
An Application of Formal Argumentation:

Fusing Bayesian Networks in Multi-agent

Systems

Søren Holbech Nielsen a

aDepartment of Computer Science
Aalborg University, Aalborg

Denmark

Simon Parsons b

bDepartment of Computer and Information Science
Brooklyn College, City University of New York

Brooklyn, 11210 NY, USA

Abstract

We consider a multi-agent system where each agent is equipped with a Bayesian
network, and present an open framework for the agents to agree on a possible con-
sensus network. The framework builds on formal argumentation, and unlike previous
solutions on graphical consensus belief, it is sufficiently general to allow for a wide
range of possible agreements to be identified.

Key words: Argument in agent systems, Argumentation frameworks, Application,
Bayesian networks

1 Introduction

Lately research in distributed systems has intensified, spurred by increased
availability of sophisticated electronic devices and cheap networking equip-
ment. Within this field, the crossover area of multi-agent systems (MAS),
that incorporates parts of artificial intelligence research, has been heavily re-
searched, with each device being modelled as an autonomous agent capable of

Email addresses: soeren.holbech@gmail.com (Søren Holbech Nielsen),
parsons@sci.brooklyn.cuny.edu (Simon Parsons).

Preprint submitted to Elsevier March 28, 2007

acting on its environment, reflecting on observations of its surroundings and
communicating with other agents. To implement such reflective capabilities,
a model-based agent architecture is often employed, where the agent carries
within it a formal model of its surroundings and acts on mathematical in-
ferences drawn from this model. Hence, the more accurate the model is the
more successful the agent will be in achieving its objectives. Therefore it is
beneficial for the agent to i) update its model when observations of the agent’s
surrounding indicate that the model is inaccurate, and ii) communicate with
other agents about their models and alter its own model to reflect model
aspects common to the models of most other agents.

In this text we investigate how Bayesian networks (BNs) can be used as inter-
nal models in a multi-agent setting, and more specifically how ii) can be im-
plemented with the help of argumentation theory. Previously the two method-
ologies have mainly been studied together with a view to incorporating the
efficiency and precision of BNs into argumentation theory (e.g. (24)), or as
an exercise in converting models of one theory into models of the other (e.g.
(27) and (30)). Here, we instead try to exploit strong points of both reason-
ing methods: BNs constitute a compact, elegant, and mathematically correct
framework for drawing diagnostic or causal inferences from observations to
hypothesis variables, even in face of noisy observations, and they can be con-
structed and altered automatically from observation data, and are thus good
choices for internal models. Argumentation theory, on the other hand, pro-
vides a methodology for transparently extracting a consistent “truth” from a
set of conflicting and/or overlapping views, and furthermore has strong roots
in dialectics, which makes distributed agent-oriented implementations natural.

Playing along with these strengths, we envision a MAS of cooperating agents,
where each agent has a BN as a model of the domain it is situated in, and aim
at providing a framework built on principles of formal argumentation theory
in which the agents, starting from their individual domain models, can end
up agreeing on a single network representing their joint domain knowledge.

The task of fusing several BNs into one compromise BN has previously been
addressed with an a priori specified view to what constitutes a compromise
(14; 21; 10; 23; 4), with no apparent consensus on the goal of network fusion
among the authors, and has mainly been considered a centralized operation.
Matzkevich and Abramson (14) disregard the strength of independency state-
ments in the input networks, and seek to obtain a graph that contains all arcs
from the input networks or their reverses. Sagrado and Moral (4) similarly
disregard the quantitative parts of the input networks, and gives rules for
constructing graphs that imply either all independency statements implied by
at least one of the input BNs, or only those independency statements implied
by all input BNs. Richardson and Domingos (23) also disregard the quanti-
tative parts of the input networks, and construct a prior distribution over all

2

graph structures from the input BNs. This prior is then used as basis for a
standard greedy search based on a separate database. Finally, Pennock and
Wellman (21) derive a series of impossibility results for the general problem
of combining probability distributions, and Il and Chajewska (10) uses some
of the results from (21) to adapt standard greedy search score functions to
use the input BNs, rather than a database, as their basis. The differing objec-
tives of these papers stems from differences in interpretations of BNs: They
are seen as either specifying flow of information, specifying independencies
between variables, representing expert experience, or summarising data. In
this paper, we do not commit ourselves to any specific compromise objective.
Rather, we establish a general framework in which any kind of compromise
can be reached, with the exact nature of this specified by a compromise score
function and possibly a heuristic for walking search trees. The advantages of
our approach include that a general purpose argumentation engine can be im-
plemented, and reused in contexts with different definitions of compromise;
efficient distributed implementations are natural; in cases where agents al-
most agree a priori, little information need to be shared among the agents;
and anytime compromises can be achieved.

The text is structured as follows: In Section 2 we briefly cover the methodol-
ogy that we need. In particular, we need some concepts of graph theory, the
main theory of BNs and their equivalence classes, and finally theory of an
argumentation framework. Following this, in Section 3 we specify the problem
that we wish to solve more formally, and present the strategy for doing so. The
actual results then follow. First, Section 4 describes how we encode BNs in
our framework. Then Section 5 presents a formal argumentation system whose
preferred extensions correspond to proper BNs, and Section 6 contains the de-
bating guide-lines that must be followed by agents. We end with a discussion
of these results in Section 7.

2 Preliminaries

Before we proceed with the theory needed for the results later in the paper, we
briefly clarify the notation: as a general rule, sets are printed in boldface type
(S,pa(V), . . .), and individual entities are printed in plain letters (A, xi, . . .),
except data structures, which are printed in calligraphic letters (G,A, . . .), and
general classes, which are printed in gothic type (C). By convention we use ≡
to mean “is defined to be” or “defined as”, and decline to use { and } when
listing singleton sets. The material is necessarily heavy on definitions, and to
help the reader refer back, each term is emphasized where it is defined.

3

A B C D

E F G H

Figure 1. A simple graph.

2.1 Graphs

Here we briefly introduce the terms of graph theory and notation that are used
in the remainder of the text. For more elaboration on the concepts introduced,
see e.g. (13).

A graph is a pair G ≡ (X, E), where X is the finite set of nodes of the graph,
and E ⊆ (X ×X) \ {(X, X) : X ∈X} is a set of ordered pairs called edges
of the graph. For any two nodes X and Y , if both (X, Y) and (Y, X) is in E

we say that there is an undirected link (or just a link) between X and Y and
that they are neighbours. If only (X, Y) is in E, then we say that there is an
arc from X to Y , that X is a parent of Y , and that Y is a child of X. The set
of parents of a node X is denoted pa(X). If X is a neighbour, parent, or child
of Y , we say that X and Y are adjacent. A triple of nodes (X, Y, Z) is said
to constitute a v-structure, if Y is a child of both X and Z, and X and Z are
not adjacent. When depicting a graph we use circles for nodes, lines for links,
and arrows for arcs, as shown in Figure 1. From the figure it can be seen that
pa(C) = G, that C is a neighbour of both B and D, that C has no children,
and that (A, B, F) is the only v-structure in the graph.

For two nodes X1 and Xk, we say that there is a path from X1 to Xk, if either
(X1, Xk) is in E, or there are distinct nodes X2, . . . , Xk−1 different from X1

and Xk, such that (Xi−1, Xi) is in E for all 2 ≤ i ≤ k. We denote the path
(X1, . . . , Xk) and say that its length is k − 1. If, for one of the edges (X, Y)
in a path, (Y, X) is not in E then we say that the path is directed, if not it is
undirected. A path (X, . . . , Y), where X and Y are the same node, we call a
cycle. Given a cycle (X1, . . . , Xk−1, X1) of length k ≥ 4, we say that the cycle
has a chord if there is a pair of nodes Xi and Xj , where |i − j| ≥ 2 and Xi

and Xj are not the pair X1 and Xk−1, such that Xi and Xj are adjacent. A
cycle of length k ≥ 4 with no chord is called chordless. If there is a directed
path from a node X to a node Y , then we say that Y is a descendant of X.
The set of descendants of X is denoted by desc(X). If, for any two nodes X

and Y in a set Y , either X is the same node as Y , or there is an undirected
path from X to Y , and this holds for no other set Z ⊃ Y , then we call Y

a chain component. For examples, consider the graph in Figure 1: There are
no cycles in the graph, desc(A) = {B, C, D, E, F, H}, and {B, C, D, H} is a
chain component.

4

Given a graph G ≡ (X, E), we introduce some auxiliary definitions. Let Y ⊆
X, then we say that GY ≡ (Y , E∩ (Y ×Y)) is the subgraph induced by Y . If
all the edges in G are arcs, we say that G is directed. If all the edges are links, we
say that G is undirected. A graph, which is neither directed nor undirected, is
a partially directed graph. An undirected graph containing no chordless cycles
is called decomposable. A graph with no directed cycles is called a chain graph.
A directed chain graph is also called an acyclic directed graph, traditionally
abbreviated DAG. The graph Gu ≡ (X, {(X, Y) : (X, Y) ∈ E or (Y, X) ∈
E}), obtained by replacing each arc in G with a link, is called the skeleton of
G.

2.2 Bayesian Networks

A Bayesian network (BN), over a set of discrete 1 domain variables V , is a pair
(G,Φ), where G ≡ (V , E) is a DAG, and Φ is a set of conditional probability
distributions:

Φ ≡ {P (V |pa(V)) : V ∈ V }.

In the sequel we assume V to be fixed and implicitly constitute the basis for
the nodes of all graphs. For more information on BNs in general, see (11).

A BN provides a probabilistic model P of the domain V , such that for any
configuration v ≡ (v1, . . . , vn) over V ,

P (v) ≡
∏

Φ

P (Vi = vi|pa(Vi) = vpa(Vi)),

with vpa(Vi) denoting the entries in the configuration v that corresponds to
the variables in the set pa(Vi). For any BN, the limitations on P imposed by
the structure of G are summarised as a set of independence constraints:

{

V ⊥⊥V \ (desc(V) ∪ pa(V) ∪ V) | pa(V) : V ∈ V

}

,

where the notation X⊥⊥Y | Z, for three disjoint sets of variables X, Y , and
Z, means that the variables in X are probabilistically conditionally indepen-
dent of those in Y given those in Z, i.e.

P (X ∪ Y |Z) = P (X|Z) · P (Y |Z),

whenever P (Z) > 0. In other words, the set of probability models that can be
associated to some DAG to constitute a BN, all need to obey the independence
constraints dictated by the structure (20).

1 “Discrete” meaning that a variable can be in one of only a finite number of states.
Other equivalent terms include “cardinal” and “ordinal”.

5

A B C

(a)

A B C

(b)

Figure 2. Two BNs with the same independence properties.

A B C

D E F

(a)

A B C

D E F

(b)

Figure 3. (a) A graph and (b) its pattern.

Two distinct DAGs may give rise to the same independence constraints as
can be seen from the two graphs in Figures 2(a) and 2(b): They imply the
independence statements A ⊥⊥ C | B and C ⊥⊥ A | B, respectively, which
by the commutativity of standard multiplication are the same. We can thus
define an equivalence relation over DAGs, such that G and H are equivalent
iff the independence constraints implied by G are exactly those implied by H.
This leads to an important observation: when only the structure of BNs need
to be determined (e.g. in situations where only independencies among parts
need consideration) several DAGs can be correct answers. Therefore, identi-
fying a single DAG, rather than the equivalence class containing it, can be a
waste of effort and maybe even impossible, if only independence information is
available. Hence, it can be fruitful to consider equivalence classes rather than
DAGs.

Verma and Pearl (26) showed that any two DAGs imply the same indepen-
dence constraints if and only if (iff) they contain the same v-structures and
have the same skeleton. Thanks to this result, we can represent the equiva-
lence class of a DAG G as a graph having the same skeleton as G, the same
v-structures, and all edges not participating in defining a v-structure being
undirected links. Clearly this graph is uniquely determined, and following
Verma and Pearl (26) we shall call it the pattern of the equivalence class. As
an example, the pattern of the equivalence class of the DAG in Figure 3(a) is
shown in Figure 3(b).

Once a pattern has been determined for a DAG all the members of its equiva-
lence class can be constructed by exchanging links for arcs in all possible ways
under the constraints that

(1) the resulting graphs contains no directed cycles, and
(2) no other v-structures than those of the pattern emerge.

6

A B C

D E F

(a)

A B C

D E F

(b)

Figure 4. The completed pattern of the graph in Figure 3(a) and a graph with no
consistent extension.

These two constraints sometimes cause one or more of the arcs replacing links
in the pattern to have the same orientation in the resulting DAGs, no matter
in what order or direction other links are converted. For instance, the link
between C and E in the pattern in Figure 3(b) cannot be exchanged with
an arc going from E to C, as that would create a new v-structure (E, C, F).
Hence, it must be exchanged for an arc from C to E in all DAGs created from
that pattern. The arcs arising from replacing such links, and arcs participat-
ing in defining the v-structures in the pattern, we collectively call compelled
arcs. The graph that results from replacing links for compelled arcs wherever
possible is called the completed pattern. Notice that by definition this graph
must necessarily be unique for each equivalence class. The completed pattern
of the DAG in Figure 3(b) is shown in Figure 4(a).

Now, consider the graph in Figure 4(b). No matter how we try to exchange
the links in the graph with arcs we end up either creating a directed cycle
or a v-structure not present in the original graph. Thus, this graph cannot
be a pattern for any equivalence class of DAGs nor be a result of extending
a pattern while respecting Constraints 1 and 2, and we are therefore dealing
with two classes of graphs: Those graphs that can be turned into at least one
DAG, by exchanging links for arcs while respecting Constraints 1 and 2, we
say admit a consistent extension, whereas those that cannot do not admit a
consistent extension (terminology originally introduced by Chickering (3)). We
denote the class of graphs admitting a consistent extension as C. As a DAG
has itself as a consistent extension, it follows that any DAG G ≡ (V , E) is a
member of C. Furthermore, the pattern Gp ≡ (V , Ep) of G must necessarily
be a member of C, as must any graph G ′ ≡ (V , E′), where E ⊆ E′ ⊆ Ep,
including the completed pattern of G. We shall also distinguish completed
patterns from other members of C, i.e. Ccp ⊂ C is the class of graphs that are
completed patterns of at least one DAG.

Unfortunately, we are unaware of any simple characterization of members of C.
That is, potentially trying out all possible directions of undirected links in the
hope of obtaining a consistent extension is not simple, but a computationally
intensive procedure calling for a lot of back tracking, and it requires global
investigation of the graph rather than a series of local investigations. However,
Andersson et al (1) provide the following result on members of Ccp:

7

Theorem 1 A graph G is a member of Ccp iff

(1) G is a chain graph,
(2) GC is decomposable for all chain components C of G,
(3) if X is a parent of Y , and Z is a neighbour of Y , then X and Z are

adjacent (i.e. the configuration in Figure 5(a) does not exist as a subgraph
of G), and

(4) each arc in G is strongly protected (defined below).

An arc from a node X to a node Y in a graph G is strongly protected if either

• there is a node Z that is a parent of X and not adjacent to Y (see Fig-
ure 5(b)),

• there is a node Z that is a parent of Y and not adjacent to X (see Fig-
ure 5(c)),

• there is a node Z that is a parent of Y and a child of X (see Figure 5(d)),
or

• there are non-adjacent nodes Z and W , such that both Z and W are parents
of Y and neighbours to X (see Figure 5(e)).

The bullets of the theorem all have pretty intuitive justifications. In short,
Items 1, 2, and 3 ensure that all compelled arcs are arcs, whereas Item 4
ensures that nothing but compelled arcs are arcs. In particular, Item 1 calls
for the graph to be a chain graph, which is reasonable, since any graph with
a fully directed cycle cannot be extended to a DAG, and any graph with a
directed cycle still containing undirected links cannot be extended to a DAG
without creating a new v-structure, unless the cycle is of length 3, in which
case the arc(s) participating in the cycle cannot be strongly protected, and
hence would be forbidden by Item 4.

Item 2 is reasonable, since any graph with a chordless undirected cycle cannot
be extended into a DAG without creating a new v-structure.

A graph failing to satisfy Item 3 cannot be extended into a DAG without
creating a new v-structure, unless the undirected link between Y and Z is
directed away from Y . But then this arc is compelled, and it should have been
an arc if the graph was to be a completed pattern.

As for Item 4, consider that for any arc in a completed pattern, it holds by
definition that this arc cannot be reversed without changing the set of v-
structures or introducing a directed cycle. Going through each case of the
definition of “strongly protected”, it is easy to see that changing the direction
of these arcs does result in a cycle, a new v-structure, or the destruction of a
v-structure.

Clearly, both Items 3 and 4 are easily checked locally, and Items 1 and 2 can

8

X Y

Z

(a)

X Y

Z

(b)

X Y

Z

(c)

X Y

Z

(d)

X Y

Z W

(e)

Figure 5. Configurations described in Theorem 1.

be checked without any backtracking. Hence, Theorem 1 provides an efficient
means for identifying members of Ccp and thus exactly those graphs that are
of interest, when only the structure of a BN needs to be identified.

2.3 Argumentation Systems

Argumentation is a relatively new approach to extracting consistent knowl-
edge from a possibly inconsistent knowledge base while possibly respecting
some assumptions on the relative epistemological worth of statements in the
knowledge base. The approach can be seen as an alternative to formal non-
monotonic and defeasible logics. As the research area of argumentation sys-
tems is still fairly new, no single methodology has yet to stand out as the
main approach, and a lot of problems are still not solved. However, the ar-
gumentation approach shows great potential as a general purpose reasoning
mechanism, which is why we use it here.

Due to the lack of an established framework for analysis of argument systems,
it has been necessary to pick one from a large pool of these (e.g. (25), (8), (12),
(22), and (29)). The framework we have picked for our purpose is the frame-
work of (19), which generalizes that of (7), as this is an abstract framework,
which leaves the underlying language and reasoning unspecified.

An argumentation system is a pair A ≡ (A, ⊲), where A is a set of arguments,
and ⊲ ⊆ (2A\{∅})×A is an attack relation. 2 The exact nature of an argument
is left unspecified, but examples built on a language akin to propositional logic
could be:

• “The sun is shining, so it is not raining”,
• “I saw a pigeon yesterday, so it is not raining”, and
• “It is not raining”.

2 Traditionally, attack relations have primarily been defined as subsets of A ×A.
The generalized notion that we use here renders the language, argumentation sys-
tem, and proofs to follow more elegant, but there are other, more general, reasons
for prefering the definition used here. See (19) and (17) for dialectical and compu-
tational reasons.

9

For two sets of arguments S ⊆ A and S′ ⊆ S and an argument A, if S′ ⊲ A

then S is said to attack A, and A is said to be attacked by S. If no proper
subset of S′ attacks A, then S′ is called a minimal attack on A. An example
of an attack that would intuitively make sense is

“The sun is shining”⊲“It is raining”.

A semantics of an argumentation framework is a definition of which arguments
in the framework that should be accepted by a rational individual. (7) and (19)
work with a wide range of semantics, but we only introduce those we need here.
First of all, we define a set of arguments S ⊆ A as being conflict-free, if there is
no argument A in S such that S attacks A. Intuitively, claiming a conflict-free
set of arguments as your beliefs implies that you are not contradicting yourself.
We further define a single argument A as being acceptable with respect to a set
of arguments S, if for each set of arguments T ⊆ A, such that T ⊲ A, there
is an argument B in T , such that S attacks B. In that case we also say that
S defends A. A conflict-free set S, where all arguments in S are acceptable
with respect to S, is called admissible. Thus, claiming an admissible set of
arguments as your beliefs means that you can defend your beliefs against all
possible counter arguments.

A very skeptical attitude towards arguments is captured by a semantics called
the grounded extension. The grounded extension of an argumentation frame-
work is the least fixpoint of the function F : 2A→ 2A, defined as

F (S) = {A ∈ A : A is acceptable wrt. S}.

Thus the grounded extension consists of all the arguments that have no counter
arguments, along with the arguments they defend, along with those defended
by these arguments, and so on. A less skeptical semantics is that of a preferred
extension, which is an admissible set that is maximal with respect to set
inclusion. Finally, an admissible set S is said to be a stable extension, if it
attacks all arguments in A \ S. Clearly, a stable extension is a preferred
extension as well.

In general it is hard to compute a preferred extension (5), but Doutre and
Mengin (6) present a method that enumerates preferred extensions for an
abstract argumentation system as presented in (7). Furthermore, Vreeswijk
and Prakken (28) and Cayrol et al (2) present methods for answering whether
a specific argument is in at least one preferred extension, or if it is in all
preferred extensions in the special case, where each preferred extension of the
argumentation system is a stable one. In (18), we have adapted the technique
of (6) to the problem of enumerating preferred extensions for argumentation
systems, where sets of arguments attack other arguments. We present only the
essentials of this technique here, and refer the interested reader to (18) for the
details:

10

Given an argumentation system A ≡ (A, ⊲), we define an A-candidate as a
triple C ≡ (I, O, U ≡ A \ (I ∪U)) where

• I ∩O = ∅,
• every argument that is attacked by I is in O, and
• every argument A, for which there exists S ⊆ I and B ∈ I, such that

S ∪ A ⊲ B, is in O.

Given an A-candidate C ≡ (I, O, U) and an argument A ∈ U the triples
C −A ≡ (I−A, O−A, U−A ≡ A \ (I−A∪O−A)) and C+A ≡ (I+A, O+A, U+A ≡
A \ (I+A ∪O+A)) are given by:

I−A ≡ I, O−A ≡ O ∪A,

I+A ≡ I ∪ A, and O+A ≡ O ∪∆C+A,

where

∆C+A ≡ {B ∈ U : ∃S ⊆ I, C ∈ I

s.t. S ∪ A ⊲ B ∨ S ∪ B ⊲ A

∨ S ∪ {A, B} ⊲ C ∨ S ∪ {A, B} ⊲ A}.

If A does not participate in a minimal attack on itself (which is the case for
all arguments of the argumentation system we construct in this paper), then
both C−A and C+A are A-candidates themselves, and we can thus construct
candidate trees where each node is an A-candidate: Each A-candidate C has
two children C −A and C+A, for some arbitrary chosen A in U , except those
candidates where U = ∅, which act as leaves in the tree. A candidate tree
having candidate C as root, is called a C-tree.

It can be proven that if S∗ is a preferred extension of A, then there is a leaf
C ≡ (I, O, ∅) of any (∅, ∅, A)-tree such that I = S∗. Conversely, for any
leaf in a (∅, ∅, A)-tree, where I defends itself, I is admissible. It follows that,
by constructing an arbitrary (∅, ∅, A)-tree, all preferred extensions can be
enumerated.

Nielsen and Parsons (18) give a number of pruning rules for candidate trees.
These can be used during construction to cut off branches that cannot contain
leaves with preferred extensions.

3 Compromising On Bayesian Networks

The problem we are addressing arises in a MAS containing a finite number of
cooperating agents. We assume an ordering over the agents exists, so that we
can refer to them by integers. Each agent i has a BN Bi over a common set of

11

A B C

D E F

(a) B1

A B C

D E F

(b) B2

A B C

D E F

(c) B3

A B C

D E F

(d) B∗?

A B C

D E F

(e) B∗?

A B C

D E F

(f) B∗?

Figure 6. Three BNs and three different compromise graphs.

domain variables V , which we assume to be implicit in the remainder of the
text. For ease of exposition, we furthermore assume that an arbitrary but fixed
total ordering ; over the variables is known by all agents a priori. At some
point agents 1 to k decide to pool their knowledge, as represented by B1 to Bk,
into a new BN B∗, the compromise BN. Facilitating this task is the problem
addressed here. We expect B1 to Bk to be large but somewhat similar (as each
describe relationships among the same variables), and therefore that having
each agent communicate its entire model to each other agent is inefficient.

We shall focus solely on the graphical structure of B∗ (although we allow for
non-structural aspects to act as guidelines in the construction of the structure).
Therefore, the outcome of debate can be the full DAG of B∗, its pattern, or
its completed pattern. These should all be equivalent. However, as the next
example shows, this is not entirely true.

Example 2 (Agreeing On A Compromise BN) Consider three agents with
BNs B1, B2, and B3 portrayed in Figures 6(a) to 6(c). If the compromise is
constructed by simple majority voting on the possible connections between each
pair of nodes, the result is the structure in Figure 6(d). If the same is done for
the patterns of B1 to B3 instead, the BN structure in Figure 6(e) is obtained.
For the completed patterns the result is the one in Figure 6(f).

As can be seen, evaluating each feature in isolation leads to vastly different
results, even though the starting points are the same. This suggests that this
simple approach is problematic, and should be ruled out, or that we should
settle for one representation only. We chose the latter route, as we see no
simple characterization of those combination methodologies that guarantee
that equivalent results are obtained.

There seems to be little epistemological justification for choosing to compro-

12

A B C

D E F

(a) Completed pattern of
B1

A B C

D E F

(b) Completed pattern of
B2

A B C

D E F

(c) Completed pattern of
B3

A B C

D E F

(d) Partial compromise

A B C

D E F

(e) Partial compromise

Figure 7. Three completed patterns and two partial compromises.

mise on a full graph, as most/all learning algorithms are unable to differentiate
between two graphs belonging to the same equivalence class, and compromis-
ing on a DAG therefore seems to involve compromising on too much. There-
fore, we choose to have agents compromise on a pattern or completed pattern.
Unfortunately, we are unaware of any simple characterization of graphs that
are patterns, so we choose completed patterns out of necessity. In summary, we
shall aim for having the agents compromise on the completed pattern G∗ ∈ Ccp

of B∗.

To establish whether a graph is a good compromise for the agents, we need
a measure for how well such graphs match each of B1 to Bk. Furthermore, as
we plan to build this compromise gradually, we wish for this measure to be
relative to an already agreed partial compromise. The need for this should be
clear from the following example.

Example 3 (The Need for Partial Compromises) Consider again the set-
ting from Example 2, and refer to the completed patterns of B1 to B3 in Fig-
ures 7(a) to 7(c). It may be the case that agents have already agreed upon the
connections in the graph in Figure 7(d), and now Agent 2 is asked to evalu-
ate the compromise where a link is added between A and C. Obviously, this
addition is consistent with Agent 2’s beliefs, and thus must be valued highly.
Consider then another situation, where the agents have agreed upon the con-
nections in Figure 7(e), and Agent 2 is again asked to evaluate the addition of
a link between A and C. Now the addition is not as important, since the con-
nection between A and C would have to be directed into C (to avoid a directed
cycle), and thus create a v-structure (A, C, E) not present in B2. Moreover,
A and C are already connected (albeit through D and E) and the relationship
between the two might be sufficiently represented by this connection.

13

In general, we cannot assume that a partially specified graph is suitable as
representation of a partial compromise, as this might include agreements on
what should not be part of the final compromise. To address this need and
otherwise opting for an as general solution as possible, we shall take a partial
compromise P ≡ (P+, P−) to be two sets of sentences in some language,
where P+ describe aspects that should be true of the final compromise, and
P− describe aspects that cannot be true.

For any three partial compromises P, Pa, and Pb, where P+ ⊆ P a
+, P− ⊆

P a
−
, P+ ⊆ P b

+ and P− ⊆ P b
−
, we assume that each agent i can compute its

compromise scores si(P,Pa) and si(P,Pb) such that si(P,Pa) > si(P,Pb) iff
Pa describes Bi better than Pb, given that P has already been accepted as
being descriptive of Bi. We will assume si to be additive, i.e. for any three
partial compromises P0, P1, and P2, where P 0

+ ⊆ P 1
+ ⊆ P 2

+ and P 0
−
⊆ P 1

−
⊆

P 2
−
, it is the case that si(P

0,P2) = si(P
0,P1) + si(P

1,P2).

Example 4 (Compromise Scoring Functions) Consider the partial com-
promises Pa ≡ (P a

+, P a
− = ∅) and Pb ≡ (P b

+, P b
− = ∅) where the sentences in

P a
+ and P b

+ represent the graphs in Figures 7(d) and 7(e), respectively. A sim-
ple example of s2(P

a,Pb) could be the number of features described in P b
+\P

a
+,

which are consistent with B2, minus those that are not. Specifically, s2(P
a,Pb)

would equal −1.

A more complex score could weigh each of these described features according
to the empirical evidence Agent 2 has in favor of or against them: We may
have that Agent 2 is employing a sensor for measuring the E variable, and
that this sensor is known to be of poor quality. Therefore, s2(P

a,Pb) would be
equal to −0.3, as an indication that the addition of the arc is against Agent 2’s
observations, but that those observations could easily be flawed.

Yet another score could take into account the ramifications of the sentences
in P b

+ \ P a
+. For instance, the addition of the arc from E to C might in itself

not be much at odds with Agent 2’s observations, but the addition forces it to
either give up the idea of a link between A and C, or accept the existence of
v-structure (A, C, E), both of which it may have strong evidence for/against.
Therefore, it has s2(P

a,Pb) = −10. Of course, the challenge is for Agent 2 to
actually be able to survey the impact of the sentences in P b

+ \ P a
+.

Had P
a
− not been empty, but rather included an agreement that there was

not to be any connection between A and C, then the previous example of a
compromise score would not have been so low, since the dreaded consequence
of the addition of the arc from E to C would already be a consequence of Pa.
On the other hand, had this agreement been a part of P b

−
\ P a

−
, then the first

two examples of scores would have been lower: −2 for the first, and something
less than −0.3, depending on Agent 2’s evidence, for the second.

14

Notice, that with this open definition, we do not attempt to define what it
means to be a “better description”, since we believe that this issue can be
dependent on the actual setting in which the framework is to be used, as
stated in Section 1.

In addition to the compromise score, we also assume that the agents know the
combination function c : R

k → R, indicating how much trust should be put
into the individual agents’ models. Differences in trust can be justified by dif-
ferences in experiences and sensor accuracies. Formally, we define c as follows:
Let P, Pa, and Pb be partial compromises. c is the combination function for
agents i to k, if

c(s1(P,Pa), . . . , sk(P,Pa)) > c(s1(P,Pb), . . . , sk(P,Pb)),

whenever Pa is a better compromise than Pb for the group of agents 1 to
k, given that they have already agreed on P. An obvious choice for c would
be a linear combination of its inputs, and in fact we shall assume that this
is the case in this text. We refer to c(s1(P,Pa), . . . , sk(P,Pa)) as the joint
compromise score of Pa given P.

With this notation in place, we can restate the task more formally, as that of
finding a partial compromise P, which uniquely identifies some graph G∗ ∈ Ccp,
such that

c(s1((∅, ∅),P), . . . , sk((∅, ∅),P)) ≥ c(s1((∅, ∅),P ′), . . . , sk((∅, ∅),P ′)),

for all other partial compromises P ′, which uniquely identifies a graph G ′ ∈ C.

As presented here, it is clear that the problem is not of a simple binary nature,
as we are not trying to establish whether some proposition is true or not,
and that we are furthermore dealing with a setting in which more than two
agents may interact. Consequently, we cannot utilize the vast literature on
dialectic proof theories directly. Rather, the problem we are trying to solve
is a distributed maximization over a super exponential hypothesis space (C).
Furthermore, as the worth of (partial) compromises are specified in relation to
already agreed upon compromises, the problem is of a highly dynamic nature.

Our solution to the problems is divided into three parts. First, we create a
finite language with which graphs and some essential properties of these can
be expressed; second and most importantly, we construct an argumentation
system with which the agents can reason about consequences of committing
to partial compromises; and thirdly, we create an agora in which the agents
can reach compromise graphs in an anytime fashion.

15

4 Encoding Graphs

For the agents to compromise on G∗, a formal language L for expressing graphs
and properties of graphs must be defined. For efficiency we aim to make this
language as simple as possible, while ensuring that it is still sufficiently pow-
erful to describe any graph and its membership status of Ccp. By simple, we
mean preferably finite and as small as possible.

First of all, we introduce a simple language Lg for encoding of graphs only:

Definition 5 (Simple Graph Language) The language Lg is the set such
that Arc(X,Y), Arc(Y,X), Link(X,Y), and NonAdjacent(X,Y) are members
of Lg iff X and Y (X ; Y) are distinct variables.

A graph knowledge base we define to be a set Σg ⊆ Lg. Further:

Definition 6 (Consistent and Closed Graph Knowledgebases) Given a
graph knowledge base Σg, if it holds that for all pairs of variables X and Y ,
where X ; Y , a maximum of one of Arc(X,Y), Arc(Y,X), Link(X,Y), and
NonAdjacent(X,Y) is in Σg, then we call Σg a consistent graph knowledge-
base (CGK).

Furthermore, if it holds that for any two variables X and Y , where X ; Y ,
exactly one of Arc(X,Y), Arc(Y,X), Link(X,Y), and NonAdjacent(X,Y) is
in Σg, then we call Σg a closed graph knowledgebase (CLGK).

The graph encoded by a CGK Σg is the graph G[Σg] resulting from starting
with the graph with no edges, and then for any two nodes X and Y (X ; Y)
adding an arc from X to Y if Arc(X,Y) is in Σg, an arc from Y to X if
Arc(Y,X) is in Σg, or an undirected edge if Link(X,Y) is in Σg. It is easy to
see that graph encoded by a CGK is well-defined. Furthermore, given a graph
G ≡ (V , E) there exists a unique CLGK Σg[G], for which G is the encoded
graph. Clearly, Σg[G] can be constructed in time O(|V |2).

Example 7 (Graph Encoding) Consider the graph knowledgebase Σg
e com-

prised of Arc(A,D), Arc(D,E), and Arc(E,C). Σg
e is a CGK, albeit not a

closed one, as the connections among several pairs of variables, such as A and
E are not specified. Assuming that L

g is built from variables {A, B, C, D, E, F},
G[Σg

e] corresponds to the graph in Figure 7(e). If furthermore all of

NonAdjacent(A,B), NonAdjacent(A,C), NonAdjacent(A,E),
NonAdjacent(A,F), NonAdjacent(B,C), NonAdjacent(B,D),
NonAdjacent(B,E), NonAdjacent(B,F), NonAdjacent(C,D),

NonAdjacent(C,F), NonAdjacent(D,F), and NonAdjacent(E,F)

16

were added to Σg
e, Σg

e would be the encoded version of the graph in Figure 7(e),
and would therefore be a CLGK. If any further sentence was added to Σg

e, the
set would cease to be a CGK.

We thus have that any graph can be efficiently encoded by a unique CLGK,
and Definition 6 allows us to distinguish the graph knowledge bases, which
can be interpreted as graphs, from those that cannot. Next, we extend Lg into
a language powerful enough for building a reasoning engine about graphs and
their membership status of Ccp on top:

Definition 8 (Graph Language) The graph language L is the set consist-
ing of all sentences in Lg and

• ArcNotAllowed(X,Y),
• DirectedPath(X,Y),
• UndirectedPath(X,Y),
• UndirectedPath(X,Y)Excluding(Z,W),
• ¬DirectedPath(X,Y),
• ¬UndirectedPath(X,Y), and
• ¬UndirectedPath(X,Y)Excluding(Z,W),

for any choice of distinct variables X, Y , Z, and W 3 (Z ; W). Sentences like
DirectedPath(X,Y), UndirectedPath(X,Y), and UndirectedPath(X,Y)-

Excluding(Z,W) will be referred to as path sentences, and sentences like
¬DirectedPath(X,Y), ¬UndirectedPath(X,Y), and ¬UndirectedPath(X,Y)-
Excluding(Z,W) will be referred to as negative path sentences.

Intuitively, the sentences just introduced are supposed to be used as descrip-
tors of attributes of the graphs encoded by CGKs: ArcNotAllowed(X,Y) states
that an arc from X to Y would not be strongly protected; DirectedPath(X,Y)
states that there is a directed path from X to Y ; UndirectedPath(X,Y) states
that there is an undirected path between X and Y ; UndirectedPath(X,Y)-
Excluding(Z,W) states that there is an undirected path not comprising Z nor
W between X and Y ; ¬DirectedPath(X,Y) states that there is no directed
path from X and Y ; ¬UndirectedPath(X,Y) states that there is no undi-
rected path between X and Y ; and ¬UndirectedPath(X,Y)Excluding(Z,W)
states that there is no undirected path between X and Y , or that any such
path necessarily contains either Z or W .

As Lg is a subset of L, it follows that a graph knowledge base is a set of
sentences in L as well, and in particular that Definition 6 still makes sense.
Given a set Σ of sentences of L, we denote by Σg the set Σ ∩Lg.

3 Throughout the text we assume that the implicit set of variables has at least five
members. This assumption can be lifted, albeit with a more complex notation to
follow.

17

5 Graph Argumentation System

Building on the language L introduced above, we define an argumentation
system for distinguishing completed patterns that could be compromises for
the agents. The system that we construct enjoys the properties that a graph
is a member of C iff there is a preferred extension of the system, such that the
extension encodes this graph.

Definition 9 (Graph Argumentation System) The graph argumentation
system Ag is the tuple (L, ⊲g ⊆ (2L×L)), where ⊲g is defined as follows ([A,B]
is short-hand for any one of (A,B) and (B,A)):

(1) Arc(X,Y)⊲g Arc(Y,X)

(2) Arc(X,Y)⊲g Link[X,Y]

(3) Arc(X,Y)⊲g NonAdjacent[X,Y]

(4) Link(X,Y)⊲g Arc[X,Y]

(5) Link(X,Y)⊲g NonAdjacent[X,Y]

(6) NonAdjacent(X,Y)⊲g Arc[X,Y]

(7) NonAdjacent(X,Y)⊲g Link[X,Y]

(8) ¬DirectedPath(X,Y)⊲g DirectedPath(X,Y)

(9) ¬UndirectedPath(X,Y)⊲g UndirectedPath(X,Y)

(10) ¬UndirectedPath(X,Y)Excluding(Z,W)⊲g UndirectedPath(X,Y)Ex-

cluding(Z,W)

(11) Arc(X,Y)⊲g ¬DirectedPath(X,Y)
(12) Link(X,Y)⊲g ¬UndirectedPath[X,Y]
(13) Link(X,Y)⊲g ¬UndirectedPath[X,Y]Excluding(Z,W)
(14) {DirectedPath(X,Y), DirectedPath(Y,Z)}⊲g ¬DirectedPath(X,Z)
(15) {DirectedPath(X,Y), UndirectedPath[Y,Z]}⊲g ¬DirectedPath(X,Z)
(16) {UndirectedPath[X,Y], DirectedPath(Y,Z)}⊲g ¬DirectedPath(X,Z)
(17) {UndirectedPath[X,Y], UndirectedPath[Y,Z]}⊲g ¬UndirectedPath-

[X,Z]

(18) {UndirectedPath[X,Y]Excluding(Z,W), UndirectedPath[Y,U]Exclu-
ding(Z,W)}⊲g ¬UndirectedPath[X,U]Excluding(Z,W)

(19) DirectedPath(X,Y)⊲g Arc(Y,X)

(20) DirectedPath(X,Y)⊲g Link[X,Y]

(21) UndirectedPath[X,Y]⊲g Arc(X,Y)

(22) {UndirectedPath[X,Y]Excluding(W,Z), Link[X,W], Link[Y,Z], Non-
Adjacent[X,Z], NonAdjacent[Y,W]}⊲g Link[W,Z]

(23) {Arc(X,Y), NonAdjacent[X,Z]}⊲g Link[Y,Z]

18

(24) ArcNotAllowed(X,Y)⊲g Arc(X,Y)

(25) {Arc(Z,X), NonAdjacent[Z,Y]}⊲g ArcNotAllowed(X,Y)

(26) {Arc(Z,Y), NonAdjacent[Z,X]}⊲g ArcNotAllowed(X,Y)

(27) {Arc(X,Z), Arc(Z,Y)}⊲g ArcNotAllowed(X,Y)

(28) {Link[X,Z], Arc(Z,Y), Link[X,W], Arc(W,Y), NonAdjacent[Z,W]}⊲g

ArcNotAllowed(X,Y)

for all choices of distinct variables X, Y , Z, W , and U where the sentences
obtained are in L.

Loosely speaking, if Σ is a conflict free set wrt. ⊲g, then Items 1–7 ensure that
Σg is a CGK; Items 8–18 make sure that the path and negative path sentences
in Σ\Σg are correct wrt. the graph that is encoded by Σg; Items 19–21 ensure
that Σg encodes a chain graph; Item 22 ensures that the graph encoded by
Σg has decomposable chain components; Item 23 ensures that that graph also
respects Item 3 of Theorem 1; and Items 24–28 guarantee that all arcs in the
graph are strongly protected.

Example 10 (Argumentative Reasoning About Graphs) We return to
the CGK Σg

e presented in Example 7 joined with sentences DirectedPath-

(A,D), DirectedPath(D,E), DirectedPath(E,C), DirectedPath(D,C), and
DirectedPath(A,C) to constitute the set of sentences Σe. Clearly, Σe is
conflict-free. From Item 19 we can conclude that Arc(C,A) cannot be added to
Σe without destroying its property of being conflict-free wrt. Ag. Item 20 yields
the same result for Link(A,C), and the only options for putting a description
of the connection between A and C into Σe are thus NonAdjacent(A,C) and
Arc(A,C). The argumentation system thus allows for reasoning about such
consequences that were treated informally in Examples 3 and 4.

In what follows we provide a formal treatment of the above outlined intuitions.
More specifically we prove two important results, namely that any preferred
extension of Ag is a member of Ccp, and that any member of Ccp has a cor-
responding stable extension of Ag. These results are important since they
guarantee that, if agents seek compromises under the restrictions specified by
Ag, they can be sure that their result is a completed pattern and that they
are not restricted from agreeing on any model a priori by the relations of Ag.

Lemma 11 Let Σ be conflict free wrt. Ag. Then Σg is a CGK.

PROOF. Obvious, given Items 1– 7. 2

Lemma 12 Let Σ be a preferred extension of Ag. Then Σg is a CLGK.

19

PROOF. We need to prove that if X and Y (X ; Y) are two nodes that
are non-adjacent in G[Σg] then NonAdjacent(X,Y) is in Σ. We prove this by
contradiction: We assume that NonAdjacent(X,Y) is not in Σ and then prove
that Σ∗ = Σ∪NonAdjacent(X,Y) is an admissible set, which contradicts that
Σ is a preferred extension.

First we prove that Σ∗ is conflict-free: Since X and Y are non-adjacent in
G[Σg] it follows that none of Arc(X,Y), Arc(Y,X), and Link(X,Y) are in Σ,
and therefore that Σ cannot attack NonAdjacent(X,Y). Thus, if there is a
set S ⊆ Σ∗ and an argument A ∈ Σ∗, such that S ⊲g A, then A cannot be
NonAdjacent(X,Y) and hence must be in Σ. As Σ is admissible, it follows
that Σ attacks at least one argument B in S, and as Σ does not attack
NonAdjacent(X,Y), B must be a member of S\NonAdjacent(X,Y). But that
means that Σ attacks Σ, meaning that it is not a conflict-free set, contradicting
the assumption that Σ is a preferred extension. So we conclude that Σ∗ must
be conflict-free.

It is easy to see that Σ∗ attacks all sets of arguments that attack Σ∗: By
assumption, Σ attacks all sets of arguments that attack an argument in Σ,
and by Items 1– 7, NonAdjacent(X,Y) attacks all sets of arguments that attack
itself. Consequently, Σ∗ = Σ∪NonAdjacent(X,Y) attacks all arguments that
attack some argument in itself, and the lemma follows. 2

From (19) we have the followin equivalent of the “Fundamental Lemma” of
(7):

Lemma 13 Let Σ be a preferred extension, and let A an argument defended
by Σ. Then A is in Σ.

Lemma 14 Let Σ be a preferred extension of Ag and X, Y , Z, and W (Z ;

W) be variables. Then

(1) if there is a directed path from X to Y in G[Σg], then DirectedPath-

(X,Y) is in Σ,
(2) if there is an undirected path from X to Y in G[Σg], then Undirected-

Path(X,Y) is in Σ, and
(3) if there is an undirected path from X to Y in G[Σg] not comprising any

of the variables Z and W , then UndirectedPath(X,Y)Excluding(Z,W)

is in Σ.

PROOF. Induction on the length l of the path between X and Y . We first
consider the base case where l is 1. If the path is a directed path, this means
that there is an arc from X to Y and consequently that Arc(X,Y) is in Σ. By
Item 11 this means that Σ attacks ¬DirectedPath(X,Y), which is the only

20

argument that attacks DirectedPath(X,Y). Lemma 13 then guarantees that
DirectedPath(X,Y) is in Σ. Similar arguments establish the base cases for 2
and 3.

For the induction step, assume that the result is valid for all paths of length l ≤
n and consider a path π = (X = X1, U = X2, . . . , Xn+2 = Y) of length n + 1.
If π is an undirected path, then we know from the induction hypothesis that
both UndirectedPath(X,U) and UndirectedPath(U,Y) must be in Σ. The
two sentences collectively attack ¬UndirectedPath(X,Y), which is the only
argument attacking UndirectedPath(X,Y). Since Σ is a preferred extension,
Lemma 13 then gives that UndirectedPath(X,Y) is a member of Σ. The proof
for UndirectedPath(X,Y)Excluding(Z,W) is the same.

Assume next that π is a directed path. Then either there is an arc from X to
U or a link between them. We consider the two cases in turn.

In the first case, an argument similar to the one used for the base case gives us
that DirectedPath(X,U) must be in Σ. Next, if (U = X2, . . . , Xn+2 = Y) is
a directed path, then induction hypothesis gives us that DirectedPath(U,Y)
is in Σ. If (U = X2, . . . , Xn+1 = Y) is undirected, we get that Undirected-

Path(U,Y) is in Σ. Either way, the two sentences obtained collectively attack
¬DirectedPath(X,Y), which is the only argument attacking DirectedPath-

(X,Y). Since Σ is a preferred extension, Lemma 13 then states that Directed-
Path(X,Y) must be a member of Σ.

If there is a link between X and U , there must be a directed path from U to Y ,
for π to be a directed path. As before the presence of Link(X,U) or Link(U,X)
yields that UndirectedPath(X,U) is in Σ, and the induction hypothesis that
DirectedPath(U,Y) is in Σ. Together the two attack ¬DirectedPath(X,Y),
which is the only argument that attacks DirectedPath(X,Y). Once again
Lemma 13 guarantees that DirectedPath(X,Y) is in Σ. 2

The converse of Lemma 14 is not true, which can be seen from the following
example:

Example 15 Let Σg consist of NonAdjacent(A,B), NonAdjacent(B,C), and
NonAdjacent(A,C), thus encoding the empty graph over the set of variables
Ve = {A, B, C}. Furthermore, let Σ \Σg be

{ArcNotAllowed(X,Y) : X, Y ∈ Ve}

∪{UndirectedPath(X,Y) : X, Y ∈ Ve}

∪{DirectedPath(X,Y) : X, Y ∈ Ve}.

Then Σ is conflict free and attacks all other sentences in L, meaning that it
is stable and hence a preferred extension, yet clearly G[Σg] does not reflect the

21

meaning of the path sentences in Σ.

Theorem 16 Let Σ be a preferred extension of Ag. Then G[Σg] is in Ccp.

PROOF. Assume not. This means that G[Σg] fails to satisfy one of the bullets
of Theorem 1. We prove that this cannot be the case, one bullet at the time:

Assume G[Σg] does not satisfy Item 1, namely that it is not a chain graph.
Then there is a directed cycle (X, . . . , Y, X) in G[Σg] containing at least one
arc. Without loss of generality, assume this arc to be going from Y to X, and
consequently that Arc(Y,X) is in Σ. The rest of the cycle then constitutes
either a directed path from X to Y , or an undirected path between them.
Either way, Lemma 14 allows us to conclude that one of DirectedPath(X,Y)
and UndirectedPath[X,Y] must be in Σ. But that is impossible, since either
one of them attacks Arc(Y,X) and Σ is conflict-free.

Assume then that G[Σg] does not satisfy Item 2, namely that it contains a
chain component that is not decomposable. This implies that the there is a
chordless cycle in G[Σg]. Let this cycle be (X, Z, . . . , W, Y, X), which implies
that Link[X,Z], Link[W,Y], and Link[Y,X] are in Σ. Furthermore, as the
cycle is chordless, both X and W and Y and Z must be pairs of non-adjacent
nodes in G[Σg]. By Lemma 12 NonAdjacent[X,W] and NonAdjacent[Y,Z]

must then be in Σ. Additionally, the path (Z, . . . , W) and Lemma 14 col-
lectively allow us to conclude that UndirectedPath[Z,W]Excluding(X,Y)

must be in Σ as well. However, UndirectedPath[Z,W]Excluding(X,Y) in
conjunction with Link[Z,X], Link[W,Y], NonAdjacent[X,W], and NonAdja-

cent[Y,Z] attacks Link[X,Y], which is impossible since Σ is conflict-free.

Next, assume that G[Σg] does not satisfy Item 3, which means that there are
three variables X, Y , and Z, such that X is a parent of Y , X and Z are not
adjacent, and Z is a neighbour of Y . According to Lemma 12, Σ would then
contain all of Arc(X,Y), NonAdjacent[X,Z], and Link[Y,Z]. But the first
two attack the last one, and since Σ is conflict-free, this is impossible.

Finally, assume that G[Σg] does not satisfy Item 4, which means that there is
some arc from a node X to a node Y that is not strongly protected in G[Σg].
Thus Arc(X,Y) is in Σ, and as Arc(X,Y) is attacked by ArcNotAllowed(X,Y)

and Σ is an admissible set, it follows that Σ attacks ArcNotAllowed(X,Y).
The only ways Σ can attack ArcNotAllowed(X,Y) are by containing either

• Arc(Z,X) and NonAdjacent[Z,Y] for some variable Z,
• Arc(Z,Y) and NonAdjacent[Z,X] for some variable Z,
• Arc(X,Z) and Arc(Z,Y) for some variable Z, or
• Link[X,Z], Link[X,W], Arc(Z,Y), Arc(W,Y), and NonAdjacent(Z,W) for

some variables Z and W .

22

We deal only with the first case as the others are similar. As Σ contains
Arc(Z,X) and NonAdjacent[Z,Y] and Σg is a CGK, it follows that there is
an arc from Z to X in G[Σg] and that Z and Y are not connected by a link nor
an arc. But then the arc from X to Y is protected, which yields a contradiction
with the assumption. As the other three cases yield similar contradictions, the
assumption must be false, and the theorem follows. 2

Theorem 17 If G is in Ccp, then there is a stable extension Σ of Ag, such
that G[Σg] = G.

PROOF. We prove this by construction of a stable extension Σ such that
G[Σg] = G. First let Σg be Σg[G], which ensures that G[Σg] = G, no matter
what sentences are in Σ \Σg.

Next, for any four variables X, Y , Z, and W , let Σ \Σg contain

• ArcNotAllowed(X,Y) iff there is no arc between X and Y and such an arc
would not be strongly protected,
• DirectedPath(X,Y) iff there is a directed path from X to Y , and ¬Directed-
Path(X,Y) otherwise,
• UndirectedPath(X,Y) iff there is an undirected path between X and Y ,

and ¬UndirectedPath(X,Y) otherwise, and
• UndirectedPath(X,Y)Excluding(Z,W) iff there is an undirected path not

comprising Z nor W between X and Y , and ¬UndirectedPath(X,Y)-
Excluding(Z,W) otherwise.

Then Σ is the stable extension we are seeking. To prove it, we show (i) that
Σ is conflict-free and (ii) that Σ attacks all sentences in L \Σ.

i) We consider each bullet of the definition of ⊲g in Definition 9.

Items 1 to 7: As Σg was defined to be Σg[G], which is a CLGK, there can be
no two variables X and Y (X ; Y), for which more than one of Arc(X,Y),
Arc(Y,X), Link(X,Y), and Link(X,Y) are in Σ. Consequently, these bullets
do not give rise to any conflicts.

Items 8 to 13: These bullets cannot give rise to any conflict. The first be-
cause by definition of Σ, for each pair of variables X and Y , only one of
DirectedPath(X,Y) and ¬DirectedPath(X,Y) can be in Σ. The same rea-
soning prevents the next two bullets from giving rise to a conflict. Item 11
cannot give rise to a conflict as the presence of Arc(X,Y) in Σ means that
there is an arc from X to Y in G and thus a directed path from X to Y , which
by definition of Σ means that it does not contain ¬DirectedPath(X,Y). The
same reasoning goes for the two next bullets.

23

Items 14 to 18 cannot give rise to conflicts. If Item 14 was the reason for a
conflict, then both DirectedPath(X,Y) and DirectedPath(Y,Z) would have
to be in Σ, which by definition of Σ would mean that there is a directed path
(X, . . . , Y) from X to Y and a directed path (Y, . . . , Z) from Y to Z in G.
But then there is also a directed path (X, . . . , Y, . . . , Z) from X to Z meaning
that ¬DirectedPath(X,Z) by definition is not in Σ. Similar arguments show
that the other bullets cannot give rise to conflicts.

Item 19 cannot give rise to a conflict as that would mean that both Directed-

Path(X,Y) and Arc(Y,X) would be in Σ, and consequently that there would
be a directed path from X to Y and an arc from Y to X in G, which would
mean that G is not a chain graph, and by Theorem 1 not a completed pattern.
The same goes for Items 20 to 21, and a similar argument, substituting the
chain graph requirement of Theorem 1 with the decomposability one, yields
that Item 22 cannot be cause of conflicts either.

Item 23 cannot give rise to a conflict, as if it did that would mean that all of
Arc(X,Y), NonAdjacent[X,Z], and Link[Y,Z] would be in Σg, which in turn
would mean that X would be a parent of Y in G, that X and Z would not
be adjacent, and that Y and Z would be connected with an undirected link.
This would violate Item 3 of Theorem 1, meaning that G is not a completed
pattern, which is a contradiction.

Item 24 can clearly not give rise to any conflicts, as ArcNotAllowed(X,Y) are
only in Σ for nodes not connected by an arc, ruling out that Arc(X,Y) is also
in Σ, which would be needed for a conflict.

The arguments as to why Items 25 to 28 cannot give rise to conflicts are similar
so only the argument relating to Item 25 is treated here. If this bullet caused
a conflict, it means that Arc(Z,X), NonAdjacent[Z,Y], and ArcNotAllowed-

(X,Y) are all in Σ, implying that Z is a parent of X and not adjacent to Y in
G, and that there is no arc between X and Y , and had there been such an arc,
it would not be strongly protected. But the definition of strongly protected
clearly states that an arc from X to Y with Z being a parent of X and not
adjacent to Y is strongly protected, yielding a contradiction.

ii) Next, we prove that Σ attacks every sentence not in Σ, and thus that it is
stable and therefore a preferred extension. We consider each argument A of L

in turn, and show that it is either a member of Σ or attacked by it.

First, let A be Arc(X,Y) for some variables X and Y (X ; Y). If Arc(X,Y)
is not in Σg then, by definition of a CLGK either Arc(Y,X), Link(X,Y), or
NonAdjacent(X,Y) must be in Σg and Σ thus attacks Arc(X,Y) by one of
Items 1 to 7. A similar argument applies if A is Arc(Y,X), Link(X,Y), or
NonAdjacent(X,Y).

24

Assume then that A is ArcNotAllowed(X,Y) for some pair of variables X and
Y , and that Σ does not attack ArcNotAllowed(X,Y). That means that none
of the left hand sides of Items 25 to 28 are satisfied by members of Σ. This
in turn means that the graph encoded by Σg, viz. G, does not give strong
protection to an arc from X to Y . As G is a completed pattern, it follows from
Theorem 1 that there cannot be an arc from X to Y . However, by definition
of Σ this means that ArcNotAllowed(X,Y) must be in Σ.

Then assume that A is DirectedPath(X,Y) and that it is not attacked by Σ.
This means that ¬DirectedPath(X,Y) is not in Σ, and by definition of Σ,
DirectedPath(X,Y) must therefore be in Σ. Similar reasoning establishes that
both UndirectedPath(X,Y) and UndirectedPath(X,Y)Excluding(Z,W) are
in Σ iff they are not attacked by Σ.

Finally, assume that A is ¬UndirectedPath(X,Y), and that it is not in Σ. By
definition of Σ this means that there is an undirected path (X, . . . , Y) between
X and Y in G. If the length of (X, . . . , Y) is 1, then there is an undirected
link between the two variables X and Y , and consequently Link[X,Y] is in Σg

and Σ therefore attacks ¬UndirectedPath(X,Y) by Item 12. If the length of
(X, . . . , Y) is more than 1, there must be at least one variable Z on this path
such that both (X, . . . , Z) and (Z, . . . , Y) are undirected paths in G. It follows
by the definition of Σ that both UndirectedPath(X,Z) and Undirected-

Path(Z,Y) are in Σ, and Σ then attacks ¬UndirectedPath(X,Y) by Item 17.
Similar (but more elaborate) arguments establish the result for arguments A

of the form ¬DirectedPath(X,Y) and ¬UndirectedPath(X,Y)Excluding-
(Z,W). 2

Given these results it is thus clear that the result Σ of a debate, if undertaken
respecting Ag, is a completed pattern if it is a preferred extension of Ag, and
that Σ can represent any completed pattern. However, checking whether a set
of arguments constitute a preferred extension is complex. It involves checks
for both admissibility and maximality. We therefore end this section with a
result that yields a computationally efficient way of testing whether a set of
arguments of Ag is a preferred extension.

Lemma 18 Let Σ be a preferred extension of Ag, and A a path sentence not
in Σ and not attacked by it. Then the negative path sentence corresponding to
A is not in Σ nor attacked by it.

PROOF. We show only the case where the path sentence is Undirected-

Path(X,Y) for two variables X and Y , as the others cases are similar. Since
UndirectedPath(X,Y) is not in Σ and not attacked by Σ, it follows from
Item 9, and the fact that this bullet represents the only attack on Undirected-

Path(X,Y), that ¬UndirectedPath(X,Y) cannot be in Σ either. Furthermore,

25

as Σ is a preferred extension and does not attack UndirectedPath(X,Y), it
follows that Σ cannot attack ¬UndirectedPath(X,Y) either, as that would
imply that UndirectedPath(X,Y) was defended by Σ, which according to
Lemma 13 would mean that it should have been a member of Σ. 2

Theorem 19 Let Σ be a preferred extension of Ag. Then Σ is a stable ex-
tension.

PROOF. We need to show that Σ attacks each argument A in A \ Σ. We
do so by considering each possible A:

Assume first that A is one of Arc(X,Y), Arc(Y,X), Link(X,Y), or NonAd-

jacent(X,Y), for some variables X and Y . As Σ is a preferred extension,
Lemma 12 guarantees that one of the other three arguments is in Σ, and
Items 1 to 7 then ensures that Σ attacks A.

Assume then that A is ArcNotAllowed(X,Y), for some X and Y , and that
it is not attacked by Σ. This means that for each of the left-hand sides of
Items 25 to 28 there is at least one element that is not in Σ. Furthermore,
as Σ does not defend ArcNotAllowed(X,Y), there is at least one of these
bullets, whose left-hand side is not attacked by Σ. Assume that this bullet is
Item 25. That means that either Arc(Z,X) or NonAdjacent[Z,Y] or both are
neither in Σ nor attacked by it. But this is impossible, as was proved above.
A similar contradiction arise for the remaining three bullets. It follows that
ArcNotAllowed(X,Y) must be attacked by Σ.

Now, assume that A is ¬UndirectedPath(X,Y), and that Σ does not attack
¬UndirectedPath(X,Y). As Σ does not attack ¬UndirectedPath(X,Y), it
follows from Item 17 that for all variables Z, one of UndirectedPath[X,Z] and
UndirectedPath[Z,Y] cannot be in Σ either. Furthermore, Item 12 implies
that Link[X,Y] cannot be in Σ, and since it is a preferred extension, and
by Lemma 12 thus a CLGK, it must attack Link[X,Y]. Since by Lemma 13
Σ fails to defend ¬UndirectedPath(X,Y), then it must fail to attack both
of UndirectedPath[X,Z] and UndirectedPath[Z,Y] for some variable Z.
Without loss of generality, assume that UndirectedPath[Z,Y] is the path
sentence which is both outside of Σ and not attacked by it. Lemma 18 then
guarantees that ¬UndirectedPath[Z,Y] must also be outside of Σ and not
attacked by Σ. But ¬UndirectedPath[Z,Y] has the exact same form as the
A we started out exploring, and we can therefore apply the same argument
again, obtaining yet another negative path sentence that must be outside Σ
and not be attacked by it. This process will never end, and since L is a finite
language, it thus follows that there is a set N of negative path sentences, which
are all outside Σ and not attacked by Σ solely because of other negative path
sentences that are in N . From the definition of N it is obvious that the set

26

P of path sentences, corresponding to the negative ones in N , attacks each of
the sentences in N , and furthermore that N contains all the sentences that
attack P . As Σ defends itself, it follows that the set Σ∗ ≡ Σ ∪ P defends
itself against all attacks. If we can also show that Σ∗ is conflict-free, then it
contradicts that Σ is a preferred extension, and hence implies that the original
claim, that ¬UndirectedPath(X,Y) is not attacked by Σ, is false. To show
that Σ∗ is conflict-free, we assume otherwise, and let S ⊆ Σ∗ attack some
B in Σ∗. Assume first that B is in Σ. As Σ defends itself, it must attack
some argument in S. But this is impossible since Σ is conflict-free and by
construction P is not attacked by Σ. Thus, B must be in P . But this is also
impossible, because the only arguments that attack P are the ones in N ,
which by definition is not part of Σ∗. It follows that Σ∗ is conflict-free and
thus that ¬UndirectedPath(X,Y) must be attacked by Σ.

If A is UndirectedPath(X,Y) and is not attacked, then Lemma 18 guarantees
that ¬UndirectedPath(X,Y) is also not in Σ and not attacked by it, which
as we just saw, is impossible. Thus UndirectedPath(X,Y) must be attacked
by Σ.

Proving that UndirectedPath(X,Y)Excluding(Z,W) and ¬UndirectedPath-
(X,Y)Excluding(Z,W) must be attacked by Σ if they are not in Σ is proved
in the same way as for UndirectedPath(X,Y) and ¬UndirectedPath(X,Y).
The case of ¬DirectedPath(X,Y) can be proved in a similar manner to
¬UndirectedPath(X,Y), except that instead of only Item 17 to establish the
existence of the set N , we need to see that in any case at least one of Items 14
to 16 implies the existence of another ¬DirectedPath(Z,W) not in Σ and not
attacked by Σ. That DirectedPath(X,Y) is attacked then once again follows
from Lemma 18. 2

Given this result we can thus efficiently identify a set Σ as being a preferred
extensions of Ag by simply checking if it attacks all arguments in L \Σ and
only those.

6 Fusing Agoras

We now address the problem of having agents agree on a preferred extension
of Ag, given that each of them has its own prior beliefs, as expressed by the
compromise score function si, and that each know the combination function
c. There has not been a lot of work done in dialectics for more than two
agents, where the simple proponent/opponent dualism does not suffice. The
solution that we propose here is inspired by the Risk Agoras of (15) and (16)
and the traditional blackboard architecture of MAS of cooperating agents,

27

without being an actual instantiation of any of them. We construct a fusing
agora, which is a framework in which the agents can debate. The agora has the
property that, if agents are allowed to run the debate to conclusion, they end
up with the best possible compromise according to their joint compromise
score, and that throughout the debate they maintain a compromise, which
improves as the debate progresses.

In the agora we shall take a Ag-candidate (I, O, U) as a unique representative
of a partial compromise (I, O). This is possible since I and O are subsets of
L, and thus both contain sentences describing aspects of a compromise graph
as required, and since U is determined by I and O. Any leaf candidate repre-
senting a preferred extension then uniquely identifies a completed pattern, as
guaranteed by Theorem 16. Agents can explore all compromises by examining
a (∅, ∅, L)-tree. Continually the agents take it upon themselves to explore
sub-trees of this tree, and mark other sub-trees as open for investigation by
other agents. The heuristics guiding the agents’ choices for exploration, in
addition to s1, . . . , sk and c, then determine the outcome.

The agora can work in a variety of ways, depending on the behavior of the
individual agents (a vanilla algorithm for an individual agent is provided later
in Algorithm 1), but basically builds on two elements, which we assume each
agent can access in a synchronized fashion only: A pool of candidates C and
a current best result 〈I∗, sI∗〉. C consists of pairs 〈C, s〉, where C is an Ag-
candidate and thus a sub-tree of a (∅, ∅, L)-tree, and s is a real value. I∗ is
either the empty set or a preferred extension of Ag, and sI∗ is a real value.
Initially, C contains only one element 〈(∅, ∅, L), 0〉, and 〈I∗, sI∗〉 is 〈∅,−∞〉.

Each agent i can utter the following locutions:

• ExploreFromPooli(〈C, s〉) — where 〈C, s〉 is a member of C. The meaning of
the locution is that agent i takes upon itself the responsibility to investigate
the preferred extensions in a C-tree, assuming that C has a joint compromise
score of s.
• PutInPooli(〈C, s〉) — where C is an Ag-candidate, and s is a real value. The

meaning of the locution is that agent i wants someone else to investigate the
preferred extensions in a C-tree, and that C has a joint compromise score of
s.
• UpdateBesti(〈I, s〉) — where I is a subset of L, and s is a real value. The

meaning of the locution is that agent i has identified a preferred extension
I with a joint compromise score s higher than sI∗ .
• AskOpinioni(C1, C2) — where C1 and C2 are Ag-candidates. The meaning of

the locution is that agent i needs to know sj(C1, C2) for all other agents j.
• StateOpinioni(C1, C2, sδ) — where C1 and C2 are Ag-candidates, and sδ is a

real value. The meaning of the locution is that si(C1, C2) is sδ.

28

The rules governing which locutions individual agents can utter, as well as
their effects, we present as a set of pre and post conditions:

• ExploreFromPooli(〈C, s〉)
· Pre: 〈C, s〉 is in C.
· Post: 〈C, s〉 is removed from C

• PutInPooli(〈C, s〉)
· Pre: There is no 〈C′, s′〉 in C such that C is a sub-tree of some C′-tree.
· Post: 〈C, s〉 is in C.
• UpdateBesti(〈I, s〉)
· Pre: s > sI∗ .
· Post: 〈I∗, sI∗〉 is set to 〈I, s〉.

Locutions AskOpinioni() and StateOpinioni() have no pre or post conditions
attached.

The basic algorithm in Algorithm 1 corresponds to an exhaustive search, if it
is followed by all agents. The search is gradual in two senses: One, the longer
the search goes on, the more elements the average candidate in C will have in
its I and O sets, and thus the closer it will be to describing a full compromise.
Two, the current compromise held in I∗ will have an increasingly higher score.

In order for the search to be a success, each agent i would of course need to keep
an eye out for AskOpinionj(·)’s uttered by other agents, and reply to these with
StateOpinioni(·). It is relatively easy to verify that agents using Algorithm 1
are uttering locutions in accordance with the pre and post conditions of the
fusing agora. Algorithm 1 uses a series of helper functions, which are described
below.

Prune(C ≡ (I, O, U)) uses pruning rules to investigate whether there is an
argument A in U such that either C + A or C − A contains no leaves with
preferred extensions. If this is the case, the method invokes itself recursively
on the sub-tree that did not get pruned away, until no further branches can
be pruned. Some general pruning rules are given in (18), and more can be
established for the specific case of Ag. For instance, it is known that any
preferred extension of Ag is stable, so whenever I ∪ U does not attack an
argument A ∈ U , then the branch corresponding to C −A cannot contain any
preferred extensions.

SelectCandidate(C) picks a promising candidate from C. A promising
candidate could be one with a high score annotated, since these encode good
partial compromises, or candidates with small U sets, as these represent par-
tial compromises that are nearly complete. If all agents use the same criteria
for picking promising candidates, this selection can be sped up by implement-
ing the pool as a sorted list. SelectCandidate(·) is one of the areas where
heuristics limiting the search space can be implemented. For instance, it makes

29

Algorithm 1 Vanilla algorithm for agent i

1: 〈C, s〉 ←SelectCandidate(C)
2: ExploreFromPooli(〈C, s〉)
3: C′ , (I ′,O′,U ′)←Prune(C)
4: if U ′ = ∅ then

5: if PreferredExtension(I ′) then

6: AskOpinioni(C, C
′)

7: si ← si(C, C
′)

8: wait for StateOpinionj(C, C
′, sj)∀j 6= i

9: s′ ← c(s1, . . . , sk) + s

10: if s′ > sI∗ then

11: UpdateBesti(〈C
′, s′〉)

12: end if

13: end if

14: go to 1
15: else

16: A←SelectArgument(C′)
17: AskOpinioni(C, C

′ + A)
18: AskOpinioni(C, C

′ −A)
19: s+

i ← si(C, C
′ + A)

20: s−i ← si(C, C
′ −A)

21: wait for StateOpinionj(C, C
′+A, s+

j) and StateOpinionj(C, C
′−A, s−j)∀j 6=

i

22: s+ ← c(s+
1 , . . . , s+

k)
23: s− ← c(s−1 , . . . , s−k)
24: if s+ > s− then

25: PutInPooli(〈C
′ −A, s + s−〉)

26: C ← C′ + A

27: s← s + s+

28: else

29: PutInPooli(〈C
′ + A, s + s+〉)

30: C ← C′ −A

31: s← s + s−

32: end if

33: go to 3
34: end if

sense to allow agents to abstain from exploring the sub-tree rooted at a can-
didate if it cannot contain compromises that are consistent with their own
BN. This would mean that in cases where agents agree on all or most of the
aspects of G∗ only few candidates would need to be explored.

PreferredExtension(I) is a Boolean valued function that returns true if
the conflict-free set I is a preferred extension of Ag. The task of answering
this is simplified by Theorem 19, as it states that I is a preferred extension
iff I attacks each argument in L \ I.

30

SelectArgument(C ≡ (I, O, U)) simply selects an element A of U . This
selection can be based on the agent’s own score increase going from C to C+A

or C −A, or it might involve negotiations or argument with other agents.

We illustrate the basics of the fusing agora and Algorithm 1 with an example.

Example 20 Refer back to Examples 2 and 3, and consider the simple case
where the compromise scoring function of the three agents is defined as the
number of features that correspond to the completed pattern of their model
minus those that do not, as exemplified in Example 4. We shall follow the
initial actions in the agora, where C consists of only one candidate, 〈C ≡
(∅, ∅, L), 0〉. We assume that Agent 1 is first to make a move.

Agent 1’s first choice for exploration is simple, as C only contains one element,
and the agent thus utters ExploreFromPool1(〈C, 0〉). This candidate cannot be
pruned, and since the third set in it is not empty, Agent 1 selects an argument
to add to one of the other two sets, say, Arc(A,D). Agent 1 then constructs
the two candidates (the third set of the candidates are left out, as it is simply
L minus the first two sets):

C + Arc(A,D) =(Arc(A,D), {Arc(D,A), Link(A,D),

NonAdjacent(A,D), ArcNotAllowed(A,D),

¬DirectedPath(A,D), DirectedPath(D,A),

UndirectedPath(A,D), UndirectedPath(D,A)})

and
C − Arc(A,D) = (∅, {Arc(A,D)}).

Agent 1 ask the other two agents their opinion by AskOpinion1(C, C+Arc(A,E))
and AskOpinion1(C, C−Arc(A,E)), and receives four answers −1, −1, 1, and
1 (as none of the other agents agree with Arc(A,D)). Added to its own per-
ception, Agent 1 gets the scores s+ = −3 and s− = 3, and it thus utters
PutInPooli(〈C + Arc(A,E),−3), and continues exploring C − Arc(A,E).

Let us switch to Agent 2, who at this point utters ExploreFromPool2(〈C +
Arc(A,E) ≡ (I+, O+, U+),−3〉), and takes on the responsibility of examining
the sub-tree rooted at C + Arc(A,E). First, Agent 2 prunes the candidate,
by adding DirectedPath(A,D) to I+, and then chooses a new argument to
investigate (seeing that U+ is not empty). For sake of coherence with previous
examples, assume this argument is Arc(D,E). Agent 2 creates the candidates

C+Arc(A,D) + Arc(D,E) = (I+ ∪ {DirectedPath(A,D), Arc(D,E)},

O+ ∪ {Arc(E,D), Link(D,E), NonAdjacent(D,E),

ArcNotAllowed(D,E),¬DirectedPath(D,E),

DirectedPath(E,D), UndirectedPath(D,E),

UndirectedPath(E,D), ArcNotAllowed(A,E)})

31

and
C + Arc(A,D) − Arc(D,E) = (I+, O+ ∪ {Arc(D,E)}).

and gets an evaluation from Agents 1 and 3 using AskOpinion2(·). These
evaluations are +1, −1, −1, and +1, and taken together with +1 and −1
derived from Agent 2’s own beliefs, it gets s+ = 1 and s− = −1, so it puts C+
Arc(A,D)−Arc(D,E) in C and continues exploring C+Arc(A,D)+Arc(D,E).

Of course, the debate in the agora can be stopped at any time, and G[Ig
∗
] will

then be the best compromise encountered so far, as it is only ever replaced
by compromises having a higher joint compromise score. More specifically we
have that:

Proposition 21 Let agents 1 to k argue in a fusing agora. If

• all agents have used Algorithm 1, and
• each agent i have replied to all AskOpinionj(·)’s uttered by other agents,

with a StateOpinioni(·) consistent with si,

then all locutions uttered by agents are in accordance with the pre and post
conditions of the fusing agora, and (I∗, L\I∗, ∅) has a higher joint compromise
score si than all other explored leaf candidates (I, L \ I, ∅), where I is a
preferred extension of Ag.

If we furthermore have that

• all agents have completed processing,
• the pool of candidates has not been thinned along the way, and
• the pool is empty now,

then G[Ig
∗
] = G∗.

It is worth stressing that Algorithm 1 is a vanilla algorithm, and that the agora
is open for more aggressive behaviour. One such behaviour could be to have
agents skip the asking for opinions part in Lines 14 to 22 for most additions
of arguments (and basing the decision only on the agents own beliefs), and
only ask when the agent itself is indifferent. Another behaviour could be to
never perform Lines 23 and 27, which would correspond to a myopic greedy
construction of the compromise. Alternatively, these two lines could be carried
out only when the difference between s+ and s− is very small. We could even
have setups where the agents show different behaviours, or where individual
agents change behaviour during debate depending on their available resources
and utility of a good compromise. Moreover, the agora does not require that
agents wait for a candidate to be in the pool, before somebody can start
exploring this candidate; so even when one agent is pursuing an aggressive
strategy and fails to leave candidates for others to explore, other agents can
still decide to explore these. The point is, that no matter what behaviour is

32

required, the basics of the agora and the agents remains the same, and can be
reused.

7 Discussion

We have introduced a problem which we believe is a challenging one for the
argumentation community, due to its mix of complexity and conditional de-
composability as well as its origin in conflicting knowledge bases. Our own
solution enables agents to judge the possible compromises resulting from a
partial compromise, by constructing a candidate tree rooted in this partial
compromise, and the agora we have proposed ensures that such exploration
can take place in a distributed fashion. As an aside, we note that the method
given here provides for a distributed solution to the problem of enumerating
all equivalence classes of BNs (9).

One problem with the vanilla algorithm we have given, is that agents exploring
a branch of a candidate-tree can end up putting a lot of candidates into the
pool of annotated candidates. The space requirements for storing the pool
of annotated candidates can be prohibitive, so it might be required that the
candidates in the pool are defined in relation to each other, which imposes
restrictions on which candidates an agent can choose to explore, as these
are removed from the pool. Furthermore, it might be necessary to construct
heuristics for thinning the pool of annotated candidates. These issues, as well
as finding good heuristics for selecting candidates to explore are challenging
topics for future research.

Acknowledgements

This work was partly supported by NSF REC-02-19347, NSF IIS-0329037,
and EU PF6-IST 002307 (ASPIC).

References

[1] S. A. Andersson, D. Madigan, M. D. Perlman, A characterization of
Markov equivalence classes for acyclic digraphs, Annals of Statistics 25 (2)
(1997) 505–541.

[2] C. Cayrol, S. Doutre, J. Mengin, On decision problems related to the
preferred semantics for argumentation frameworks, Journal of Logic and
Computation 13 (3) (2003) 377–403.

[3] D. M. Chickering, Learning equivalence classes of Bayesian-network struc-
tures, Journal of Machine Learning Research 2 (2002) 445–498.

33

[4] J. Del Sagrado, S. Moral, Qualitative combination of Bayesian networks,
International Journal of Intelligent Systems 18 (2) (2003) 237–249.

[5] Y. Dimopoulos, B. Nebel, F. Toni, On the computational complexity of
assumption-based argumentation for default reasoning, Artificial Intelli-
gence 141 (1) (2002) 57–78.

[6] S. Doutre, J. Mengin, Preferred extensions of argumentation frameworks:
Query, answering and computation, in: R. Goré, A. Leitsch, T. Nipkow
(eds.), Proceedings of the First International Joint Conference on Au-
tomated Reasoning, vol. 2083 of Lecture Notes in Computer Science,
Springer Verlag, 2001.

[7] P. M. Dung, On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games, Ar-
tificial Intelligence 77 (2) (1995) 321–358.

[8] M. Elvang-Goransson, A. Hunter, Argumentative logics: Reasoning with
classically inconsistent information, Data Knowledge Engineering 16 (2)
(1995) 125–145.

[9] S. Gillispie, C. Lemieux, Enumerating Markov equivalence classes of
acyclic digraph models, in: J. Breese, D. Koller (eds.), Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann Publishers, 2001.

[10] P. M.-R. II, U. Chajewska, Aggregating learned probabilistic beliefs, in:
J. Breese, D. Koller (eds.), Proceedings of the Seventeenth Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers,
2001.

[11] F. V. Jensen, Bayesian Networks and Decision Graphs, Springer Verlag,
2001.

[12] P. Krause, S. Ambler, M. Elvang-Gøransson, J. Fox, A logic of argumen-
tation for reasoning under uncertainty, Computational Intelligence 11 (1)
(1995) 113–131.

[13] S. L. Lauritzen, Graphical Models, Oxford University Press, 1996.
[14] I. Matzkevich, B. Abramson, The topological fusion of Bayes nets, in:

D. Dubois, M. P. Wellman, B. D’Ambrosio, P. Smets (eds.), Proceedings
of the Eighth Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann Publishers, 1992.

[15] P. McBurney, S. Parsons, Risk agoras: Dialectical argumentation for sci-
entific reasoning, in: C. Boutilier, M. Goldszmidt (eds.), Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence, Mor-
gan Kaufmann Publishers, 2000.

[16] P. McBurney, S. Parsons, Chance discovery using dialectical argumenta-
tion, in: T. Terano, T. Nishida, A. Namatame, S. Tsumoto, Y. Ohsawa,
T. Washio (eds.), New Frontiers in Artificial Intelligence : Joint Japanese
Society for Artificial Intelligence 2001 Workshop Post-Proceedings, vol.
2253, Springer Verlag, 2001.

[17] S. H. Nielsen, Reasoning and decision making with multiple autonomous
agents, Ph.D. thesis, Aalborg University (2007).

34

[18] S. H. Nielsen, S. Parsons, Computing preferred extensions for argumenta-
tion systems with sets of attacking arguments, in: P. E. Dunne, T. J. M.
Bench-Capon (eds.), Proceedings of the First International Conference
on Computational Models of Argument, vol. 144 of Frontiers in Artificial
Intelligence and Applications, IOS Press, 2006.

[19] S. H. Nielsen, S. Parsons, A generalization of Dung’s abstract frame-
work for argumentation: Arguing with sets of attacking arguments, in:
N. Maudet, S. Parsons, I. Rahwan (eds.), Proceedings of the Third Work-
shop on Argumentation in Multi-agent Systems, Future University, Hako-
date, Japan, 2006.

[20] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Representation
& Reasoning, Morgan Kaufmann Publishers, 1988.

[21] D. M. Pennock, M. P. Wellman, Graphical representations of consen-
sus belief, in: K. Laskey, H. Prade (eds.), Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, 1999.

[22] J. L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Per-
son, MIT Press, 1995.

[23] M. Richardson, P. Domingos, Learning with knowledge from multiple
experts, in: T. Fawcett, N. Mishra (eds.), ICML 20, AAAI Press, 2003.

[24] S. Saha, S. Sen, A Bayes net approach to argumentation based negotia-
tion, in: ArgMAS 1, Springer Verlag, 2004.

[25] G. R. Simari, R. P. Loui, A mathematical treatment of defeasible reason-
ing and its implementation, Artificial Intelligence 53 (1992) 125–157.

[26] T. Verma, J. Pearl, Equivalence and synthesis of causal models, in: L. K.
J. L. Piero Bonissone, Max Henrion (ed.), Proceedings of the Sixth Con-
ference on Uncertainty in Artificial Intelligence, Elsevier Science Publish-
ing, 1991.

[27] G. Vreeswijk, Bayesian inference and defeasible reasoning: suggestions for
a unified framework, working paper, Department of Computer Science,
University of Utrecht (1999).

[28] G. Vreeswijk, H. Prakken, Credulous and sceptical argument games for
preferred semantics, in: M. Ojeda-Aciego, I. P. de Guzmán, G. Brewka,
L. M. Pereia (eds.), Proceedings of the Seventh European Workshop on
Logic in Artificial Inteligence, vol. 1919 of Lecture Notes in Computers
Science, Springer Verlag, 2000.

[29] G. A. W. Vreeswijk, Abstract argumentation systems, Artificial Intelli-
gence 90 (1) (1997) 225–279.

[30] G. A. W. Vreeswijk, Argumentation in Bayesian belief networks, in:
ArgMAS 1, Lecture Notes in Artificial Intelligence, Springer Verlag, 2004.

35

