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A generalisation of the maximum entropy (ME) approach to default reasoning
[7,8] to cater for variable strength defaults is presented. The assumptions on which
the original work was based are reviewed and revised. A new algorithm is presented
that is shown to compute the ME-ranking under these more general conditions. The
limitations of the revised approach are discussed and a test for the uniqueness of
the ME-solution is given. The ME-solutions to several illustrative examples of default
reasoning are given, and the approach is shown to handle them appropriately. The
conclusion is that the ME-approach can be regarded as providing a benchmark theory
of default reasoning against which default intuitions and other default systems may
be assessed.
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1. Introduction

The general requirements of default reasoning have mainly been laid down
with the help of illustrative examples that demonstrate behaviours such as respect
for specificity, inheritance to exceptional subclasses and maintenance of ambigu-
ity. While there is consensus regarding the most basic requirements—preferential

reasoning [10] is accepted as core behaviour for nonmonotonic reasoning systems
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[6,17]—there is no general theory which provides a satisfactory formalisation of
what underlies the default intuitions themselves. Although some default systems
have captured the required behaviours, e.g., lexicographic entailment [11], there
has been little objective justification of the reasons why.

This paper aims to take a step towards the development of such a general
theory by extending an existing approach [8] that does have a well-established
foundation but which was previously limited in its applicability. The e-semantics
for defaults [1,16], which exhibits the core behaviour cited above, is grounded
in probability theory—the most common tool for reasoning under uncertainty.
The e-consequences of a set of defaults are those satisfied in all probability dis-
tributions compatible with that set. By selecting just one of those compatible
distributions using a well-known principle of indifference—maximising entropy—
one arrives at an extension to the set of e-consequences that can be shown to
satisfy not only the core behaviour but other, more sophisticated default require-
ments. The principle of maximum entropy is to select the probability distribution
that contains the most uncertainty while still satisfying the original defaults, and
this method leads to the unique least committed, or least biased, distribution
among all compatible ones [18]. The use of this principle has been shown to
be the only consistent method of inductive inference under uncertainty [15]. By
extending the ME-approach to handle differing priorities or strengths among a set
of defaults, a new and more general algorithm for computing the ME-solution is
given and the implications of using this extended framework are discussed.

The paper is organised as follows: section 2 gives some preliminary defini-
tions and notation; section 3 reviews the original work on the ME-approach and
compares it with the work presented here; section 4 gives a derivation of the
equations that constrain the ME-ranking; section 5 presents the algorithm along
with proof of its correctness under the stated assumptions; section 6 details a
condition for the uniqueness of the solution obtained using the algorithm; sec-
tion 7 discusses how to determine whether the assumptions made are valid, and
what to do if they are not; section 8 gives the ME-solutions to several illustrative
examples of default reasoning; and, finally, section 9 concludes by arguing for
the adoption of the revised ME-approach as a general theory of default reasoning,
which can be used as a benchmark for evaluating both default intuitions and
other default reasoning systems. This work builds on results originally reported
in [3].
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2. Preliminaries

First some preliminary definitions and notation are given. A finite proposi-
tional language L is made up of propositions a, b, ¢, ... and the usual connectives
=, A\, V, =. A default rule, e.g., a = b, is a pair of propositions or formulz joined
by a new default connective =, which should not be confused with material im-
plication —. The language £ has a finite set of models, M. A model, m, is said
to verify a default, a = b, if m = a A b, where = is classical entailment, and is
said to falsify it if m = a A —b.

The e-semantics equates each default with a probabilistic constraint such
that a = b means that P(—b|a) < € for some small, real € > 0. A set of defaults,
A, is e-consistent if at least one probability distribution exists that satisfies these
constraints for all defaults in A. A default a = b is e-entailed by A if for any € > 0
there exists 0 > 0 such that P(—bla) < ¢ if P(=b;la;) < 0 for all a; = b; € A.
The set of all defaults e-entailed by A is equivalent to its preferential closure [10].

A ranking function, k, over the models of M is an assignment of non-negative
integer ranks such that for at least one m € M, k(m) = 0. A formula, «a, takes
the rank of its minimal satisfying model(s), x(a) = min,,_,[k(m)]. A default,
a = b, is entailed by a ranking function, «, iff the rank of its minimal verifying
model is strictly lower than that of its minimal falsifying model. That is:

e a=b iff  k(aAb) < k(aA-b)

Ranking functions induce rational consequence relations [12]. A ranking function
is admissible with respect to a set of defaults if it entails all defaults in that set; the
rational consequence relation associated with an admissible ranking function for
a given set of defaults is an extension of the preferential closure of that set. This
paper examines the rational consequence relations induced by ME-rankings, i.e.,
those obtained by applying the principle of maximum entropy to the e-semantics.

3. Comparison with original work

The original definition of the ME-approach to default reasoning was given
by Goldszmidt et al. [8]. Their approach involved finding the probability dis-
tribution that maximised entropy subject to default constraints given by the
e-semantics. That is, each default, a; = b;, is constrained by:

P(b¢|a¢) Z 1—¢ (1)
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This leads to a unique ME-distribution for any e-consistent set of defaults. By
using £ as a parameter, and under certain restrictions, Goldszmidt et al. derive
an algorithm that finds the ranking function abstraction of this ME-distribution
for minimal core sets of defaults, which are guaranteed to satisfy their imposed
restrictions. However, there are several reasons why this definition is not wholly
satisfactory.

Firstly, if the aim of the ME-approach is to find a ranking function abstrac-
tion of a set of probability distributions, then the exact function of ¢ used to
constrain a default in (1) is unnecessarily precise. As the following section will
show, it is the order of magnitude of € in these constraints that appears in the

1

equations that determine the ME-solution'. It would be more appropriate for

these constraints to be of the form:
P(bz|al) Z 1-— Cis (2)

where C; is some unspecified convergence coefficient which is allowed to vary
from default to default. In fact, this is more in keeping with the definition of
entailment in the e-semantics, since the conditional probabilities of e-entailed
defaults are required to tend to zero at the same rate as €, at least, but not
necessarily precisely like €. In many cases, in particular for minimal core sets,
such a relaxation of the constraints does not lead to any difference in the ME-
ranking. This means that someone specifying a set of defaults need only commit
himself to all defaults being constrained to the same order of magnitude and this
is enough to determine the ME-solution.

However, there are cases for which this imprecision causes multiple ME-
solutions to occur. Consider the following example:

Example 1.
A; ={a=b,a=c} Ay ={a=baNb=c}

Both these sets are minimal core. Table 1 indicates the models that verify and
falsify each of these defaults, and gives the ME-rankings for A; and As. It is
easily seen that A; ME-entails a A b = ¢, and that As ME-entails a = ¢. The
question arises: what is the ME-solution for the combined set A3 = {a = b,a =
¢,a ANb = ¢}? Since the set Az is non-minimal core, it is not possible to apply

1 As will subsequently become clear, the term ME-solution refers to both the ME-ranking and a

special ranking over the defaults themselves.
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Table 1
The ME-rankings for A; and A,
m a b ¢ a=b a=c aANb=>c A1 A
mi 0 0 0 - - - 0 0
my 0 0 1 - - - 0 0
m3 0 1 0 - - - 0 0
mse 0 1 1 - - - 0 0
ms 1 0 0 f f - 2 1
me 1 0 1 f v - 1 1
my; 1 1 0 v f f 1 1
ms 1 1 1 v v v 0 0

the algorithm given in [8]. The original definition of the ME-approach dictates
that just one ME-ranking exists, for any set of defaults; however, it is not clear
which, if either, of the above rankings represents the ME-solution for Ajs.

This situation arises because sets of defaults may contain redundant in-
formation in the sense that some defaults are already ME-entailed by the other
defaults. Since a redundant default is already satisfied in the ME-distribution,
the constraint associated with it will not have any effect; in fact, the constraint
will be satisfied as a strict inequality. The constraints of active defaults are all
satisfied as strict equalities in the ME-distribution.

In the example above, it is not clear which default in the set A3 is causing the
redundancy. This occurs because the convergence coefficients have been left im-
precise: different values for these coefficients may alter which default constraints
are active and which are redundant. Under the proposed new interpretation, both
the ME-rankings are valid; the limits of the analysis of defaults using only orders
of magnitude have been reached in such cases; only the user can decide which
default should be treated as redundant. In other words, multiple ME-solutions
arise because of the lack of precise specification of the convergence coefficients.
However undesirable this may appear, it reflects the fact that the designer of
the default set has specified an ambiguous situation according to the revised se-
mantics; the ME-ranking critically depends on which default is redundant and,
as it stands, such a default set represents two or more slightly different points of
view. This can be equated with a situation in which one default is “explained
away” by the others. Identifying default sets that contain redundancy turns out
to be important for the interpretation of ME-solutions. However, it should be
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stressed that these situations are unlikely to be what is intended by the user of
a default system, and can be resolved by adding priorities to defaults, which is
now described.

The second shortcoming of the original ME-approach is that it is unable to
represent different priorities among defaults. It is often useful to consider that
some default holds more strongly than another, as a means of resolving ambiguity.
In the case above, for example, it may be felt that one of the potentially redundant
defaults in fact holds more strongly than its counterparts; perhaps, rather than
removing it, it should be strengthened relative to them. Although this problem
is recognised by Goldszmidt et al., unfortunately, their original definition implies
that any set of defaults can have just one ME-solution, regardless of any priorities
the designer may feel exist or may wish to represent.

To overcome this, the e-semantics can be extended to cater for wariable
strength defaults, or defaults that have been assigned specific strengths by the
user. This is represented in the current framework by allowing defaults not only
to have individual convergence coefficients, but also to converge at different rates
of e. Bach variable strength default, a; = b;, is required to satisfy an asymptotic

constraint:
P(bila;) > 1 — 0;(e*) (3)

where O;(£°) is some unspecified convergence function of € that satisfies:

fim 217 _ c; (4)

E—0 gfi

C; being the convergence coefficient of r;. Note that since ¢ is merely a parameter,
the strengths associated with defaults are relative and have no objective meaning;
a simple change of parameter could lead to any rational assignment of strengths.

Goldszmidt and Pearl show in [7] that adding strengths to defaults in this
way does not affect the e-consistency of a set. The constraint (3) translates quite

naturally into the ranking function representation as:
S; + n(ai A bl) < Ii(ai A —|bi) (5)

A ranking function that satisfies this constraint for all variable strength defaults
inaset AT = {qg; =4 b;} will be called e*-admissible with respect to that set for
that particular assignment of strengths. Under this extended semantics, ranking
functions can also be considered to entail a default to a certain degree, being the
difference between its minimal verifying and falsifying models.
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Since the constraints associated with the defaults in a given set can now be
altered, by assigning different strengths, it turns out that the ME-solution with
respect to that set also varies. In turn this leads to different ME-consequence
relations also depending on the strengths assigned. This allows for greater ex-
pressiveness in specifying defaults and enables potentially ambiguous situations—
including those involving redundancy—to be resolved by adjusting the strengths.

These changes to the ME-approach involve a shift in the commitment re-
quired of the user: while he must now specify the relative strengths of defaults,
he need not be committed to any particular convergence coefficients. This fits
more neatly into the ranking function representation of consequence relations,
which uses ranks to represent degrees of disbelief—higher ranks imply lower de-
grees of belief [19,7]. What is, perhaps, remarkable about this new framework,
is that in almost all cases, merely specifying the order of magnitude strengths is
sufficient to determine a unique ME-solution; the only occasions when multiple
ME-solutions can arise are those that contain redundancy, and even then only for
a specific type of redundancy. This means, for example, that practically all illus-
trative examples of default reasoning have unique ME-rankings, and those that do
not are invariably those that have caused “clashes of intuition” among researchers
(see example 16 below). The related redundancy problem, which occurs for sets
that contain redundancy through an underspecification of strength?, is trouble-
some only insofar as the optimisation technique used to derive the ME-distribution
requires that all defaults are active; clearly, an understrength default should be
ignored, but this may not be recognised until a solution has been computed, and
such a solution may therefore be invalid.

The problems created by redundancy are overcome by making an assumption
that the problem is well-posed and that all constraints are active, i.e., that a given
set of defaults has a unique ME-solution that satisfies the assigned strengths
and that is independent of the convergence coefficients. The validity of this
assumption will need to be verified after a solution has been found, and, if it
does not hold, the ME-solution may need to be recomputed after removing any
redundant defaults. This assumption will be called the wvalidity assumption and
how to assess whether it holds will be discussed in section 7.

The advantages of the revised ME-approach can be summarised as follows:

2 That is, when the strength assigned to a default does not provide a constraint, since other

defaults already constrain it to a greater degree.
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e Relaxation of the default constraints requires only order of magnitude com-

mitments about default convergence from the user.

e The inputs to the system reflect the same type of knowledge as the outputs
from it, i.e., variable strength defaults go in, and defaults plus degrees of

entailment come out.

e Defaults can be prioritised using strength assignments, which may allow more
accurate modelling of default intuitions.

e In cases of ambiguity, the user can identify and remove potentially redundant
defaults.

4. Deriving the maximum entropy ranking

The ME-ranking over the models of £ is an asymptotic abstraction of the
exponents of their probabilities in the ME-distribution. The basic idea is to find
the ME-distribution for a fixed e, and to consider what happens to it as ¢ — 0.
The assumption is made that all variables in this problem can be represented
by expressions of the form O(e®), that is, as ¢ — 0 each variable asymptoti-
cally approaches some function of ¢ of some order s. In this way, the equations
that determine the ME-distribution can be abstracted into integer equations that
determine the ranks, or exponents of ¢, for the variables in the ME-solution.

The ME-distribution is found using the Lagrange multiplier technique which
can be used to optimise an objective function subject to a set of active con-
straints; in this case the entropy function is maximised subject to the conditional
probability constraints associated with the defaults. The entropy of a probability
distribution over a set of models, M, is given by:

H[P] =~ Y P(m)log P(m) (6)
meM

As discussed in the previous section, under the validity assumption, each default,
4, satisfies an asymptotic constraint of the form:

P(bila;) =1 - 0;(e*) (7)

where the strengths, s;, are specified for each default but the convergence func-
tions, O;(e%), may vary. The strengths, s;, can be interpreted intuitively as
representing relative priorities between defaults with numerically higher strength
defaults holding more strongly than those of lower strength.
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Given a set of variable strength defaults, A*™ = {r; : a; =4 b;}, the constraints
(7) imposed on P for each default can be rewritten:

Z P(m) -— % Z Pm) = 0 (8)

mp=a; A=b; mEa;Ab;

Each constraint is multiplied by a Lagrange multiplier, A;, and added to the
objective function, H, to give H':

Oi(é‘si)
- mp(ai A b;)

(9)

When the constraints are satisfied as equalities, the additional summands are

H'[Pl=— > P(m)log P(m)+Y_ X {P(ai A —b;)
meM T

effectively zero, in which case H' = H. To find the point of maximum entropy
subject to the constraints imposed, the function is differentiated with respect
to each P(m), and the derivative is set to zero; this gives | M| simultaneous
equations of the form:

OH'[P] 04"
9P(m) og P(m) + §” §” o =0 (10)
ml=a; A—b; ml=a;Ab;

where the first sum ranges over those defaults that m falsifies and the second
over those that it verifies. Note that there is another constraint on P, since it is
a probability distribution, that requires it to sum to one. However, this would
merely be represented by some normalisation factor, common to each model’s
probability, so it can be safely ignored; the distribution found will in fact represent
the unnormalised ME-distribution.

Introducing the substitution ; = e, and taking antilogs of (10), yields
expressions for the probabilities of each model in terms of the «; and the O;(e%):

__0;(€E%)
P(m) — 671 H o H a; 1-0;(E%1) (11)
m':;ii/\ﬁbi m\::‘zii/\bi

This analytic solution for the probability of each model in the unnormalised ME-
distribution contains two unknowns for each default: «;, associated with the
Lagrange multipler, \;, and O;(e%’), the convergence function for r;. By finding
a solution for the ¢;, the probabilities of each model can be determined from
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(11). Assuming that all these variables are of the form O(e®), introduce the
substitutions:

a; = Oy, (£7079)) P(m) = O (e"™)

where ¢(r;) and k(m) represent the integer ranks (i.e., the exponents) of the
defaults and of the probability of each model in the ME-solution, respectively.
Note that, under these assumptions, the constant factor e~! and the second
product in (11) both represent functions of order zero®, and can therefore be
replaced by a function ¢,, that will tend to a constant as € — 0. The expression
for the probability of each model (11) reduces to:

Om(gn(m)):cm H Ori(gaﬁ(m)) (12)

which, by comparing exponents on both sides of the equation, reduces to the

integer equation:

Kim)= Y (ri) (13)
Under these same assumptions and substitutions, the constraint equations (8),
reduce to the integer equations:

m.:rﬂl}?ﬁbi[“(m)] = s+ min [K5(m)] (14)

The solutions to this system of equations, (13) and (14), take the form of
functional mappings from defaults to integers, ® = {¢(r;)}, such that the ranking
over models, k, determined by ® using (13), satisfies (14) for each default. Any
integer mapping, ®, that satisfies this condition for a particular set of variable
strength defaults, A", will be called a solution-set for A*.

Several remarks need to be made about these solutions. Firstly, although
a solution-set, ®, uniquely determines the ranking over models, , the inverse
relationship may be one-to-many, i.e., the same ranking over models may be de-
termined by many different solution-sets. However, it is often the case that there
is just one solution-set giving rise to a unique ranking over models. Secondly,
there may be many rankings, x, that satisfy (14); since the constraints only in-
clude the minimal verifying and falsifying models of defaults, non-minimal models
are unconstrained; such rankings may or may not be determined by a solution-set.

% Note that f(e,z,y) = “¢" — 1 as ¢ — 0 for fixed real z and fixed real y > 0.
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Thirdly, there may be no rankings, s, for which equations (14) are satisfiable,
which means that no solution-sets exist. Finally, it is important to remember
that solution-sets only lead to ME-rankings if the validity assumption holds; care
is therefore needed when interpreting the solutions obtained. This will be dis-
cussed in more detail in section 7, after an algorithm for finding solution-sets is
given.

The following simple example illustrates what an ME-solution may look like.

Example 2.
AT ={r:a>b}

Of the 4 models of £, only one falsifies the default. The ME-ranks of models are
therefore given by:

k(a Ab)=0
k(@ A —b) = ¢(r)
Kk(—ma AD)=0

k(—a A =b) =0

There is just one constraint:
k(a A —b) = s+ k(a A b)
which implies that:
¢(r) =s

So the solution-set for AT is {s}. The validity assumption holds trivially for a
singleton default set. The ranking & is therefore the unique ME-ranking for A™.
The default —=b = —a is ME-entailed by AT to degree s.

5. The algorithm

This section presents an algorithm that can be used to compute a solution-
set, ®, and its corresponding ranking, x, for a given set of variable strength
defaults, AT. The algorithm succeeds when a unique solution-set exists, but
may fail when the set contains redundancy through being either underspecified
or overspecified. However, it will be shown that the algorithm always computes
an e*-admissible ranking over the set; furthermore, section 7 will discuss how to
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use the results produced by the algorithm to determine, and hence eliminate, the
nature of the redundancy, should it be present.

Equations (13) and (14) represent a set of non-linear simultaneous equations,
for which there is no guarantee that a solution exists, nor that a given solution
is unique; since no general method exists to solve such equations, an algorithmic
approach is taken. Before describing the algorithm itself, the key ideas behind
how it works are explained.

Firstly, let v, (respectively, f,) represent a minimal verifying (respectively,
falsifying) model of r in some ranking . Now, a ranking derived from a solution-
set, ®, has the form:

k(fr) = sp + K(vr) (15)

and since each falsifying model of a default contains a contribution from its own
integer rank, ¢(r), equation (15) can be rewritten as:

¢(r) + (6(fr) — &(r)) = sr + K(vr) (16)

Now, if the integer ranks in the solution-set for defaults with lesser ranked mini-
mal falsifying models were already known, equation (16) could be used to deter-
mine the value of ¢(r). Expanding (16) gives:

¢(ri) + min > ¢lrj)| =si+ min > ¢(ry) (17)

mEa; A-b; mEa; A\b;

R ks R ks
m':a,j/\ﬁb]- m':a,j/\ﬁbj

The algorithm to compute a solution-set works as follows. Initially, each default
is assigned an infinite integer rank. Two functions are defined, MINV(r) and
MINF(r), that compute, respectively, the minimal rank of all verifying models of
r, and the minimal rank of all falsifying models of r ezcluding its own contribution,
using the current integer ranks of each default. The algorithm assigns new ranks
to defaults, one by one, using these functions to determine which one to rank

next, via the assignment:
¢(r) := s, + MINV(r) — MINF(r) (18)

In this way, after |A™"| passes, all defaults will have been assigned appropriate
integer ranks from which a ranking over models is then computed. Finally, each
default is checked to determine whether equation (14) is satisfied as an equal-



R. A. Bourne, S. Parsons / Extending the Mazimum Entropy Approach 13

ity (i.e., a solution-set has been found) or otherwise (i.e., only an e*-admissible
ranking has been found).

Algorithm 3. Input: a set of variable strength defaults, AT = {r; : q; =4 bi}.
Output: an e*-admissible ranking, s, and if successful, a solution-set, ®.

[1] Initialise all ¢(r;) = INF.
[2] While any ¢(r;) = INF do:

(a) For all r; with ¢(r;) = INF, compute s; + MINV(r;).

(b) For all such r; with minimal s; + MINV(r;), compute MINF(r;).
(c) Select r with minimal MINF(r;).

(d) If MINF(r) = INF let ¢(r) := 0

else let ¢(r) := s + MINV(r) — MINF(r).

[3] Assign ranks to models using equation (13).

[4] If equations (14) are satisfied strictly for all defaults return ® and &;

else return k.

The remainder of this section will demonstrate that this algorithm either
computes a solution-set, ®, for AT, or an e*-admissible ranking, x, provided the
set is e-consistent. In the latter case, it will be shown that at least one default
is assigned a zero rank; it is claimed that such a default is redundant and should
be removed from the set.

The first lemma shows that the algorithm always assigns each default some
finite rank.

Lemma 4. Given an e-consistent set of variable strength defaults, the algorithm
assigns a finite rank to each default.

Proof.  Provided the minimal computed value for the function MINV(r) is finite
at each pass of the loop, then the rank assigned to the chosen default will also be
finite: zero, if the computed value of MINF(r) is infinite; and s, + MINV(r) —
MINF(r), otherwise. Suppose therefore that at some pass of the loop the minimal
computed value for MINV(r) is infinite for all unranked r. This means that all
verifying models of each unranked default also falsify an unranked default; by
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Thm 3.3 in [9], this contradicts the e-consistency of the original set and hence
each default will be assigned a finite rank. O

Given an e-consistent set of defaults, therefore, some set of finite integer
ranks, ®, will be produced, which in turn implies a finite set of ranks over models,
k. The next lemma shows that « represents a ranking function over models, i.e.,

that all ranks for models are non-negative and that at least one has zero rank.

Lemma 5. Given an e-consistent set of variable strength defaults, the algorithm
assigns a non-negative rank to each model.

Proof. This is shown by induction. The rank of each model at any given stage
equals the sum of the current ranks of those defaults it falsifies. At the start, as all
defaults have infinite rank, the current rank of a model is either zero, if it falsifies
no defaults, or infinite. Moreover, since the set is e-consistent, there exists at least
one model which falsifies no defaults and therefore has rank zero. Assume that
at some intermediate stage all models have non-negative rank before the chosen
default, r, is assigned a rank. Now, if the computed value of MINF(7) is infinite,
the default is assigned a rank of 0 but this will not change the current rank of
any model since all its falsifying models also falsify other unranked defaults. If,
on the other hand, MINF(r) is finite then ¢(r) := s, + MINV(r) — MINF(r). Let
m be a falsifying model of r, and suppose that the current rank of m, without
the contribution of r, is 7. Clearly, MINF(r) < i. Now the current rank of m
is ¢(r) +i = s, + MINV(r) — MINF(r) + ¢ > s, + MINV(r). By the inductive
hypotheses, MINV(r) is non-negative. Therefore the rank of m is also non-
negative. The lemma follows by induction. O

This lemma does not preclude defaults from having negative ranks, only models.
Note that, at this stage, there is no guarantee that the computed ranking over
models is admissible, only that it represents a ranking. The following lemma
shows that the defaults are ranked in an order corresponding to the ascending
order of their s, + £(v,) in the final ranking.

Lemma 6. Given an e-consistent set of variable strength defaults, the algorithm
assigns ranks to defaults in ascending order of the final ranks of their minimal
verifying models plus their strengths.
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Proof. Suppose 1’ is the next rule to be ranked after r. If MINV(r’) is not
affected by the ranking of r, then s, + MINV(r) < s,» + MINV (7') by minimality
in the selection of 7. Otherwise, the minimal model of MINV(7/) became finite
during the ranking of r, and is therefore a falsifying model of r. By the proof of
lemma 5, s, + MINV(r) < MINV(7') and hence s, + MINV(r) < s,» + MINV (/).
Thus s, + MINV(r) increases monotonically for successive r. O

Corollary 7. k is eT-admissible, that is, for all r

Sr + H(Ur) < H(fr)

Proof. Note that all falsifying models of a default have infinite rank when it is
being ranked and so cannot have a final rank of less than s, + k(v;). O

So the ranking produced by the algorithm is e*-admissible. Because the
ranks of the models are computed from the ranks of the defaults, the equations
(13) are guaranteed to be satisfied. although the same cannot necessarily be said
for equations (14). However, the following lemma shows that, if for some default,
equation (14) is satisfied as a strict inequality, that is, if s, + k(v,) < k(fr)
in the computed ranking, then that default will have been assigned a rank of
zero. In section 7, it is argued that these cases represent default sets containing
redundancy, which need to be handled carefully since the assumption that all
defaults are active is no longer valid.

Lemma 8. Given an e-consistent set of variable strength defaults, if for some
default, r, in the ranking computing by the ME algorithm s, + s(v;) < &(f;),
then that default will have been assigned a rank of zero (i.e., ¢(r) = 0).

Proof. If the ranking computed by the ME algorithm, &, is such that s, +x(v,) <
k(fr) for some r, then, when r was selected to be ranked, it cannot be the case
that MINF (r) was finite; if it were then the assignment ¢(r;) := s;+MINV (r;) —
MINF (r;) would mean that at least one falsifying model of r satisfied s, +£(v,) =
k(fr) in the final ranking. Thus, since MINF () was infinite, r was assigned rank
Zero. O

Lemma 8 shows that, should the algorithm fail to find a solution-set, any
defaults which satisfy (14) as a strict inequality will be assigned a zero rank. The
resultant ranking will entail such a default to a degree greater than its assigned
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strength, indicating that the default is redundant, that is, it has no effect on the
ranking produced. This type of redundancy is discussed further in section 7.
Even when a solution-set is discovered, care needs to be taken before claim-
ing that the ranking it produces represents the ME-ranking. In order to estab-
lish whether or not the algorithm has found a solution-set that does lead to
an ME-ranking, it is necessary firstly to check whether or not it is unique, and
secondly, to verify the validity assumption. The following section highlights a
sufficient condition that guarantees that a particular ranking corresponds to a
unique solution-set and a discussion of how to use this is given in section 7.

6. Unique solution-sets

This section identifies a sufficient condition for a ranking, «, determined by
a solution-set, ®, that guarantees the uniqueness of that solution-set. This is the
initial step towards verifying that the validity assumption holds, since if there
are multiple solution-sets it is unlikely that the assumption is valid, unless they
all lead to the same ranking over models.

The following results will show that the uniqueness of a solution-set, ®, can
be guaranteed if the ranking, x, determined by ®, satisfies the following condition:

Definition 9. A ranking, k, over models is said to be robust with respect to
a set of variable strength defaults if no two defaults share a common minimal

falsifying model in k.

To demonstrate uniqueness of a solution-set it must be possible to distinguish
between two arbitrary solution-sets:

Definition 10. Two solution-sets, ® and ®’, are said to be distinct iff ¢(r) #
@' (r) for some default r. Such a default is said to be distinctly ranked.

The following notation will be useful. Let x and ' be rankings determined by
solution-sets ® and @, respectively, using (13). As before, let v,, v/, represent

minimal verifying models of 7, 7’ in k, k', respectively, and similarly let f,., f/

T./

represent minimal falsifying models of r, v’ in &, ', respectively, and so on.
The following lemma is required for the main theorem; the lemma shows that
any default, r, that is distinctly ranked in two solution-sets, ® and @', and has
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minimal x(f;) among distinctly ranked defaults, also has minimal «/(f]) among
distinctly ranked defaults.

Lemma 11. Given two distinct solution-sets, ® and @', with corresponding
rankings, £ and &'. If r is such that ¢(r) # ¢'(r) and for all ' with ¢(r") # ¢'(r'),

k(frr) Z 6(fr), then &'(f1,) = &'(f7).

Proof. Suppose otherwise, that is, there exists ' # r, such that ¢(r') # ¢'(r')
with x(f,) > &(f;), but &'(f) > £'(f],). Without loss of generality, suppose
that ' has minimal £'(f],) among distinctly ranked defaults. Now, because ® is

a solution-set, s, + k(v,) = k(f), and v, can only falsify defaults, d, for which
#(d) = ¢'(d), so that k(v,) = k'(v,). It follows that:

K(fr) = s + K(vr) = s + K (v,) >
sy + 6 (v)) = w'(f}) > & (f) (19)

!,) among distinctly ranked

defaults, s,» + &'(v.,) = £'(f.), and v}, can only falsify defaults, d, for which
¢'(d) = ¢(d), and «'(v!,) = k(v])). It follows that

Similarly, since r' was chosen to have minimal '(

K (f)) = sp + K (v)) = sp + K(vl) >

sy + K(vp) = 6(frr) = &(fr) (20)
Putting (19) and (20) together, x(f,) > &/'(f}) > £'(fL) > k(fr) > &(f;), which
by contradiction implies that &'(f],) > &'(f/), as required. O

The following theorem connects the robustness of a ranking with the unique-

ness of its determining solution-set.

Theorem 12. Given a finite set of variable strength defaults, A* = {r; : a; =4
b}, if a solution-set, ®, determines a ranking, s, that is robust, then ® is the
unique solution-set for A™.

Proof. Let ® and ®' be distinct solution-sets for AT with corresponding rank-
ings,  and ', and let r be a distinctly ranked default with minimal x(f,.) among
distinctly ranked defaults and, by lemma 11, minimal x'(f]). Suppose further that
K is robust. Then f, falsifies only r and other defaults, d, with ¢(d) = ¢'(d); also
k(v;) = K'(v].), since they only falsify non-distinctly ranked defaults, and since
both ® and @' are solution-sets; it follows that x(f,) = &'(f.) with ¢(r) # ¢'(r).

T
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Consider «/(f,) for which &'(f,) > &'(f}). But &'(f]) = x(f;) and f, falsifies
only non-distinctly ranked defaults and r itself, for which ¢(r) # ¢'(r). Hence
k'(fr) # w(fr) and so &'(f;) # K'(f}). Therefore &'(f,) > r'(f]) and hence
#(r) > o(r).

Now, if f] falsified no other distinctly ranked default, x(f)) < &'(f)) = &(f),
which contradicts f, being minimal in x. This implies that f/ must falsify
some other distinctly ranked defaults and hence ' is not robust. Let these be
r1,72,...,Tn; since all these r; are also minimal distinctly ranked defaults in x/,
by lemma 11, they are also minimal in x and there must exist f,, fry,..., fr,,
minimally ranked falsifying models in s such that x(f,) = &(fr,) for all r;. Fur-
ther, because s is robust, none of the f,, can falsify any other distinctly ranked
defaults.

But, by the same argument as above, this implies that for all r;, ¢(r;) <
@' (r;). However, this in turn implies that f; which falsifies r, all the r;, and
non-distinctly ranked defaults, must have a lower rank than f, in &, i.e., k(f]) <
k'(fl) = k(fr), which contradicts f, being the minimal falsifying model of r in
k. Hence, k cannot be robust either. It follows that, if two distinct solution-
sets exist, neither of their corresponding rankings can be robust, and hence any
solution-set that determines a robust ranking must be unique. O

Theorem 12 provides a test for the uniqueness of a solution-set by testing
for the robustness of the ranking determined by it. However, the robustness
condition only gives a sufficient condition for uniqueness; it is possible that a
non-robust ranking may be determined from a unique solution-set, although no
examples have yet been found by these authors.

Given that there may be many solution-sets for a given set of defaults,
one might be tempted to adapt algorithm 3 so as to find all possible solutions.
There are several reasons why this is not recommended. Firstly, there may be
an infinite number of solutions; at step [2](d) of the algorithm, assigning the
value zero to the selected default is arbitrary, any integer would suffice. The
value zero reflects our interpretation that such a default is a candidate—though
not necessarily the only one—for removal from the set. Secondly, although there
may be a choice of default to which to assign this zero rank, there is no guarantee
that the outcome will be a solution-set, let alone that the ranking will represent
the ME-ranking; computing many solution-sets does not alleviate the need to
verify the validity assumption, indeed multiple solution-sets usually point to the
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fact that it has been violated. Thirdly, although it is useful to recognise the
defaults that cause redundancy, our aim is to enable the design of unambiguous
default knowledge bases along with their unique ME-interpretations; therefore,
we concentrate of identifying redundancy and correcting it by the removal or
strengthening of defaults.

7. Verifying the validity assumption

In the previous sections, equations (13) and (14) were derived and a method
for finding solutions to them was given. The validity assumption clearly fails
when no solution-set is found, since at least one default is not active; however,
even when a solution-set has been found, it is still necessary to verify the validity
assumption to determine whether the ranking produced is the unique ME-solution.
How to establish whether it does indeed hold, and what to do when it does not,
is the subject of this section.

The problem with trying to verify that the validity assumption holds is
evident from its definition, which requires that a given set of defaults has a
unique ME-solution that satisfies the assigned strengths and that is independent
of the convergence coefficients. Thus the ME-solution is required in order to test
the validity assumption. This circularity causes a problem since it is not possible
to test a solution for validity until it has been verified that it is a valid ME-solution!

Under what circumstances may the validity assumption fail to hold? There
are two possibilities, both of which are related to redundancy in the default
information. The first type of redundancy occurs when, although all defaults are
satisfied to their correct strengths, differences in their convergence coefficients
can lead to different ME-solutions; in this situation there are multiple, equally
valid ME-rankings that depend on which defaults are considered to be redundant.
The second type of redundancy occurs when one default is satisfied in the ME-
solution to a degree greater than its assigned strength; in this case solution-sets to
equations (13) and (14), if they exist at all, may not even be valid ME-solutions.

To understand what is happening in these cases it is helpful to imagine the
space of all probability distributions that is constrained by the defaults. Normally,
the solution to the maximum entropy problem will occur at the edge of this space,
i.e., with all constraints active, since by tightening a constraint a new solution
needs to be found. However, in some cases, a constraint is already satisfied in
the ME-solution given by the other defaults; tightening its constraint will have
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no effect until a critical point when it becomes active is reached. Redundant
defaults should therefore be ignored when computing the ME-solution since their
constraints are satisfied as strict inequalities and do not affect the solution.

For the first type of redundancy, the solution-set produced by the algorithm
can be of some help: defaults with zero ranks usually point to multiple solutions.
A further check is to test the resulting ranking for robustness, indicating whether
or not the solution-set is unique. If the solution-set is not unique, it is not always
clear which default is the redundant one. Clearly, any default with zero rank
is a candidate, but others may also be; this reflects the fact that this type of
redundancy is often ambiguous, and only the designer can know exactly which
default he intends to be redundant. Once such a default has been removed,
the algorithm (and verification) should be re-applied to the remaining defaults.
Alternatively, if it is felt that all defaults ought to be active, a redundant default
may be strengthened to allow it to represent an active constraint.

For the second type of redundancy, the algorithm may or may not find a
solution-set. Failing to find a solution-set indicates clearly that some default
has been assigned an inadequate strength, and is therefore redundant. However,
in other cases, this type of redundancy may be harder to recognise; sometimes
a solution-set exists, but because the validity assumption has failed, it does not
represent an ME-solution. In this case, the assignment at step 2[d] of the algorithm
is invalid; in fact, such a default will obtain a negative rank, and this is the way
to identify these “improper” solution-sets. If a solution is found which contains a
negative integer rank, the default should be removed and the algorithm re-applied
to the remaining defaults. However, in the former case when no solution-set was
found, it turns out that the ranking produced may well represent the ME-ranking.
This is because any default which has a zero rank does not affect the ranking; by
assigning a rank of zero to a default involved, it is being ignored as it should be,
and the computed e*-admissible ranking does represent an ME-solution, provided
no other redundancy is present.

It should be borne in mind that not only are cases of redundancy rare,
but also default sets that contain redundancy are unlikely to be of much use in
practice. Nevertheless these technical difficulties with the ME-solution are very
real, and further work needs to be done to address them. For practical purposes,
the following conjecture is used:

Conjecture. If a solution-set, @, for a given set of variable strength defaults,
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AT is unique and contains only strictly positive integer ranks, then the ranking,
k, determined by @ is the unique ME-ranking.

This conjecture remains an open research question; however, the following
algorithm can be used to determine whether a given set of defaults contains either

type of redundancy.

Algorithm 13. Input: A" = {r; : a; = b;}.
Output: Ayequndant containing candidates for redundancy (if Ayegundant = 0, AT
contains no redundancy).

[1] Let Aredundant = 0.
[2] For each r; € AT,
(a) Let A" = AT — {r;}.
(b) Let &’ be the ranking produced by applying algorithm 3 to A’.
(c) If K’ entails r; to degree s; or higher, A, cqundant := Aredundant U {ri}-

[3] Return Ayequndant-

If no redundancy exists, all defaults actively constrain the ME-distribution
and hence it is unique. Thus, to establish that a set of defaults, A, does have a
unique ME-solution, the ME-algorithm needs to be applied |A| 4+ 1 times.

Recent research by Eiter and Lukasiewicz [4] has shown that computing

the ME-default ranking using the ME-algorithm is FPNP

-complete while deciding
ME-entailment is NPNP_complete. This complexity result does not improve by
restriction to Horn defaults; however, at least one tractable subset of defaults,

termed feedback-free defaults, has been identified.

8. The ME-solutions to illustrative examples of default reasoning

This section gives the ME-solutions to some classic problems from default
reasoning. It will be seen that not only do the ME-solutions produce the desired
results but also help to clarify why some examples have led to disagreements
among researchers. In the first example, the solution is tabulated explictly to
illustrate the method of finding the ME-ranking but later this is omitted to save
space.
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Table 2
The ME-ranking for the penguin example.

m b f p w r r2 r3 714 K(m)

mg 0 0 0 0 - - - - 0

mx 0 0 0 1 - - - - 0

mg3 0 0 1 0 - f - o(r2)

msy 0 0 1 1 - f - o(r2)

ms 0 1 0 0 - - - - 0

me 0 1 0 1 - - - - 0

my; 0 1 1 0 - £ £ - olr2)+ é(rs)
mg 0 1 1 1 - £ £ - o(r2)+ é(rs)
mg 1 0 0 0 f - - £ o(r) + ¢(ra)
mpo 1 0 0 1 f - - v (1)
mi1 1 0 1 0 f f ¢(T1) -+ ¢(T4)
mi2 1 0 1 1 f v ¢(T1)
ms 11 0 0 v - - f (ra)
mas 1 1 0 1 v - - Y 0
mis 1 1 1 0 v tf p(rs) + p(ra)
mies 1 1 1 1 v f v ¢(T3)

Example 14 Exceptional inheritance.
AT ={r1:b3 firo:p3brz:ip=f,ra: 03w}

The intended interpretation of this knowledge base is that birds fly, penguins
are birds, penguins do not fly and birds have wings. Table 2 shows whether a
model falsifies or verifies each default. The column headed x(m) gives the ME-
rank of each model in terms of the ¢(r;) using equation (13). Substituting the
k(m) into the reduced constraint equations (14) gives rise to:

p(r1) = s1
P(r2) = s2 + min(¢(r1), ¢(r3))
P(rs) = s3 + min(¢(r1), ¢(r2))
P(ra) =s4

Clearly, the only solution to these equations is ¢(r1) = s1, ¢(re) = s1 + S92,
@(r3) = s1 + s3, and ¢(ry) = sy, all of which are strictly positive.

To determine default consequences it is necessary to compare the ranks of a
default’s minimum verifying and falsifying models. Since this solution holds for
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any strength assignment (s1, 9, $3,84), it follows that some default conclusions
may hold unconditionally in all ME-solutions. In particular, it can be seen that
the default p A b = —f is ME-entailed since:

K(pADA=f)<k(pADAf)

81 <81 + 83

This result is unsurprising since p A b = —f is an e-consequence of AT, and so is
bound to be satisfied in all ME-solutions. A more interesting conclusion is p = w,
which follows since:

K(p Aw) = s1 < k(p A —w) = s1 + min(sa, s4)

Again this result holds regardless of the strength assignments and illustrates that,
for this example, the inheritance of w to p via b is uncontroversial.

Example 15 Nixon diamond.
AT = {r :q%p,Tz 37"%_‘10}

The intended interpretation is that quakers are pacifists whereas republicans are
not pacifists. Given a strength assignment of (s1,s2) it is easily shown that
¢(r1) = s1 and ¢(r2) = s2. The classical problem associated with this knowledge
base is to ask whether Nixon, being a republican and a quaker, is pacifist or not.
This is represented by the default r Ag = p. The two relevant models to compare
are r Aq Ap and r A g A -p whose ME-ranks in the ME-solution are:

k(rANgAp)=sy and k(r AgA-p)=s

Clearly either 7 A g = p or r A ¢ = —p, or neither, may be ME-entailed depending
on the comparative strengths s; and s2. This result is in accordance with the
“intuitive” solution that no conclusion should be drawn regarding Nixon’s paci-
fism unless there is reason to suppose that one default holds more strongly than
the other. In the case of one default being stronger, the conclusion favoured by
the stronger would prevail. This demonstrates the flexibility of the ME-approach
in that it allows different default conclusions to be obtained depending on the

strengths assigned.

As the examples so far have shown, under the ME-approach there are some
conclusions that occur for any strength assignment and others that vary accord-
ing to the strengths assigned to defaults. The fact that some default sets may
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Beer drinker (d) Beer drinker (
%a;\ %&&
Chaplain (a Marine ( Chaplain (a Marine (
Figure 1. Marine chaplains (A). Figure 2. Marine chaplains (A").

sanction two opposite conclusions, i.e., a default and its converse, depending on
the strengths assigned, is an interesting development for default reasoning. His-
torically, it was thought that there were “intuitively correct” outcomes which
corresponded to commonsense reasoning but under this new ME-approach some
conclusions depend critically on the strength assignment. Indeed, this is necessary
if default sets like the Nixon diamond are going to be handled intuitively through
prioritisation of defaults. The distinction between assignment-dependent ME-
consequences and uncontroversial ones (i.e., those which hold under any strength
assignment), may prove a useful way of explaining the disagreements among
researchers regarding the more ambiguous, and less intuitively predictable, ex-
amples of default reasoning.

The following default set, an example that demonstrates multiple inheri-
tance, is an extension of a well-known controversial example from the field of
inheritance hierarchies. The original version appeared in several papers, and
caused much debate [13,14,20].

Example 16 Marine chaplains.
A={ri:a3bry:cBbr3:b2dry:a2-d}

The intended interpretation is that chaplains are men, marines are men, men are
beer drinkers, and chaplains are not beer drinkers. The strength assignment
(s1,89,83,84) leads to a unique solution-set of ¢(r1) = s1 + s3, P(r2) = S92,
¢(r3) = s3 and ¢(ry4) = s3 + 84.

The controversy surrounding this example, depicted graphically in figure 1,
involves whether or not the default “Marine chaplains are not beer drinkers”
(a A ¢ = —d) should be a default conclusion. The ME-ranks of the relevant
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models:

klaANeA—d)<k(aAcAd)

83 < 83 + min(34, S1 + S2 + 83)

show that in this, the original example, with no direct link from Marine to beer
drinker, there is an uncontroversial ME-consequence of a A ¢ = —d (“Marine
chaplains are not beer drinkers”). This result should be unsurprising: the link
between chaplain and beer drinker is clearly more specific than that to beer
drinker from Marine via man. In other words, chaplains are known to be men
who are known to be beer drinkers, and this fails to outweigh the direct link from
“chaplain” to “not beer drinker”; the fact that a chaplain is also a Marine should
not affect the conclusion that he does not drink beer; after all, Marines are only
known to be beer drinkers by virtue of being men, at least as represented in the
original problem.

However, Touretzky et al. [20] speculated that if Marines were known to
be heavier drinkers than men in general, then this could affect the conclusion
for Marine chaplains. To represent this, an extra default r5 : ¢ 2 d is included,
creating a direct link between Marines and beer drinkers (depicted graphically in
figure 2).

A'=AU{rs:c2& d}

Now this default, 5, is already an ME-consequence of the original set and is ME-
entailed to degree min(s9, s3). Table 3 shows whether a model falsifies or verifies
each default, and the unknown integer ranks for each model are given in the final
column according to equation (13). Substituting the x(m) into equations (14)

gives rise to:

which, if s5 > min(s, s3), has a solution of ¢(r1) = s1+s3, ¢(r2) = s2, P(r3) = s3,
d(ry) = s3 + s4 and ¢(r5) = s; — min(sg,s3). If, however, s5 < min(sg, s3),
the default rj is effectively redundant and the equations cannot all be solved as
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Table 3
The ME-ranking for the Marine/chaplain example.

m a b ¢ d rn re rs rqe T3 K(m)
mi 0 0 0 0 - - - - - 0
m;, 0 0 O 1 - - - - - 0
ms 0 0 1 0 - f - - f ¢(r2) + ¢(r3)
m¢ 0 0 1 1 - f - - v p(r2)
ms 0 1 0 0 - - f - - p(rs)
me 0 1 0 1 - - v - - 0
m: 0 1 1 0 - £ - ¢(rs) + ¢(rs)
ms 0 1 1 1 - v - v 0
me 1 0 0 0 f - - v - ¢(r1)
mo 1 0 0O 1 f - - f - d(r1) + ¢(ra)
myn 1 0 1 0 £ £ - v £ $(r)+é(r) +o(rs)
mi 1 0 1 1 £ £ - £ v  ¢(r)+o(ra)+ é(ra)
ms 1 1 0 0 v - f v - B(r3)
maa 1 1 0 1 v - v f - @(ra)
mis 1 1 1 0 v f v @(r3) + d(rs)
me 1 1 1 1 v v f v @(ra)

equalities. By assigning r5 an integer rank of zero, the ME-ranking for the original
problem is recovered. For the in-between case when s; = min(ss, s3), the ranking
computed by the algorithm is non-robust, and there are multiple solution-sets
indicating the presence of redundancy.

Looking only at cases for which a unique solution can be found, i.e., when
the default r5 is not redundant and does not cause multiple solutions, the con-
clusion regarding whether or not Marine chaplains are beer drinkers is indeed a
controversial one. The minimal verifying and falsifying models of a A ¢ = —d are:

kl@aNeA—=d):k(aAcAd)

S3 + $5 — min(sg, $3) & S4

Clearly the default conclusion obtained from the ME-approach depends on the
strengths s9, s3, 4, s5. It is therefore unsurprising that examples like this one
have led to controversy—multiple inheritance is bound to lead to ambiguous

4

situations®. Indeed, in some ways this can be seen as an extended and more

4 After all, look at the problems this concept has caused in object-oriented programming lan-

guages (see [5], p.77, for example).
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complex case of what occurs in the Nixon diamond.

This example has demonstrated that the ME-approach can be used to clarify
the ambiguities that arise in multiple inheritance situations, and, at the same
time, it can help to identify both the causes of controversy and how to resolve
them.

9. Conclusion

This paper has introduced a refinement on the maximum entropy approach
to default reasoning. By making slightly different assumptions from those of
Goldszmidt [7,8], in particular, by requiring the user to specify the order of mag-
nitude at which defaults converge, a more flexible means of representing default
information and of computing the ME-ranking has been developed. To the ex-
tent that these two approaches overlap, that is, for minimal core sets of defaults
of equal strength, the ME-rankings found by both methods coincide. However,
while Goldszmidt’s version defines a single solution for any set of defaults and
is restricted to minimal core sets, this refinement makes the ME-approach both
more flexible and more widely applicable. It is now possible to obtain different
ME-rankings corresponding to different strength assignments over a given set of
defaults. In fact, some defaults are ME-entailed regardless of a strength assign-
ment (e.g., e-consequences, trivially, but others as well), whereas others depend
on the strengths assigned to the extent that both a default and its converse may
be ME-entailed by the same set under different assignments. But is this useful?

There are two reasons that suggest that this more general ME-approach
gives a very realistic account of what is meant by default reasoning. Firstly,
it enables conflict among defaults to be resolved both definitively and flexibly.
That is, although one has the freedom to alter the priorities between defaults,
the effect this has is determined by the structure of the problem. This means
that some default conclusions are susceptible to different strengths while others
are not. The fact that this new approach can model both “intuitively” correct
default conclusions (those which are uncontentious) and ambiguous conclusions
(those which depend on different strengths), makes it a strong candidate for being
recognised as the definitive theory of default reasoning. As such the ME-approach
can be used to analyse the structure of default reasoning itself and hence enable
a better understanding of what underlies it.
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Secondly, the fact that a given set may be represented by many different ME-
rankings suggests that some of these may have already been proposed as default
consequence relations. From the point of view that the ME-approach represents
the least biased estimate of what should be entailed by a set of defaults, the
underlying meaning and biases of other default systems can be examined through
comparison with it (see, [2] for a comparison with lexicographic entailment). Thus
the revised ME-approach can be used as a benchmark system in its own right from
which to assess other formalisms.

In theory, using the ME-approach offers a well-motivated account of default
reasoning that satisfies all the default intuitions incorporated in the illustrative
examples. However, from the practical perspective, it is less than ideal. The main
problem is, of course, one of complexity; although recent research has identified
at least one type of default set for which the ME-algorithm is tractable [4], the
general case has a lower bound complexity in FPNP. But the other seemingly
practical problem of the ME-approach, that of obtaining multiple solutions, can
be seen as offering some insight into the nature of default reasoning itself. The
redundancy that causes this problem is extremely rare, which means that in most
cases, by merely specifying the relative strengths of defaults, a unique solution
can be found. If the user is unwilling to commit himself to specifying their relative
strengths, uniform strengths can be assigned to defaults. As was seen in the final
example, genuine redundancy can lead to clashes of intuitions, but the use of
this semantics to model default knowledge can help to identify and resolve these

ambiguities.
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