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Extending the Maximum Entropy Approach toVariable Strength DefaultsRachel A. Bourne a;� Simon Parsons ba Department of Electronic Engineering,Queen Mary, University of London,London E1 4NS, UKE-mail: r.a.bourne@elec.qmw.ac.ukb Department of Computer Science,University of Liverpool,Liverpool L69 72F, UKE-mail: s.d.parsons@csc.liv.ac.ukA generalisation of the maximum entropy (me) approach to default reasoning[7,8] to cater for variable strength defaults is presented. The assumptions on whichthe original work was based are reviewed and revised. A new algorithm is presentedthat is shown to compute the me-ranking under these more general conditions. Thelimitations of the revised approach are discussed and a test for the uniqueness ofthe me-solution is given. The me-solutions to several illustrative examples of defaultreasoning are given, and the approach is shown to handle them appropriately. Theconclusion is that the me-approach can be regarded as providing a benchmark theoryof default reasoning against which default intuitions and other default systems maybe assessed.Keywords: nonmonotonic reasoning, default reasoning, consequence relations1. IntroductionThe general requirements of default reasoning have mainly been laid downwith the help of illustrative examples that demonstrate behaviours such as respectfor speci�city, inheritance to exceptional subclasses and maintenance of ambigu-ity. While there is consensus regarding the most basic requirements|preferentialreasoning [10] is accepted as core behaviour for nonmonotonic reasoning systems� Corresponding author.



2 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach[6,17]|there is no general theory which provides a satisfactory formalisation ofwhat underlies the default intuitions themselves. Although some default systemshave captured the required behaviours, e.g., lexicographic entailment [11], therehas been little objective justi�cation of the reasons why.This paper aims to take a step towards the development of such a generaltheory by extending an existing approach [8] that does have a well-establishedfoundation but which was previously limited in its applicability. The "-semanticsfor defaults [1,16], which exhibits the core behaviour cited above, is groundedin probability theory|the most common tool for reasoning under uncertainty.The "-consequences of a set of defaults are those satis�ed in all probability dis-tributions compatible with that set. By selecting just one of those compatibledistributions using a well-known principle of indi�erence|maximising entropy|one arrives at an extension to the set of "-consequences that can be shown tosatisfy not only the core behaviour but other, more sophisticated default require-ments. The principle of maximum entropy is to select the probability distributionthat contains the most uncertainty while still satisfying the original defaults, andthis method leads to the unique least committed, or least biased, distributionamong all compatible ones [18]. The use of this principle has been shown tobe the only consistent method of inductive inference under uncertainty [15]. Byextending the me-approach to handle di�ering priorities or strengths among a setof defaults, a new and more general algorithm for computing the me-solution isgiven and the implications of using this extended framework are discussed.The paper is organised as follows: section 2 gives some preliminary de�ni-tions and notation; section 3 reviews the original work on the me-approach andcompares it with the work presented here; section 4 gives a derivation of theequations that constrain the me-ranking; section 5 presents the algorithm alongwith proof of its correctness under the stated assumptions; section 6 details acondition for the uniqueness of the solution obtained using the algorithm; sec-tion 7 discusses how to determine whether the assumptions made are valid, andwhat to do if they are not; section 8 gives the me-solutions to several illustrativeexamples of default reasoning; and, �nally, section 9 concludes by arguing forthe adoption of the revised me-approach as a general theory of default reasoning,which can be used as a benchmark for evaluating both default intuitions andother default reasoning systems. This work builds on results originally reportedin [3].



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 32. PreliminariesFirst some preliminary de�nitions and notation are given. A �nite proposi-tional language L is made up of propositions a, b, c, : : : and the usual connectives:, ^, _,!. A default rule, e.g., a) b, is a pair of propositions or formul� joinedby a new default connective ), which should not be confused with material im-plication !. The language L has a �nite set of models, M. A model, m, is saidto verify a default, a ) b, if m j= a ^ b, where j= is classical entailment, and issaid to falsify it if m j= a ^ :b.The "-semantics equates each default with a probabilistic constraint suchthat a) b means that P (:bja) < " for some small, real " > 0. A set of defaults,�, is "-consistent if at least one probability distribution exists that satis�es theseconstraints for all defaults in �. A default a) b is "-entailed by � if for any " > 0there exists � > 0 such that P (:bja) < " if P (:bijai) < � for all ai ) bi 2 �.The set of all defaults "-entailed by � is equivalent to its preferential closure [10].A ranking function, �, over the models ofM is an assignment of non-negativeinteger ranks such that for at least one m 2 M, �(m) = 0. A formula, a, takesthe rank of its minimal satisfying model(s), �(a) = minmj=a[�(m)]. A default,a ) b, is entailed by a ranking function, �, i� the rank of its minimal verifyingmodel is strictly lower than that of its minimal falsifying model. That is:j�� a) b i� �(a ^ b) < �(a ^ :b)Ranking functions induce rational consequence relations [12]. A ranking functionis admissible with respect to a set of defaults if it entails all defaults in that set; therational consequence relation associated with an admissible ranking function fora given set of defaults is an extension of the preferential closure of that set. Thispaper examines the rational consequence relations induced by me-rankings, i.e.,those obtained by applying the principle of maximum entropy to the "-semantics.3. Comparison with original workThe original de�nition of the me-approach to default reasoning was givenby Goldszmidt et al. [8]. Their approach involved �nding the probability dis-tribution that maximised entropy subject to default constraints given by the"-semantics. That is, each default, ai ) bi, is constrained by:P (bijai) � 1� " (1)



4 R. A. Bourne, S. Parsons / Extending the Maximum Entropy ApproachThis leads to a unique me-distribution for any "-consistent set of defaults. Byusing " as a parameter, and under certain restrictions, Goldszmidt et al. derivean algorithm that �nds the ranking function abstraction of this me-distributionfor minimal core sets of defaults, which are guaranteed to satisfy their imposedrestrictions. However, there are several reasons why this de�nition is not whollysatisfactory.Firstly, if the aim of the me-approach is to �nd a ranking function abstrac-tion of a set of probability distributions, then the exact function of " used toconstrain a default in (1) is unnecessarily precise. As the following section willshow, it is the order of magnitude of " in these constraints that appears in theequations that determine the me-solution1. It would be more appropriate forthese constraints to be of the form:P (bijai) � 1� Ci" (2)where Ci is some unspeci�ed convergence coe�cient which is allowed to varyfrom default to default. In fact, this is more in keeping with the de�nition ofentailment in the "-semantics, since the conditional probabilities of "-entaileddefaults are required to tend to zero at the same rate as ", at least, but notnecessarily precisely like ". In many cases, in particular for minimal core sets,such a relaxation of the constraints does not lead to any di�erence in the me-ranking. This means that someone specifying a set of defaults need only commithimself to all defaults being constrained to the same order of magnitude and thisis enough to determine the me-solution.However, there are cases for which this imprecision causes multiple me-solutions to occur. Consider the following example:Example 1. �1 = fa) b; a) cg �2 = fa) b; a ^ b) cgBoth these sets are minimal core. Table 1 indicates the models that verify andfalsify each of these defaults, and gives the me-rankings for �1 and �2. It iseasily seen that �1 me-entails a ^ b ) c, and that �2 me-entails a ) c. Thequestion arises: what is the me-solution for the combined set �3 = fa) b; a)c; a ^ b ) cg? Since the set �3 is non-minimal core, it is not possible to apply1As will subsequently become clear, the term me-solution refers to both the me-ranking and aspecial ranking over the defaults themselves.



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 5Table 1The me-rankings for �1 and �2m a b c a) b a) c a ^ b) c �1 �2m1 0 0 0 - - - 0 0m2 0 0 1 - - - 0 0m3 0 1 0 - - - 0 0m4 0 1 1 - - - 0 0m5 1 0 0 f f - 2 1m6 1 0 1 f v - 1 1m7 1 1 0 v f f 1 1m8 1 1 1 v v v 0 0the algorithm given in [8]. The original de�nition of the me-approach dictatesthat just one me-ranking exists, for any set of defaults; however, it is not clearwhich, if either, of the above rankings represents the me-solution for �3.This situation arises because sets of defaults may contain redundant in-formation in the sense that some defaults are already me-entailed by the otherdefaults. Since a redundant default is already satis�ed in the me-distribution,the constraint associated with it will not have any e�ect; in fact, the constraintwill be satis�ed as a strict inequality. The constraints of active defaults are allsatis�ed as strict equalities in the me-distribution.In the example above, it is not clear which default in the set �3 is causing theredundancy. This occurs because the convergence coe�cients have been left im-precise: di�erent values for these coe�cients may alter which default constraintsare active and which are redundant. Under the proposed new interpretation, boththe me-rankings are valid; the limits of the analysis of defaults using only ordersof magnitude have been reached in such cases; only the user can decide whichdefault should be treated as redundant. In other words, multiple me-solutionsarise because of the lack of precise speci�cation of the convergence coe�cients.However undesirable this may appear, it re
ects the fact that the designer ofthe default set has speci�ed an ambiguous situation according to the revised se-mantics; the me-ranking critically depends on which default is redundant and,as it stands, such a default set represents two or more slightly di�erent points ofview. This can be equated with a situation in which one default is \explainedaway" by the others. Identifying default sets that contain redundancy turns outto be important for the interpretation of me-solutions. However, it should be



6 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approachstressed that these situations are unlikely to be what is intended by the user ofa default system, and can be resolved by adding priorities to defaults, which isnow described.The second shortcoming of the original me-approach is that it is unable torepresent di�erent priorities among defaults. It is often useful to consider thatsome default holds more strongly than another, as a means of resolving ambiguity.In the case above, for example, it may be felt that one of the potentially redundantdefaults in fact holds more strongly than its counterparts; perhaps, rather thanremoving it, it should be strengthened relative to them. Although this problemis recognised by Goldszmidt et al., unfortunately, their original de�nition impliesthat any set of defaults can have just one me-solution, regardless of any prioritiesthe designer may feel exist or may wish to represent.To overcome this, the "-semantics can be extended to cater for variablestrength defaults, or defaults that have been assigned speci�c strengths by theuser. This is represented in the current framework by allowing defaults not onlyto have individual convergence coe�cients, but also to converge at di�erent ratesof ". Each variable strength default, ai si) bi, is required to satisfy an asymptoticconstraint : P (bijai) � 1�Oi("si) (3)where Oi("si) is some unspeci�ed convergence function of " that satis�es:lim"!0 Oi("si)"si = Ci (4)Ci being the convergence coe�cient of ri. Note that since " is merely a parameter,the strengths associated with defaults are relative and have no objective meaning;a simple change of parameter could lead to any rational assignment of strengths.Goldszmidt and Pearl show in [7] that adding strengths to defaults in thisway does not a�ect the "-consistency of a set. The constraint (3) translates quitenaturally into the ranking function representation as:si + �(ai ^ bi) � �(ai ^ :bi) (5)A ranking function that satis�es this constraint for all variable strength defaultsin a set �+ = fai si) big will be called "+-admissible with respect to that set forthat particular assignment of strengths. Under this extended semantics, rankingfunctions can also be considered to entail a default to a certain degree, being thedi�erence between its minimal verifying and falsifying models.



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 7Since the constraints associated with the defaults in a given set can now bealtered, by assigning di�erent strengths, it turns out that the me-solution withrespect to that set also varies. In turn this leads to di�erent me-consequencerelations also depending on the strengths assigned. This allows for greater ex-pressiveness in specifying defaults and enables potentially ambiguous situations|including those involving redundancy|to be resolved by adjusting the strengths.These changes to the me-approach involve a shift in the commitment re-quired of the user: while he must now specify the relative strengths of defaults,he need not be committed to any particular convergence coe�cients. This �tsmore neatly into the ranking function representation of consequence relations,which uses ranks to represent degrees of disbelief|higher ranks imply lower de-grees of belief [19,7]. What is, perhaps, remarkable about this new framework,is that in almost all cases, merely specifying the order of magnitude strengths issu�cient to determine a unique me-solution; the only occasions when multipleme-solutions can arise are those that contain redundancy, and even then only fora speci�c type of redundancy. This means, for example, that practically all illus-trative examples of default reasoning have unique me-rankings, and those that donot are invariably those that have caused \clashes of intuition" among researchers(see example 16 below). The related redundancy problem, which occurs for setsthat contain redundancy through an underspeci�cation of strength2, is trouble-some only insofar as the optimisation technique used to derive the me-distributionrequires that all defaults are active; clearly, an understrength default should beignored, but this may not be recognised until a solution has been computed, andsuch a solution may therefore be invalid.The problems created by redundancy are overcome by making an assumptionthat the problem is well-posed and that all constraints are active, i.e., that a givenset of defaults has a unique me-solution that satis�es the assigned strengthsand that is independent of the convergence coe�cients. The validity of thisassumption will need to be veri�ed after a solution has been found, and, if itdoes not hold, the me-solution may need to be recomputed after removing anyredundant defaults. This assumption will be called the validity assumption andhow to assess whether it holds will be discussed in section 7.The advantages of the revised me-approach can be summarised as follows:2 That is, when the strength assigned to a default does not provide a constraint, since otherdefaults already constrain it to a greater degree.



8 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach� Relaxation of the default constraints requires only order of magnitude com-mitments about default convergence from the user.� The inputs to the system re
ect the same type of knowledge as the outputsfrom it, i.e., variable strength defaults go in, and defaults plus degrees ofentailment come out.� Defaults can be prioritised using strength assignments, which may allow moreaccurate modelling of default intuitions.� In cases of ambiguity, the user can identify and remove potentially redundantdefaults.4. Deriving the maximum entropy rankingThe me-ranking over the models of L is an asymptotic abstraction of theexponents of their probabilities in the me-distribution. The basic idea is to �ndthe me-distribution for a �xed ", and to consider what happens to it as " ! 0.The assumption is made that all variables in this problem can be representedby expressions of the form O("s), that is, as " ! 0 each variable asymptoti-cally approaches some function of " of some order s. In this way, the equationsthat determine the me-distribution can be abstracted into integer equations thatdetermine the ranks, or exponents of ", for the variables in the me-solution.The me-distribution is found using the Lagrange multiplier technique whichcan be used to optimise an objective function subject to a set of active con-straints; in this case the entropy function is maximised subject to the conditionalprobability constraints associated with the defaults. The entropy of a probabilitydistribution over a set of models, M, is given by:H[P ] = � Xm2MP (m) log P (m) (6)As discussed in the previous section, under the validity assumption, each default,ri, satis�es an asymptotic constraint of the form:P (bijai) = 1�Oi("si) (7)where the strengths, si, are speci�ed for each default but the convergence func-tions, Oi("si), may vary. The strengths, si, can be interpreted intuitively asrepresenting relative priorities between defaults with numerically higher strengthdefaults holding more strongly than those of lower strength.



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 9Given a set of variable strength defaults, �+ = fri : ai si) big, the constraints(7) imposed on P for each default can be rewritten:Xmj=ai^:bi P (m) � Oi("si)1�Oi("si) Xmj=ai^bi P (m) = 0 (8)Each constraint is multiplied by a Lagrange multiplier, �i, and added to theobjective function, H, to give H 0:H 0[P ] = � Xm2MP (m) log P (m) +Xri �i �P (ai ^ :bi)� Oi("si)1�Oi("si)P (ai ^ bi)�(9)When the constraints are satis�ed as equalities, the additional summands aree�ectively zero, in which case H 0 � H. To �nd the point of maximum entropysubject to the constraints imposed, the function is di�erentiated with respectto each P (m), and the derivative is set to zero; this gives jMj simultaneousequations of the form:@H 0[P ]@P (m) = �1� logP (m) + Xrimj=ai^:bi �i � Xrimj=ai^bi Oi("si)1�Oi("si)�i = 0 (10)where the �rst sum ranges over those defaults that m falsi�es and the secondover those that it veri�es. Note that there is another constraint on P , since it isa probability distribution, that requires it to sum to one. However, this wouldmerely be represented by some normalisation factor, common to each model'sprobability, so it can be safely ignored; the distribution found will in fact representthe unnormalised me-distribution.Introducing the substitution �i = e�i , and taking antilogs of (10), yieldsexpressions for the probabilities of each model in terms of the �i and the Oi("si):P (m) = e�1 Yrimj=ai^:bi �i Yrimj=ai^bi �� Oi("si )1�Oi("si )i (11)This analytic solution for the probability of each model in the unnormalised me-distribution contains two unknowns for each default: �i, associated with theLagrange multipler, �i, and Oi("si), the convergence function for ri. By �ndinga solution for the �i, the probabilities of each model can be determined from



10 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach(11). Assuming that all these variables are of the form O("s), introduce thesubstitutions: �i = Ori("�(ri)) P (m) = Om("�(m))where �(ri) and �(m) represent the integer ranks (i.e., the exponents) of thedefaults and of the probability of each model in the me-solution, respectively.Note that, under these assumptions, the constant factor e�1 and the secondproduct in (11) both represent functions of order zero3, and can therefore bereplaced by a function cm that will tend to a constant as "! 0. The expressionfor the probability of each model (11) reduces to:Om("�(m)) = cm Yrimj=ai^:bi Ori("�(ri)) (12)which, by comparing exponents on both sides of the equation, reduces to theinteger equation: �(m) = Xrimj=ai^:bi �(ri) (13)Under these same assumptions and substitutions, the constraint equations (8),reduce to the integer equations:minmj=ai^:bi[�(m)] = si + minmj=ai^bi[�(m)] (14)The solutions to this system of equations, (13) and (14), take the form offunctional mappings from defaults to integers, � = f�(ri)g, such that the rankingover models, �, determined by � using (13), satis�es (14) for each default. Anyinteger mapping, �, that satis�es this condition for a particular set of variablestrength defaults, �+, will be called a solution-set for �+.Several remarks need to be made about these solutions. Firstly, althougha solution-set, �, uniquely determines the ranking over models, �, the inverserelationship may be one-to-many, i.e., the same ranking over models may be de-termined by many di�erent solution-sets. However, it is often the case that thereis just one solution-set giving rise to a unique ranking over models. Secondly,there may be many rankings, �, that satisfy (14); since the constraints only in-clude the minimal verifying and falsifying models of defaults, non-minimal modelsare unconstrained; such rankings may or may not be determined by a solution-set.3Note that f("; x; y) = "�x"y ! 1 as "! 0 for �xed real x and �xed real y > 0.



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 11Thirdly, there may be no rankings, �, for which equations (14) are satis�able,which means that no solution-sets exist. Finally, it is important to rememberthat solution-sets only lead to me-rankings if the validity assumption holds; careis therefore needed when interpreting the solutions obtained. This will be dis-cussed in more detail in section 7, after an algorithm for �nding solution-sets isgiven.The following simple example illustrates what an me-solution may look like.Example 2. �+ = fr : a s) bgOf the 4 models of L, only one falsi�es the default. The me-ranks of models aretherefore given by: �(a ^ b) = 0�(a ^ :b) =�(r)�(:a ^ b) = 0�(:a ^ :b) = 0There is just one constraint:�(a ^ :b) = s+ �(a ^ b)which implies that: �(r) = sSo the solution-set for �+ is fsg. The validity assumption holds trivially for asingleton default set. The ranking � is therefore the unique me-ranking for �+.The default :b) :a is me-entailed by �+ to degree s.5. The algorithmThis section presents an algorithm that can be used to compute a solution-set, �, and its corresponding ranking, �, for a given set of variable strengthdefaults, �+. The algorithm succeeds when a unique solution-set exists, butmay fail when the set contains redundancy through being either underspeci�edor overspeci�ed. However, it will be shown that the algorithm always computesan "+-admissible ranking over the set; furthermore, section 7 will discuss how to



12 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approachuse the results produced by the algorithm to determine, and hence eliminate, thenature of the redundancy, should it be present.Equations (13) and (14) represent a set of non-linear simultaneous equations,for which there is no guarantee that a solution exists, nor that a given solutionis unique; since no general method exists to solve such equations, an algorithmicapproach is taken. Before describing the algorithm itself, the key ideas behindhow it works are explained.Firstly, let vr (respectively, fr) represent a minimal verifying (respectively,falsifying) model of r in some ranking �. Now, a ranking derived from a solution-set, �, has the form: �(fr) = sr + �(vr) (15)and since each falsifying model of a default contains a contribution from its owninteger rank, �(r), equation (15) can be rewritten as:�(r) + (�(fr)� �(r)) = sr + �(vr) (16)Now, if the integer ranks in the solution-set for defaults with lesser ranked mini-mal falsifying models were already known, equation (16) could be used to deter-mine the value of �(r). Expanding (16) gives:�(ri) + minmj=ai^:bi 26664 Xrj ;j 6=imj=aj^:bj �(rj)37775 = si + minmj=ai^bi 26664 Xrj ;j 6=imj=aj^:bj �(rj)37775 (17)The algorithm to compute a solution-set works as follows. Initially, each defaultis assigned an in�nite integer rank. Two functions are de�ned, MINV(r) andMINF(r), that compute, respectively, the minimal rank of all verifying models ofr, and the minimal rank of all falsifying models of r excluding its own contribution,using the current integer ranks of each default. The algorithm assigns new ranksto defaults, one by one, using these functions to determine which one to ranknext, via the assignment:�(r) := sr +MINV(r)�MINF(r) (18)In this way, after j�+j passes, all defaults will have been assigned appropriateinteger ranks from which a ranking over models is then computed. Finally, eachdefault is checked to determine whether equation (14) is satis�ed as an equal-



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 13ity (i.e., a solution-set has been found) or otherwise (i.e., only an "+-admissibleranking has been found).Algorithm 3. Input: a set of variable strength defaults, �+ = fri : ai si) big.Output: an "+-admissible ranking, �, and if successful, a solution-set, �.[1] Initialise all �(ri) = INF.[2] While any �(ri) = INF do:(a) For all ri with �(ri) = INF, compute si +MINV(ri).(b) For all such ri with minimal si +MINV(ri), compute MINF(ri).(c) Select r with minimal MINF(ri).(d) If MINF(r) = INF let �(r) := 0else let �(r) := s+MINV(r)�MINF(r).[3] Assign ranks to models using equation (13).[4] If equations (14) are satis�ed strictly for all defaults return � and �;else return �.The remainder of this section will demonstrate that this algorithm eithercomputes a solution-set, �, for �+, or an "+-admissible ranking, �, provided theset is "-consistent. In the latter case, it will be shown that at least one defaultis assigned a zero rank; it is claimed that such a default is redundant and shouldbe removed from the set.The �rst lemma shows that the algorithm always assigns each default some�nite rank.Lemma 4. Given an "-consistent set of variable strength defaults, the algorithmassigns a �nite rank to each default.Proof. Provided the minimal computed value for the function MINV(r) is �niteat each pass of the loop, then the rank assigned to the chosen default will also be�nite: zero, if the computed value of MINF(r) is in�nite; and sr +MINV(r) �MINF(r), otherwise. Suppose therefore that at some pass of the loop the minimalcomputed value for MINV(r) is in�nite for all unranked r. This means that allverifying models of each unranked default also falsify an unranked default; by



14 R. A. Bourne, S. Parsons / Extending the Maximum Entropy ApproachThm 3.3 in [9], this contradicts the "-consistency of the original set and henceeach default will be assigned a �nite rank.Given an "-consistent set of defaults, therefore, some set of �nite integerranks, �, will be produced, which in turn implies a �nite set of ranks over models,�. The next lemma shows that � represents a ranking function over models, i.e.,that all ranks for models are non-negative and that at least one has zero rank.Lemma 5. Given an "-consistent set of variable strength defaults, the algorithmassigns a non-negative rank to each model.Proof. This is shown by induction. The rank of each model at any given stageequals the sum of the current ranks of those defaults it falsi�es. At the start, as alldefaults have in�nite rank, the current rank of a model is either zero, if it falsi�esno defaults, or in�nite. Moreover, since the set is "-consistent, there exists at leastone model which falsi�es no defaults and therefore has rank zero. Assume thatat some intermediate stage all models have non-negative rank before the chosendefault, r, is assigned a rank. Now, if the computed value of MINF(r) is in�nite,the default is assigned a rank of 0 but this will not change the current rank ofany model since all its falsifying models also falsify other unranked defaults. If,on the other hand, MINF(r) is �nite then �(r) := sr+MINV(r)�MINF(r). Letm be a falsifying model of r, and suppose that the current rank of m, withoutthe contribution of r, is i. Clearly, MINF(r) � i. Now the current rank of mis �(r) + i = sr +MINV(r) �MINF(r) + i � sr +MINV(r). By the inductivehypotheses, MINV(r) is non-negative. Therefore the rank of m is also non-negative. The lemma follows by induction.This lemma does not preclude defaults from having negative ranks, only models.Note that, at this stage, there is no guarantee that the computed ranking overmodels is admissible, only that it represents a ranking. The following lemmashows that the defaults are ranked in an order corresponding to the ascendingorder of their sr + �(vr) in the �nal ranking.Lemma 6. Given an "-consistent set of variable strength defaults, the algorithmassigns ranks to defaults in ascending order of the �nal ranks of their minimalverifying models plus their strengths.



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 15Proof. Suppose r0 is the next rule to be ranked after r. If MINV(r0) is nota�ected by the ranking of r, then sr+MINV(r) � sr0 +MINV(r0) by minimalityin the selection of r. Otherwise, the minimal model of MINV(r0) became �niteduring the ranking of r, and is therefore a falsifying model of r. By the proof oflemma 5, sr+MINV(r) � MINV(r0) and hence sr+MINV(r) < sr0 +MINV(r0).Thus sr +MINV(r) increases monotonically for successive r.Corollary 7. � is "+-admissible, that is, for all rsr + �(vr) � �(fr)Proof. Note that all falsifying models of a default have in�nite rank when it isbeing ranked and so cannot have a �nal rank of less than sr + �(vr).So the ranking produced by the algorithm is "+-admissible. Because theranks of the models are computed from the ranks of the defaults, the equations(13) are guaranteed to be satis�ed. although the same cannot necessarily be saidfor equations (14). However, the following lemma shows that, if for some default,equation (14) is satis�ed as a strict inequality, that is, if sr + �(vr) < �(fr)in the computed ranking, then that default will have been assigned a rank ofzero. In section 7, it is argued that these cases represent default sets containingredundancy, which need to be handled carefully since the assumption that alldefaults are active is no longer valid.Lemma 8. Given an "-consistent set of variable strength defaults, if for somedefault, r, in the ranking computing by the me algorithm sr + �(vr) < �(fr),then that default will have been assigned a rank of zero (i.e., �(r) = 0).Proof. If the ranking computed by the me algorithm, �, is such that sr+�(vr) <�(fr) for some r, then, when r was selected to be ranked, it cannot be the casethat MINF(r) was �nite; if it were then the assignment �(rj) := sj+MINV(rj)�MINF(rj) would mean that at least one falsifying model of r satis�ed sr+�(vr) =�(fr) in the �nal ranking. Thus, since MINF(r) was in�nite, r was assigned rankzero. Lemma 8 shows that, should the algorithm fail to �nd a solution-set, anydefaults which satisfy (14) as a strict inequality will be assigned a zero rank. Theresultant ranking will entail such a default to a degree greater than its assigned



16 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approachstrength, indicating that the default is redundant, that is, it has no e�ect on theranking produced. This type of redundancy is discussed further in section 7.Even when a solution-set is discovered, care needs to be taken before claim-ing that the ranking it produces represents the me-ranking. In order to estab-lish whether or not the algorithm has found a solution-set that does lead toan me-ranking, it is necessary �rstly to check whether or not it is unique, andsecondly, to verify the validity assumption. The following section highlights asu�cient condition that guarantees that a particular ranking corresponds to aunique solution-set and a discussion of how to use this is given in section 7.6. Unique solution-setsThis section identi�es a su�cient condition for a ranking, �, determined bya solution-set, �, that guarantees the uniqueness of that solution-set. This is theinitial step towards verifying that the validity assumption holds, since if thereare multiple solution-sets it is unlikely that the assumption is valid, unless theyall lead to the same ranking over models.The following results will show that the uniqueness of a solution-set, �, canbe guaranteed if the ranking, �, determined by �, satis�es the following condition:De�nition 9. A ranking, �, over models is said to be robust with respect toa set of variable strength defaults if no two defaults share a common minimalfalsifying model in �.To demonstrate uniqueness of a solution-set it must be possible to distinguishbetween two arbitrary solution-sets:De�nition 10. Two solution-sets, � and �0, are said to be distinct i� �(r) 6=�0(r) for some default r. Such a default is said to be distinctly ranked.The following notation will be useful. Let � and �0 be rankings determined bysolution-sets � and �0, respectively, using (13). As before, let vr, v0r0 representminimal verifying models of r, r0 in �, �0, respectively, and similarly let fr, f 0r0represent minimal falsifying models of r, r0 in �, �0, respectively, and so on.The following lemma is required for the main theorem; the lemma shows thatany default, r, that is distinctly ranked in two solution-sets, � and �0, and has



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 17minimal �(fr) among distinctly ranked defaults, also has minimal �0(f 0r) amongdistinctly ranked defaults.Lemma 11. Given two distinct solution-sets, � and �0, with correspondingrankings, � and �0. If r is such that �(r) 6= �0(r) and for all r0 with �(r0) 6= �0(r0),�(fr0) � �(fr), then �0(f 0r0) � �0(f 0r).Proof. Suppose otherwise, that is, there exists r0 6= r, such that �(r0) 6= �0(r0)with �(fr0) � �(fr), but �0(f 0r) > �0(f 0r0). Without loss of generality, supposethat r0 has minimal �0(f 0r0) among distinctly ranked defaults. Now, because � isa solution-set, sr + �(vr) = �(fr), and vr can only falsify defaults, d, for which�(d) = �0(d), so that �(vr) = �0(vr). It follows that:�(fr) = sr + �(vr) = sr + �0(vr) �sr + �0(v0r) = �0(f 0r) > �0(f 0r0) (19)Similarly, since r0 was chosen to have minimal �0(f 0r0) among distinctly rankeddefaults, sr0 + �0(v0r0) = �0(f 0r0), and v0r0 can only falsify defaults, d, for which�0(d) = �(d), and �0(v0r0) = �(v0r0). It follows that�0(f 0r0) = sr0 + �0(v0r0) = sr0 + �(v0r0) �sr + �(vr0) = �(fr0) � �(fr) (20)Putting (19) and (20) together, �(fr) � �0(f 0r) > �0(f 0r0) � �(fr0) � �(fr), whichby contradiction implies that �0(f 0r0) � �0(f 0r), as required.The following theorem connects the robustness of a ranking with the unique-ness of its determining solution-set.Theorem 12. Given a �nite set of variable strength defaults, �+ = fri : ai si)big, if a solution-set, �, determines a ranking, �, that is robust, then � is theunique solution-set for �+.Proof. Let � and �0 be distinct solution-sets for �+ with corresponding rank-ings, � and �0, and let r be a distinctly ranked default with minimal �(fr) amongdistinctly ranked defaults and, by lemma 11, minimal �0(f 0r). Suppose further that� is robust. Then fr falsi�es only r and other defaults, d, with �(d) = �0(d); also�(vr) = �0(v0r), since they only falsify non-distinctly ranked defaults, and sinceboth � and �0 are solution-sets; it follows that �(fr) = �0(f 0r) with �(r) 6= �0(r).



18 R. A. Bourne, S. Parsons / Extending the Maximum Entropy ApproachConsider �0(fr) for which �0(fr) � �0(f 0r). But �0(f 0r) = �(fr) and fr falsi�esonly non-distinctly ranked defaults and r itself, for which �(r) 6= �0(r). Hence�0(fr) 6= �(fr) and so �0(fr) 6= �0(f 0r). Therefore �0(fr) > �0(f 0r) and hence�0(r) > �(r).Now, if f 0r falsi�ed no other distinctly ranked default, �(f 0r) < �0(f 0r) = �(fr),which contradicts fr being minimal in �. This implies that f 0r must falsifysome other distinctly ranked defaults and hence �0 is not robust. Let these ber1; r2; : : : ; rn; since all these ri are also minimal distinctly ranked defaults in �0,by lemma 11, they are also minimal in � and there must exist fr1 ; fr2 ; : : : ; frn ,minimally ranked falsifying models in � such that �(fr) = �(fri) for all ri. Fur-ther, because � is robust, none of the fri can falsify any other distinctly rankeddefaults.But, by the same argument as above, this implies that for all ri, �(ri) <�0(ri). However, this in turn implies that f 0r which falsi�es r, all the ri, andnon-distinctly ranked defaults, must have a lower rank than fr in �, i.e., �(f 0r) <�0(f 0r) = �(fr), which contradicts fr being the minimal falsifying model of r in�. Hence, � cannot be robust either. It follows that, if two distinct solution-sets exist, neither of their corresponding rankings can be robust, and hence anysolution-set that determines a robust ranking must be unique.Theorem 12 provides a test for the uniqueness of a solution-set by testingfor the robustness of the ranking determined by it. However, the robustnesscondition only gives a su�cient condition for uniqueness; it is possible that anon-robust ranking may be determined from a unique solution-set, although noexamples have yet been found by these authors.Given that there may be many solution-sets for a given set of defaults,one might be tempted to adapt algorithm 3 so as to �nd all possible solutions.There are several reasons why this is not recommended. Firstly, there may bean in�nite number of solutions; at step [2](d) of the algorithm, assigning thevalue zero to the selected default is arbitrary, any integer would su�ce. Thevalue zero re
ects our interpretation that such a default is a candidate|thoughnot necessarily the only one|for removal from the set. Secondly, although theremay be a choice of default to which to assign this zero rank, there is no guaranteethat the outcome will be a solution-set, let alone that the ranking will representthe me-ranking; computing many solution-sets does not alleviate the need toverify the validity assumption, indeed multiple solution-sets usually point to the



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 19fact that it has been violated. Thirdly, although it is useful to recognise thedefaults that cause redundancy, our aim is to enable the design of unambiguousdefault knowledge bases along with their unique me-interpretations; therefore,we concentrate of identifying redundancy and correcting it by the removal orstrengthening of defaults.7. Verifying the validity assumptionIn the previous sections, equations (13) and (14) were derived and a methodfor �nding solutions to them was given. The validity assumption clearly failswhen no solution-set is found, since at least one default is not active; however,even when a solution-set has been found, it is still necessary to verify the validityassumption to determine whether the ranking produced is the uniqueme-solution.How to establish whether it does indeed hold, and what to do when it does not,is the subject of this section.The problem with trying to verify that the validity assumption holds isevident from its de�nition, which requires that a given set of defaults has aunique me-solution that satis�es the assigned strengths and that is independentof the convergence coe�cients. Thus the me-solution is required in order to testthe validity assumption. This circularity causes a problem since it is not possibleto test a solution for validity until it has been veri�ed that it is a validme-solution!Under what circumstances may the validity assumption fail to hold? Thereare two possibilities, both of which are related to redundancy in the defaultinformation. The �rst type of redundancy occurs when, although all defaults aresatis�ed to their correct strengths, di�erences in their convergence coe�cientscan lead to di�erent me-solutions; in this situation there are multiple, equallyvalid me-rankings that depend on which defaults are considered to be redundant.The second type of redundancy occurs when one default is satis�ed in the me-solution to a degree greater than its assigned strength; in this case solution-sets toequations (13) and (14), if they exist at all, may not even be valid me-solutions.To understand what is happening in these cases it is helpful to imagine thespace of all probability distributions that is constrained by the defaults. Normally,the solution to the maximum entropy problem will occur at the edge of this space,i.e., with all constraints active, since by tightening a constraint a new solutionneeds to be found. However, in some cases, a constraint is already satis�ed inthe me-solution given by the other defaults; tightening its constraint will have



20 R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approachno e�ect until a critical point when it becomes active is reached. Redundantdefaults should therefore be ignored when computing the me-solution since theirconstraints are satis�ed as strict inequalities and do not a�ect the solution.For the �rst type of redundancy, the solution-set produced by the algorithmcan be of some help: defaults with zero ranks usually point to multiple solutions.A further check is to test the resulting ranking for robustness, indicating whetheror not the solution-set is unique. If the solution-set is not unique, it is not alwaysclear which default is the redundant one. Clearly, any default with zero rankis a candidate, but others may also be; this re
ects the fact that this type ofredundancy is often ambiguous, and only the designer can know exactly whichdefault he intends to be redundant. Once such a default has been removed,the algorithm (and veri�cation) should be re-applied to the remaining defaults.Alternatively, if it is felt that all defaults ought to be active, a redundant defaultmay be strengthened to allow it to represent an active constraint.For the second type of redundancy, the algorithm may or may not �nd asolution-set. Failing to �nd a solution-set indicates clearly that some defaulthas been assigned an inadequate strength, and is therefore redundant. However,in other cases, this type of redundancy may be harder to recognise; sometimesa solution-set exists, but because the validity assumption has failed, it does notrepresent an me-solution. In this case, the assignment at step 2[d] of the algorithmis invalid; in fact, such a default will obtain a negative rank, and this is the wayto identify these \improper" solution-sets. If a solution is found which contains anegative integer rank, the default should be removed and the algorithm re-appliedto the remaining defaults. However, in the former case when no solution-set wasfound, it turns out that the ranking produced may well represent the me-ranking.This is because any default which has a zero rank does not a�ect the ranking; byassigning a rank of zero to a default involved, it is being ignored as it should be,and the computed "+-admissible ranking does represent an me-solution, providedno other redundancy is present.It should be borne in mind that not only are cases of redundancy rare,but also default sets that contain redundancy are unlikely to be of much use inpractice. Nevertheless these technical di�culties with the me-solution are veryreal, and further work needs to be done to address them. For practical purposes,the following conjecture is used:Conjecture. If a solution-set, �, for a given set of variable strength defaults,



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 21�+, is unique and contains only strictly positive integer ranks, then the ranking,�, determined by � is the unique me-ranking.This conjecture remains an open research question; however, the followingalgorithm can be used to determine whether a given set of defaults contains eithertype of redundancy.Algorithm 13. Input: �+ = fri : ai si) big.Output: �redundant containing candidates for redundancy (if �redundant = ;, �+contains no redundancy).[1] Let �redundant = ;.[2] For each ri 2 �+.(a) Let �0 = �+ � frig.(b) Let �0 be the ranking produced by applying algorithm 3 to �0.(c) If �0 entails ri to degree si or higher, �redundant := �redundant [ frig.[3] Return �redundant.If no redundancy exists, all defaults actively constrain the me-distributionand hence it is unique. Thus, to establish that a set of defaults, �, does have aunique me-solution, the me-algorithm needs to be applied j�j+ 1 times.Recent research by Eiter and Lukasiewicz [4] has shown that computingthe me-default ranking using the me-algorithm is FPNP-complete while decidingme-entailment is NPNP-complete. This complexity result does not improve byrestriction to Horn defaults; however, at least one tractable subset of defaults,termed feedback-free defaults, has been identi�ed.8. The me-solutions to illustrative examples of default reasoningThis section gives the me-solutions to some classic problems from defaultreasoning. It will be seen that not only do the me-solutions produce the desiredresults but also help to clarify why some examples have led to disagreementsamong researchers. In the �rst example, the solution is tabulated explictly toillustrate the method of �nding the me-ranking but later this is omitted to savespace.



22 R. A. Bourne, S. Parsons / Extending the Maximum Entropy ApproachTable 2The me-ranking for the penguin example.m b f p w r1 r2 r3 r4 �(m)m1 0 0 0 0 - - - - 0m2 0 0 0 1 - - - - 0m3 0 0 1 0 - f v - �(r2)m4 0 0 1 1 - f v - �(r2)m5 0 1 0 0 - - - - 0m6 0 1 0 1 - - - - 0m7 0 1 1 0 - f f - �(r2) + �(r3)m8 0 1 1 1 - f f - �(r2) + �(r3)m9 1 0 0 0 f - - f �(r1) + �(r4)m10 1 0 0 1 f - - v �(r1)m11 1 0 1 0 f v v f �(r1) + �(r4)m12 1 0 1 1 f v v v �(r1)m13 1 1 0 0 v - - f �(r4)m14 1 1 0 1 v - - v 0m15 1 1 1 0 v v f f �(r3) + �(r4)m16 1 1 1 1 v v f v �(r3)Example 14 Exceptional inheritance.�+ = fr1 : b s1) f; r2 : p s2) b; r3 : p s3) :f; r4 : b s4) wgThe intended interpretation of this knowledge base is that birds 
y, penguinsare birds, penguins do not 
y and birds have wings. Table 2 shows whether amodel falsi�es or veri�es each default. The column headed �(m) gives the me-rank of each model in terms of the �(ri) using equation (13). Substituting the�(m) into the reduced constraint equations (14) gives rise to:�(r1) = s1�(r2) = s2 +min(�(r1); �(r3))�(r3) = s3 +min(�(r1); �(r2))�(r4) = s4Clearly, the only solution to these equations is �(r1) = s1, �(r2) = s1 + s2,�(r3) = s1 + s3, and �(r4) = s4, all of which are strictly positive.To determine default consequences it is necessary to compare the ranks of adefault's minimum verifying and falsifying models. Since this solution holds for



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 23any strength assignment (s1; s2; s3; s4), it follows that some default conclusionsmay hold unconditionally in all me-solutions. In particular, it can be seen thatthe default p ^ b) :f is me-entailed since:�(p ^ b ^ :f)<�(p ^ b ^ f)s1<s1 + s3This result is unsurprising since p^ b) :f is an "-consequence of �+, and so isbound to be satis�ed in all me-solutions. A more interesting conclusion is p) w,which follows since:�(p ^ w) = s1 < �(p ^ :w) = s1 +min(s2; s4)Again this result holds regardless of the strength assignments and illustrates that,for this example, the inheritance of w to p via b is uncontroversial.Example 15 Nixon diamond.�+ = fr1 : q s1) p; r2 : r s2) :pgThe intended interpretation is that quakers are paci�sts whereas republicans arenot paci�sts. Given a strength assignment of (s1; s2) it is easily shown that�(r1) = s1 and �(r2) = s2. The classical problem associated with this knowledgebase is to ask whether Nixon, being a republican and a quaker, is paci�st or not.This is represented by the default r^q) p. The two relevant models to compareare r ^ q ^ p and r ^ q ^ :p whose me-ranks in the me-solution are:�(r ^ q ^ p) = s2 and �(r ^ q ^ :p) = s1Clearly either r^ q) p or r^ q) :p, or neither, may be me-entailed dependingon the comparative strengths s1 and s2. This result is in accordance with the\intuitive" solution that no conclusion should be drawn regarding Nixon's paci-�sm unless there is reason to suppose that one default holds more strongly thanthe other. In the case of one default being stronger, the conclusion favoured bythe stronger would prevail. This demonstrates the 
exibility of the me-approachin that it allows di�erent default conclusions to be obtained depending on thestrengths assigned.As the examples so far have shown, under the me-approach there are someconclusions that occur for any strength assignment and others that vary accord-ing to the strengths assigned to defaults. The fact that some default sets may
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�������Chaplain (a) HHHHHHY Marine (c)6������*Man(b)Beer drinker (d)fs1 s2s3s4
Figure 1. Marine chaplains (�). �������Chaplain (a) @@@@@@I HHHHHHY Marine (c)6������*Man(b)Beer drinker (d)fs1 s2s3s4 s5

Figure 2. Marine chaplains (�0).sanction two opposite conclusions, i.e., a default and its converse, depending onthe strengths assigned, is an interesting development for default reasoning. His-torically, it was thought that there were \intuitively correct" outcomes whichcorresponded to commonsense reasoning but under this new me-approach someconclusions depend critically on the strength assignment. Indeed, this is necessaryif default sets like the Nixon diamond are going to be handled intuitively throughprioritisation of defaults. The distinction between assignment-dependent me-consequences and uncontroversial ones (i.e., those which hold under any strengthassignment), may prove a useful way of explaining the disagreements amongresearchers regarding the more ambiguous, and less intuitively predictable, ex-amples of default reasoning.The following default set, an example that demonstrates multiple inheri-tance, is an extension of a well-known controversial example from the �eld ofinheritance hierarchies. The original version appeared in several papers, andcaused much debate [13,14,20].Example 16 Marine chaplains.� = fr1 : a s1) b; r2 : c s2) b; r3 : b s3) d; r4 : a s4) :dgThe intended interpretation is that chaplains are men, marines are men, men arebeer drinkers, and chaplains are not beer drinkers. The strength assignment(s1; s2; s3; s4) leads to a unique solution-set of �(r1) = s1 + s3, �(r2) = s2,�(r3) = s3 and �(r4) = s3 + s4.The controversy surrounding this example, depicted graphically in �gure 1,involves whether or not the default \Marine chaplains are not beer drinkers"(a ^ c ) :d) should be a default conclusion. The me-ranks of the relevant



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 25models: �(a ^ c ^ :d)<�(a ^ c ^ d)s3<s3 +min(s4; s1 + s2 + s3)show that in this, the original example, with no direct link from Marine to beerdrinker, there is an uncontroversial me-consequence of a ^ c ) :d (\Marinechaplains are not beer drinkers"). This result should be unsurprising: the linkbetween chaplain and beer drinker is clearly more speci�c than that to beerdrinker from Marine via man. In other words, chaplains are known to be menwho are known to be beer drinkers, and this fails to outweigh the direct link from\chaplain" to \not beer drinker"; the fact that a chaplain is also a Marine shouldnot a�ect the conclusion that he does not drink beer; after all, Marines are onlyknown to be beer drinkers by virtue of being men, at least as represented in theoriginal problem.However, Touretzky et al. [20] speculated that if Marines were known tobe heavier drinkers than men in general, then this could a�ect the conclusionfor Marine chaplains. To represent this, an extra default r5 : c s5) d is included,creating a direct link between Marines and beer drinkers (depicted graphically in�gure 2). �0 = � [ fr5 : c s5) dgNow this default, r5, is already an me-consequence of the original set and is me-entailed to degree min(s2; s3). Table 3 shows whether a model falsi�es or veri�eseach default, and the unknown integer ranks for each model are given in the �nalcolumn according to equation (13). Substituting the �(m) into equations (14)gives rise to: �(r1) = s1 +min(�(r3); �(r4))�(r2) = s2�(r3) = s3�(r4) = s4 +min(�(r1); �(r3))�(r5) = s5 �min(�(r2); �(r3))which, if s5 > min(s2; s3), has a solution of �(r1) = s1+s3, �(r2) = s2, �(r3) = s3,�(r4) = s3 + s4 and �(r5) = s5 � min(s2; s3). If, however, s5 < min(s2; s3),the default r5 is e�ectively redundant and the equations cannot all be solved as



26 R. A. Bourne, S. Parsons / Extending the Maximum Entropy ApproachTable 3The me-ranking for the Marine/chaplain example.m a b c d r1 r2 r3 r4 r5 �(m)m1 0 0 0 0 - - - - - 0m2 0 0 0 1 - - - - - 0m3 0 0 1 0 - f - - f �(r2) + �(r5)m4 0 0 1 1 - f - - v �(r2)m5 0 1 0 0 - - f - - �(r3)m6 0 1 0 1 - - v - - 0m7 0 1 1 0 - v f - f �(r3) + �(r5)m8 0 1 1 1 - v v - v 0m9 1 0 0 0 f - - v - �(r1)m10 1 0 0 1 f - - f - �(r1) + �(r4)m11 1 0 1 0 f f - v f �(r1) + �(r2) + �(r5)m12 1 0 1 1 f f - f v �(r1) + �(r2) + �(r4)m13 1 1 0 0 v - f v - �(r3)m14 1 1 0 1 v - v f - �(r4)m15 1 1 1 0 v v f v f �(r3) + �(r5)m16 1 1 1 1 v v v f v �(r4)equalities. By assigning r5 an integer rank of zero, the me-ranking for the originalproblem is recovered. For the in-between case when s5 = min(s2; s3), the rankingcomputed by the algorithm is non-robust, and there are multiple solution-setsindicating the presence of redundancy.Looking only at cases for which a unique solution can be found, i.e., whenthe default r5 is not redundant and does not cause multiple solutions, the con-clusion regarding whether or not Marine chaplains are beer drinkers is indeed acontroversial one. The minimal verifying and falsifying models of a^ c) :d are:�(a ^ c ^ :d) : �(a ^ c ^ d)s3 + s5 �min(s2; s3) : s4Clearly the default conclusion obtained from the me-approach depends on thestrengths s2, s3, s4, s5. It is therefore unsurprising that examples like this onehave led to controversy|multiple inheritance is bound to lead to ambiguoussituations4. Indeed, in some ways this can be seen as an extended and more4After all, look at the problems this concept has caused in object-oriented programming lan-guages (see [5], p.77, for example).



R. A. Bourne, S. Parsons / Extending the Maximum Entropy Approach 27complex case of what occurs in the Nixon diamond.This example has demonstrated that the me-approach can be used to clarifythe ambiguities that arise in multiple inheritance situations, and, at the sametime, it can help to identify both the causes of controversy and how to resolvethem.9. ConclusionThis paper has introduced a re�nement on the maximum entropy approachto default reasoning. By making slightly di�erent assumptions from those ofGoldszmidt [7,8], in particular, by requiring the user to specify the order of mag-nitude at which defaults converge, a more 
exible means of representing defaultinformation and of computing the me-ranking has been developed. To the ex-tent that these two approaches overlap, that is, for minimal core sets of defaultsof equal strength, the me-rankings found by both methods coincide. However,while Goldszmidt's version de�nes a single solution for any set of defaults andis restricted to minimal core sets, this re�nement makes the me-approach bothmore 
exible and more widely applicable. It is now possible to obtain di�erentme-rankings corresponding to di�erent strength assignments over a given set ofdefaults. In fact, some defaults are me-entailed regardless of a strength assign-ment (e.g., "-consequences, trivially, but others as well), whereas others dependon the strengths assigned to the extent that both a default and its converse maybe me-entailed by the same set under di�erent assignments. But is this useful?There are two reasons that suggest that this more general me-approachgives a very realistic account of what is meant by default reasoning. Firstly,it enables con
ict among defaults to be resolved both de�nitively and 
exibly.That is, although one has the freedom to alter the priorities between defaults,the e�ect this has is determined by the structure of the problem. This meansthat some default conclusions are susceptible to di�erent strengths while othersare not. The fact that this new approach can model both \intuitively" correctdefault conclusions (those which are uncontentious) and ambiguous conclusions(those which depend on di�erent strengths), makes it a strong candidate for beingrecognised as the de�nitive theory of default reasoning. As such the me-approachcan be used to analyse the structure of default reasoning itself and hence enablea better understanding of what underlies it.



28 R. A. Bourne, S. Parsons / Extending the Maximum Entropy ApproachSecondly, the fact that a given set may be represented by many di�erent me-rankings suggests that some of these may have already been proposed as defaultconsequence relations. From the point of view that the me-approach representsthe least biased estimate of what should be entailed by a set of defaults, theunderlying meaning and biases of other default systems can be examined throughcomparison with it (see, [2] for a comparison with lexicographic entailment). Thusthe revised me-approach can be used as a benchmark system in its own right fromwhich to assess other formalisms.In theory, using the me-approach o�ers a well-motivated account of defaultreasoning that satis�es all the default intuitions incorporated in the illustrativeexamples. However, from the practical perspective, it is less than ideal. The mainproblem is, of course, one of complexity; although recent research has identi�edat least one type of default set for which the me-algorithm is tractable [4], thegeneral case has a lower bound complexity in FPNP. But the other seeminglypractical problem of the me-approach, that of obtaining multiple solutions, canbe seen as o�ering some insight into the nature of default reasoning itself. Theredundancy that causes this problem is extremely rare, which means that in mostcases, by merely specifying the relative strengths of defaults, a unique solutioncan be found. If the user is unwilling to commit himself to specifying their relativestrengths, uniform strengths can be assigned to defaults. As was seen in the �nalexample, genuine redundancy can lead to clashes of intuitions, but the use ofthis semantics to model default knowledge can help to identify and resolve theseambiguities.AcknowledgementsWe are very grateful to the anonymous reviewers for carefully readingthrough the manuscript and for many useful comments and suggestions, whichhelped to improve this paper.References[1] E. Adams. The Logic of Conditionals. Reidel, Dordrecht, Netherlands, 1975.[2] R. A. Bourne and S. Parsons. Connecting lexicographic with maximum entropy entailment.In A. Hunter and S. Parsons, editors, Symbolic and Quantitative Approaches to Reasoningand Uncertainty (Lecture Notes in Arti�cial Intelligence 1638), pages 80{91. Springer, 1999.
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