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Abstract

This paper proposes the use of semiqualitative modelling for reasoning about the

behaviour of complex physical systems. Semiqualitative modelling is a generalisation of

qualitative modelling which refines the set of intervals that values may be expressed in.

Semiqualitative algebras are introduced, their most important features discussed, and

related to qualitative algebras. The advantages that semiqualitative modelling offers

over qualitative modelling are demonstrated by the solution of  an example from the

field of biotechnology. Finally interval algebras are introduced as a generalisation of

semiqualitative algebras, and it is proved that it is possible to switch between different

interval algebras in the course of computation in order to preserve the greatest possible

degree of precision.
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1. Introduction

Qualitative reasoning was introduced2 as a formalism for reasoning about physical

systems that captures many of the features of human reasoning. Although it  is a

relatively new idea, it has rapidly become a well established means of analysing the

behaviour of physical systems. It is especially useful for modelling complex processes

where the governing equations are known in sparse detail since the exact value of

physical constants are not required. In general is is only necessary to determine whether

values are greater than, equal to, or less than some other value. Indeed, if more detailed

information is available, it is not used by the qualitative model; instead precisely known

quantities are degraded into qualitative ones. This degrading can cause the qualitative

model to be so abstract that either no solutions or many vacuous ones are generated.

This tendency towards overabstraction has prompted research into ways of making

qualitative reasoning more precise. In particular  Raiman10 and  Mavrovouniotis and

Stephanopolous7 have addressed the loss of information about quantitative magnitude

proposing formalisms that explicitly make use of the relative magnitude of values. Such

an approach has become known as order of magnitude reasoning, and attempts to

model human reasoning of the form:
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“if A is much bigger than B, and B is roughly the same size as C, then A

is much bigger than C.”

Another way of making use of any available quantitative information is adopted in

semiqualitative reasoning. Semiqualitative reasoning is a generalisation of qualitative

reasoning in which the set of real numbers is broken up into a finite number of intervals.

In this paper the idea of semiqualitative reasoning based upon semiqualitative algebras

is introduced. Just as Williams13 defines his qualitative algebra Q1 as a set of values

and a set of arithmetic operations over those values, we define a family of

semiqualitative algebras as a family of sets of intervals and operations over those

intervals. The algebras may then be used for semiqualitative modelling in much the

same way as qualitative algebras are used for qualitative modelling.

The paper begins with a brief description of qualitative reasoning which can serve both

as an introduction to the concepts for those unfamiliar with the subject,  as well as

providing a comparison with the semiqualitative methods. This is followed with a

simple example of qualitative modelling. Next semiqualitative algebras are introduced,

with stress on the links with other formalisms, and the same example is solved in

greater detail as befits the more precise formalism. Lastly generalisations of

semiqualitative algebras, known as interval algebras, are considered, and ways in

which they might be useful are discussed.

2. Qualitative reasoning

Qualitative reasoning reduces  the quantitative precision of behavioural descriptions

whilst retaining crucial distinctions. Real valued variables are replaced with qualitative

variables which can adopt only a small number of values, usually +, 0 and -. The

behaviour of a physical system is described in terms of changes in the qualitative value

of a number of state variables and their first and second derivatives. These values are

related by means of qualitative differential equations, often called confluences. In theory

there is no reason to limit the information used to just the first two derivatives, but in

practice it is extremely difficult to obtain higher order derivatives.  All time derivatives

are continuous, so that no variable may jump from one qualitative state to another

without passing through any intervening states, and variables are combined by means

of combinator tables giving the result of every possible combination of inputs. For a more

detailed discussion of qualitative methods see Davis4 and Weld and de Kleer12.

2.1 Qualitative algebras

A qualitative algebra is a set of qualitative operands, the full set of values that a

qualitative variable and its derivatives may take on, and the set of operations over

those values. The simplest possible qualitative algebra has operands {+, 0, -}, and the

operations ⊗ and ⊕, qualitative multiplication and addition respectively. We may

formally define such an algebra (after Williams13) as operating on  the set S = {-, 0, +}

whose members denote the sign of real quantities.  The relation between ℜ, the set of

real numbers and S is defined by the mapping [·]: ℜ → S where:

For any x ∈ ℜ,  [x]   = 


+ if x   >   0

0 if x  =  0
- if x   <   0

 [1]

Thus the operator  [·] partitions ℜ into three intervals, [0, +•], [0, 0] and [-•, 0] which

correspond to +, 0, -. This set is extended to include the value ? which represents an

indeterminate sign corresponding to the interval [-•, 0, •], forming a new set S’ = {-, 0, +,

?}. The operations over the algebra are {⊗, ⊕}. The operator ⊕ : S’ ×  S’ →  S’ is the

qualitative analog of addition on reals, and returns the sign of x + y, deduced from the
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sign of x and y. This is summarised by the combinator table in Figure 1. ⊗ is similarly

defined.
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0
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+0-

0
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Figure 1.

2.2 Qualitative modelling

This section presents a two tier introduction to the idea of qualitative modelling. Firstly

a brief description for those readers uninterested in the detail of the subject is given,

introducing  the method by means of  a simple example. Then there is a more detailed

discussion which leads on to the solution of a more complex example in Section 2.3.

2.2.1 A first description

A basic grasp of qualitative modelling may be obtained from an intuitive understanding

of the concepts described in this section. Rather than presenting a discussion of the

various issues at stake, we analyse a simple example. The only values that we consider

as quantifiers for the values of a quantity, and the values of its first and second

derivatives are the + (positive), 0 (zero) and - (negative) of [1]. Since third and higher

derivatives are usually  unavailable, any qualitative variable is fully specified by the

triplet <X, DX, DDX> of value, first derivative and second derivative.

As an example of a qualitative model, consider the following set of equations:

x1 ⊕ x2 = x3 [2]

x1 ⊗ x4 = x3 [3]

dx4

dt
  = x5 [4]

The total number of qualitative variables is 5. The following set of 5 triplets is one

possible assignment of value, first and second derivative to the five variables:

x1 x2 x3 x4 x5

<+ + +> <+ + -> <- - -> <+ + +> <+ + 0>

The state of the system described by this assignment is not a solution of the set of

equations [2–4] since x3 is determined from x1 and x2 , both of which are +, by equation

[2], and + ⊕ + = +, whereas x3 = -. By similar means it is possible to identify all the 5-

triplets which are solutions of the set of equations, and these correspond to all the

qualitative solutions of the model. This brute force approach provides correct solutions,

but its effectiveness is limited by the complexity of the models. In particular

enumerating every possible second derivative of a product of several variables is

extremely time consuming.
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2.2.2 A more detailed description

A qualitative model of a system is a set of equations in which a set of variables and

constants whose values are drawn from the set {+, 0, -} and whose behaviour defines the

the behaviour of the system, are related using the operations of the qualitative algebra.

A solution of the set of equations represents a particular  way in which the system may

behave. A full description includes the dynamic as well as the static behaviour of the

variables, and so the derivatives of variables are commonly included in the equations.

Any variable X in a qualitative model is fully specified if the triplet  <X, DX, DDX> of

value, first derivative and second derivative is given for all inputs and outputs. The

triplet may be made more specific by using the third and higher derivatives. However in

realistic situations, the third derivative is unlikely to be available since there is simply

insufficient information about the kind of complex physical systems for the analysis of

which qualitative reasoning is appropriate to enable third and higher derivatives to be

assessed.

Any qualitative system may be described in terms of the qualitative states which it may

reside in. A state is an assignment of a single qualitative value to each of the variables

that define the behaviour of the system and their first and second derivatives. Thus if  a

set of  n different  qualitative variables describe a particular system:

  X1), X(2), . . ,X(n)

then the specification of a qualitative state is a set of n triplets:

  <X(1),DX(1),DDX(1)>,<(X(2),DX(2),DDX(2)>,..,<X(n),DX(n),DDX(n)>

Any qualitative state is a possible solution of a qualitative model. Since each member of

each triplet can take on one of three values,  there are 27n different qualitative states.

The set of equations that comprise the qualitative model rule out certain of these

solutions, and can therefore be considered as constraints against which possible

solutions are tested.

Since the number of possible qualitative states is so large, the number of solutions of a

given qualitative model is often extremely large. To further reduce this number it is

possible to specify additional constraints; specifying the exact value, derivative and

second derivative of particular variables. It is also possible to ignore particular variables

which, although they must be included in the model, are not of primary interest.

2.3 Modelling a bioreactor

As an example consider the qualitative modelling of a bioreactor1 used for the treatment

of biologically degradable waste. A slightly simplified model of the bioreactor is detailed

by the following set of differential equations:

dx1

dt
  + (k12 +k13).x1 + k11x1. x5 =  + k21.x2

dx2

dt
  + k21 x2 = k12 x1

dx3

dt
 = k13 x1 + k43 x4

dx4

dt
 + k43 x4 = k11 x1 x5

dx5

dt
   + k53x5 + k11 x1 x5 = 0
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where x1–x5 are concentrations of various substrates, either those wastes being digested

or the products of the digestion. Writing dx as a shorthand for dx/dt, and ddx as shorthand

for 
d2x

dt2
 , we can specify additional constraints as:

x1 = +, dx1 = -, ddx1 = 0, dx5 = +, ddx5 = 0

This set of constraints may be considered as a query, in this case asking the question

“When x1 is present  (x1 = +), what are the ways in which it is possible to achieve a linear

(ddx1 = 0) decrease (dx1 = -) of concentration of x1 while x5 is present (x5 = +) and changes

linearly (ddx5 = 0)?”. Solving this gives the solution:

x1 x2 x3 x4 x5

<+ - 0> <+ + -> <+ + +> <+ + ?> <+ ? 0>

where x1 and x5 are as set by the query. The solution may be interpreted to mean that

the value of x2 is positive and  increasing at a diminishing rate, whilst x3 is positive and

increasing at an increasing rate, and x4 is positive and increasing at a rate that may be

increasing (ddx = +), decreasing (ddx = -), or unchanging (ddx = 0). The value of x2 thus

behaves as in Figure 2, and that of x3  as in Figure 3, and x4 as in Figure 4.

Figure 2. Figure 3. Figure 4.

3. Semiqualitative reasoning

Semiqualitative reasoning is a generalisation of qualitative reasoning which increases

precision by splitting the real numbers into a set (2k +1) intervals comprised of a zero

interval [0, 0] and 2k continuous intervals that are symmetrical about the zero interval.

Clearly the standard quantity space {+, 0, -} is that obtained for k = 1, and it is possible

to solve qualitative problems using semiqualitative methods.  The size of the set of

intervals  that a semiqualitative variable may adopt defines the precision with which

information may be determined. This precision is related to the degree of uncertainty

present in the knowledge.

There are several different methods of choosing the values that define the set of

intervals. From experience three of these are of general use, namely an arithmetic

sequence of values, a geometric sequence of values, or a set of values chosen by someone

familiar with the system being modelled. The third method is the most flexible since the

intervals are chosen to reflect the values that are felt to be important. It enables us to

specify intervals that are not equidistant, and follow no sequence. The intervals may

cluster at extreme ends of the scale, or may group around critical regions. The only

restriction is that the intervals must be symmetrical about zero. The chosen set of

boundaries can reflect a certain point of view and/or the accuracy of the knowledge that

is available.
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However, the advantage of the arithmetic sequence is that through providing a vast

number of intervals it ensures that adequate coverage is given to all areas of the interval

range. This guarantees that the system will operate correctly, albeit a little slowly.

There is no such safeguard when the user specified intervals are used, and it is possible

that the first choice set of values is not adequate. In this case a trial and error approach

is the only alternative with successive choices homing in on a reasonable set of intervals.

For practical applications it is useful to introduce a coefficient of interval contraction  c.

Consider we are adding two  values  Ii and Ij, where the upper bound of the result of this

addition falls is the value Is+1. Now we define c as:

(Ii + Ij)-Is

(Is+1-Is)
  < c 

where:

Is < Ii + Ij < Is+1 

and we say that provided the inequality  holds then the upper boundary for Ii + Ij is not

Is+1 but Is. The purpose of this is to introduce a little flexibility into the interval system.

If c is zero, then as soon as a value exceeds the upper limit of an interval, by however

small an amount, the value is assessed as if it is the higher interval. Clearly this will

not always desirable, and setting c > 0 defines the proportion of the interval by which a

value is allowed to exceed the interval before being classified as belonging to the next

interval.Usually the coefficient c is chosen to be of the order of 0.05.

Semiqualitative techniques have been successfully applied to number of engineering

problems which are not soluble by pure qualitative reasoning. Such problems include

simulations of chemical reactions6 and bioengineering processes5.

3.1 Semiqualitative algebras

A semiqualitative algebra is a set of semiqualitative intervals coupled with arithmetic

operations over those intervals. A general semiqualitative algebra may be defined as

follows. We have a set I =  {[I-k, I-(k - 1)], [I-(k-1), I-(k - 2)],..., [I-1, I0], [I0, I0] ,[I0, I1],..., [I(k -

2), I(k-1)], [I(k - 1), I(k)]} of 2k+1 intervals, where I-m = Im, and I-k < I-(k - 1) < I-(k - 2) <,..., < I-

1< I0 < I1<,..., < I(k - 2) < I(k - 1) < I(k),  which form the basic operands of the algebra.

We also have a set of arithmetic operations over the set of intervals, {+, -, ‚ , ·}, which

are analagous to the operations on real numbers. The properties of these operators have

been defined by Moore8:
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[a, b] · [c, d] = [ac, bd] [5]

[a, b] + [c, d] = [a + c, b + d] [6]

[a, b] - [c, d] = [a - d, b- c] [7]

for a < b, c < d, and:

[a, b] ‚ [c, d] = [
a

d
  , 

b

c
 ] [8]

for a < b, c < d, and d, b ≠ 0. Thus when combining two interval values the result is the

widest possible interval that the combination of their boundaries can produce. This

leads to problems with closure. When, for example, we add [0, 40] to [40, 50] in the

interval space {[0, 40], [40, 50], [50, 90]} we find that the solution is the new interval [40,

90].

Thus our operand set must be expanded to I* =  {[I-k, I-(k - 1)], [I-k, I-(k - 2)],..., [I-k, I(k)], [I-

(k - 1), I-(k - 2)],..., [I-(k - 1), Ik],..., [I(k - 1), I(k)]} the set of all inetrvals that may be

composed from the boundaries of the intervals of set I. if we further set  I-k = -•, and Ik =

•, then we have closure for the operations {+, -, ‚, ·}. The relationship between the set

of real numbers ℜ and the set I is established by the mapping [[⋅]]: ℜ → I where for any

x “ ℜ , [[x]] = [Ii, Ij] such that Ii < x < Ij.

3.2 Semiqualitative modelling

Semiqualitative modelling is essentially qualitative modelling with more values. A

semiqualitative model of a system is a set of equations in which a set of variables and

constants whose values are drawn from the set of semiqualitative intervals are related

using the operations of the semiqualitative algebra. As for qualitative modelling, a

solution of the set of equations represents a particular  way in which the system may

behave. The set of intervals are the only quantifiers in semiqualitative reasoning

systems, and so not only the values of variables but also the value of their first and

second derivatives must be expressed using these intervals. As is the case for qualitative

systems, then, semiqualitative modelling consists of establishing possible values of the

specified variables and their derivatives from the set of interval operands of the algebra,

using the set of equations as constraints.

Since the number of possible semiqualitative states is even larger than the set of

qualitative solutions for a particular system, the use of additional constraints  specifying

the exact value, derivative and second derivative of particular variables is even more

important than in qualitative modelling. This problem is further aggravated by the fact

that, in comparison with qualitative arithmetic whose operations are simple and quick

to carry out, the operations of semiqualitative arithmetic may be quite time consuming.

3.3 The bioreactor revisited

Using a semiqualitative model, it is possible to investigate the bioreactor of Section 2.3

in more detail. For instance,  it is known  that:

x1 = 0–20

x5 = 0–10

k11 = 100

k12

k21
  = 0.5
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k13 = 5.0

k43 = 1.0

k53 = 0.3

as well as the fact that  k12 = 1.5, and k21 = 3.0. This model is solved with two sets of

semiqualitative intervals. Firstly, the boundaries are set at:

0-• -500 -100 -20 -10 10 20 100 500 •-1000 1000

and the coefficient of interval contraction c is set to 5%. When the additional constraints

are set as:

x dx ddx

x1 < (0–20) (0–10) 0 >

x2 < (10–1000) ? ? >

x3 < (0–20) ? ? >

x4 < (10–1000) ? ? >

x5 < (10–20) (0–-10) 0 >

with each triplet being value, first derivative and second derivative as in the qualitative

case, solutions such as that below may be obtained. The complexity of the full solution

means that it is impractical to list every solution.

x dx ddx

x2 < (20–100) (0–10) (-20 –-100) >

x3 < (10–20) (20–100) (20–100) >

x4 < (0–10) (0–10) 0 >

From this example it is clear that the solutions of the semiqualitative model are

considerably more detailed than those obtained by the qualitative method of Section 2.3,

while agreeing with them The results of the semiqualitative analysis enable us to draw

up a semiqualitative phase portrait3. As the number of semiqualitative intervals

increases, so this phase portrait will approach that obtained by an analytical solution to

the set of equations, becoming identical as the number of intervals approaches infinity.

Next,  the boundaries are set to:

0-• -500 -50 -20 -10 10 20 50 500 •-1000 1000

so that the third interval, in which many of the solution values lie is narrowed. With the

same set of constraints as before the following solution is generated:

x dx ddx

x2 < (20–50) (0–10) (-20 –-50) >

x3 < (10–20) (20–50) (20–50) >

x4 < (0–10) (0–10) 0 >
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showing  how the refinement of the set of semiqualitative intervals may  improve the

solution.

4. Interval algebras

It is possible to generalise the concept of semiqualitative algebras. The operations of

interval arithmetic may be used over any set of intervals to form an interval algebra.

Thus an interval algebra can be based upon intervals  that are not symmetrical about

zero, intervals which overlap, or even intervals that are not continuous. An interval

algebra is defined over a ordered set of values V = {v1,...,vn}, where v1< v2 <,...,< vn .

These are used to define a set of intervals Iv = {[vi, vj] : vi ≤ vj and vi, vj ∈ V}, the set of

all intervals that may be composed from the set of values V.

Arithemtic operations over this set of intervals are described by interval arithmetic, [5]–

[8], and under such operations the set V is closed provided that v1 = -•, and vn = •.

Interval algebras may have degenerate intervals [vi, vj] such that  vi = vj as operands.

When combining two degenerate intervals, interval arithmetic reduces to ordinary

arithmetic.

There  is a mapping between the real numbers and Iv, {[⋅]}:  ℜ → Iv , such that for any

{[x]} = [vi, vj]  where vi ≤ x ≤ vj  and for all k such that 1 ≤ k ≤ n, if vk ≤ x, then vk ≤ vi and

if vk ≥ x, vk ≥ vj. {[⋅]} thus maps a given number to the smallest interval defined by V

that contains it. If closure under arithmetic operations is not a requirement, the

intervals need not be continuous, and we can choose an operand set I*v ‹ Iv. In such a

case the mapping between ℜ and I*v will not be defined for every member of ℜ. It is

possible to define an order ≤Q3
9  over the intervals such that [vi, vj]  < [vk, vl]  iff  (vi + vj

) ≤ (vk - vl).

Travé-Massuyès and Piera11 present a mathematical framework to support  reasoning

with interval algebras that explicitly distinguishes between different levels of

description. Given a set of values S and an order ≤  defined over S, qualitative equality ±
is defined as:

a ± b if there exists x ∈ S such that x ≤ a and x ≤ b.

A qualitative algebra is a pair (S, ±) provided with operations ⊕ and ⊗, which are:

(i) qualitatively associative: a ⊗ (b ⊗ c) ± (a ⊗ b) ⊗ c and a ⊕
(b ⊕ c) ± (a ⊕ b) ⊕ c

(ii) qualitatively commutative: a ⊗ b ± b ⊗ a and a ⊕ b ± b ⊕ a [6]

(iii) ⊗ is qualitatively distributive with respect to ⊕: a ⊗ (b ⊕ c)
± (a ⊗ b) ⊕ (a ⊗ c)

Travé-Massuyès and Piera prove that a qualitative algebra (S, ±, ⊕, ⊗) and a

subalgebra (T, ±, ⊕, ⊗) where T ‹ S and T ≠ Ø are embedded in one another, and that it

is possible to dynamically refine a model during processing by switching from T to S.

In other words, when combining two interval values whose result is very imprecise due

to the width of the interval that their solution lies in, it is possible to dynamically refine

the set of intervals to make the answer more precise. The advantage of refining the

intervals dynamically rather than starting with a large number of small intervals to

begin with is that the dynamic approach reduces the number of intervals which must be

considered to a minimum. This in turn reduces the number of possible solutions limiting

the time and expense of the computation. Thus it is desirable to show  that interval
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algebras, and thus all semiqualitative algebras,  are a family of algebras which may be

dynamically refined. We have:

Theorem 4.1: Interval algebras are qualitative algebras (Si, ±, ⊕, ⊗) for interval

addition + = ⊕, interval multiplication  · = ⊗, and Q-equality  defined by :

[vl - vj ] ± [vk - vi] if there exists  [va, vb] such that  [va, vb] ≤Q3 [vi, vj] and

[va, vb] ≤Q3 [vk, vl].

Proof: See Appendix.

Consider the basic set of intervals  {[-100, 20], [20, 10], [10, 0], [0, 10], [10, 20], [20, 100]}:

0-100 -20 -10 10 20 100

It is possible to  specify  a family S of  algebras over the intervals such that <Si, ±, ⊕, ⊗>

∈ S and Si ⁄ { {[-100, -20], [-20, -10], [-10, 0], [0, 10], [10, 20], [20, 100]}, {[-100, -10], [-20, 0], [-

10, 10], [0, 20], [10, 100]}, {[-100, 0], [-20, 10], [-10, 20], [0, 100]}, {[-100, 10], [-20, 20], [-10,

100]} {[-100, 20], [20, 100]}, {[-100, 100]} }. There is an implied order on the Si that is

summarised by Figure 5:

[-100, 100]

[-100, 20] [-20, 10] [20, 100][10, 20][-10, 0] [0, 10]

[-100, 10] [-20, 0] [-10, 100][0, 20][-10, 10]

[0, 100][-10, 20][-20, 10][-100, 0]

[-100, 10] [-10, 100][-20, 20]

[-20, 100][-100, 20]

Figure 5.

Since the family S are interval algebras and thus obey Travé-Massuyès and Piera’s

axioms, it is possible to switch between levels of granularity as required. The

advantages of this are as follows. Consider we are using the set of intervals {[-100, 10], [-

20, 20], [-10, 100]} and that we have x = y = [-20, 20], and we wnat to determine the value

of z = x - y. Clearly the exact value of z by interval arithmetic is [-40, 0]. Using our set of

values the smallest interval that we can assign to the value of z is [-100, 10] which is

considerably less accurate an interval than the optimum. Now, if we switch to the

algebra baased on the set of values {[-100, 0], [-20, 10], [-10, 20], [0, 100]} we  can

establish z = [-100, 0] which is somewhat better, and indeed represents the best bounds

that we can establish on z given the initial set of boundary values. Thus a system

employing interval algebras and switching between them when such a move improves

the results of arithmetic operations will generate more precise answers than one that

does not.

5. Summary

The concepts of semiqualitative and interval algebras have been introduced as

successive generalisations of qualitative algebras. Their use in modelling engineering
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systems has been discussed, and examples of their application to the modelling of a

simplified bioreactor have been given. In addition, the theoretical relationships between

the algebras have been discussed in some depth, and it has been shown that the

dynamic refinement of intervals is possible, allowing reasoning systems constructed

using interval and semiqualitative algebras to preserve the tightest desirable bounds on

values of interest.

Appendix

We have the following theorem that justifies our using any interval algebra as a

qualitative algebra, as defined by Travé-Massuyès and Piera11, and thus our defining a

family of algebras upon it which may be switched between at will:

Theorem 4.1: Interval algebras are qualitative algebras (Si, ±, ⊕, ⊗) for interval

addition + = ⊕, interval multiplication  · = ⊗, and Q-equality  defined by :

[vl - vj ] ± [vk - vi] if there exists  [va, vb] such that  [va, vb] ≤Q3 [vi, vj] and

[va, vb] ≤Q3 [vk, vl].

Proof: To prove the theorem it is necessary to show that each of the three conditions [6]

holds.  

(i) To prove the associativity of · we must show ([a, b] · [c, d]) ·  [e, f] ± [a, b] ·   ([c, d] ·

[e, f]). Now, from the definition of interval multiplication [5], we have ([a, b] · [c, d]) ·   [e,

f] = [ace, bdf] = [a, b] ·  ([c, d] ·  [e, f]) which means that we have both ([a, b] ·  [c, d]) ·   [e,

f] ≤Q3 [a, b] ·  ([c, d] ·  [e, f]) and [a, b] ·  ([c, d] ·  [e, f]) ≤Q3 ([a, b] ·  [c, d]) ·   [e, f] . This

in turn means that we have ([a, b] ·  [c, d]) ·   [e, f] ± [a, b] ·   ([c, d] ·   [e, f]), and the

associativity of · is proved. To prove the associativity of +  we need to show ([a, b] +  [c,

d]) +  [e, f] ± [a, b] +  ([c, d] +  [e, f]). From the definition of interval addition [6], we have

([a, b] + [c, d]) +  [e, f] = [a + c + e, b + d + f] = [a, b] + ([c, d] +  [e, f]) . As above this means

that  + is associative, and the condition holds.

(ii) To prove the commutativity of  ·  and +  we have to show [a, b] ·   [c, d] ± [c, d] ·   [a,

b] and [a, b] + [c, d] ± [c, d] +  [a, b]  must hold. [a, b] ·   [c, d] = [c, d] · [a, b] and [a, b] +  [c,

d] = [c, d] +  [a, b] both follow directly from the definition of interval multiplication [5] and

addition [6], and as above this means that the condition holds.

(iii) For this condition to hold we need interval multiplication to distribute over interval

addition. Thus we require [a, b] · ([c, d] + [e, f]) ± [(a, b] · [c, d]) + ([a, b] ·  [e, f])].  Again

[a, b] · ([c, d] + [e, f]) = [a(c + e), b(d + f)] = [ac + ae, bd + bf] = [(a, b] · [c, d]) + ([a, b] ·  [e, f])]

follows from the definitions of the arithmetic operations, and this in turn means that

multiplication distributes over addition, and all the conditions, and thus the theorem,

hold. n
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