisti
 network asso
iates with its digraph a set � ofqualitative in
uen
es and qualitative synergies.A qualitative in
uen
e between two variables expresses how the values of onevariable in
uen
e the probabilities of the values of the other variable. Thedire
tion of the shift in probability o

asioned is indi
ated by the sign of thein
uen
e. A positive qualitative in
uen
e of a variable A on a variable B, forexample, expresses that observing higher values for A makes higher values forB more likely, regardless of any other in
uen
es on B [21℄. Building upon atotal order `>' on the values per variable, we have that higher values for avariableB are more likely given higher values for a variableA, if the 
umulative
onditional probability distribution F 0Bjai of variableB given ai lies, graphi
allyspeaking, below the 
umulative 
onditional probability distribution FBjaj givenaj, for all values ai; aj of A with ai > aj. When F 0Bjai lies below FBjaj for allvalues of B, F 0Bjai is said to dominate FBjaj by �rst-order sto
hasti
 dominan
e(FSD):F 0Bjai FSD FBjaj () F 0Bjai(bi) � FBjaj (bi) for all values bi of B:The 
on
ept of �rst-order sto
hasti
 dominan
e underlies the formal de�nitionof qualitative in
uen
e.De�nition 2 Let G = (V (G); A(G)) be an a
y
li
 digraph and let Pr be ajoint probability distribution on V (G) that respe
ts the independen
es in G.Let A, B be variables in G with A! B 2 A(G). Then, variable A positivelyin
uen
es variable B along ar
 A! B, written S+(A;B), i� for all values biof B and all values aj; ak of A with aj > ak, we have thatPr(B � bi j ajx) � Pr(B � bi j akx)for any 
ombination of values x for the set �(B) n fAg of prede
essors of B6



other than A.A negative qualitative in
uen
e, denoted by S�, and a zero qualitative in
u-en
e, denoted by S0, are de�ned analogously, repla
ing � in the above formulaby � and =, respe
tively. If the in
uen
e of variable A on variable B is notmonotoni
 or if it is unknown, we say that it is ambiguous, denoted S?(A;B).The `+', `�', `0' and `?' in the above de�nitions are termed the signs of thequalitative in
uen
es. Whenever signs are presented by themselves, they willbe a

ompanied by quotation marks, as in the previous senten
e; signs dis-played within formulas and tables will be presented without quotation marks.In the remainder of this paper, we assume for ease of exposition that all vari-ables are binary valued, with a denoting A = true, �a denoting A = false, anda > �a for any binary variable A. For illustrative purposes in examples, binaryvariables often have di�erent values than true and false; value statements forthese variables however, are again written as a or �a. We note that for binaryvariables, the de�nition of qualitative in
uen
e 
an be slightly simpli�ed. Fora positive qualitative in
uen
e of A on B, for example, we now have thatPr(b j ax)� Pr(b j �ax) � 0for any 
ombination of values x for X = �(B) n fAg.A qualitative in
uen
e is asso
iated with ea
h ar
 in the digraph of a quali-tative network. Variables, however, not only in
uen
e ea
h other along ar
s,they 
an also exert indire
t in
uen
es on one another. The de�nition of qual-itative in
uen
e trivially extends to 
apture su
h indire
t in
uen
es, that is,in
uen
es along one or more a
tive 
hains. The signs of indire
t in
uen
es aredetermined by the properties that the set of in
uen
es of a qualitative prob-abilisti
 network exhibits [21℄. The property of symmetry guarantees that, ifthe network in
ludes the in
uen
e SÆ(A;B), then it also in
ludes SÆ(B;A)with the same sign Æ. The property of transitivity asserts that qualitative in-
uen
es along an a
tive 
hain without any variables with two in
oming ar
son the 
hain, 
ombine into an indire
t in
uen
e with the sign spe
i�ed bythe 
-operator from Table 1. The property of 
omposition asserts that mul-tiple qualitative in
uen
es between two variables along parallel a
tive 
hains
ombine into a 
omposite in
uen
e with the sign spe
i�ed by the �-operator.From Table 1, we observe that 
ombining non-ambiguous qualitative in
u-en
es with the �-operator 
an yield in
uen
es with an ambiguous sign. Su
han ambiguity, in fa
t, results whenever two in
uen
es with opposite signs are
ombined. The two in
uen
es in essen
e are 
on
i
ting and represent a trade-o� in the appli
ation domain. The ambiguity that results from 
ombining thetwo in
uen
es indi
ates that the trade-o� 
annot be resolved from the infor-mation that is represented in the network. In 
ontrast with the �-operator, the7



Table 1The 
- and �-operators.
 + � 0 ? � + � 0 ?+ + � 0 ? + + ? + ?� � + 0 ? � ? � � ?0 0 0 0 0 0 + � 0 ?? ? ? 0 ? ? ? ? ? ?
-operator 
annot introdu
e ambiguities upon 
ombining signs of in
uen
esalong 
hains. Note that, on
e an ambiguous results has arisen, both operatorsserve to propagate this ambiguity.In addition to in
uen
es, a qualitative probabilisti
 network in
ludes synergiesthat model the intera
tions within small sets of variables. We distinguish be-tween additive synergies and produ
t synergies. As we will not use the additivesynergy in the remainder of this paper, we just say that it 
aptures the jointin
uen
e of two variables on a 
ommon su

essor [21℄. A produ
t synergy ex-presses how the value of one variable in
uen
es the probabilities of the valuesof another variable in view of a given value for a third variable [6℄.De�nition 3 Let G = (V (G); A(G)) be an a
y
li
 digraph and let Pr be ajoint probability distribution on V (G) that respe
ts the independen
es in G.Let A, B, C be variables in G with A! C, B ! C 2 A(G). Then, variableA exhibits a negative produ
t synergy on variable B (and vi
e versa) giventhe value 
 for their 
ommon su

essor C, denoted X�(fA;Bg; 
), i�Pr(
 j abx)�Pr(
 j �a�bx) � Pr(
 j a�bx)�Pr(
 j �abx)for any 
ombination of values x for the set �(C) n fA;Bg of prede
essors ofC other than A and B.Positive, zero, and ambiguous produ
t synergies are de�ned analogously.Produ
t synergies are of importan
e for reasoning with a qualitative networksin
e they indu
e a qualitative in
uen
e between the prede
essors A and Bof a variable C upon its observation. Su
h an indu
ed in
uen
e is 
oined aninter
ausal in
uen
e. The sign of an inter
ausal in
uen
e is determined by theprodu
t synergy that served to indu
e it and may di�er for the observations
 and �
 for the variable C.Example 4 The qualitative probabilisti
 network shown in Fig. 2 is the qual-itative 
ounterpart of the antibioti
s network dis
ussed in Example 1. Fromthe 
onditional probability distributions spe
i�ed for the variable T , we observe8



T FDA� ++ +�;�Fig. 2. The qualitative antibioti
s network.that Pr(t j a)� Pr(t j �a) = 0:01� 0:35 � 0and therefore 
on
lude that S�(A; T ). We further �nd that S+(A; F ), S+(T;D),and S+(F;D). Either value for variable D, in addition, indu
es a negative in-ter
ausal in
uen
e between the variables T and F (indi
ated by the dottedline). �For reasoning with a qualitative probabilisti
 network, an elegant algorithmis available from M.J. Druzdzel and M. Henrion [5℄; this algorithm, termedthe sign-propagation algorithm, is summarised in pseudo
ode in Fig. 3. Thebasi
 idea of the algorithm is to tra
e the e�e
t of observing a value for a vari-able upon the probabilities of the values of all other variables in the networkby message-passing between neighbouring variables. In essen
e, the algorithm
omputes the sign of in
uen
e along all a
tive 
hains between the newly ob-served variable and all other variables in the network, using the properties ofsymmetry, transitivity and 
omposition. For ea
h variable, it summarises theoverall in
uen
e in a node sign that indi
ates the dire
tion of the shift in theprobability distribution of that variable o

asioned by the new observation.The sign-propagation algorithm takes for its input a qualitative probabilisti
network, a set of previously observed variables, a variable for whi
h a new ob-servation has be
ome available, and the sign of this observation, that is, eithera `+' for the value true or a `�' for the value false. Prior to the a
tual propaga-tion of the new observation by PropagateSign, for all variables Vi the node signsign[Vi℄ is initialised at `0'. For the newly observed variable the appropriatepro
edure PropagateSign(trail,from,to,messagesign):sign[to℄  sign[to℄ � messagesign;trail  trail [ ftog;for ea
h a
tive neighbour Vi of todo linksign sign of (indu
ed) in
uen
e between to and Vi;messagesign sign[to℄ 
 linksign;if Vi =2 trail and sign[Vi℄ 6= sign[Vi℄ � messagesignthen PropagateSign(trail,to,Vi,messagesign).Fig. 3. The sign-propagation pro
edure for inferen
e in a qualitative network.9



sign is now entered into the network. The observed variable updates its nodesign to the sign-sum of its original sign and the entered sign. It thereupon no-ti�es all its (indu
ed) neighbours that its sign has 
hanged, by passing to ea
hof them a message 
ontaining a sign. This sign is the sign-produ
t of the vari-able's 
urrent node sign and the sign linksign of the in
uen
e asso
iated withthe ar
 or inter
ausal link it traverses. Ea
h message further re
ords its origin;this information is used to prevent the passing of messages to variables thatwere already visited on the same 
hain. Upon re
eiving a message, a variableto updates its node sign to the sign-sum of its 
urrent node sign sign[to℄ andthe sign messagesign from the message it re
eives. The variable then sendsa 
opy of the message to all its neighbours that need to re
onsider their nodesign. In doing so, the variable 
hanges the sign in ea
h 
opy to the appropri-ate sign and adds itself as the origin of the 
opy. Note that as this pro
ess isrepeated throughout the network, the 
hains along whi
h messages have beenpassed are re
orded. Also note that, as messages travel simple 
hains only, itis suÆ
ient to just re
ord the variables on these 
hains.During sign-propagation, variables are only visited if they need a 
hange ofnode sign. A node sign 
an 
hange at most twi
e, on
e from `0' to `+', `�' or`?' and then only from `+' or `�' to `?'. From this observation we have thatno variable is ever a
tivated more than twi
e upon inferen
e. The algorithmis therefore guaranteed to halt. The time-
omplexity of the algorithm is linearin the number of ar
s of the digraph.We illustrate the sign-propagation algorithm by means of our previous exam-ple.Example 5 We 
onsider on
e again the qualitative Antibioti
s network fromFig. 2. Suppose that a spe
i�
 patient is taking antibioti
s. This observation isentered into the network by updating the node sign of variable A to a `+'. Vari-able A thereupon propagates a message with sign +
� = � towards variableT . T updates its node sign to `�' and sends a message with sign �
+ = � tovariable D. D updates its sign to `�'. It does not pass on a sign to variable F ,sin
e the 
hain from A to F through D is blo
ked. Variable A also sends a mes-sage, with sign +
 + = +, to F . Variable F updates its node sign a

ordinglyand passes a messge with sign +
 + = + on to variable D. D thus re
eivesthe additional sign `+'. This sign is 
ombined with the previously updated nodesign `�', whi
h results in the ambiguous sign ��+ = ? for the variable D.Note that the ambiguous sign arises from the represented trade-o�. Also notethat if the network would have 
ontained additional variables beyond D, thesevariables would have all ended up with a variable sign `?' after inferen
e. �10



3 Context-independent signsSin
e qualitative probabilisti
 networks model knowledge at the level of vari-ables, 
ontext-spe
i�
 information, that is, information that holds only forspe
i�
 values of the variables involved, 
annot be represented expli
itly. Thisinformation in essen
e is hidden in the qualitative in
uen
es and synergiesof the network. If, for example, the in
uen
e of a variable A on a variableB is positive for one 
ombination of values for the set X of B's prede
essorsother than A, and zero for all other 
ombinations of values for X, then thein
uen
e of A on B is positive by de�nition. The zero in
uen
es, indi
ating
ontext-spe
i�
 independen
e, are hidden due to the fa
t that the inequalityin the de�nition of qualitative in
uen
e is not stri
t. We present an exampleillustrating su
h hidden zeroes.Example 6 We 
onsider the qualitative network from Fig. 4, whi
h repre-sents a highly simpli�ed fragment of knowledge in on
ology. It pertains to thee�e
ts and 
ompli
ations to be expe
ted from treatment of oesophageal 
an
er.The variable L models the life expe
tan
y of a patient after therapy; the valuel indi
ates that the patient will survive for at least one year and the value�l expresses that the patient will die within this year. Variable T models thetherapy instilled; we 
onsider surgery, modelled by t, and no treatment, mod-elled by �t, as the only therapeuti
 alternatives. The e�e
t to be attained fromsurgery is a 
omplete removal of the tumour, modelled by the variable R. Aftersurgery a life-threatening pulmonary 
ompli
ation, modelled by P , may result;the o

urren
e of this 
ompli
ation is heavily in
uen
ed by whether or not thepatient is a smoker, whi
h is modelled by the variable S.We 
onsider the 
onditional probabilities from a quanti�ed network repre-senting the same knowledge. We would like to note that these probabilitiesserve illustrative purposes only: although not entirely unrealisti
, they havenot been spe
i�ed by domain experts. The probability of attaining a 
ompleteremoval of the pesophageal tumour upon surgery is Pr(r j t) = 0:45; as withoutsurgery there 
an be no removal of the tumour, we have Pr(r j �t ) = 0. FromPr(r j t) � Pr(r j �t ), we have that the variable T indeed exerts a positive quali-tative in
uen
e on R. The probabilities of a pulmonary 
ompli
ation o

urringTR PL S+++ � +
Fig. 4. The qualitative surgery network.11



and of a patient's life expe
tan
y after therapy are, respe
tively,Pr(p) s �s Pr(l) p �pt 0:75 0:00 r 0:15 0:95�t 0:00 0:00 �r 0:03 0:50From the rightmost table we observe that Pr(l j r P ) � Pr(l j �r P ) for all valuesof P and that Pr(l j pR) � Pr(l j �pR) for all values of R. We thus verifythat the variable R exerts a positive in
uen
e on L, indi
ating that su

esfulremoval of the tunour serves to in
rease life expe
tan
y, and that the qualitativein
uen
e of P on L is negative, indi
ating that pulmonary 
ompli
ations fromsurgery are indeed life threatening. From the leftmost table, we observe thatPr(p j s T ) � Pr(p j �s T ) for all values of T and Pr(p j t S) � Pr(p j �t S) forall values of S. We thus verify that both T and S exert a positive qualitativein
uen
e on the variable P , indi
ating that performing surgery and smokingare risk fa
tors for pulmonary 
ompli
ations. The zeroes in the table revealthat pulmonary 
ompli
ations are likely to o

ur only in the presen
e of bothrisk fa
tors. The fa
t that the in
uen
e of T on P is, for example, a
tuallyzero in the 
ontext of the value �s for the variable S, however, is not apparentfrom the sign of the in
uen
e. Note that this zero in
uen
e does not arise fromthe probabilities being zero, but rather from their having the same value. �The previous example shows that the level of representation detail of a quali-tative network 
an result in information hiding. As hidden information 
annotbe exploited upon reasoning, unne
essarily weak answers may result from in-feren
e with the network. Referring to the previous example, for instan
e, we
an 
ompute, using the standard 
onditioning rule from probability theory, theindependen
es portrayed by the digraph of the example and the probabilitiesinvolved, that performing surgery on a non-smoker has a positive in
uen
eon life expe
tan
y: as Pr(l j t�s ) = 0:70 and Pr(l j �t�s ) = 0:50, we have thatPr(l j t�s ) � Pr(l j �t�s ). In the qualitative network, however, entering the ob-servation t for the variable T , in the presen
e of �s, will result in a `?' for Ldue to the 
on
i
ting reasoning 
hains from T to L. The `?' for the variable Lindi
ates that the resulting in
uen
e is unknown. As, from the 
ontext �s, weknow that the in
uen
e of T on P is zero, and hen
e the in
uen
e of T on Lvia P is zero, this result is weaker than stri
tly ne
essary.We re
all from the de�nition of qualitative in
uen
e that the sign of an in
u-en
e of a variable A on a variable B is independent of the values for the setX of prede
essors of B other than A. A `?' for the in
uen
e of A on B maytherefore hide the information that A has a positive in
uen
e on B for some
ombination of values for X and a negative in
uen
e for another 
ombination.If so, the ambiguous in
uen
e of A on B is non-monotoni
 in nature and 
anin fa
t be looked upon as spe
ifying di�erent signs for di�erent 
ontexts. We12



L MC� ?Fig. 5. The qualitative 
ervi
al metastases network.present an example to illustrate this observation.Example 7 The qualitative network from Fig. 5 represents another fragmentof knowledge in on
ology. It pertains to the metastasis of oesophageal 
an
er.The variable L represents the lo
ation of the primary tumour in a patient'soesophagus; the value l models that the tumour resides in the lower two-third ofthe oesophagus and the value �l expresses that the tumour is in the oesophagus'upper one-third. An oesophageal tumour upon growth typi
ally gives rise tolymphati
 metastases. The extent of su
h metastases is 
aptured by the variableM . The value �m of M indi
ates that just the lo
al and regional lymph nodesare a�e
ted; m denotes that distant lymph nodes are a�e
ted. Whi
h lymphnodes are lo
al or regional and whi
h are distant depends on the lo
ation of theprimary tumour in the oesophagus. The lymph nodes in the ne
k, or 
ervix, forexample, are regional for a tumour in the upper one-third of the oesophagus anddistant otherwise. variable C represents the presen
e or absen
e of metastasesin the 
ervi
al lymph nodes.We 
onsider the 
onditional probabilities from a quanti�ed network represent-ing the same knowledge; on
e again, these probabilities serve illustrative pur-poses only. The probabilities of the presen
e of 
ervi
al metastases in a patientare Pr(
) l �lm 0:35 0:95�m 0:00 1:00From these probabilities we observe that the variable L indeed has a negativein
uen
e on C, indi
ating that tumours in the lower two-third of the oesopha-gus are less likely to give rise to lymphati
 metastases in the ne
k than tumoursthat are lo
ated in the upper one-third of the oesophagus. The in
uen
e of thevariable M on C, however, is non-monotoni
:Pr(
 j ml) > Pr(
 j �ml); yet Pr(
 j m�l ) < Pr(
 j �m�l )While for tumours in the lower two-third of the oesophagus the lymph nodes inthe ne
k are less likely to be a�e
ted when only lo
al and regional metastasesare present, they are more likely to be a�e
ted in this 
ase for tumours that13



are lo
ated in the upper one-third of the oesophagus. We 
on
lude that thenon-monotoni
 in
uen
e of M on C hides a `+' for the value l of the variableL and a `�' for the 
ontext �l. �With the two examples above we have illustrated that 
ontext-spe
i�
 infor-mation about in
uen
es that is present in the 
onditional probabilities of aquanti�ed network 
annot be represented expli
itly in a qualitative proba-bilisti
 network. Upon abstra
ting the quanti�ed network to the qualitativenetwork, the information is e�e
tively hidden. Of 
ourse, in real-life appli-
ations of qualitative probabilisti
 networks, one would build the qualitativenetwork dire
tly with the help of domain experts rather than 
ompute it froman already quanti�ed network. During the 
onstru
tion of the qualitative net-work, however, an expert may express knowledge about non-monotoni
itiesand 
ontext-spe
i�
 independen
es as dis
ussed above.4 Context-spe
i�
ity and its exploitationThe level of representation detail of a qualitative probabilisti
 network enfor
esin
uen
es and synergies to be independent of spe
i�
 
ontexts. In this se
tionwe present an extension to the basi
 formalism of qualitative networks thatallows for asso
iating 
ontext-spe
i�
 signs with qualitative in
uen
es andsynergies. In Se
tion 4.1, the extended formalism is introdu
ed; in Se
tion 4.2,we demonstrate, by means of the example networks from the previous se
tion,that exploiting 
ontext-spe
i�
 information 
an prevent unne
essarily weakresults upon inferen
e.4.1 Context-spe
i�
 signsBefore introdu
ing 
ontext-spe
i�
 signs, we formally de�ne the notion of 
on-text for qualitative probabilisti
 networks.De�nition 8 Let G = (V (G); A(G)) be an a
y
li
 digraph. Let X � V (G) bea set of variables in G 
alled 
ontext variables. A 
ontext 
X for X is a
ombination of values for a subset Y � X of the set of 
ontext variables. ForY = ? we say that the 
ontext is empty, denoted �X . For Y = X, we say thatthe 
ontexts are maximal. The set of all possible 
ontexts for X is 
alled the
ontext set for X and is denoted CX .The subs
ript X for the empty 
ontext � will often be omitted as long asno 
onfusion is possible. Note that 
ontexts may pertain to arbitrary sets ofvariables from a qualitative network. 14



Upon inferen
e, we will often have to 
ompare di�erent 
ontexts for the sameset of 
ontext variables. For this purpose, we de�ne a partial order `>' on
ontexts.De�nition 9 Let G = (V (G); A(G)) be an a
y
li
 digraph and let X � V (G)be a set of 
ontext variables. Let 
X and 
0X be 
ombinations of values for thesets Y � X and Y 0 � X, respe
tively. Then, 
X > 
0X i� Y � Y 0 and 
X and
0X spe
ify the same 
ombination of values for Y 0.We now de�ne a 
ontext-spe
i�
 sign to be a sign that may vary from 
ontextto 
ontext. A 
ontext-spe
i�
 sign 
an basi
ally be looked upon as a fun
tionÆ : CX ! f+;�; 0; ?g from a set of 
ontexts CX to the set of all the basi
 signsintrodu
ed in Se
tion 2.De�nition 10 Let Q = (G;�) be a qualitative probabilisti
 network and letX � V (G) be a set of 
ontext variables. A 
ontext-spe
i�
 sign is a fun
tionÆ : CX ! f+;�; 0; ?g for whi
h for any two 
ontexts 
X and 
0X , 
X > 
0X , thefollowing property holds:Æ(
0X) = Æi; Æi 2 f+;�; 0g =) Æ(
X) 2 fÆi; 0gThe de�nition of 
ontext-spe
i�
 sign in essen
e states that the sign for a 
on-text agrees with the sign of any larger 
ontext, in the sense that signs 
annotbe
ome less 
onstrained for in
reasing 
ontexts (a `0' is more 
onstrained thana `+' or a `�', whi
h in turn are more 
onstrained than a `?'). More spe
i�-
ally, signs 
annot disagree unless they pertain to 
ontexts that 
annot o

ursimultaneously.For abbreviation, we will write Æ(X) to denote the 
ontext-spe
i�
 sign Æ thatis de�ned on the 
ontext set CX . To avoid an abundan
e of bra
es, we willfurther write Æ(A) instead of Æ(fAg) to indi
ate a 
ontext-spe
i�
 sign for asingle 
ontext variable A. Note that the basi
 signs from regular qualitativenetworks 
an be looked upon as 
ontext-spe
i�
 signs that are de�ned by a
onstant fun
tion. By being 
ontext-independent, they in essen
e 
over allpossible 
ontexts.Having introdu
ed the notion of 
ontext-spe
i�
 sign, we now extend the ba-si
 formalism of qualitative networks by allowing 
ontext-spe
i�
 signs forqualitative in
uen
es.De�nition 11 Let G = (V (G); A(G)) be an a
y
li
 digraph and let Pr be ajoint probability distribution on V (G) that respe
ts the independen
es in G. LetA, B be variables in G with A! B 2 A(G) and let X = �G(B) n fAg be theset of prede
essors of B other than A. Then, variable A exerts a qualitativein
uen
e of sign Æ(X) on variable B, denoted SÆ(X)(A;B), i� for ea
h 
ontext15




X for X we have� Æ(
X) = + i� Pr(b j a
Xx0 ) � Pr(b j �a
Xx0 ) for any 
ombination of values
Xx0 for X;� Æ(
X) = � i� Pr(b j a
Xx0 ) � Pr(b j �a
Xx0 ) for any 
ombination of values
Xx0 for X;� Æ(
X) = 0 i� Pr(b j a
Xx0 ) = Pr(b j �a
Xx0 ) for any 
ombination of values
Xx0 for X;� Æ(
X) = ? otherwise.Note that in de�ning a 
ontext-spe
i�
 in
uen
e for an ar
 between two vari-ables A and B, we have taken the set X of prede
essors of B other than A forthe set of 
ontext variables. This restri
tion of the set of 
ontext variables isnot essential, however, and 
an be lifted whenever desirable. Context-spe
i�
qualitative synergies are de�ned analogously.A 
ontext-spe
i�
 sign Æ(X) in essen
e has to spe
ify a basi
 sign from theset f+;�; 0; ?g for ea
h possible 
ombination of values in the 
ontext set CX .From the de�nition of 
ontext-spe
i�
 signs, however, we have that it is notne
essary to expli
itly indi
ate a basi
 sign for every 
ontext. The followingexample illustrates this observation.Example 12 We 
onsider an in
uen
e of a variable A on a variable B withthe set of 
ontext variables X = fD;Eg. Suppose that the sign Æ(X) of thein
uen
e is de�ned as Æ(�) = ?;Æ(d) = +; Æ( �d ) = �; Æ(e) = ?; Æ(�e) = +;Æ(de) = +; Æ(d�e) = +; Æ( �de) = �; Æ( �d�e) = 0From the de�nition of 
ontext-spe
i�
 sign, we have for example that Æ(d) = +enfor
es Æ(de) and Æ(d�e) to be either `+' or `0'. As both de and d�e indu
e thesame sign as d, the signs Æ(de) and Æ(d�e) reveal that no additional informa-tion is hidden by the sign Æ(d). Building upon this observation, the fun
tionÆ(X) 
an be uniquely des
ribed by the signs of the smaller 
ontexts wheneverthe larger 
ontexts are assigned the same sign. The fun
tion is therefore fullydes
ribed by the four signsÆ(�) = ?; Æ(d) = +; Æ( �d ) = �; Æ(�e) = +The sign for the 
ontext Æ( �d�e), for example, 
an be easily derived from thesesigns. As Æ( �d) = �, we have from the de�nition of 
ontext-spe
i�
 signs thatÆ( �d�e) 
an be either `�' or `0'. From Æ(�e) = +, we have in addition that Æ( �d�e)16



Table 2The ?-operator for 
ombining signs.? + � 0 ?+ + 0 0 +� 0 � 0 �0 0 0 0 0? + � 0 ?should be either `+' or `0'. We 
on
lude that Æ( �d�e) equals zero. The sign forthe 
ontext �de is derived in mu
h the same way. The sign Æ(e) = ? for the
ontext e does not pose any restri
tions on the sign for �de. The sign Æ( �d ) = �,however, restri
ts the sign Æ( �de) to be either `�' or `0'. As no sign has beenstated expli
itly for the 
ontext �de, it inherits its sign from �d: Æ( �de) = �. �In order to exploit the above observations, we have to provide for 
omputingthe unspe
i�ed sign of a larger 
ontext from the signs of smaller 
ontexts. For
ontexts 
X that pertain to a single variable, the sign Æ(
X) is taken to be equalto the sign spe
i�ed for the empty 
ontext �. For 
ontexts 
X that pertain toa set Y of two or more variables, we rewrite 
X as 
0X
, where 
 is the valueassigned by 
X to some variable C 2 Y and 
0X assigns the same values tothe variables Y nfCg as 
X . We then 
ompute the sign Æ(
X) re
ursively fromÆ(
X) = Æ(
0X)?Æ(
), building upon the and -operator from Table 2. Note thatif Æ(
0X) = Æ(
) then the sign of 
X obviously equals Æ(
). If one of Æ(
0X) or Æ(
)equals zero, then Æ(
X) should also be zero. If one of Æ(
0X) or Æ(
) is a `?', thenthe strongest of the two signs is taken for Æ(
X). If Æ(
0X) = + and Æ(
) = �,or vi
e versa, then Æ(
X) 
an only be zero. The pro
edure for determiningsigns from a partial spe
i�
ation of a 
ontext-spe
i�
 sign is summarised inpseudo
ode in Fig. 6.The standard sign-propagation algorithm for probabilisti
 inferen
e with aqualitative network, as dis
ussed in Se
tion 2.2, is easily extended to handlefun
tion ComputeSign(
X): Æ(X)if Æ(
X) is spe
i�edthen return Æ(
X);if X is a singletonthen return Æ(�X);return ComputeSign(
0X) ? ComputeSign(
)where 
0X and 
 adhere to 
X = 
0X
.Fig. 6. The pro
edure for 
omputing signs from a partially spe
i�ed 
ontext-spe
i�
sign. 17



pro
edure PropagateSign(trail,from,to,messagesign):sign[to℄  sign[to℄ � messagesign;trail  trail [ ftog;for ea
h a
tive neighbour Vi of todo linksign sign of (indu
ed) in
uen
e between to and Vi;if linksign = Æ(X)then determine the 
urrent 
ontext 
X from the observations;linksign ComputeSign(
X);messagesign sign[to℄ 
 linksign;if Vi =2 trail and sign[Vi℄ 6= sign[Vi℄ � messagesignthen PropagateSign(trail,to,Vi,messagesign)Fig. 7. The extended sign-propagation pro
edure for handling 
ontext-spe
i�
 signs.
ontext-spe
i�
 signs. The extended algorithm propagates and 
ombines ba-si
 signs only, as does the standard algorithm. Before a sign is propagatedover an in
uen
e, however, it is investigated whether or not the in
uen
e'ssign is 
ontext-spe
i�
. If so, the 
urrently valid 
ontext is determined fromthe available observations and the basi
 sign that is either spe
i�ed or 
om-puted for this 
ontext is propagated. If none of the 
ontext variables havebeen observed, then the sign spe
i�ed for the empty 
ontext is propagated.The extended sign-propagation algorithm is given in Fig. 7. We note that thealgorithm 
an handle both 
ontext-spe
i�
 and regular signs.4.2 Exploiting 
ontext-spe
i�
 signsIn Se
tion 3 we presented two examples showing that the in
uen
es of a qual-itative probabilisti
 network 
an hide 
ontext-spe
i�
 information. Revealingthis hidden information and exploiting it upon inferen
e 
an be worthwhile.The information that an in
uen
e is zero for a 
ertain 
ontext 
an be used,for example, to improve the runtime 
omplexity of the sign-propagation algo-rithm be
ause propagation of a sign along a 
ertain 
hain 
an be stopped assoon as a zero in
uen
e is en
ountered on that 
hain. More importantly, how-ever, exploiting 
ontext-spe
i�
 information 
an prevent 
on
i
ting in
uen
esarising during inferen
e and 
an thereby forestall the generation of ambiguoussigns. We illustrate this observation by means of an example.Example 13 We re
onsider the qualitative surgery network from Fig. 4. Sup-pose that a non-smoker is undergoing surgery. From Example 6 we re
all that,in the 
ontext of the observation �s for the variable S, propagation of the obser-vation t for the variable T with the standard sign-propagation algorithm resultsin the sign `?' for L. In essen
e, there is not enough information present in the18



TR PL SÆ(S)++ � +(a)
L MC� Æ(L)(b)Fig. 8. A hidden zero revealed, (a), and a non-monotoni
ity 
aptured, (b), by a
ontext-spe
i�
 sign.network to 
ompute a non-ambiguous sign from the two 
on
i
ting reasoning
hains between T and L. As a 
onsequen
e, the in
uen
e of the surgery on thepatient's life expe
tan
y is unknown.From the example, we now further re
all that the positive qualitative in
uen
efrom T on P e�e
tively hides a zero in
uen
e. With our new notion of 
ontext-spe
i�
 sign, we 
an make this information expli
it by asso
iating the sign Æ(S)with the in
uen
e of T on P , for whi
h:Æ(�) = +; Æ(�s) = 0We thus expli
itly in
lude the information that non-smoking patients are notat risk for pulmonary 
ompli
ations after surgery. The extended network isshown in Fig. 8(a).We now re
onsider our non-smoking patient undergoing surgery. Propagatingthe observation t for the variable T with the extended sign-propagation algo-rithm in the 
ontext of the observation �s results in the sign (+
+)� (0
�)= + for the variable L. The previously hidden zero in
uen
e is exploited uponinferen
e and we �nd that the surgery is likely to in
rease the patient's lifeexpe
tan
y. �In Se
tion 3 we not only dis
ussed hidden zero in
uen
es, but also argued thatpositive and negative in
uen
es 
an be hidden in the non-monotoni
 in
uen
esof a qualitative network. As the initial `?'s of these in
uen
es tend to spreadto major parts of the network upon inferen
e, it is worthwhile to resolve thenon-monotoni
ities involved whenever possible. Our extended formalism ofqualitative networks provides for expli
itly 
apturing information about non-monotoni
ities by 
ontext-spe
i�
 signs. The following example illustrates thebasi
 idea.Example 14 We re
onsider the qualitative 
ervi
al metastases network fromFig. 5. From Example 7, we re
all that the in
uen
e of the variable M , mod-elling the extent of lymphati
 metastases, on the variable C, whi
h represents19



the presen
e or absen
e of metastases in the lymph nodes in the ne
k, is non-monotoni
. More spe
i�
ally, we have thatPr(
 j ml) > Pr(
 j �ml) and Pr(
 j m�l ) < Pr(
 j �m�l ):In the 
ontext of an observation l, that is, for tumours lo
ated in the lowertwo-third of the oesophagus, we have that the in
uen
e is positive, while it isnegative in the 
ontext �l, that is, for tumours higher up in the oesophagus.With our new notion of 
ontext-spe
i�
 sign, we 
an make the hidden infor-mation expli
it. In the extended network, shown in Fig. 8(b), the informationis 
aptured by the sign Æ(L) withÆ(�) = ?; Æ(l) = +; Æ(�l ) = �for the in
uen
e of the variable M on C. It will be evident that the nowexpli
itly represented information 
an be exploited upon inferen
e. �5 Evaluation of 
ontext-spe
i�
ity in real-life networksTo get an impression of the 
ontext-spe
i�
 information that is hidden inreal-life qualitative probabilisti
 networks, we 
omputed qualitative abstra
-tions of the well-known alarm-network [1℄ and of a probabilisti
 networkfor oesophageal 
an
er, 
alled the oeso
a-network [20℄. The alarm-networkis reprodu
ed in Fig. 9. It 
onsists of 37, mostly non-binary, variables and46 ar
s; the number of dire
t qualitative in
uen
es in the abstra
ted net-work | using the basi
 de�nition of qualitative in
uen
e | therefore equals46. The oeso
a-network, shown in Fig. 10, 
onsists of 42, also mostly non-binary, variables and 59 ar
s. In 
omputing the qualitative abstra
tions of thetwo networks from the 
onditional probabilities spe
i�ed for the networks, wehave assumed that the values of a variable, are ordered from top, the smallestvalue, to bottom, the largest value, as indi
ated in Fig. 9 and Fig. 10. Table 3summarises for the abstra
ted networks the numbers of dire
t in
uen
es forTable 3The numbers of dire
t in
uen
es with `+', `�', `0' and `?' signs for the qualitativealarm- and oeso
a- networks.# dire
t in
uen
es with sign Æ:+ � 0 ? total :alarm 17 9 0 20 46oeso
a 32 12 0 15 5920



Table 4The numbers of maximal 
ontexts 
X 
overed by the `+', `�', `0' and `?' signs(Æ) and their asso
iated 
ontext-spe
i�
 signs (Æ0), for the qualitative alarm- andoeso
a- networks. # max. 
X with sign Æ0:alarm + � 0 ? total :+ 38 { 21 { 59Æ: � { 40 11 { 510 { { { { 0? 34 24 12 28 108total: 72 64 44 28 218# max. 
X with sign Æ0:oeso
a + � 0 ? total :+ 74 { 8 { 82Æ: � { 36 8 { 440 { { { { 0? 6 3 2 38 49total: 80 39 18 38 175the four di�erent basi
 signs.The numbers reported in Table 3 pertain to the basi
 signs of the qualitativein
uen
es asso
iated with the ar
s in the digraphs of the networks. Ea
h su
hin
uen
e, and hen
e ea
h asso
iated basi
 sign, 
overs a number of maximal
ontexts. For a qualitative in
uen
e asso
iated with an ar
 A! B, the num-ber of maximal 
ontexts equals 1 if variable B has no other prede
essors thanA; the only 
ontext is the empty 
ontext. If B does have other prede
essorsthen the number of maximal 
ontexts equals the number of possible 
ombina-tions of values for this set of prede
essors. For the alarm-network there thusare 218 maximal 
ontexts; for the oeso
a-network, the number of maximal
ontexts equals 175. For every maximal 
ontext, we have now 
omputed thetrue 
ontext-spe
i�
 sign from the original quanti�ed network. Table 4 sum-marises the numbers of 
ontext-spe
i�
 signs 
overed by the di�erent basi
signs in the two abstra
ted networks. From the table we observe, for example,that the 17 positive qualitative in
uen
es from the qualitative alarm net-work together 
over 59 di�erent maximal 
ontexts. For 38 of these 
ontexts,21
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HREKGFig. 9. The alarm-network (with its prior probabilities).
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Fig. 10. The oeso
a-network (with its prior probabilities).
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the in
uen
es are indeed positive, but for 21 
ontexts the positive in
uen
esa
tually hide a zero in
uen
e, that is, an independen
e.For the qualitative alarm-network, Table 3 shows that 35% of the in
uen
esare positive, 17% are negative, and 48% are ambiguous; the network doesnot in
lude any expli
itly spe
i�ed zero in
uen
es. For the extended network,using 
ontexts, we observe from Table 4 that 32% of the 
ontext-spe
i�
 in-
uen
es are positive. Note that 47% of these in
uen
es are in fa
t hidden inthe qualitative alarm-network. 31% of the in
uen
es in the extended net-work are negative, 20% are zero, and 17% remain ambiguous. Note that 65%of the ambiguous in
uen
es in the qualitative alarm-network e�e
tively hidea positive, negative or zero 
ontext-spe
i�
 in
uen
e. For the qualitative oe-so
a-network, Table 3 shows that 54% of the in
uen
es are positive, 21% arenegative, and 25% are ambiguous; the network does not in
lude any expli
itzero in
uen
es. For the extended network, using 
ontexts, we �nd that 46%of the qualitative in
uen
es are positive, 22% are negative, 10% are zero, and22% remain ambiguous. Note that, although the qualitative oeso
a-networkalso hides 
ontext-spe
i�
 information, it is less prominent than in the alarm-network.We 
on
lude that for both the alarm- and the oeso
a-network, the use of
ontext-spe
i�
 signs serves to reveal a 
onsiderable number of zero in
uen
esand to substantially de
rease the number of ambiguous in
uen
es. Similar ob-servations have been found for the qualitative abstra
tions of two other real-lifeprobabilisti
 networks, pertaining to Wilson's disease [11℄ and to ventri
ularseptal defe
t [4℄, respe
tively. We feel that by providing for the in
lusion of
ontext-spe
i�
 information about in
uen
es, we have e�e
tively extended theexpressive power of qualitative probabilisti
 networks for real-life appli
ations.6 Con
lusionsQualitative networks model the probabilisti
 in
uen
es involved in an appli-
ation domain at the high abstra
tion level of variables, as opposed to prob-abilisti
 networks where in
uen
es are represented at the level of values ofvariables. Due to this high level of representation detail, knowledge aboutprobabilisti
 in
uen
es that hold only for spe
i�
 values of 
ertain variables
annot be expressed. We have shown that, as a 
onsequen
e, the results 
om-puted from a qualitative network 
an be weaker than stri
tly ne
essary. Wehave argued that some of the knowledge that is hidden in a network is in fa
tqualitative in nature and should be represented expli
itly to be exploited uponreasoning. To this end, we have extended the formalism of qualitative prob-abilisti
 networks with a notion of 
ontext-spe
i�
ity. By doing so, we haveprovided for a �ner level of representation detail and thereby enhan
ed the24



expressive power of qualitative networks. While in a regular qualitative net-work zero in
uen
es as well as positive and negative in
uen
es 
an be hidden,in an extended network 
ontext-spe
i�
 signs are used to make these hiddenin
uen
es expli
it. We have shown that these signs 
an be spe
i�ed in an eÆ-
ient way. We have further shown that exploiting 
ontext-spe
i�
 information
an forestall unne
essary ambiguous signs during inferen
e.We have argued that qualitative probabilisti
 networks 
an play an impor-tant role in the 
onstru
tion of probabilisti
 networks for real-life appli
ationdomains. By �rst obtaining a qualitative network from domain experts, thereasoning behaviour of the proje
ted quanti�ed network 
an be studied andvalidated. The eli
ited signs 
an further be used as 
onstraints on the probabili-ties to be assessed. Now, re
all that the notion of 
ontext-spe
i�
 independen
ewas introdu
ed before for quanti�ed probabilisti
 networks as a 
on
ept to beexploited to speed up probabilisti
 inferen
e. To identify the 
ontext-spe
i�
independen
es, generally the 
onditional probability distributions that havebeen spe
i�ed for the network have to be inspe
ted [2℄. Using 
ontext-spe
i�
signs in qualitative networks during the 
onstru
tion of a probabilisti
 net-work, now brings the additional advantage of 
ontext-spe
i�
 independen
einformation being readily available.Referen
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