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Abstract

Qualitative probabilistic networks are qualitative abstractions of probabilistic net-
works, summarising probabilistic influences by qualitative signs. As qualitative net-
works model influences at the level of variables, knowledge about probabilistic influ-
ences that hold only for specific values cannot be expressed. The results computed
from a qualitative network, as a consequence, can be weaker than strictly neces-
sary and may in fact be rather uninformative. We extend the basic formalism of
qualitative probabilistic networks by providing for the inclusion of context-specific
information about influences and show that exploiting this information upon infer-
ence has the ability to forestall unnecessarily weak results.
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1 Introduction

Probabilistic networks have become widely accepted as practical representa-
tions of knowledge for reasoning under uncertainty. They combine a graphical
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representation of the variables in a problem domain and the relations be-
tween them, with (conditional) probabilities that represent the uncertainties
involved [17]. More specifically, the graphical representation takes the form of a
directed graph where each variable represents a variable, and an arc expresses
a possible probabilistic dependence between the variables; these dependences
are quantified by a conditional probability distribution for each variable given
the possible combinations of values for its predecessors in the digraph. For
reasoning with these probabilities in a mathematically correct way, powerful
algorithms are available. Applications of probabilistic networks can be found in
such fields as (medical) diagnosis and prognosis, planning, monitoring, vision,
information retrieval, natural language processing, and e-commerce.

Qualitative probabilistic networks are qualitative abstractions of probabilistic
networks [21], introduced for probabilistic reasoning in a qualitative way. Just
like a probabilistic network, a qualitative network encodes statistical variables
and the probabilistic relationships between them in a directed acyclic graph.
Each variable A in this digraph once again represents a variable. An arc A — B
again expresses a probabilistic influence of the variable A on the probability
distribution of the variable B. Rather than quantified by conditional probabil-
ities as in a probabilistic network, however, the influence is summarised by a
qualitative sign. This sign indicates the direction of shift in B’s (cumulative)
probability distribution that would be occasioned by an observation for A.
For example, a positive influence of A on B expresses that observing higher
values for A renders higher values for B more likely. The signs of a qualita-
tive network have a well-defined foundation in the mathematical concept of
stochastic dominance. Building upon this foundation, it is possible to reason
with qualitative signs in a mathematically correct way. To this end, an effi-
cient algorithm, based upon the idea of propagating and combining signs, is
available [5].

Qualitative probabilistic networks can play an important role in the construc-
tion of probabilistic networks for real-life application domains. While con-
structing the digraph of a probabilistic network requires considerable effort,
it is generally considered feasible. The assessment of all probabilities required
is a much harder task, especially if it has to be performed with the help
of human experts. The quantification task is, in fact, often referred to as a
major obstacle in building a probabilistic network [8,10]. Assessment of the
signs for a qualitative probabilistic network tends to require considerably less
effort from the domain experts, however [5]. Now, by eliciting signs from do-
main experts for the digraph of a probabilistic network under construction, a
qualitative probabilistic network is obtained. This qualitative network can be
used to study and validate the reasoning behaviour of the network prior to
probability assessment. The signs can further be used as constraints on the
probabilities to be assessed [7,13].



Qualitative networks model the uncertainties involved in an application do-
main at the high level of variables, as opposed to probabilistic networks where
uncertainties are represented at the level of the variables’ values. Due to this
coarse level of representation detail, reasoning with a qualitative probabilistic
network often leads to results that are weaker than strictly necessary and may
in fact be rather uninformative. To be able to fully exploit a qualitative prob-
abilistic network as outlined above, we feel that it should capture and exploit
as much qualitative information from the application domain as possible. First
introduced by M.P. Wellman [21] and later extended by M. Henrion and M.J.
Druzdzel [5,6,9], qualitative networks have been refined to enhance their ex-
pressiveness, by various researchers. S. Parsons [14,16] introduced the concept
of qualitative derivative where the influence of a variable A on a variable B
is summarised by a set of signs, one for each value of B; he also studied the
use of other approaches to uncertain reasoning, such as order-of-magnitude
reasoning, within qualitative probabilistic networks [15]. S. Renooij and L.C.
van der Gaag [18] have enhanced qualitative probabilistic networks by adding
a qualitative notion of strength. Renooij et al. [19] further focused on identi-
fying and resolving troublesome parts of a network. In this paper, we propose
adding a notion of context as an extension to the basic formalism of qualitative
networks in order to enhance its expressive power.

By means of their digraph, probabilistic networks provide a qualitative rep-
resentation of the conditional independences that are embedded in a joint
probability distribution. The digraph in essence captures independences be-
tween variables, that is, it models independences that hold for all values of
the variables involved. The independences that hold only for specific values
are not represented in the digraph but are captured instead by the conditional
probabilities associated with the variables. Knowledge of these latter indepen-
dences allows further decomposition of conditional probabilities and can be
exploited to speed up inference. For this purpose, a notion of context-specific
independence was introduced [2,22]. Context-specific independence occurs of-
ten enough that some well-known tools for the construction of probabilistic
networks have incorporated special mechanisms to allow the user to more
easily specify the conditional probability distributions for the variables in-
volved [2].

A qualitative probabilistic network also captures independences between vari-
ables by means of its digraph. Since its qualitative influences are specified at
the level of variables as well, independences that hold only for specific values
of the variables involved cannot be represented. In fact, qualitative influences
implicitly hide such context-specific independences: if the influence of a vari-
able A on a variable B is positive in one context, that is, for one combination
of values for some other variables, and zero in all other contexts — indicat-
ing independence — then the influence is captured by a positive sign. Also,
positive and negative influences may be hidden: if a variable A has a positive



influence on a variable B in some context and a negative influence in another
context, then the influence of A on B is modelled as being ambiguous.

As context-specific independences basically are qualitative by nature, we feel
that they can and should be captured explicitly in a qualitative probabilistic
network. For this purpose, we introduce a notion of context-specific sign. A
context-specific sign is basically a function assigning different signs to an influ-
ence for different contexts. Upon inference, for each influence with a context-
specific sign, the sign is propagated that is assigned to the context correspond-
ing to the observed variables’ values. We thus extend the basic formalism of
qualitative networks by providing for the inclusion of context-specific informa-
tion about influences and show that exploiting this information upon inference
can prevent unnecessarily weak results.

The paper is organised as follows. In Section 2, we provide some preliminar-
ies concerning probabilistic networks and qualitative probabilistic networks.
We present two examples of the type of information that can be hidden in
qualitative influences, in Section 3. We present our extended formalism and
associated algorithm for exploiting context-specific information upon inference
in Section 4. In Section 5, we discuss the context-specific information that is
hidden in the qualitative abstractions of two real-life probabilistic networks.
The paper ends with some concluding observations in Section 6.

2 Preliminaries

Before introducing qualitative probabilistic networks, we briefly review their
quantitative counterparts.

2.1 Probabilistic networks

A probabilistic network B = (G,Pr) is a concise representation of a joint
probability distribution Pr on a set of statistical variables. It encodes the vari-
ables concerned, along with their probabilistic interrelationships, in an acyclic
directed graph G = (V(G), A(G)). Each variable A € V(G) represents a statis-
tical variable. Variables will be indicated by capital letters from the beginning
of the alphabet; values of these variables will be denoted by small letters,
possibly with a subscript. As there is a one-to-one correspondence between
variables and variables, we will use the terms ‘variable’ and ‘variable’ inter-
changeably. The probabilistic relationships between the represented variables
are captured by the set of arcs A(G) of the digraph. Informally speaking, we
take an arc A — B in G to represent an influential relationship between the



variables A and B, designating B as the effect of cause A. The absence of an
arc between two variables means that they do not influence each other directly.
More formally, the set of arcs captures probabilistic independence among the
represented variables by means of the d-separation criterion. Two variables are
said to be d-separated if all chains between them are blocked by the available
evidence. We say that a chain between two variables is blocked if it includes
either an observed variable with at least one outgoing arc or an unobserved
variable with two incoming arcs and no observed descendants; a chain that
is not blocked is called active. If two variables are d-separated then they are
considered conditionally independent given the available evidence [17].

Associated with each variable A € V(G) is a set of conditional probability
distributions Pr(A | 7(A)) that describe the probabilistic relationship of this
variable with its (immediate) predecessors m(A) in the digraph. As an illus-
tration, the following example introduces a small probabilistic network.

Example 1 We consider the small probabilistic network shown in Fig. 1. The

Fig. 1. The antibiotics network.

network represents a fragment of fictitious and incomplete medical knowledge,
pertaining to the effects of administering antibiotics on a patient. Variable A
represents whether or not a patient has been taking antibiotics. Variable T
models whether or not the patient is suffering from typhoid fever and variable
D represents presence or absence of diarrhoea in the patient. Variable F', to
conclude, describes whether or not the composition of the bacterial flora in the
patient’s gastrointestinal tract has changed. Typhoid fever and a change in the
patient’s bacterial flora are modelled as the possible causes of diarrhoea. An-
tibtotics can cure typhoid fever by killing the bacteria that cause the infection.
However, antibiotics can also change the composition of the patient’s bacterial
flora, thereby increasing the risk of diarrhoea. O]

A probabilistic network B = (G, Pr) defines a unique joint probability distri-
bution Pr on V(G) with

Pr(V(@) = ]I Pr(A|n(4)

AEV(G)

that respects the independences portrayed in the digraph . Since a prob-
abilistic network captures a unique distribution, it provides for computing



any prior or posterior probability over its variables. Exact computation of
these probabilities is known to be NP-hard [3]. However, various algorithms

are available that have a polynomial runtime complexity for most realistic
networks [12,17].

2.2 Qualitative probabilistic networks

Qualitative probabilistic networks bear a strong resemblance to their quanti-
tative counterparts. A qualitative probabilistic network @ = (G, A) also com-
prises an acyclic digraph G = (V(G), A(G)) modelling variables and the prob-
abilistic relationships between them. The set of arcs A(G) again models prob-
abilistic independence. Instead of conditional probability distributions, how-
ever, a qualitative probabilistic network associates with its digraph a set A of
qualitative influences and qualitative synergies.

A qualitative influence between two variables expresses how the values of one
variable influence the probabilities of the values of the other variable. The
direction of the shift in probability occasioned is indicated by the sign of the
influence. A positive qualitative influence of a variable A on a variable B, for
example, expresses that observing higher values for A makes higher values for
B more likely, regardless of any other influences on B [21]. Building upon a
total order ‘>’ on the values per variable, we have that higher values for a
variable B are more likely given higher values for a variable A, if the cumulative
conditional probability distribution F, . of variable B given a; lies, graphically
speaking, below the cumulative conditional probability distribution Fp,; given
aj, for all values a;,a; of A with a; > a;. When F;3|ai lies below Fpiq, for all

values of B, F;3|ai is said to dominate Fq; by first-order stochastic dominance
(FSD):

é|ai FSD Fp,, < F,’B‘ai(bi) < Fpjq, (b;) for all values b; of B.

The concept of first-order stochastic dominance underlies the formal definition
of qualitative influence.

Definition 2 Let G = (V(G), A(G)) be an acyclic digraph and let Pr be a
joint probability distribution on V(G) that respects the independences in G.
Let A, B be variables in G with A — B € A(G). Then, variable A positively
influences variable B along arc A — B, written ST(A, B), iff for all values b;
of B and all values aj,a, of A with a; > ai, we have that

Pr(B > b; | ajx) > Pr(B > b; | apx)

for any combination of values x for the set w(B)\ {A} of predecessors of B



other than A.

A negative qualitative influence, denoted by S—, and a zero qualitative influ-
ence, denoted by S, are defined analogously, replacing > in the above formula
by < and =, respectively. If the influence of variable A on variable B is not
monotonic or if it is unknown, we say that it is ambiguous, denoted S*(A, B).

The ‘+’, ‘=", ‘0’ and ‘?” in the above definitions are termed the signs of the
qualitative influences. Whenever signs are presented by themselves, they will
be accompanied by quotation marks, as in the previous sentence; signs dis-
played within formulas and tables will be presented without quotation marks.

In the remainder of this paper, we assume for ease of exposition that all vari-
ables are binary valued, with a denoting A = true, @ denoting A = false, and
a > a for any binary variable A. For illustrative purposes in examples, binary
variables often have different values than true and false; value statements for
these variables however, are again written as a or a. We note that for binary
variables, the definition of qualitative influence can be slightly simplified. For
a positive qualitative influence of A on B, for example, we now have that

Pr(b | ax) —Pr(b | ax) > 0

for any combination of values x for X = 7(B) \ {A4}.

A qualitative influence is associated with each arc in the digraph of a quali-
tative network. Variables, however, not only influence each other along arcs,
they can also exert indirect influences on one another. The definition of qual-
itative influence trivially extends to capture such indirect influences, that is,
influences along one or more active chains. The signs of indirect influences are
determined by the properties that the set of influences of a qualitative prob-
abilistic network exhibits [21]. The property of symmetry guarantees that, if
the network includes the influence S°(A, B), then it also includes S°(B, A)
with the same sign §. The property of transitivity asserts that qualitative in-
fluences along an active chain without any variables with two incoming arcs
on the chain, combine into an indirect influence with the sign specified by
the ®-operator from Table 1. The property of composition asserts that mul-
tiple qualitative influences between two variables along parallel active chains
combine into a composite influence with the sign specified by the @&-operator.
From Table 1, we observe that combining non-ambiguous qualitative influ-
ences with the @-operator can yield influences with an ambiguous sign. Such
an ambiguity, in fact, results whenever two influences with opposite signs are
combined. The two influences in essence are conflicting and represent a trade-
off in the application domain. The ambiguity that results from combining the
two influences indicates that the trade-off cannot be resolved from the infor-
mation that is represented in the network. In contrast with the &-operator, the



Table 1
The ®- and @-operators.

|+ - 07 &+ — 0 7
+/+ - 0 7 ++ 7+ 7
- - 4+ 0 7 -7 - =7
0/0 0 00 0|+ — 0 7
70?7 7 0 7 A O R

®-operator cannot introduce ambiguities upon combining signs of influences
along chains. Note that, once an ambiguous results has arisen, both operators
serve to propagate this ambiguity.

In addition to influences, a qualitative probabilistic network includes synergies
that model the interactions within small sets of variables. We distinguish be-
tween additive synergies and product synergies. As we will not use the additive
synergy in the remainder of this paper, we just say that it captures the joint
influence of two variables on a common successor [21]. A product synergy ex-
presses how the value of one variable influences the probabilities of the values
of another variable in view of a given value for a third variable [6].

Definition 3 Let G = (V(G), A(G)) be an acyclic digraph and let Pr be a
joint probability distribution on V(G) that respects the independences in G.
Let A, B, C be variables in G with A — C, B — C € A(G). Then, variable
A ezhibits a negative product synergy on variable B (and vice versa) given
the value ¢ for their common successor C, denoted X~ ({A, B}, ¢), iff

Pr(c | abz)-Pr(c | abx) < Pr(c | abz)-Pr(c | abx)

for any combination of values x for the set w(C) \ {A, B} of predecessors of
C other than A and B.

Positive, zero, and ambiguous product synergies are defined analogously.

Product synergies are of importance for reasoning with a qualitative network
since they induce a qualitative influence between the predecessors A and B
of a variable C' upon its observation. Such an induced influence is coined an
intercausal influence. The sign of an intercausal influence is determined by the
product synergy that served to induce it and may differ for the observations
¢ and ¢ for the variable C'.

Example 4 The qualitative probabilistic network shown in Fig. 2 is the qual-
itative counterpart of the antibiotics network discussed in Example 1. From
the conditional probability distributions specified for the variable T', we observe



Fig. 2. The qualitative antibiotics network.

that

Pr(t | a) — Pr(t| @) =0.01 — 0.35 < 0

and therefore conclude that S™(A,T). We further find that ST(A, F), ST(T, D),
and S*(F, D). Either value for variable D, in addition, induces a negative in-
tercausal influence between the variables T and F (indicated by the dotted
line). O

For reasoning with a qualitative probabilistic network, an elegant algorithm
is available from M.J. Druzdzel and M. Henrion [5]; this algorithm, termed
the sign-propagation algorithm, is summarised in pseudocode in Fig. 3. The
basic idea of the algorithm is to trace the effect of observing a value for a vari-
able upon the probabilities of the values of all other variables in the network
by message-passing between neighbouring variables. In essence, the algorithm
computes the sign of influence along all active chains between the newly ob-
served variable and all other variables in the network, using the properties of
symmetry, transitivity and composition. For each variable, it summarises the
overall influence in a node sign that indicates the direction of the shift in the
probability distribution of that variable occasioned by the new observation.

The sign-propagation algorithm takes for its input a qualitative probabilistic
network, a set of previously observed variables, a variable for which a new ob-
servation has become available, and the sign of this observation, that is, either
a ‘4’ for the value true or a ‘=’ for the value false. Prior to the actual propaga-
tion of the new observation by PropagateSign, for all variables V; the node sign
sign[V;] is initialised at ‘0’. For the newly observed variable the appropriate

procedure PropagateSign(trail, from,to,messagesign):

sign[to] <« sign[to] & messagesign;

trail < trail U {to};

for each active neighbour V; of to

do linksign < sign of (induced) influence between to and V;;
messagesign <— sign[to] ® linksign,;
if V; ¢ trail and sign[V;] # sign[V;] & messagesign
then PropagateSign(trail,to,V;,messagesign).

Fig. 3. The sign-propagation procedure for inference in a qualitative network.



sign is now entered into the network. The observed variable updates its node
sign to the sign-sum of its original sign and the entered sign. It thereupon no-
tifies all its (induced) neighbours that its sign has changed, by passing to each
of them a message containing a sign. This sign is the sign-product of the vari-
able’s current node sign and the sign linksign of the influence associated with
the arc or intercausal link it traverses. Each message further records its origin;
this information is used to prevent the passing of messages to variables that
were already visited on the same chain. Upon receiving a message, a variable
to updates its node sign to the sign-sum of its current node sign sign[to] and
the sign messagesign from the message it receives. The variable then sends
a copy of the message to all its neighbours that need to reconsider their node
sign. In doing so, the variable changes the sign in each copy to the appropri-
ate sign and adds itself as the origin of the copy. Note that as this process is
repeated throughout the network, the chains along which messages have been
passed are recorded. Also note that, as messages travel simple chains only, it
is sufficient to just record the variables on these chains.

During sign-propagation, variables are only visited if they need a change of
node sign. A node sign can change at most twice, once from ‘0’ to ‘+’, ‘=" or
‘?” and then only from ‘+’ or ‘=’ to ‘7. From this observation we have that
no variable is ever activated more than twice upon inference. The algorithm
is therefore guaranteed to halt. The time-complexity of the algorithm is linear
in the number of arcs of the digraph.

We illustrate the sign-propagation algorithm by means of our previous exam-
ple.

Example 5 We consider once again the qualitative Antibiotics network from
Fig. 2. Suppose that a specific patient is taking antibiotics. This observation is
entered into the network by updating the node sign of variable A to a ‘+°. Vari-
able A thereupon propagates a message with sign + @ — = — towards variable
T. T updates its node sign to ‘—’ and sends a message with sign — ® + = — to
variable D. D updates its sign to ‘—’. It does not pass on a sign to variable F,
since the chain from A to F through D is blocked. Variable A also sends a mes-
sage, with sign + ® + = +, to F'. Variable F' updates its node sign accordingly
and passes a messge with sign + @ + = + on to variable D. D thus receives
the additional sign ‘+°. This sign is combined with the previously updated node
sign ‘=, which results in the ambiguous sign — @& + = 7 for the variable D.
Note that the ambiguous sign arises from the represented trade-off. Also note
that if the network would have contained additional variables beyond D, these
variables would have all ended up with a variable sign 7’ after inference. [

10



3 Context-independent signs

Since qualitative probabilistic networks model knowledge at the level of vari-
ables, context-specific information, that is, information that holds only for
specific values of the variables involved, cannot be represented explicitly. This
information in essence is hidden in the qualitative influences and synergies
of the network. If, for example, the influence of a variable A on a variable
B is positive for one combination of values for the set X of B’s predecessors
other than A, and zero for all other combinations of values for X, then the
influence of A on B is positive by definition. The zero influences, indicating
context-specific independence, are hidden due to the fact that the inequality
in the definition of qualitative influence is not strict. We present an example
illustrating such hidden zeroes.

Example 6 We consider the qualitative network from Fig. 4, which repre-
sents a highly simplified fragment of knowledge in oncology. It pertains to the
effects and complications to be expected from treatment of oesophageal cancer.
The variable L models the life expectancy of a patient after therapy; the value
[ indicates that the patient will survive for at least one year and the value
[ expresses that the patient will die within this year. Variable T models the
therapy instilled; we consider surgery, modelled by t, and no treatment, mod-
elled by t, as the only therapeutic alternatives. The effect to be attained from
surgery is a complete removal of the tumour, modelled by the variable R. After
surgery a life-threatening pulmonary complication, modelled by P, may result;
the occurrence of this complication is heavily influenced by whether or not the
patient is a smoker, which s modelled by the variable S.

We consider the conditional probabilities from a quantified network repre-
senting the same knowledge. We would like to note that these probabilities
serve illustrative purposes only: although not entirely unrealistic, they have
not been specified by domain experts. The probability of attaining a complete
removal of the pesophageal tumour upon surgery is Pr(r | t) = 0.45; as without
surgery there can be no removal of the tumour, we have Pr(r | t) = 0. From
Pr(r | t) > Pr(r | ), we have that the variable T indeed exerts a positive quali-
tative influence on R. The probabilities of a pulmonary complication occurring

Fig. 4. The qualitative surgery network.
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and of a patient’s life expectancy after therapy are, respectively,

Pr(p) | s s Pr() | p p
t 1075 0.00 r (015 0.95
I 0.00 0.00 7 [0.03 0.50

From the rightmost table we observe that Pr(l | r P) > Pr(l | 7 P) for all values
of P and that Pr(l | pR) < Pr(l | pR) for all values of R. We thus verify
that the variable R exerts a positive influence on L, indicating that succesful
removal of the tunour serves to increase life expectancy, and that the qualitative
influence of P on L is negative, indicating that pulmonary complications from
surgery are indeed life threatening. From the leftmost table, we observe that
Pr(p | sT) > Pr(p | sT) for all values of T and Pr(p | tS) > Pr(p | tS) for
all values of S. We thus verify that both T and S exert a positive qualitative
influence on the variable P, indicating that performing surgery and smoking
are risk factors for pulmonary complications. The zeroes in the table reveal
that pulmonary complications are likely to occur only in the presence of both
risk factors. The fact that the influence of T on P 1s, for example, actually
zero in the context of the value § for the variable S, however, is not apparent
from the sign of the influence. Note that this zero influence does not arise from
the probabilities being zero, but rather from their having the same value. [

The previous example shows that the level of representation detail of a quali-
tative network can result in information hiding. As hidden information cannot
be exploited upon reasoning, unnecessarily weak answers may result from in-
ference with the network. Referring to the previous example, for instance, we
can compute, using the standard conditioning rule from probability theory, the
independences portrayed by the digraph of the example and the probabilities
involved, that performing surgery on a non-smoker has a positive influence
on life expectancy: as Pr(l | ts) = 0.70 and Pr(l | ts) = 0.50, we have that
Pr(l | ts) > Pr(l | t5). In the qualitative network, however, entering the ob-
servation t for the variable T, in the presence of §, will result in a ‘7’ for L
due to the conflicting reasoning chains from 7" to L. The ‘?’ for the variable L
indicates that the resulting influence is unknown. As, from the context s, we
know that the influence of 7" on P is zero, and hence the influence of 17" on L
via P is zero, this result is weaker than strictly necessary.

We recall from the definition of qualitative influence that the sign of an influ-
ence of a variable A on a variable B is independent of the values for the set
X of predecessors of B other than A. A ‘7’ for the influence of A on B may
therefore hide the information that A has a positive influence on B for some
combination of values for X and a negative influence for another combination.
If so, the ambiguous influence of A on B is non-monotonic in nature and can
in fact be looked upon as specifying different signs for different contexts. We

12



Fig. 5. The qualitative cervical metastases network.

present an example to illustrate this observation.

Example 7 The qualitative network from Fig. 5 represents another fragment
of knowledge in oncology. It pertains to the metastasis of oesophageal cancer.
The variable L represents the location of the primary tumour in a patient’s
oesophagus; the value | models that the tumour resides in the lower two-third of
the oesophagus and the value | expresses that the tumour is in the oesophagus’
upper one-third. An oesophageal tumour upon growth typically gives rise to
lymphatic metastases. The extent of such metastases is captured by the variable
M. The value m of M indicates that just the local and regional lymph nodes
are affected; m denotes that distant lymph nodes are affected. Which lymph
nodes are local or regional and which are distant depends on the location of the
primary tumour in the oesophagus. The lymph nodes in the neck, or cerviz, for
example, are regional for a tumour in the upper one-third of the oesophagus and
distant otherwise. variable C' represents the presence or absence of metastases
in the cervical lymph nodes.

We consider the conditional probabilities from a quantified network represent-
ing the same knowledge; once again, these probabilities serve illustrative pur-
poses only. The probabilities of the presence of cervical metastases in a patient
are

Pr(c) | [
m | 0.35 0.95
m | 0.00 1.00

From these probabilities we observe that the variable L indeed has a negative
influence on C, indicating that tumours in the lower two-third of the oesopha-
gus are less likely to give rise to lymphatic metastases in the neck than tumours
that are located in the upper one-third of the oesophagus. The influence of the
variable M on C', however, is non-monotonic:

Pr(c | ml) > Pr(c | ml), yet Pr(c|ml) < Pr(c|ml)

While for tumours in the lower two-third of the oesophagus the lymph nodes in
the neck are less likely to be affected when only local and regional metastases
are present, they are more likely to be affected in this case for tumours that

13



are located in the upper one-third of the oesophagus. We conclude that the
non-monotonic influence of M on C hides a “+’ for the value [ of the variable
L and a ‘=’ for the context [. [J

With the two examples above we have illustrated that context-specific infor-
mation about influences that is present in the conditional probabilities of a
quantified network cannot be represented explicitly in a qualitative proba-
bilistic network. Upon abstracting the quantified network to the qualitative
network, the information is effectively hidden. Of course, in real-life appli-
cations of qualitative probabilistic networks, one would build the qualitative
network directly with the help of domain experts rather than compute it from
an already quantified network. During the construction of the qualitative net-
work, however, an expert may express knowledge about non-monotonicities
and context-specific independences as discussed above.

4 Context-specificity and its exploitation

The level of representation detail of a qualitative probabilistic network enforces
influences and synergies to be independent of specific contexts. In this section
we present an extension to the basic formalism of qualitative networks that
allows for associating context-specific signs with qualitative influences and
synergies. In Section 4.1, the extended formalism is introduced; in Section 4.2,
we demonstrate, by means of the example networks from the previous section,
that exploiting context-specific information can prevent unnecessarily weak
results upon inference.

4.1  Context-specific signs

Before introducing context-specific signs, we formally define the notion of con-
text for qualitative probabilistic networks.

Definition 8 Let G = (V(G), A(G)) be an acyclic digraph. Let X C V(G) be
a set of wvariables in G called context variables. A context cx for X is a
combination of values for a subset Y C X of the set of context variables. For
Y = @ we say that the context is empty, denoted ex. For'Y = X, we say that
the contexts are maximal. The set of all possible contexts for X 1is called the
context set for X and is denoted Cx.

The subscript X for the empty context e will often be omitted as long as
no confusion is possible. Note that contexts may pertain to arbitrary sets of
variables from a qualitative network.
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Upon inference, we will often have to compare different contexts for the same
set, of context variables. For this purpose, we define a partial order ‘>’ on
contexts.

Definition 9 Let G = (V(G), A(G)) be an acyclic digraph and let X C V(G)
be a set of context variables. Let cx and ¢y be combinations of values for the
sets Y C X and Y' C X, respectively. Then, cx > c iff Y DY’ and cx and
c'y specify the same combination of values for Y.

We now define a context-specific sign to be a sign that may vary from context
to context. A context-specific sign can basically be looked upon as a function
d:Cx — {+,—,0,7} from a set of contexts C'x to the set of all the basic signs
introduced in Section 2.

Definition 10 Let QQ = (G, A) be a qualitative probabilistic network and let
X CV(G) be a set of context variables. A context-specific sign is a function
§:Cx = {+,—,0,?7} for which for any two contexts cx and cy, cx > ¢y, the
following property holds:

6(c'y) =0, 0; € {+,—,0} = d(cx) € {6;,0}

The definition of context-specific sign in essence states that the sign for a con-
text agrees with the sign of any larger context, in the sense that signs cannot
become less constrained for increasing contexts (a ‘0’ is more constrained than
a ‘4+’ or a ‘—’, which in turn are more constrained than a ‘?’). More specifi-
cally, signs cannot disagree unless they pertain to contexts that cannot occur
simultaneously.

For abbreviation, we will write §(X) to denote the context-specific sign ¢ that
is defined on the context set Cx. To avoid an abundance of braces, we will
further write §(A) instead of §({A}) to indicate a context-specific sign for a
single context variable A. Note that the basic signs from regular qualitative
networks can be looked upon as context-specific signs that are defined by a
constant function. By being context-independent, they in essence cover all
possible contexts.

Having introduced the notion of context-specific sign, we now extend the ba-
sic formalism of qualitative networks by allowing context-specific signs for
qualitative influences.

Definition 11 Let G = (V(G), A(G)) be an acyclic digraph and let Pr be a
joint probability distribution on V (G) that respects the independences in G. Let
A, B be variables in G with A — B € A(G) and let X = ng(B) \ {A} be the
set of predecessors of B other than A. Then, variable A exerts a qualitative
influence of sign §(X) on variable B, denoted S°™)(A, B), iff for each context
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cx for X we have

e i(cx) =+ iff Pr(b|acxa’) > Pr(b|acxa") for any combination of values
cxx' for X;

e i(cx) =—iff Pr(b]|acxa’) < Pr(b|acxa’) for any combination of values
cxx' for X;

e §(cx) =0 iff Pr(b|acxz')=Pr(b|acxa") for any combination of values
cxa' for X;

e i(cx) = 7 otherwise.

Note that in defining a context-specific influence for an arc between two vari-
ables A and B, we have taken the set X of predecessors of B other than A for
the set of context variables. This restriction of the set of context variables is
not essential, however, and can be lifted whenever desirable. Context-specific
qualitative synergies are defined analogously.

A context-specific sign §(X) in essence has to specify a basic sign from the
set {+, —, 0,7} for each possible combination of values in the context set C'y.
From the definition of context-specific signs, however, we have that it is not
necessary to explicitly indicate a basic sign for every context. The following
example illustrates this observation.

Example 12 We consider an influence of a variable A on a variable B with
the set of context variables X = {D, E}. Suppose that the sign §(X) of the
influence is defined as

d(e) =7,
§(d) =+, §(d)=—, §e)= 7, d(e) =+,
5(de) = +, 6(de) = +, d(de) = —, 6(de) =0

From the definition of context-specific sign, we have for example that 6(d) = +
enforces 6(de) and §(de) to be either 4+ or 0°. As both de and deé induce the
same sign as d, the signs §(de) and d(de) reveal that no additional informa-
tion is hidden by the sign 0(d). Building upon this observation, the function
d(X) can be uniquely described by the signs of the smaller contexts whenever
the larger contexts are assigned the same sign. The function is therefore fully
described by the four signs

5(e) =7, 6(d) =+, 6(d)=—, 6() =+

The sign for the context 6(de), for example, can be easily derived from these

signs. As d(d) = —, we have from the definition of context-specific signs that
d(de) can be either ‘=’ or 0. From 6(€) = +, we have in addition that d(de)
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Table 2
The ®-operator for combining signs.

o+ - 0 7
+/+ 0 0 +
—-l0 —- o0 =
0,0 0 0 O
T+ - 0 7

should be either “+ or 0’. We conclude that 6(de) equals zero. The sign for
the context de is derived in much the same way. The sign §(e) = 7 for the
context e does not pose any restrictions on the sign for de. The sign §(d) = —,
however, restricts the sign 0(de) to be either ‘—’ or 0. As no sign has been

stated explicitly for the context de, it inherits its sign from d: §(de) = —. O

In order to exploit the above observations, we have to provide for computing
the unspecified sign of a larger context from the signs of smaller contexts. For
contexts cy that pertain to a single variable, the sign d(cy) is taken to be equal
to the sign specified for the empty context e. For contexts cx that pertain to
a set Y of two or more variables, we rewrite cy as c'yc¢, where c is the value
assigned by cy to some variable C' € Y and ¢y assigns the same values to
the variables Y\ {C} as cx. We then compute the sign d(cx) recursively from
d(cx) = d(c'y)®0(c), building upon the and-operator from Table 2. Note that
if 6(c’y) = 0(c) then the sign of cx obviously equals §(c). If one of (c’y) or §(c)
equals zero, then ¢(cx) should also be zero. If one of §(c'y) or §(c) is a ‘7', then
the strongest of the two signs is taken for §(cx). If §(cy) = + and 6(c) = —,
or vice versa, then §(cy) can only be zero. The procedure for determining
signs from a partial specification of a context-specific sign is summarised in
pseudocode in Fig. 6.

The standard sign-propagation algorithm for probabilistic inference with a
qualitative network, as discussed in Section 2.2, is easily extended to handle

function ComputeSign(cy): 0(X)
if 0(cy) is specified
then return §(cy);
if X is a singleton
then return J(ex);
return ComputeSign(c’y) ® ComputeSign(c)
where ¢’y and ¢ adhere to cy = c/yc.

Fig. 6. The procedure for computing signs from a partially specified context-specific
sign.
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procedure PropagateSign(trail, from,to,messagesign):

sign[to] « sign[to] & messagesign;

trail < trail U {to};

for each active neighbour V; of to

do linksign < sign of (induced) influence between to and V;;
if linksign = 6(X)
then determine the current context ¢y from the observations;

linksign < ComputeSign(cx);

messagesign <— sign[to] ® linksign,;
if V; ¢ trail and sign[V;] # sign[V;] & messagesign
then PropagateSign(trail,to,V;, messagesign)

Fig. 7. The extended sign-propagation procedure for handling context-specific signs.

context-specific signs. The extended algorithm propagates and combines ba-
sic signs only, as does the standard algorithm. Before a sign is propagated
over an influence, however, it is investigated whether or not the influence’s
sign is context-specific. If so, the currently valid context is determined from
the available observations and the basic sign that is either specified or com-
puted for this context is propagated. If none of the context variables have
been observed, then the sign specified for the empty context is propagated.
The extended sign-propagation algorithm is given in Fig. 7. We note that the
algorithm can handle both context-specific and regular signs.

4.2 Ezploiting context-specific signs

In Section 3 we presented two examples showing that the influences of a qual-
itative probabilistic network can hide context-specific information. Revealing
this hidden information and exploiting it upon inference can be worthwhile.
The information that an influence is zero for a certain context can be used,
for example, to improve the runtime complexity of the sign-propagation algo-
rithm because propagation of a sign along a certain chain can be stopped as
soon as a zero influence is encountered on that chain. More importantly, how-
ever, exploiting context-specific information can prevent conflicting influences
arising during inference and can thereby forestall the generation of ambiguous
signs. We illustrate this observation by means of an example.

Example 13 We reconsider the qualitative surgery network from Fig. 4. Sup-
pose that a non-smoker is undergoing surgery. From Example 6 we recall that,
in the context of the observation s for the variable S, propagation of the obser-
vation t for the variable T with the standard sign-propagation algorithm results
in the sign 77 for L. In essence, there is not enough information present in the
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Fig. 8. A hidden zero revealed, (a), and a non-monotonicity captured, (b), by a
context-specific sign.

network to compute a non-ambiguous sign from the two conflicting reasoning
chains between T' and L. As a consequence, the influence of the surgery on the
patient’s life expectancy is unknown.

From the example, we now further recall that the positive qualitative influence
from T on P effectively hides a zero influence. With our new notion of context-
specific sign, we can make this information explicit by associating the sign 0(S)
with the influence of T on P, for which:

é(e) =+, 6(s) =0

We thus explicitly include the information that non-smoking patients are not
at risk for pulmonary complications after surgery. The extended network is
shown in Fig. 8(a).

We now reconsider our non-smoking patient undergoing surgery. Propagating
the observation t for the variable T with the extended sign-propagation algo-
rithm in the context of the observation § results in the sign (+ @ +) ® (0® —)
= + for the variable L. The previously hidden zero influence is exploited upon
inference and we find that the surgery is likely to increase the patient’s life
expectancy. ]

In Section 3 we not only discussed hidden zero influences, but also argued that
positive and negative influences can be hidden in the non-monotonic influences
of a qualitative network. As the initial ‘?’s of these influences tend to spread
to major parts of the network upon inference, it is worthwhile to resolve the
non-monotonicities involved whenever possible. Our extended formalism of
qualitative networks provides for explicitly capturing information about non-
monotonicities by context-specific signs. The following example illustrates the
basic idea.

Example 14 We reconsider the qualitative cervical metastases network from
Fig. 5. From Example 7, we recall that the influence of the variable M, mod-
elling the extent of lymphatic metastases, on the vartable C', which represents
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the presence or absence of metastases in the lymph nodes in the neck, is non-
monotonic. More specifically, we have that

Pr(c | ml) > Pr(c | ml) and Pr(c|ml) < Pr(c|ml).

In the context of an observation L, that is, for tumours located in the lower
two-third of the oesophagus, we have that the influence is positive, while it is
negative in the context I, that is, for tumours higher up in the oesophagus.
With our new notion of context-specific sign, we can make the hidden infor-
mation explicit. In the extended network, shown in Fig. 8(b), the information
is captured by the sign 0(L) with

5(6) = 7, 8(1) = +, 8(1) = -

for the influence of the wvariable M on C. It will be evident that the now
explicitly represented information can be exploited upon inference. [

5 Evaluation of context-specificity in real-life networks

To get an impression of the context-specific information that is hidden in
real-life qualitative probabilistic networks, we computed qualitative abstrac-
tions of the well-known ALARM-network [1] and of a probabilistic network
for oesophageal cancer, called the OESOCA-network [20]. The ALARM-network
is reproduced in Fig. 9. It consists of 37, mostly non-binary, variables and
46 arcs; the number of direct qualitative influences in the abstracted net-
work — using the basic definition of qualitative influence — therefore equals
46. The OESOCA-network, shown in Fig. 10, consists of 42, also mostly non-
binary, variables and 59 arcs. In computing the qualitative abstractions of the
two networks from the conditional probabilities specified for the networks, we
have assumed that the values of a variable, are ordered from top, the smallest
value, to bottom, the largest value, as indicated in Fig. 9 and Fig. 10. Table 3
summarises for the abstracted networks the numbers of direct influences for

Table 3
The numbers of direct influences with ‘4’ ‘=", ‘0’ and ‘?’ signs for the qualitative
ALARM- and OESOCA- networks.

# direct influences with sign 0:

+ — 0 ? total:
ALARM 17 9 0 20 46
OESOCA 32 12 0 15 59
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Table 4

The numbers of maximal contexts cx covered by the ‘4+’) ‘=’ ‘0’ and ‘7’ signs
(0) and their associated context-specific signs (¢'), for the qualitative ALARM- and
OESOCA- networks.

# max. cx with sign ¢’

ALARM + — 0 ? total:
+ 38 - 21 - 59
0 = - 40 11 - ol
0 - - - - 0
? 34 24 12 28 108
total: 72 64 44 28 218

# max. cx with sign ¢’

OESOCA + - 0 ? total:
+ 74 - 8 - 82
0 - - 36 8 - 44
0 - - - - 0
? 6 3 2 38 49
total: 80 39 18 38 175

the four different basic signs.

The numbers reported in Table 3 pertain to the basic signs of the qualitative
influences associated with the arcs in the digraphs of the networks. Each such
influence, and hence each associated basic sign, covers a number of maximal
contexts. For a qualitative influence associated with an arc A — B, the num-
ber of maximal contexts equals 1 if variable B has no other predecessors than
A; the only context is the empty context. If B does have other predecessors
then the number of maximal contexts equals the number of possible combina-
tions of values for this set of predecessors. For the ALARM-network there thus
are 218 maximal contexts; for the OESOCA-network, the number of maximal
contexts equals 175. For every maximal context, we have now computed the
true context-specific sign from the original quantified network. Table 4 sum-
marises the numbers of context-specific signs covered by the different basic
signs in the two abstracted networks. From the table we observe, for example,
that the 17 positive qualitative influences from the qualitative ALARM net-
work together cover 59 different maximal contexts. For 38 of these contexts,
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Fig. 9. The ALARM-network (with its prior probabilities).
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the influences are indeed positive, but for 21 contexts the positive influences
actually hide a zero influence, that is, an independence.

For the qualitative ALARM-network, Table 3 shows that 35% of the influences
are positive, 17% are negative, and 48% are ambiguous; the network does
not include any explicitly specified zero influences. For the extended network,
using contexts, we observe from Table 4 that 32% of the context-specific in-
fluences are positive. Note that 47% of these influences are in fact hidden in
the qualitative ALARM-network. 31% of the influences in the extended net-
work are negative, 20% are zero, and 17% remain ambiguous. Note that 65%
of the ambiguous influences in the qualitative ALARM-network effectively hide
a positive, negative or zero context-specific influence. For the qualitative OE-
socA-network, Table 3 shows that 54% of the influences are positive, 21% are
negative, and 25% are ambiguous; the network does not include any explicit
zero influences. For the extended network, using contexts, we find that 46%
of the qualitative influences are positive, 22% are negative, 10% are zero, and
22% remain ambiguous. Note that, although the qualitative OESOCA-network
also hides context-specific information, it is less prominent than in the ALARM-
network.

We conclude that for both the ALARM- and the OESOCA-network, the use of
context-specific signs serves to reveal a considerable number of zero influences
and to substantially decrease the number of ambiguous influences. Similar ob-
servations have been found for the qualitative abstractions of two other real-life
probabilistic networks, pertaining to Wilson’s disease [11] and to ventricular
septal defect [4], respectively. We feel that by providing for the inclusion of
context-specific information about influences, we have effectively extended the
expressive power of qualitative probabilistic networks for real-life applications.

6 Conclusions

Qualitative networks model the probabilistic influences involved in an appli-
cation domain at the high abstraction level of variables, as opposed to prob-
abilistic networks where influences are represented at the level of values of
variables. Due to this high level of representation detail, knowledge about
probabilistic influences that hold only for specific values of certain variables
cannot be expressed. We have shown that, as a consequence, the results com-
puted from a qualitative network can be weaker than strictly necessary. We
have argued that some of the knowledge that is hidden in a network is in fact
qualitative in nature and should be represented explicitly to be exploited upon
reasoning. To this end, we have extended the formalism of qualitative prob-
abilistic networks with a notion of context-specificity. By doing so, we have
provided for a finer level of representation detail and thereby enhanced the
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expressive power of qualitative networks. While in a regular qualitative net-
work zero influences as well as positive and negative influences can be hidden,
in an extended network context-specific signs are used to make these hidden
influences explicit. We have shown that these signs can be specified in an effi-
cient way. We have further shown that exploiting context-specific information
can forestall unnecessary ambiguous signs during inference.

We have argued that qualitative probabilistic networks can play an impor-
tant role in the construction of probabilistic networks for real-life application
domains. By first obtaining a qualitative network from domain experts, the
reasoning behaviour of the projected quantified network can be studied and
validated. The elicited signs can further be used as constraints on the probabili-
ties to be assessed. Now, recall that the notion of context-specific independence
was introduced before for quantified probabilistic networks as a concept to be
exploited to speed up probabilistic inference. To identify the context-specific
independences, generally the conditional probability distributions that have
been specified for the network have to be inspected [2]. Using context-specific
signs in qualitative networks during the construction of a probabilistic net-
work, now brings the additional advantage of context-specific independence
information being readily available.
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