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ABSTRACT

The analysis of many biochemical engineering problems
in environmental modelling is based upon the development
and solution of sets of differential equations. A complete
analytical solution of such a model requires that every nu-
merical constant in this set of equations is precisely known.
This paper describes the use of methods from artificial in-
telligence which permit the solution of such sets of equa-
tions when some constant values are unknown. The use
of the methods are illustrated with the solution of a set of
equations representing one model of an anaerobic fermen-
tor, and a computer program that implements the methods
is described.
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1. INTRODUCTION

The basis of the method by which much of modern en-
gineering, especially in areas such as biochemical and en-
vironmental engineering, proceeds is by the identification
and solution of models based upon sets of differential equa-
tions (Bailey & Ollis 1986). These equations describe the
dynamic behaviour of various key variables, whose values,
when the equations are solved, predict the state of the sys-
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tem at any instant. Often, knowledge of laws of nature
such as the law of mass conservation, are sufficient to form
the foundation of such a set of equations. As a result, given
a particular system, it is often relatively easy to collect to-
gether a set of differential equations which can form the
nucleus of a detailed mathematical model of that system.
However, to take this nucleus and flesh 1t out with all the
necessary information that will make it an accurate and
realistic working model is far from simple.

This is because the laws of nature on their own are not
sufficient to build a good model. What is needed are the
precise values of the constants that relate the variables in
the differential equations. Unfortunately, real environmen-
tal systems are horribly complicated and as a result, it 1s
extremely difficult to measure the various constants with
any accuracy. This is particularly true when the dynamic
behaviour of such systems is considered. Indeed, the sys-
tems may be subject to complex relations with their sur-
roundings (Serra ef al. 1992) which may make it nearly
impossible to isolate them without distorting any measure-
ments made. Therefore it is often necessary to deal with
sparse and inconsistent information about such systems,
and 1t 1s likely to be extremely difficult, time-consuming
and expensive to identify the value of every numerical con-
stant, a point stressed by Steyer et al. (1992). Without the
values of all the constants the set of equations have no prac-
tical value because without known values it is not possible
to run a classical simulation, and for most real systems the
set of equations cannot be solved by analytical means.

Thus incomplete and uncertain knowledge of the nec-
essary numerical constants would seem to rule out the
use of conventional methods in projects such as modelling
the scaling up of laboratory fermentors in order to per-
form tasks like risk evaluation and cost estimation. It
need not, however, prevent the use of artificial intelligence
techniques. Several authors have applied rule-based meth-
ods, for instance (Baldwin, Martin, & Zhou 1993; Liong,
Chou, & Law 1991), especially in the area of control (Serra
et al. 1992; Steyer et al. 1991; Watts & Knight 1991).
However, given the fact that many environmental models
are based upon sets of equations, qualitative (Davis 1990;
Weld & de Kleer 1990) and semiqualitative (Parsons &



Dohnal 1993) reasoning seem particularly appropriate. Tt
i1s the intention of this paper to discuss how these tech-
niques might be employed in environmental engineering,
following the example of Steyer et al. (1992), but provid-
ing a general approach which can be applied to any model
based on equations.

The structure of the paper is as follows. Section 2
introduces qualitative reasoning, giving a brief historical
overview of the main developments, discussing applications
based on them, and showing how it may be used to solve
a model of an anaerobic fermentor in which the constants
are not known. Section 3 then discusses some of the prob-
lems that have been noted with the qualitative approach,
and mentions some solutions that have been proposed. Sec-
tion 4 discusses semiqualitative reasoning, which is a gener-
alisation of some of the ideas of qualitative reasoning to en-
able the use of any numerical information that is available.
Section 5 describes a program that can be used for qualita-
tive and semiqualitative reasoning using sets of equations,
and Section 6 presents some conclusions about this method
of analysis.

2. QUALITATIVE REASONING

2.1. The development of qualitative reasoning

The paper that is always cited as being the foundational
work in qualitative reasoning is Hayes’ Naive Physics Man-
ifesto (1978) in which he urged practitioners of artificial
intelligence to “put away childish things by building large
scale formalizations” (Hayes 1985b). His suggestion was
that real progress in the field would come about by at-
tempting to model a large part of human commonsense
knowledge about the real world, and his first attempt cre-
ated an initial theory of liquid behaviour (Hayes 1985a).
This work was built upon first order logic, the traditional
tool of symbolic artificial intelligence. At the same time,
and to some extent as a result of Hayes” proposal, work
that modelled complex systems in a way that mirrored the
kind of approach adopted by engineers was emerging.
There are, broadly speaking, three strands to this work,
all having in common the fact that they deal with ab-
stractions of real numbers into positive, negative and zero
valued quantities rather than dealing with numbers them-
selves. The first approach is that of Kuipers (1984) who
takes a set of differential equations, abstracts them to just
consider their qualitative impact, and then uses them as
a set of constraints on the possible values of the state
variables. This approach has been implemented as the
QSIM software system (Kuipers 1986). The second ap-
proach, taken by de Kleer and Brown (1984) and Williams
(1984) is to build libraries of components, each of which
has a well defined qualitative behaviour described by sets
of qualitative differential equations, and connect compo-
nents together to build a qualitative model. Some of this
work i1s implemented as the ENVISION software system
which takes its name from the process of “envisionment”
by which behaviour is infered from the structure of the sys-

tem. The final approach not only models components, but
also the processes that they may undergo. Work on this
approach is primarily due to Forbus (1984), and is closest
in spirit to the work on naive physics. In addition, this
approach goes further than the others in allowing sets of
objects to have group behaviours over and above their indi-
vidual ones, thus providing a far richer modelling language.

This is, of course, just an introductory sketch of the field
which is rapidly expanding, and therefore has; at the time
of writing, eluded a definitive survey. Papers by Cohn
(1989) and Coiera (1992) come closest to providing such
a survey but fail to cover absolutely everything.

2.2. A brief demonstration of qualitative reasoning

The core of the first two approaches described above 1s
the idea of qualitative differential equations. Rather than
attempting to deal with a mass of numerical data, values
are only distinguished as positive (4), zero (0), negative
(-), or unknown (7). These values are sufficient to identify
many of the interesting features of the behaviour of the
important variables in a given system.

Briefly, this works as follows. Imagine that we have a
very simple system which may be described by the equa-
tions:

d
d—f+k = 2 (1)
d*z
W‘Fl‘ = 0 (2)

where k is a positive constant and x is a substrate concen-
tration. The qualitative abstraction of these equations, in
which all numerical values are replaced by 4, 0 or — is:

dx

E e+ = = (3)
d*z
W Sxr = 0 (4)

where @ 1s qualitative addition, as described by Table 1.
To solve the pair of equations we look for sets of qualitative
values that satisfy them, for instance:

r = + (5)
Ccll—f = + (6)
A’z
e (7)

since 7 1s an abbreviation for + or 0 or —. In other words, =
1s positive, its first time derivative is positive, but 1ts second
time derivative is negative. This set of values tells us that
the behaviour of the concentration over time will be to rise
to some limiting value as in Figure 1. We may not know
what the limit is, but we do know that the concentration
will eventually level off, and this less precise information
may be sufficient. Clearly if we are trying to establish that
the substrate concentration has a maximum value then the
information we are able to deduce is quite adequate, and
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Figure. 1. The qualitative behaviour of x
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Table 1. Qualitative addition

in many cases the fact that we can learn something from
qualitative reasoning far outweighs the fact that what we
learn is not very detailed.

2.8. A more detailed example of qualitative reasoning

To illustrate the use of qualitative reasoning more com-
pletely, consider the following example. Tt is possible (Bai-
ley & Ollis 1986) to write down a complex set of equations
which fully describe the action of an anaerobic fermentor
and which, when solved, provide a suitable model of its be-
haviour. Unfortunately, the results of this analysis hinge
upon the values of a number of key constants whose values
not only vary from fermentor to fermentor, but are also ex-
tremely difficult to measure. As a result it is difficult and
expensive to provide accurate solutions from a conventional
analysis. A qualitative analysis is, however, possible.

The following set of equations provide a simplified model
of the behaviour of an anaerobic fermentor:

dl‘l

W + (/ﬁz + k13)x1 4+ ke = kojao (8)
dx
d—tz —|—]{721I2 = klel (9)
dx
d—: — ]{7631‘4 = lexl (10)
d
% + kazrs = kupwes  (11)
d
%+k53l’5+k11x1$5 =0 (12)

where x1—x5 are concentrations of various substrates, ei-
ther those wastes being digested or the products of the
digestion. The full model may also be solved using quali-
tative methods, but the additional detail adds nothing to
the understanding of the technique. It is, of course, per-
fectly possible to apply the method to any equation based
model. This particular model was chosen because it was
easily available.

Solving this model using the Q SENECA software system

X %

Figure. 2. The qualitative solution of the fermentor

(Dohnal 1991) gives, as is usually the case with qualitative
models, a number of possible solutions. one of these is:

zy |+ + 0
r2 |+ + -
x3 |+ + -
ry |+ = +
s + - 0

which tells us, for instance, that x; increases linearly while
z3 1s rising to a limit and x4 is falling to a limit. This
behaviour is summarised in Figure 2. The use of the set of
solutions that is provided by the system is that they define
all the possible states of the system*and from these it is
possible to predict all the reasonable transitions from one
state to another, where transitions are restricted to those
changes that do not involve a jump, reducing the number of
possible transitions. For example, in the state given above,

dzy 4%z,

x4 is positive, <t is negative, and 5" is positive. Thus x4

is decreasing, and so it is possible for this state to make a

transition into a state in which x4 is zero, and then into one

in which x4 is negative. Alternatively, it is possible to make
dzy A’z
dt dt?
is positive. However, because both x; and Cg—tl are both

a transition into a state in which is zero because
positive in the current state, it is not possible to make a
transition into a state in which z; is negative without first
going through a number of intermediate states.

Given that the initial state of the system is known, it

*Qualitative systems are generally complete but not sound so that
they generate all possible physical eventualities as well as some situ-
ations that cannot occur.



1s possible to use the set of allowable state transitions to
predict how the system will behave over time. This allows
the design of the system to be validated, by demonstrating
that undesired states, can never be reached or that oscil-
lations are bound to occur (de Kleer & Brown 1984). The
same information can be used for diagnosis by determining
how a given abnormal state was reached. It is also possible
to use the state transitions for control. If some of the vari-
ables may be controlled, it is possible to identify how they
should be altered in order to reach a particularly desirable
state.

2.4. Applications of qualitative reasoning

Qualitative methods have been widely used, a fact that is
not surprising when one considers that much of the original
work was driven by the desire to model real systems. Two
of the early papers on qualitative reasoning (de Kleer 1984;
Williams 1984) were concerned with the analysis of digi-
tal circuits, and similar attempts with a distinct flavour of
naive physics are provided by Davis (1984), Genesereth
(1984) and Barrow (1984), while Mohammed and Sim-
mons have considered the use of qualitative simulation in
modelling the fabrication of semiconductor devices (Mo-
hammed & Simmons 1986). More recently, Ormsby et al.
(1991) have applied similar techniques to the diagnosis of
faults in the electrical systems of automobiles.

However, electronics is not the only area in which quali-
tative methods may be applied. Falkenheimer and Forbus
(1987) have tackled the simulation of a more complex sys-
tem, namely the steam plant of a naval vessel, albeit with
a number of simplifying assumptions, and Kuipers (1987)
has used QSIM to model process in the human body, a sys-
tem which is arguably more complex than any man-made
artifact, and is certainly less well understood. Ardizzone
et al. (1988) have modelled cell growth with a qualitative
system, and Farley and Lin (1991) have modelled economic
systemsfr

There are also several applications of qualitative reason-
ing in areas closely related to environmental engineering.
Hangos et al. (1992) discuss the control of a distillation
column using a qualitative model to both determine what
actions will give the correct response and predict the re-
sult of a given action. Hurme et al. (1991) make a similar
analysis of a chemical recycling process, but with the aim of
using the qualitative simulation to identify the conditions
under which profit can be maximised. Finally Koivisto et
al. (1989) discuss the qualitative diagnosis of a chemical
reactor.

3. PROBLEMS WITH QUALITATIVE REASON-
ING

Despite the undoubted success of qualitative methods,
there are some problems with qualitative reasoning that

tQualitative reasoning has a long and distinguished tradition in eco-
nomics, having first been considered many years before the inception
of artificial intelligence.
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Figure. 3. Two colliding masses
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Table 2. Qualitative subtraction

make it unsuitable for modelling certain systems. These
problems stem from the limited number of values that any
constant or variable can adopt. Raiman (1986) illustrates
this with a simple example from mechanics. Consider two
masses which collide while travelling towards one another
along the same line (Figure 3). One has a large mass M
and velocity V', the other has a small mass and velocity
m and v. The net momentum from right to left above is
given by the law of the conservation of momentum as:

MVyer = MV —mu (13)
Since M, V, m and v are all positive values, they all have
qualitative value +, and the net leftwards momentum is
established by the calculation:

MVt = +©+ 60+ @+ (14)

where © 18 the operator representing the difference of two
qualitative values (see Table 2), and ® is the operator rep-
resenting the product of two such values (see Table 3). Tt is
clear from Table 3 that the product of two positive values
will itself be positive so that the calculation reduces to:

Mvnet =+S+ (15)

Now, Table 2 summarises the fact that the difference of two
values which are only known to be positive can be either
positive, negative or zero, depending on the relative sizes
of the values. Thus qualitative reasoning can only deduce
that the overall leftwards momentum will be 7, while intu-
itively we can see that it will be + because MV is much
larger than muv.

The problem of coping with situations such as this, that
cause difficulties for qualitative reasoning techniques but
which can be easily resolved by humans, has been ad-
dressed by the artificial intelligence community. The first
solution was proposed by Raiman (1986) in the paper in
which he pointed out the problem. He introduced a system
called FOG which allowed the representation of “order of
magnitude” concepts. Thus it allows the statement that,
for instance, A is negligible with respect to B, A Ne B,
or that A has the same sign and order of magnitude as B,
A Co B. These relations are then used to define a set of
inference rules such as:
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Table 3. Qualitative multiplication
A Ne B
B Co (C
A Ne (

So that if A is much smaller than B, which is about the
same size as C, then A is much smaller than C. In all
Raiman provides 30 such rules of inference, giving a se-
mantics for the approach which is based on non-standard
analysis, and FOG has been used in the modelling of analog
circuits (Dague, Raiman, & Devés 1987).

FOG has also been discussed by Dubois and Prade
(1991) who have considered the problem that is caused
by the use of non-standard analysis as a basis for a
semantics—namely that the results are only valid in the
limit. In order to cope with situations in which A Co B
does not mean that A and B are infintely close together,
they propose a new interpretation in terms of an interval
on the ratio of A to B. This allows them to validate the
inference rules; and allows a sensible limit on the chaining
of inferences such as:

30 Co 31
31 Co 32
30 Co 32

to be established that prevents the derivation of 30 Co
1000 without the need for an arbitrary cut-off. More recent
work on FOG has provided a means of obtaining smooth
changes between the orders of magnitude that are recog-
nised (Dague 1993b), and to incorporate numerical infor-
mation (Dague 1993a).

Another scheme for order of magnitude reasoning is due
to Mavrovouniotis and Stephanopoulos (1987; 1989) who
have formalised the representation of relations such as
A > B to give a system called O[M] that they claim is
expressive enough for all engineering problems. The se-
mantics of the relations is provided in terms of the bounds
on the ratio between A and B, and two possible inter-
pretations are given. The first is mathematically correct,
but conservative, and the second is heuristic but more hu-
manly aggressive in the inferences it sanctions. O[M] has
been applied to problems in process engineering (Mavro-
vouniotis & Stephanopoulos 1988). Tt is possible to show
that the O[M] approach can be handled using a formal
system for reasoning using intervals (Parsons 1993), and
Travé-Massuyes and Piera have shown that interval sys-
tems can be used as the basis of a general approach to order
of magnitude reasoning (Travé-Massuyés & Piera 1989).

There have been several other attempts to extend quali-
tative reasoning using limited amounts of numerical infor-

mation, including (Dormoy 1988; Féray Beaumont 1991;
Kuipers & Berleant 1988; Steyer, Queinnec, & Simoes
1992; Sticklen, Kamel, & Bond 1991). In the remainder
of this paper we present another such approach —a gener-
alisation of qualitative reasoning, known as semiqualitative
reasoning, which allows qualitative and quantitative infor-
mation to be used in the solution of sets of differential
equations.

4. SEMIQUALITATIVE REASONING

4.1. A brief demonstration of semiqualitative reasoning

In semiqualitative reasoning the values of variables and
constants are restricted to a set of 2k + 1 intervals (Parsons
& Dohnal 1993). This set of intervals covers all numbers
from oo to —oo, and the intervals are continuous and non-
overlapping, so that any real number falls into one, and
only one, interval. The intervals are symmetric about zero,
which is a distinguished value, and there are k positive and
k negative intervals. The boundaries of the intervals may
be set by an arithmetic or geometric progression, or may
be chosen to reflect what are considered to be interesting
values. Since the set of values used in qualitative reasoning
corresponds to the set of semiqualitative intervals obtained
for £ = 1, it is clear that semiqualitative reasoning 1s a
generalisation of qualitative reasoning.

A basic understanding of how semiqualitative reasoning
may be used to solve sets of differential equations may
be obtained from a simple example. Consider that the
following set of equations is a model of a physical system:

r1+x2 = I3 (16)

r1.4 = X3 (17)
dl‘4

— = 18

dt e (18)

The model is solved just as the qualitative one was by
finding a set of values for the variables and their derivatives
from the set of all possible valuestso that the equations
are satisfied. If we have the set of intervals depicted in
Figure 4 then the following five triplets describe one set of
assignments of values to the five variables, and thus one
conceivable state of the system:

dz A’z
x rr e
21 | [0,20] [0, 10] 0
zs | [20,100] [0,10]  [—20,—100]
zs | [10,20] [20,100]  [20,100]
zs | [0,10]  [0,10] 0
x5 | [10,20] [0, —10] 0

This state is not however a physically possible state of the
system since it is not a solution of equations that describe
the system. This is because x5 is determined from x; =

tThe set of all possible values is not restricted to the set of 2k + 1
intervals. All compositions of contiguous intervals are also permitted
values.
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[0,20] and z2 = [20,100] from the first equation which
gives a value of [0,20] @ [20, 100] = [20, 500], where & gives
the result of adding two intervals using interval arithmetic
(Moore 1966) (in this case [20,120]) and then finding the
smallest interval or composition of intervals that holds the
result. This value of x5 contrasts with that of the proposed

—10 0 10 20 100 500 00
Figure. 4. An inttial set of semiqualitative intervals
T [0, 20] [0, 10] 0
z2 | [10,1000] ? ?
3 [0, 20] 7
x4 | [10,1000] 7 7
x5 [10, 20] [0, —10] 0

solution, in which z3 = [10, 20], and this contradiction rules
out the solution. By similar means it is possible to identify
all the sets of five triplets which are solutions of the set of
equations, and these correspond to all the semiqualitative
states of the model.

By allowing variables to take on a wider range of values,
semiqualitative reasoning permits the use of those numeri-
cal values that are known, and this means that it generates
more precise solutions than are possible using qualitative
reasoning. However, the fact that it is not necessary to
have any more information than whether a quantity is posi-
tive, negative or zero means that semiqualitative reasoning
is very robust, and may be used in situations where con-
ventional methods cannot be used.

4.2. A more detailed example of semiqualitative reasoning

As a more realistic example of the use of semiqualitative
reasoning, this section describes the semiqualitative simu-
lation of an anaerobic digester using the model discussed in
Section 2.3. As with the qualitative model, the fact that a
specific example is used should not distract attention from
the fact that the method can be used to solve any equa-
tion based model. The model used for the semiqualitative
analysis consists of the same set of differential equations as
before, plus those numerical values that are known. These
are the values of the following constants:

ki = 100 (19)
kiy = 15 (20)
kis = 5.0 (21)
kyy = 3.0 (22)
kys = 1.0 (23)
kss = 0.3 (24)
kes = —1.0 (25)

This model 1s first solved with the boundaries of the semi-
qualitative intervals set as in Figure 5. These are a default
set of boundaries suitable for a first attempt at an analysis.
In order to limit the number of solutions, we can specify
additional constraints by stating the values of some of the
variables and their derivatives:

Note that 7 is shorthand for the interval [—o0, oc]. This set
of constraints may be considered as a query, in this case
asking the question:

When z; is present in a concentration of less
than 20, what are the ways in which it is possible
to achieve a linear (d;f; = 0) increase of concen-
tration of x1 of less than 10 units per unit time

while x5 i1s present with a concentration of be-

tween 10 and 20, and changes linearly (d;ff = 0)
at a rate of less than 10 units per unit time?
Meanwhile z3 1s known to have a positive con-
centration of less than 20, while that of x4 and 24
is between 10 and 1000. The way that these last

three variables change with time is not known.

Solving the model with this set of values gives the solution:

dz ¢
xr dr qZ
22 | [20, 100] [20, 100] [0, —10]
x5 | [10,20] [500,1000]  [—20, —100]
z4 | [500,1000] [-500,—1000]  [500, 1000]

which gives us a reasonably detailed idea of what values
the substrate concentrations should have, and less detailed
but still useful information on how they will change over
time. The solution is also a definite improvement on the in-
formation we obtained from the qualitative solution of the
same model, though, as one would hope, both solutions are
the same when only the signs of the values are considered.
In fact, in general, there will be a number of semiqualita-
tive solutions for every qualitative one each with slightly
different interval values for variables and their derivatives.

The analysis may be refined. For instance, if we want to
further investigate the value and first derivative of x5, say,
we could choose a new set of intervals, choosing the upper
limit of the third positive interval to be 50 instead of 100
as in Figure 6. With the same set of constraints as before
the following solution is generated:

dz d’z
xr dr qZ
22 | [20,50] [20, 50] [0, —10]
z3 | [10,20] [500,1000]  [—20, —50]
z4 | [500,1000] [=500,—1000] [500, 1000]
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Figure. 5. A second set of semiqualitative intervals
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Figure. 6. A third set of semiqualitative intervals
Identification Decription fies that the output must be equal to the semiqualitative
M1 Addition sum of the inputs. In some ways to talk of input and out-
M2 Multiplication put is a little misleading, since the propagation need not
M3 Derivative take place from input to output. Indeed what happens is
M4 X>Y that a graph is constructed whose arcs are semiqualitative
M5 DX > DY variables and whose nodes are functional blocks, and the
M6 DDX > DDY known constraints propagated around until the values are

Table 4. Functional blocks: DX represents Ccll—f, and DDX Cng

which shows that by making certain intervals narrower, it is
possible to make the solution more accurate, in that the in-
tervals in the solution become narrower also. This process
could, of course, be repeated. We could split the interval
[20, 50] into [20, 35] and [35,50] in order to further narrow
down the value of x4, or split [5600, 1000] into [500, 750] and
[750,1000] to get a better idea of the value of 4.

5. A PROGRAM FOR SEMIQUALITATIVE
ANALYSIS

5.1. An introduction to the program

Having seen the kind of results that semiqualitative analy-
sis can generate, we consider a software system which can
perform a semiqualitative analysis on a set of differential
equations. By restricting the set of intervals to three, it
can also be used for qualitative analysis—indeed this was
how the results presented in Section 2.3 were produced.
In order to explain what the program does, and how it is
operated, we discuss in detail the process of solving the
example discussed in Sections 2.3 and 4.2.

The program works by considering the relations between
the semiqualitative variables of the set of equations as a
series of constraints upon their value. The analysis then
consists of taking the known values, and propagating these
through the network of constraints, seeing how they affect
those values that are initially undefined. In order to do
this the program needs some way of specifying the relation-
ships between variable values, and this is done by means
of a series of functional blocks. (Table 4). Each block in
the semiqualitative system has one or two inputs, and a
single output, and specifies that a particular relationship
holds between the inputs and the output. For instance the
M1 block has two inputs and a single output, and speci-

as refined as possible. In this use of functional block and
the propagation of constraints on the values of variables,
the program can be seen to be a generalisation of the sys-
tems described by Kuipers (1986) and de Kleer and Brown
(1984) to a full set of semiqualitative values.

5.2. Rewriting the model

The first stage in the analysis is to write the equations
that describe the model in form in which they may easily
be specified using the functional blocks. Initially they are
written as a series of variables related only by addition and
equality. There is no subtraction block since subtraction
causes problems in interval arithmetic, and any equation
written using subtraction may be rewritten using addition.
This generates a new set of equations:

T+ T11 + T19 T1o (26)
Tr4+ T2 = Tia (27)
Tis+T16 = g (28)
To+ Zis = Zig (29)
zio+xi7+x19 = Tig (30)

which may be directly written down in terms of functional
blocks. There are further equations which relate the vari-
ables in the above equations to each other and the variables
whose values are specified in the query:

dx

re = dd—tl (31)
X

rr = dd—tz (32)
X

zg = dd—: (33)
X

2g = dd—; (34)

zi0 = % (35)

z11 = 6.5x (36)



z19 = 3.0z (37)
z13 = 100z, (38)
x4 = 1.5z (39)
x5 = H.0x (40)
T = 1.024 (41)
r17 = 0.3x5 (42)
rig = 0 (43)
Tig = T13T3 (44)
Too = ZTio+ T (45)
Toy = X9+ Ty (46)

Having done this, 1t 1s simple to transform the set of
equations to a network of functional blocks. At this stage it
is easy to verify that none of the variables are redundant—
if every variable connects into the network, as it does in
this case, every variable plays an important part in the
model. The network may also be used to determine if the
model consists of a number of autonomous sub-systems.
If 1t does, the network will be made up of a number of
separate sub-networks.

The full set of equations, written in terms of functional
blocks, form one part of the input to the program. The
second part of the input is the semiqualitative query men-
tioned above, which sets the limit on the values of the vari-
ables in the original set of equations, in this case variables
xa—x4. These limits may be any pair of boundaries of the
semiqualitative intervals allowing composite intervals to be
used as values. These boundaries themselves form the third
part of the input. The fourth and final part of the input 1s
a list of variables whose value are required in the output.
In the example, since we are interested in the values of zo—
x4 this part of the input will contain the names of these
variables and their first and second derivatives, because we
want to know the value of all three.

5.83. What the program does

The first thing that the program does is to compile a set
of combinator tables from the set of semiqualitative inter-
vals, a measure designed to make it more efficient when
it comes to applying the mathematical constraints. These
tables are compiled by considering the pairwise combina-
tion of every possible set of intervals. Thus for the set
of intervals in the example it would first consider adding
[1000, oo] to [1000, co], which gives [1000, co] since the ad-
dition of two numbers in the interval cannot lie outside the
interval. Next it would try [1000, oo] and [500, 1000] which
would again give [1000, co], and continue until it had added
every interval to every other, including adding compound
intervals such as [20,500] and [—10,10] to get [10,1000].
Clearly this is a lengthy process, and provides a powerful
argument for reducing the number of semiqualitative inter-
vals, or at least keeping it as small as possible, but when
it is complete the program can construct a look-up table
which will provide very swift arithmetic operations later

in execution. The program then assembles similar lookup
tables for the other functional blocks.

Next the program decides on an order in which to test
the values of the variables. This is done in such a way that
the most constrained variable has its value propagated first,
so that once its value is established the conceivable values
of all the related variables may be evaluated as swiftly as
possible. Again, establishing this order takes a little time,
but it pays dividends in the long run.

After these two steps the program begins the process of
propagating the constraints, essentially following the algo-
rithm of Figure 7, for each and every variable, where N is
the number of levels of derivative of the variable in ques-
tion (so N = 3 in our example since we have value, first
derivative and second derivative), i is the current level of
derivative under consideration, M is the number of semi-
qualitative intervals that the value of the ith derivative can
take on, and % is the index of the current value that is being
considered for the ith derivative. Finally, after applying all
the constraints to all the variables and establishing their
possible value, the system outputs a list of all the possi-
ble interval values of all the derivatives of all the variables
listed in the final part of the input.

6. CONCLUSIONS

This paper has described the use of qualitative and semi-
qualitative analysis, two methods from artificial intelli-
gence that may be usefully applied to a wide range of
environmental problems. Indeed they may be applied to
any problem for which an equation based model may be
written. The methods combine the strengths of the hu-
man ability to reason about the qualitative behaviour of
systems, exemplified by statements such as “if volume de-
creases then pressure must increase”, with the use of what-
ever numerical data is available. As a result the methods
can be used to model complex physical systems for which
sets of differential equations may be written, but for which
the exact values of numerical constants are not known.
Clearly the methods are not capable of providing exact
answers when working with inexact data, that 1s impossi-
ble, but they do permit the most exact possible answers
to be established from the available information. The use
of the methods was illustrated on a particular model of
the behaviour of an anaerobic fermentor, and the use and
operation of a program that can perform both qualitative
and semiqualitative analysis was discussed.
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