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tem at any instant. Often, knowledge of laws of naturesuch as the law of mass conservation, are su�cient to formthe foundation of such a set of equations. As a result, givena particular system, it is often relatively easy to collect to-gether a set of di�erential equations which can form thenucleus of a detailed mathematical model of that system.However, to take this nucleus and esh it out with all thenecessary information that will make it an accurate andrealistic working model is far from simple.This is because the laws of nature on their own are notsu�cient to build a good model. What is needed are theprecise values of the constants that relate the variables inthe di�erential equations. Unfortunately, real environmen-tal systems are horribly complicated and as a result, it isextremely di�cult to measure the various constants withany accuracy. This is particularly true when the dynamicbehaviour of such systems is considered. Indeed, the sys-tems may be subject to complex relations with their sur-roundings (Serra et al. 1992) which may make it nearlyimpossible to isolate them without distorting any measure-ments made. Therefore it is often necessary to deal withsparse and inconsistent information about such systems,and it is likely to be extremely di�cult, time-consumingand expensive to identify the value of every numerical con-stant, a point stressed by Steyer et al. (1992). Without thevalues of all the constants the set of equations have no prac-tical value because without known values it is not possibleto run a classical simulation, and for most real systems theset of equations cannot be solved by analytical means.Thus incomplete and uncertain knowledge of the nec-essary numerical constants would seem to rule out theuse of conventional methods in projects such as modellingthe scaling up of laboratory fermentors in order to per-form tasks like risk evaluation and cost estimation. Itneed not, however, prevent the use of arti�cial intelligencetechniques. Several authors have applied rule-based meth-ods, for instance (Baldwin, Martin, & Zhou 1993; Liong,Chou, & Law 1991), especially in the area of control (Serraet al. 1992; Steyer et al. 1991; Watts & Knight 1991).However, given the fact that many environmental modelsare based upon sets of equations, qualitative (Davis 1990;Weld & de Kleer 1990) and semiqualitative (Parsons &1



Dohnal 1993) reasoning seem particularly appropriate. Itis the intention of this paper to discuss how these tech-niques might be employed in environmental engineering,following the example of Steyer et al. (1992), but provid-ing a general approach which can be applied to any modelbased on equations.The structure of the paper is as follows. Section 2introduces qualitative reasoning, giving a brief historicaloverview of the main developments, discussing applicationsbased on them, and showing how it may be used to solvea model of an anaerobic fermentor in which the constantsare not known. Section 3 then discusses some of the prob-lems that have been noted with the qualitative approach,and mentions some solutions that have been proposed. Sec-tion 4 discusses semiqualitative reasoning, which is a gener-alisation of some of the ideas of qualitative reasoning to en-able the use of any numerical information that is available.Section 5 describes a program that can be used for qualita-tive and semiqualitative reasoning using sets of equations,and Section 6 presents some conclusions about this methodof analysis.2. QUALITATIVE REASONING2.1. The development of qualitative reasoningThe paper that is always cited as being the foundationalwork in qualitative reasoning is Hayes' Naive Physics Man-ifesto (1978) in which he urged practitioners of arti�cialintelligence to \put away childish things by building largescale formalizations" (Hayes 1985b). His suggestion wasthat real progress in the �eld would come about by at-tempting to model a large part of human commonsenseknowledge about the real world, and his �rst attempt cre-ated an initial theory of liquid behaviour (Hayes 1985a).This work was built upon �rst order logic, the traditionaltool of symbolic arti�cial intelligence. At the same time,and to some extent as a result of Hayes' proposal, workthat modelled complex systems in a way that mirrored thekind of approach adopted by engineers was emerging.There are, broadly speaking, three strands to this work,all having in common the fact that they deal with ab-stractions of real numbers into positive, negative and zerovalued quantities rather than dealing with numbers them-selves. The �rst approach is that of Kuipers (1984) whotakes a set of di�erential equations, abstracts them to justconsider their qualitative impact, and then uses them asa set of constraints on the possible values of the statevariables. This approach has been implemented as theQSIM software system (Kuipers 1986). The second ap-proach, taken by de Kleer and Brown (1984) and Williams(1984) is to build libraries of components, each of whichhas a well de�ned qualitative behaviour described by setsof qualitative di�erential equations, and connect compo-nents together to build a qualitative model. Some of thiswork is implemented as the ENVISION software systemwhich takes its name from the process of \envisionment"by which behaviour is infered from the structure of the sys-

tem. The �nal approach not only models components, butalso the processes that they may undergo. Work on thisapproach is primarily due to Forbus (1984), and is closestin spirit to the work on naive physics. In addition, thisapproach goes further than the others in allowing sets ofobjects to have group behaviours over and above their indi-vidual ones, thus providing a far richer modelling language.This is, of course, just an introductory sketch of the �eldwhich is rapidly expanding, and therefore has, at the timeof writing, eluded a de�nitive survey. Papers by Cohn(1989) and Coiera (1992) come closest to providing sucha survey but fail to cover absolutely everything.2.2. A brief demonstration of qualitative reasoningThe core of the �rst two approaches described above isthe idea of qualitative di�erential equations. Rather thanattempting to deal with a mass of numerical data, valuesare only distinguished as positive (+), zero (0), negative(-), or unknown (?). These values are su�cient to identifymany of the interesting features of the behaviour of theimportant variables in a given system.Briey, this works as follows. Imagine that we have avery simple system which may be described by the equa-tions: dxdt + k = x (1)d2xdt2 + x = 0 (2)where k is a positive constant and x is a substrate concen-tration. The qualitative abstraction of these equations, inwhich all numerical values are replaced by +, 0 or � is:dxdt �+ = x (3)d2xdt2 � x = 0 (4)where � is qualitative addition, as described by Table 1.To solve the pair of equations we look for sets of qualitativevalues that satisfy them, for instance:x = + (5)dxdt = + (6)d2xdtt = � (7)since ? is an abbreviation for + or 0 or �. In other words, xis positive, its �rst time derivative is positive, but its secondtime derivative is negative. This set of values tells us thatthe behaviour of the concentration over time will be to riseto some limiting value as in Figure 1. We may not knowwhat the limit is, but we do know that the concentrationwill eventually level o�, and this less precise informationmay be su�cient. Clearly if we are trying to establish thatthe substrate concentration has a maximumvalue then theinformation we are able to deduce is quite adequate, and2
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timeFigure. 1. The qualitative behaviour of x� + 0 �+ + + ?0 + 0 �� ? � �Table 1. Qualitative additionin many cases the fact that we can learn something fromqualitative reasoning far outweighs the fact that what welearn is not very detailed.2.3. A more detailed example of qualitative reasoningTo illustrate the use of qualitative reasoning more com-pletely, consider the following example. It is possible (Bai-ley & Ollis 1986) to write down a complex set of equationswhich fully describe the action of an anaerobic fermentorand which, when solved, provide a suitable model of its be-haviour. Unfortunately, the results of this analysis hingeupon the values of a number of key constants whose valuesnot only vary from fermentor to fermentor, but are also ex-tremely di�cult to measure. As a result it is di�cult andexpensive to provide accurate solutions from a conventionalanalysis. A qualitative analysis is, however, possible.The following set of equations provide a simpli�ed modelof the behaviour of an anaerobic fermentor:dx1dt + (k12 + k13)x1 + k11x1x5 = k21x2 (8)dx2dt + k21x2 = k12x1 (9)dx3dt � k63x4 = k13x1 (10)dx4dt + k43x4 = k11x1x5 (11)dx5dt + k53x5 + k11x1x5 = 0 (12)where x1{x5 are concentrations of various substrates, ei-ther those wastes being digested or the products of thedigestion. The full model may also be solved using quali-tative methods, but the additional detail adds nothing tothe understanding of the technique. It is, of course, per-fectly possible to apply the method to any equation basedmodel. This particular model was chosen because it waseasily available.Solving this model using the Q SENECA software system
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Figure. 2. The qualitative solution of the fermentor(Dohnal 1991) gives, as is usually the case with qualitativemodels, a number of possible solutions. one of these is:x dxdt d2xdt2x1 + + 0x2 + + �x3 + + �x4 + � +x5 + � 0which tells us, for instance, that x1 increases linearly whilex3 is rising to a limit and x4 is falling to a limit. Thisbehaviour is summarised in Figure 2. The use of the set ofsolutions that is provided by the system is that they de�neall the possible states of the system�and from these it ispossible to predict all the reasonable transitions from onestate to another, where transitions are restricted to thosechanges that do not involve a jump, reducing the number ofpossible transitions. For example, in the state given above,x4 is positive, dx4dt is negative, and d2x4dt2 is positive. Thus x4is decreasing, and so it is possible for this state to make atransition into a state in which x4 is zero, and then into onein which x4 is negative. Alternatively, it is possible to makea transition into a state in which dx4dt is zero because d2x4dt2is positive. However, because both x1 and dx1dt are bothpositive in the current state, it is not possible to make atransition into a state in which x1 is negative without �rstgoing through a number of intermediate states.Given that the initial state of the system is known, it�Qualitative systems are generally complete but not sound so thatthey generate all possible physical eventualities as well as some situ-ations that cannot occur.3



is possible to use the set of allowable state transitions topredict how the system will behave over time. This allowsthe design of the system to be validated, by demonstratingthat undesired states, can never be reached or that oscil-lations are bound to occur (de Kleer & Brown 1984). Thesame information can be used for diagnosis by determininghow a given abnormal state was reached. It is also possibleto use the state transitions for control. If some of the vari-ables may be controlled, it is possible to identify how theyshould be altered in order to reach a particularly desirablestate.2.4. Applications of qualitative reasoningQualitative methods have been widely used, a fact that isnot surprising when one considers that much of the originalwork was driven by the desire to model real systems. Twoof the early papers on qualitative reasoning (de Kleer 1984;Williams 1984) were concerned with the analysis of digi-tal circuits, and similar attempts with a distinct avour ofnaive physics are provided by Davis (1984), Genesereth(1984) and Barrow (1984), while Mohammed and Sim-mons have considered the use of qualitative simulation inmodelling the fabrication of semiconductor devices (Mo-hammed & Simmons 1986). More recently, Ormsby et al.(1991) have applied similar techniques to the diagnosis offaults in the electrical systems of automobiles.However, electronics is not the only area in which quali-tative methods may be applied. Falkenheimer and Forbus(1987) have tackled the simulation of a more complex sys-tem, namely the steam plant of a naval vessel, albeit witha number of simplifying assumptions, and Kuipers (1987)has used QSIM to model process in the human body, a sys-tem which is arguably more complex than any man-madeartifact, and is certainly less well understood. Ardizzoneet al. (1988) have modelled cell growth with a qualitativesystem, and Farley and Lin (1991) have modelled economicsystemsy.There are also several applications of qualitative reason-ing in areas closely related to environmental engineering.Hangos et al. (1992) discuss the control of a distillationcolumn using a qualitative model to both determine whatactions will give the correct response and predict the re-sult of a given action. Hurme et al. (1991) make a similaranalysis of a chemical recycling process, but with the aim ofusing the qualitative simulation to identify the conditionsunder which pro�t can be maximised. Finally Koivisto etal. (1989) discuss the qualitative diagnosis of a chemicalreactor.3. PROBLEMSWITH QUALITATIVE REASON-INGDespite the undoubted success of qualitative methods,there are some problems with qualitative reasoning thatyQualitative reasoning has a long and distinguished tradition in eco-nomics, having �rst been considered many years before the inceptionof arti�cial intelligence.

M, V m, vFigure. 3. Two colliding masses	 + 0 �+ ? + +0 � 0 +� � � ?Table 2. Qualitative subtractionmake it unsuitable for modelling certain systems. Theseproblems stem from the limited number of values that anyconstant or variable can adopt. Raiman (1986) illustratesthis with a simple example from mechanics. Consider twomasses which collide while travelling towards one anotheralong the same line (Figure 3). One has a large mass Mand velocity V , the other has a small mass and velocitym and v. The net momentum from right to left above isgiven by the law of the conservation of momentum as:MVnet = MV �mv (13)Since M , V , m and v are all positive values, they all havequalitative value +, and the net leftwards momentum isestablished by the calculation:MVnet = +
 +	 +
 + (14)where 	 is the operator representing the di�erence of twoqualitative values (see Table 2), and 
 is the operator rep-resenting the product of two such values (see Table 3). It isclear from Table 3 that the product of two positive valueswill itself be positive so that the calculation reduces to:MVnet = +	 + (15)Now, Table 2 summarises the fact that the di�erence of twovalues which are only known to be positive can be eitherpositive, negative or zero, depending on the relative sizesof the values. Thus qualitative reasoning can only deducethat the overall leftwards momentum will be ?, while intu-itively we can see that it will be + because MV is muchlarger than mv.The problem of coping with situations such as this, thatcause di�culties for qualitative reasoning techniques butwhich can be easily resolved by humans, has been ad-dressed by the arti�cial intelligence community. The �rstsolution was proposed by Raiman (1986) in the paper inwhich he pointed out the problem. He introduced a systemcalled FOG which allowed the representation of \order ofmagnitude" concepts. Thus it allows the statement that,for instance, A is negligible with respect to B, A Ne B,or that A has the same sign and order of magnitude as B,A Co B. These relations are then used to de�ne a set ofinference rules such as:4




 + 0 �+ + 0 �0 0 0 0� � 0 +Table 3. Qualitative multiplicationA Ne BB Co CA Ne CSo that if A is much smaller than B, which is about thesame size as C, then A is much smaller than C. In allRaiman provides 30 such rules of inference, giving a se-mantics for the approach which is based on non-standardanalysis, and FOG has been used in the modelling of analogcircuits (Dague, Raiman, & Dev�es 1987).FOG has also been discussed by Dubois and Prade(1991) who have considered the problem that is causedby the use of non-standard analysis as a basis for asemantics|namely that the results are only valid in thelimit. In order to cope with situations in which A Co Bdoes not mean that A and B are in�ntely close together,they propose a new interpretation in terms of an intervalon the ratio of A to B. This allows them to validate theinference rules, and allows a sensible limit on the chainingof inferences such as: 30 Co 3131 Co 3230 Co 32to be established that prevents the derivation of 30 Co1000 without the need for an arbitrary cut-o�. More recentwork on FOG has provided a means of obtaining smoothchanges between the orders of magnitude that are recog-nised (Dague 1993b), and to incorporate numerical infor-mation (Dague 1993a).Another scheme for order of magnitude reasoning is dueto Mavrovouniotis and Stephanopoulos (1987; 1989) whohave formalised the representation of relations such asA > B to give a system called O[M] that they claim isexpressive enough for all engineering problems. The se-mantics of the relations is provided in terms of the boundson the ratio between A and B, and two possible inter-pretations are given. The �rst is mathematically correct,but conservative, and the second is heuristic but more hu-manly aggressive in the inferences it sanctions. O[M] hasbeen applied to problems in process engineering (Mavro-vouniotis & Stephanopoulos 1988). It is possible to showthat the O[M] approach can be handled using a formalsystem for reasoning using intervals (Parsons 1993), andTrav�e-Massuy�es and Piera have shown that interval sys-tems can be used as the basis of a general approach to orderof magnitude reasoning (Trav�e-Massuy�es & Piera 1989).There have been several other attempts to extend quali-tative reasoning using limited amounts of numerical infor-

mation, including (Dormoy 1988; F�eray Beaumont 1991;Kuipers & Berleant 1988; Steyer, Queinnec, & Simoes1992; Sticklen, Kamel, & Bond 1991). In the remainderof this paper we present another such approach |a gener-alisation of qualitative reasoning, known as semiqualitativereasoning, which allows qualitative and quantitative infor-mation to be used in the solution of sets of di�erentialequations.4. SEMIQUALITATIVE REASONING4.1. A brief demonstration of semiqualitative reasoningIn semiqualitative reasoning the values of variables andconstants are restricted to a set of 2k+1 intervals (Parsons& Dohnal 1993). This set of intervals covers all numbersfrom1 to �1, and the intervals are continuous and non-overlapping, so that any real number falls into one, andonly one, interval. The intervals are symmetric about zero,which is a distinguished value, and there are k positive andk negative intervals. The boundaries of the intervals maybe set by an arithmetic or geometric progression, or maybe chosen to reect what are considered to be interestingvalues. Since the set of values used in qualitative reasoningcorresponds to the set of semiqualitative intervals obtainedfor k = 1, it is clear that semiqualitative reasoning is ageneralisation of qualitative reasoning.A basic understanding of how semiqualitative reasoningmay be used to solve sets of di�erential equations maybe obtained from a simple example. Consider that thefollowing set of equations is a model of a physical system:x1 + x2 = x3 (16)x1:x4 = x3 (17)dx4dt = x5 (18)The model is solved just as the qualitative one was by�nding a set of values for the variables and their derivativesfrom the set of all possible valueszso that the equationsare satis�ed. If we have the set of intervals depicted inFigure 4 then the following �ve triplets describe one set ofassignments of values to the �ve variables, and thus oneconceivable state of the system:x dxdt d2xdt2x1 [0; 20] [0; 10] 0x2 [20; 100] [0; 10] [�20;�100]x3 [10; 20] [20; 100] [20; 100]x4 [0; 10] [0; 10] 0x5 [10; 20] [0;�10] 0This state is not however a physically possible state of thesystem since it is not a solution of equations that describethe system. This is because x3 is determined from x1 =zThe set of all possible values is not restricted to the set of 2k + 1intervals. All compositions of contiguous intervals are also permittedvalues.5



�500 �100 �20 �10�1 0 10 20 100 500 1Figure. 4. An initial set of semiqualitative intervals[0; 20] and x2 = [20; 100] from the �rst equation whichgives a value of [0; 20]� [20; 100] = [20; 500], where � givesthe result of adding two intervals using interval arithmetic(Moore 1966) (in this case [20; 120]) and then �nding thesmallest interval or composition of intervals that holds theresult. This value of x3 contrasts with that of the proposedsolution, in which x3 = [10; 20], and this contradiction rulesout the solution. By similar means it is possible to identifyall the sets of �ve triplets which are solutions of the set ofequations, and these correspond to all the semiqualitativestates of the model.By allowing variables to take on a wider range of values,semiqualitative reasoning permits the use of those numeri-cal values that are known, and this means that it generatesmore precise solutions than are possible using qualitativereasoning. However, the fact that it is not necessary tohave any more information than whether a quantity is posi-tive, negative or zero means that semiqualitative reasoningis very robust, and may be used in situations where con-ventional methods cannot be used.4.2. A more detailed example of semiqualitative reasoningAs a more realistic example of the use of semiqualitativereasoning, this section describes the semiqualitative simu-lation of an anaerobic digester using the model discussed inSection 2.3. As with the qualitative model, the fact that aspeci�c example is used should not distract attention fromthe fact that the method can be used to solve any equa-tion based model. The model used for the semiqualitativeanalysis consists of the same set of di�erential equations asbefore, plus those numerical values that are known. Theseare the values of the following constants:k11 = 100 (19)k12 = 1:5 (20)k13 = 5:0 (21)k21 = 3:0 (22)k43 = 1:0 (23)k53 = 0:3 (24)k63 = �1:0 (25)This model is �rst solved with the boundaries of the semi-qualitative intervals set as in Figure 5. These are a defaultset of boundaries suitable for a �rst attempt at an analysis.In order to limit the number of solutions, we can specifyadditional constraints by stating the values of some of thevariables and their derivatives:

x dxdt d2xdt2x1 [0; 20] [0; 10] 0x2 [10; 1000] ? ?x3 [0; 20] ? ?x4 [10; 1000] ? ?x5 [10; 20] [0;�10] 0Note that ? is shorthand for the interval [�1;1]. This setof constraints may be considered as a query, in this caseasking the question:When x1 is present in a concentration of lessthan 20, what are the ways in which it is possibleto achieve a linear �d2x1dt2 = 0� increase of concen-tration of x1 of less than 10 units per unit timewhile x5 is present with a concentration of be-tween 10 and 20, and changes linearly �d2x5dt2 = 0�at a rate of less than 10 units per unit time?Meanwhile x3 is known to have a positive con-centration of less than 20, while that of x2 and x4is between 10 and 1000. The way that these lastthree variables change with time is not known.Solving the model with this set of values gives the solution:x dxdt d2xdt2x2 [20; 100] [20; 100] [0;�10]x3 [10; 20] [500; 1000] [�20;�100]x4 [500; 1000] [�500;�1000] [500; 1000]which gives us a reasonably detailed idea of what valuesthe substrate concentrations should have, and less detailedbut still useful information on how they will change overtime. The solution is also a de�nite improvement on the in-formation we obtained from the qualitative solution of thesame model, though, as one would hope, both solutions arethe same when only the signs of the values are considered.In fact, in general, there will be a number of semiqualita-tive solutions for every qualitative one each with slightlydi�erent interval values for variables and their derivatives.The analysis may be re�ned. For instance, if we want tofurther investigate the value and �rst derivative of x2, say,we could choose a new set of intervals, choosing the upperlimit of the third positive interval to be 50 instead of 100as in Figure 6. With the same set of constraints as beforethe following solution is generated:x dxdt d2xdt2x2 [20; 50] [20; 50] [0;�10]x3 [10; 20] [500; 1000] [�20;�50]x4 [500; 1000] [�500;�1000] [500; 1000]6



�500 �100 �20 �10 0 10 20 100 500�1 1�1000 1000Figure. 5. A second set of semiqualitative intervals�500 �50 �20 �10 0 10 20 50 500�1 1�1000 1000Figure. 6. A third set of semiqualitative intervalsIdenti�cation DecriptionM1 AdditionM2 MultiplicationM3 DerivativeM4 X > YM5 DX > DYM6 DDX > DDYTable 4. Functional blocks: DX represents dxdt , and DDX d2xdt2which shows that by making certain intervals narrower, it ispossible to make the solution more accurate, in that the in-tervals in the solution become narrower also. This processcould, of course, be repeated. We could split the interval[20; 50] into [20; 35] and [35; 50] in order to further narrowdown the value of x2, or split [500; 1000] into [500; 750] and[750; 1000] to get a better idea of the value of x4.5. A PROGRAM FOR SEMIQUALITATIVEANALYSIS5.1. An introduction to the programHaving seen the kind of results that semiqualitative analy-sis can generate, we consider a software system which canperform a semiqualitative analysis on a set of di�erentialequations. By restricting the set of intervals to three, itcan also be used for qualitative analysis|indeed this washow the results presented in Section 2.3 were produced.In order to explain what the program does, and how it isoperated, we discuss in detail the process of solving theexample discussed in Sections 2.3 and 4.2.The program works by considering the relations betweenthe semiqualitative variables of the set of equations as aseries of constraints upon their value. The analysis thenconsists of taking the known values, and propagating thesethrough the network of constraints, seeing how they a�ectthose values that are initially unde�ned. In order to dothis the program needs some way of specifying the relation-ships between variable values, and this is done by meansof a series of functional blocks. (Table 4). Each block inthe semiqualitative system has one or two inputs, and asingle output, and speci�es that a particular relationshipholds between the inputs and the output. For instance theM1 block has two inputs and a single output, and speci-

�es that the output must be equal to the semiqualitativesum of the inputs. In some ways to talk of input and out-put is a little misleading, since the propagation need nottake place from input to output. Indeed what happens isthat a graph is constructed whose arcs are semiqualitativevariables and whose nodes are functional blocks, and theknown constraints propagated around until the values areas re�ned as possible. In this use of functional block andthe propagation of constraints on the values of variables,the program can be seen to be a generalisation of the sys-tems described by Kuipers (1986) and de Kleer and Brown(1984) to a full set of semiqualitative values.5.2. Rewriting the modelThe �rst stage in the analysis is to write the equationsthat describe the model in form in which they may easilybe speci�ed using the functional blocks. Initially they arewritten as a series of variables related only by addition andequality. There is no subtraction block since subtractioncauses problems in interval arithmetic, and any equationwritten using subtraction may be rewritten using addition.This generates a new set of equations:x6 + x11 + x19 = x12 (26)x7 + x12 = x14 (27)x15 + x16 = x8 (28)x9 + x16 = x19 (29)x10 + x17 + x19 = x18 (30)which may be directly written down in terms of functionalblocks. There are further equations which relate the vari-ables in the above equations to each other and the variableswhose values are speci�ed in the query:x6 = dx1dt (31)x7 = dx2dt (32)x8 = dx3dt (33)x9 = dx4dt (34)x10 = dx5dt (35)x11 = 6:5x1 (36)7



x12 = 3:0x2 (37)x13 = 100x1 (38)x14 = 1:5x1 (39)x15 = 5:0x1 (40)x16 = 1:0x4 (41)x17 = 0:3x5 (42)x18 = 0 (43)x19 = x13x5 (44)x20 = x19 + x11 (45)x21 = x19 + x17 (46)Having done this, it is simple to transform the set ofequations to a network of functional blocks. At this stage itis easy to verify that none of the variables are redundant|if every variable connects into the network, as it does inthis case, every variable plays an important part in themodel. The network may also be used to determine if themodel consists of a number of autonomous sub-systems.If it does, the network will be made up of a number ofseparate sub-networks.The full set of equations, written in terms of functionalblocks, form one part of the input to the program. Thesecond part of the input is the semiqualitative query men-tioned above, which sets the limit on the values of the vari-ables in the original set of equations, in this case variablesx2{x4. These limits may be any pair of boundaries of thesemiqualitative intervals allowing composite intervals to beused as values. These boundaries themselves form the thirdpart of the input. The fourth and �nal part of the input isa list of variables whose value are required in the output.In the example, since we are interested in the values of x2{x4 this part of the input will contain the names of thesevariables and their �rst and second derivatives, because wewant to know the value of all three.5.3. What the program doesThe �rst thing that the program does is to compile a setof combinator tables from the set of semiqualitative inter-vals, a measure designed to make it more e�cient whenit comes to applying the mathematical constraints. Thesetables are compiled by considering the pairwise combina-tion of every possible set of intervals. Thus for the setof intervals in the example it would �rst consider adding[1000;1] to [1000;1], which gives [1000;1] since the ad-dition of two numbers in the interval cannot lie outside theinterval. Next it would try [1000;1] and [500; 1000] whichwould again give [1000;1], and continue until it had addedevery interval to every other, including adding compoundintervals such as [20; 500] and [�10; 10] to get [10; 1000].Clearly this is a lengthy process, and provides a powerfulargument for reducing the number of semiqualitative inter-vals, or at least keeping it as small as possible, but whenit is complete the program can construct a look-up tablewhich will provide very swift arithmetic operations later

in execution. The program then assembles similar lookuptables for the other functional blocks.Next the program decides on an order in which to testthe values of the variables. This is done in such a way thatthe most constrained variable has its value propagated �rst,so that once its value is established the conceivable valuesof all the related variables may be evaluated as swiftly aspossible. Again, establishing this order takes a little time,but it pays dividends in the long run.After these two steps the program begins the process ofpropagating the constraints, essentially following the algo-rithm of Figure 7, for each and every variable, where N isthe number of levels of derivative of the variable in ques-tion (so N = 3 in our example since we have value, �rstderivative and second derivative), i is the current level ofderivative under consideration, M is the number of semi-qualitative intervals that the value of the ith derivative cantake on, and k is the index of the current value that is beingconsidered for the ith derivative. Finally, after applying allthe constraints to all the variables and establishing theirpossible value, the system outputs a list of all the possi-ble interval values of all the derivatives of all the variableslisted in the �nal part of the input.6. CONCLUSIONSThis paper has described the use of qualitative and semi-qualitative analysis, two methods from arti�cial intelli-gence that may be usefully applied to a wide range ofenvironmental problems. Indeed they may be applied toany problem for which an equation based model may bewritten. The methods combine the strengths of the hu-man ability to reason about the qualitative behaviour ofsystems, exempli�ed by statements such as \if volume de-creases then pressure must increase", with the use of what-ever numerical data is available. As a result the methodscan be used to model complex physical systems for whichsets of di�erential equations may be written, but for whichthe exact values of numerical constants are not known.Clearly the methods are not capable of providing exactanswers when working with inexact data, that is impossi-ble, but they do permit the most exact possible answersto be established from the available information. The useof the methods was illustrated on a particular model ofthe behaviour of an anaerobic fermentor, and the use andoperation of a program that can perform both qualitativeand semiqualitative analysis was discussed.REFERENCESArdizzone, E.; Bonadonna, F.; Gaglio, S.and Nicolini, C.;Ruggiero, C.; and Sorbello, F. 1988. Qualitative mod-elling of cell growth processes. Applied Arti�cial Intelli-gence 2:251{263.Bailey, J. E., and Ollis, D. F. 1986. Biochemical Engi-neering Fundamentals. New York: McGraw Hill.8
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