
Some qualitative approaches to applyingthe Dempster-Shafer theorySimon ParsonsAdvanced Computation LaboratoryImperial Cancer Research FundP.O. Box 123Lincoln's Inn FieldsLondon WC2A 3PXAbstractThis paper introduces the idea of using the Dempster-Shafer theory of evidence withqualitative values. Dempster-Shafer theory is a formalism for reasoning under uncertaintywhich may be viewed as a generalisation of probability theory with special advantages inits treatment of ambiguous data and the ignorance arising from it. Here we are interestedin applying the theory when the numbers that it usually operates over are not universallyavailable. To cope with this lack of numbers, we use qualitative, semiqualitative, andlinguistic values, and apply a form of order of magnitude reasoning.1 IntroductionDempster-Shafer theory is a numerical method for evidential reasoning. The theory origi-nated with a paper by the statistician Arthur Dempster [7] who wanted to free probabilitytheory from the need to attach a measure of uncertainty to every hypothesis under con-sideration [11]. His work remained hidden in the statistics literature until Glenn Shafer,one of Dempster's students, brought the material to a wider audience in his doctoraldissertation [16]. The method has become popular, and the basic model has been ex-tended in a number of directions in recent years [17], [19], [20]. In this paper I proposeanother adaptation of the model. My interest is in reasoning under uncertainty when allthe numerical information required by methods such as Dempster-Shafer theory are notavailable, handling such a lack of information [13] [14] by using techniques from qualita-tive reasoning [1]. Extending the approach �rst suggested in [15], I consider replacing thenumerical operands of more usual applications of Dempster-Shafer theory with qualitativevalues. These give degraded, but still useful, results which are illustrated by a number ofexamples.In Section 2, the basics of Dempster-Shafer theory are explained for the bene�t of thosewho are not familiar with the approach. Section 3 introduces the qualitative versionof the theory, and Section 4 applies the theory to linguistic and other semiqualitative1



values, while Section 5 assesses what can be done with knowledge of the absolute orderof magnitude of values. Section 6 concludes.2 Dempster-Shafer theoryThe basic idea of the Dempster-Shafer theory is that numerical measures of uncertainty,termed basic probability masses, may be assigned to sets of hypotheses as well as individ-ual hypotheses. Consider the following example, adapted from the work of Philippe Smets[17]. Mr Jones has been murdered. We know that the murderer was one of three notoriousassassins, Peter, Paul and Mary, so we have a set of hypotheses � = fPeter; Paul;Maryg.The only evidence that we have initially is that of Mrs Jones who saw the killer leavingthe scene of the murder and is 80% sure that it was a man. Thus all we know is thatp(Man) = 0:8. If we were using probability theory we would have to:(a) allocate p(:Man) = p(Mary) = 1� 0:8 = 0:2(b) allocate p(Man) = 0:8 = p(Peter) + p(Paul) = 0:4 + 0:4The �rst since p(Man)+p(:Man) = 1, and the second by some principle such as the prin-ciple of maximumentropy. With evidence theory, however, we are not limited to allocatingprobability to the members of the set ffPeterg; fPaulg; fMarygg. We have instead amass assignment functionm(�) wherem : 2� 7! [0; 1] assigns probabilities to any set whichis a member of the power set of �, that is the set 2� = ffPeter; Paul;Maryg; fPeter;Paulg; fPeter;Maryg; fPaul;Maryg; fPeterg; fPaulg; fMaryg;;g. The only restric-tions on m(�) are: Xx22�m(x) = 1 (1)m(;) = 0 (2)so that all the assigned probabilities sum to unity, and there is no belief in the emptyset. Note that any subset x of the frame � for which m(x) is non-zero is called a focalelement.In the case of Mr Jones' murder we can assign values to equate with what we know andnothing more. We know that p(Man) = 0:8 so that the focal element is fPeter; Paulgand m(fPeter; Paulg) = 0:8. We know nothing about the remaining probability so itis allocated to the whole frame of discernment| m(fPeter; Paul;Maryg) = 0:2. Now,consider that a second piece of evidence comes to light. It is reported with con�dence0:6 that Peter was leaving on a jet plane when the murder occurred, so that we havem0(fPaul;Maryg) = 0:6, and m0(fPeter; Paul;Maryg) = 0:4. We would like to combinethese two pieces of evidence, and this may be done by combining the mass assignmentsusing Dempster's rule to create a new mass assignment m00 de�ned by:m00(C) = Xi;jAi\Bj=C m(Ai)m0(Bj) (3)We will write m00 = m
\ m0 as a shorthand for this operation. Put simply, the result ofcombining two assignments is that for any intersecting sets A and B, where A has massM from assignment m and B has mass M 0 from assignment m0, the belief accruing totheir intersection is the product of M and M 0. the combination for our example is givenin Table 1. Having established the �nal mass assignments of the set of hypotheses we can2




\ m(fPeter; Paulg) = 0:8 m(�) = 0:2m0(fPaul;Maryg) = 0:6 m00(fPaulg) = 0:48 m00(fPaul;Maryg) = 0:12m0(�) = 0:4 m00(fPeter; Paulg) = 0:32 m00(�) = 0:08Table 1: Combining the mass functions for the murder exampleassess the belief and plausibility of any set of hypotheses as follows:Bel(A) = XB�Am(B) (4)P l(A) = XB\A6=;m(B) (5)These measures are clearly related to one another:Bel(A) = 1� P l(:A) (6)P l(A) = 1�Bel(:A) (7)The belief in any set is the sum of all the probabilities of all the subsets of that set. Theplausibility is the sum of all the values not accruing to any sets that are exclusive of theone in question. The function Bel : 2� 7! [0; 1] is known as a belief function [16] andits dual P l : 2� 7! [0; 1] is called a plausibility function [17]. Calculating the belief andplausibility in the case of Mr Jones' murder:Bel(fPaulg) = 0:48Bel(fPeter; Paulg) = m00(fPeterg) +m00(fPaulg) +m00(fPeter; Paulg)= 0 + 0:48 + 0:32= 0:8Bel(fPeter; Paul;Maryg) = 1P l(fPeterg) = m00(fPeter; Paulg)+m00(fPeter; Paul;Maryg)= 0:4P l(fMaryg) = 0:2In a similar way, Bel(fPeterg) = Bel(fMaryg) = Bel(fPeter;Maryg) = 0; Bel(fPaul;Maryg) = 0:6; P l(fPeter;Maryg) = 0:52; and P l(fPaulg) = P l(fPaul;Maryg) =P l(fPeter; Paul;Maryg) = 1. This rule of combination is unproblematic so long asno two focal elements have an empty intersection, that is as long asm(;) = Xi;jAi\Bj=; m(Ai)m0(Bj) = 0 (8)Violations of this condition are problematic. What a non-zero mass for ; suggests is thatthere is belief in a hypothesis that is not in the frame of discernment. However, the frameof discernment is an exhaustive set of hypotheses, and so it is not possible to have beliefin something outside it.One possible way around the problem is to normalise the result of applying Dempster'srule, dividing the mass assigned to every focal element of m00 by:1 � Xi;jAi\Bj=; m(Ai)m0(Bj) (9)3



This is the approach advocated by Shafer [16]. Thus the normalised version of Dempster'srule is: m00(C) = Pi;jAi\Bj=C m(Ai)m0(Bj)1 � Pi;jAi\Bj=; m(Ai)m0(Bj) (10)Now, normalisation is only required when the evidence that is described by the massassignments disagree. Thus, in the case of Mr Jones' murder, normalisation would berequired if the second piece of evidence were that both Peter and Paul were on the 'plane.Then one piece of evidence would indicate that the culprit was either Peter or Paul and theother would indicate that it was Mary. Recognising this has led some authors, includingZadeh [21], to criticise the use of normalisation since it can lead to counter-intuitive resultsif most of the mass after a combination, but before normalisation, is assigned to the emptyset.The problem with assigning mass to the empty set arises from the assumption that �is exhaustive. Smets [17] gets around the problem by making an \open world assumption"that the real solution may lie outside the frame of discernment. Under such an assumptionany mass that is assigned to ; after a combination is taken to be the belief that the solutionis a hypothesis that is not included in �. This position is not without its critics, see forexample [3].One point that should be noted is the interpretation of the belief and plausibilitymeasures. There are many points of view. Smets [18] takes Dempster-Shafer belief to bea quanti�cation of subjective credal belief that is distinct from the probabilistic pignisticbelief that is necessary for decision making. Others take belief and plausibility as lowerand upper bounds on the probability that may be assigned to an event. Under such aninterpretation, the results of applying the Dempster-Shafer theory are consistent with anyprobabilistic analysis of the same problem, they just make less assumptions.Finally in this section, it is worth noting that, despite the fact that it is often criticisedas being computationally intractable 1 the Dempster-Shafer theory has been used to buildcomplex applications, including the combination of visual evidence in a robot navigationsystem [10].3 A qualitative approach to evidence theoryAs it stands, evidence theory works very well as long as all the necessary numericalinformation is available. Provided that we can put a basic probability mass on any pieceof evidence that comes to light then the theory gives us intuitive results. However, aproblem arises when we do not have easily quanti�able evidence. For instance we maybe taking readings from faulty sensors, or we may be dealing with data which relatesto occurrences that happen so rarely that no accurate numbers are available. In suchcases all we can say about a particular piece of evidence is that it indicates that certainhypotheses are true to `a certain degree'. To what degree `a certain degree' is we haveno idea. What we would like is to use the intuitive evidence theory style of reasoning tocombine such pieces of evidence to give us some idea of what the evidence implies. Thefollowing sections describe a method, which is an extension of that discussed in [15], inwhich qualitative values are used to provide representations of `a certain degree' which1This problem should have been comprehensively laid to rest by Wilson [20] who has provided e�cient algo-rithms for both exact and approximate computation of the result of combining mass functions4



may be combined with other pieces of evidence and summed to give degrees of belief andplausibility3.1 Basic qualitative valuesConsider what would have happened in the enquiry into Mr Jones' murder if Mrs Jonescould not say how sure she was that the person she saw running from the house was a man.Say that she is sure that it could be a man so that m(Man) > 0, and she is unable to sayfor sure that it was a man so that m(Man) < 1, but is unwilling to commit herself further.In such a case we have m(fPeter; Paulg) = something , m(fPeter; Paul;Maryg) = 1 �something where 0 < something < 1. The value something may not be manipulatedusing normal arithmetic. Instead we convert it to a qualitative value using the mapping[[�]] : < 7! f+; 0g:For any x 2 �; m(x) = M; becomes [[m(x)]] = �+; if 0 < M < 1;0; if M = 0. (11)which says that any mass that is known to be non-zero is represented by the qualitativevalue + while zero values are represented by the value 0. It also makes the assumptionthat a given basic probability assignment assigns mass to at least two members of 2�ensuring that 0 < m(x) < 1. Applying this mapping from unknown numerical valuesto qualitative values makes no assumptions about the value of something, but enablesus to manipulate the unknown value using the well-established methods of qualitativearithmetic [1]. Thus when Mrs Jones is unwilling to give a numerical estimate, we havep(Man) = + so that m(fPeter; Paulg) = + and m(fPeter; Paul;Maryg) = +. Mass as-signments are combined using Dempster's rule as before, with arithmetic being performedusing restricted versions of the standard combinator tables for qualitative addition � andqualitative multiplication 
 [1].(see Table 2). So when the witness in the aeroplane also� + 0+ + +0 + 0 
 + 0+ + 00 0 0Table 2: Qualitative combinator tablesrefuses to give a numerical estimate of how sure they are that Peter was on the plane, wehavem0(fPaul;Maryg) = +, m0(fPeter; Paul;Maryg) = +, and these may be combinedas in Table 3 to give the following qualitative beliefs and plausibilities:Bel(fPaulg) = +Bel(fPeter; Paulg) = m00(fPeterg) +m00(fPaulg) +m00(fPeter; Paulg)= +Bel(fPeter; Paul;Maryg) = +
\ m(fPeter; Paulg) = + m(�) = +m0(fPaul;Maryg) = + m00(fPaulg) = + m00(fPaul;Maryg) = +m0(�) = + m00(fPeter; Paulg) = + m00(�) = +Table 3: Combining the qualitative mass functions for the murder example5



P l(fPeterg) = m00(fPeter; Paulg)+m00(fPeter; Paul;Maryg)= +P l(fMaryg) = +At �rst sight these results don't seem to be very helpful, since all the sets of hypotheseshave the same degree of support from the evidence. However, this �rst impression is notreally correct. What the stripping away of the numbers makes extremely clear is that thebeautiful and intuitive mechanism of evidence theory works just as well without numbersas it does with them, and it continues to lay bare the implication of the evidence.What we can see from this, just as well as we can see from the numerical example, isthat there is only one singleton hypothesis that is indicated by the evidence, fPaulg, andthat if we want to consider hypotheses of the form `A or B', then there is evidence forfPaul;Maryg and fPeter; Paulg2. The method will even detect evidence for solutionsother than those in the frame of discernment fPeter; Paul;Maryg, if the open worldassumption is accepted, by the accruing of a + to the empty set ; when the focal elementsof the mass functions do not intersect. This will be discussed further in Section 3.3.Of course it is possible to invent pathological cases where the intuitive result is thewrong one. Consider what would happen if m0(fPaul;Maryg) were 0:1. The �nal resultof the weighing of the evidence would be Bel(fPaulg) = 0:08, Bel(fPeter;Paulg) =0:8 which suggests that there is little evidence against Paul alone, while the qualitativesolution would be the same as before. However, this does not mean that there is no virtuein using the qualitative approach to establish which way the evidence points in particularsituations where no numerical probability masses may be established, it merely makesthe point that this qualitative approach is heuristic. Thus it will often produce correctanswers where the numerical method would be unable to do so, but will, on occasionproduce incorrect answers.3.2 A simple exampleBy way of illustrating the usefulness of qualitative evidence theory we will consider anexample from decision making in gastroenterology which was also studied in [15]. Weconsider a clinic specialising in the diagnosis of gastroenterological complaints. Thesecomplaints are gastric cancer, peptic ulcers (both gastric and duodenal ulcers), gallstones,and functional disorders. The latter are conditions with no identi�able organic cause, andare often stress related. Over many years, a number of symptoms and signs which provideuseful information for discriminating between complaints have been recorded from manypatients. These are signs of jaundice, pain after meals, weight loss and the age of thepatient.The clinic's research into gastric disorders has progressed since it was reported in[15]. Workers at the clinic have now established that particular symptoms are evidencefor particular sets of diseases. Thus jaundice indicates gallstones or functional disorderfgs; fdg, pain after meals indicates gastric cancer, peptic ulcer or functional disorderfgc; pu; fdg, weight loss indicates gastric cancer fgcg and if the patient is elderly thenshe is likely to be su�ering from gastric cancer, peptic ulcer or gallstones fgc; pu; gsg. We2Since the set fPeter; Paulg not only represents the set of hypotheses f `Peter killed Mr Jones',`Paul killedMr Jones' g but is also the hypothesis `Peter or Paul killed Mr Jones', I will use the term `hypothesis' to denoteboth the individual members of fPeter; Paulg and the set itself. Which is being referred to will be clear from thecontext. 6




\ m(fgc; pu; fdg) = + m(fgc; pu; gs; fdg) = +m0(fgc; pu; gsg) = + m00(fgc; pug) = + m00(fgc; pu; gsg) = +m0(fgc; pu; gs; fdg) = + m00(fgc; pu; fdg) = + m00(fgc; pu; gs; fdg) = +Table 4: The result of considering two pieces of evidence about Jack
\ m000(fgcg) = + m000(fgc; pu; gs; fdg) = +m00(fgc; pug) = + m0000(fgcg) = + m0000(fgc; pug) = +m00(fgc; pu; gsg) = + m0000(fgcg) = + m0000(fgc; pu; gsg) = +m00(fgc; pu; fdg) = + m0000(fgcg) = + m0000(fgc; pu; fdg) = +m00(fgc; pu; gs; fdg) = + m0000(fgcg) = + m0000(fgc; pu; gs; fdg) = +Table 5: The result of considering a third piece of evidence about Jackare interested in the case of Jack, an elderly patient who shows no signs of jaundice buthas recently lost weight and often has pain after eating.Considering the evidence of Jack's age and the fact that he su�ers pain after eatinggives us the results of Table 4, which suggests that the most speci�c diagnosis is that Jackis su�ering from either gastric cancer or peptic ulcer. Now we consider the evidence thatJack has recently lost weight. This gives the results of Table 5.which strongly indicatesthat Jack has gastric cancer since not only is gastric cancer the only singleton hypothesisindicated by the evidence, but it is also a member of every single other set of hypothesesthat the evidence points to.3.3 Extending the basic modelThe basic approach discussed in Sections 3.1 and 3.2 is unproblematic when dealing withsimple sets of evidence. When there is only one set of hypotheses that is smaller than anyother, then it is clear which is the most speci�c set of hypotheses favoured by the evidence,and it seems natural to make the heuristic assumption that this set of hypotheses is tobe preferred as an explanation of the evidence. Thus in Jack's case the diagnosis of fgcgis the one that best �ts the evidence of his three symptoms. However, it will not alwaysbe the case that the set of preferred hypotheses are so obvious. Take the case of Irwin,another patient who comes to the clinic of Section 3.2 as an example of the problems thatmight arise.When Irwin's symptoms are related to the diseases that the clinic specialises in, itis clear that there is evidence for two possible sets of diseases, gallstones or functionaldisorder fgs; fdg and gastric cancer or peptic ulcer fgc; pug. The result of combiningthis evidence is given in Table 6. The combined mass distribution given in Table 6is somewhat more complicated to understand than those considered previous, largelybecause it introduces the vexed issue of normalisation. Part of the basic probabilityassignment m00 is given to the empty set ;. Under the closed world assumption this isnot permitted, and the mass must be re-distributed by dividing the masses of all the
\ m(fgs; fdg) = + m(fgc; pu; gs; fdg) = +m0(fgc; pug) = + m00(;) = + m00(fgc; pug) = +m0(fgc; pu; gs; fdg) = + m00(fgs; fdg) = + m00(fgc; pu; gs; fdg) = +Table 6: The result of considering two pieces of evidence about Irwin7



remaining members of 2� by 1 �+. This is easy to accomplish. Dividing the masses by1�+, which is positive since the + discussed here is known to represent a number strictlyless than one (11), does not change anything, giving a new distribution:m00n(fgs; fdg) = +m00n(fgc; pug) = +m00n(fgc; pu; gs; fdg) = +This clearly indicates that there are two preferred sets of hypotheses; fgs; fdg andfgc; pug. However, what normalising misses is the main conclusion of the evidence. Thereason that mass is assigned to the empty set is that the two pieces of evidence thatgenerate m and m0 are completely contradictory. One suggests gastric cancer or pepticulcer, the other suggests gallstones or functional disease, so that there is absolutely nocommon ground between them. If we want to acknowledge this contradiction, we mustaccept the open world assumption.Under the open world assumption, the restriction concerning the assignment of massto the empty set (2) is dropped, and belief and plausibility in a set of hypotheses iscomputed, as according to Smets [17], by:Bel(A) = XB�AB 6=; m(B) (12)As a result of the assumption, the mass assigned to the empty set has a new and usefulmeaning. It allows us to compute the amount of belief in a hypothesis outside the frame ofdiscernment, that is a hypothesis that was not originally thought to be worth considering(or even a hypothesis that was not even thought of) but which becomes a likely option inthe light of the evidence. It is worth noting that here the expression `a hypothesis' (ratherthan `a set of hypotheses') is used advisedly, not least because Smets takes ; to be a singlehypothesis. It makes sense to assume it is a single hypothesis on similar grounds to thoseon which the single fault hypothesis [5] is adopted| that if the evidence is pointing tosomething that previously escaped notice, this is more likely to be one thing than manythings.In the case of Irwin's visit to the clinic, the meaning of the mass assigned to theempty set is that he is su�ering from none of the usual diseases. This interpretationseems to be a natural and reasonable conclusion to draw from the conict in the evidence,and it certainly seems to be a better conclusion that that drawn using the closed worldassumption. Thus, we can say that when the redistribution of mass by normalisation failsto suggest a single preferred hypothesis, then the open world assumption may provide abetter interpretation of the evidence 3.This adoption of the open world assumption solves one possible problem with thepurely qualitative quanti�ers, but there is another. Consider how the preferred hypothesischanges when a third piece of evidence, which indicates that Irwin is su�ering from gastriccancer, is considered. The result of doing this is given in Table 7. Since the empty set istaken to represent a single hypothesis outside �, the result of this third piece of evidenceis to suggest that there are two singleton hypotheses as to which disease Irwin is suferingfrom. These are that Irwin is su�ering from gastric cancer, and that Irwin is su�eringfrom something other than gastric cancer, peptic ulcer, gallstones or functional disorder.3And it is interesting to note that in most criticisms of normalisation this is indeed the case| equal massesare assigned to the two contradictory hypotheses. 8




\ m00(fgcg) = + m00(fgc; pu; gs; fdg) = +m000(fgs; fdg) = + m0000(;) = + m0000(fgs; fdg) = +m000(fgc; pug) = + m0000(fgcg) = + m0000(fgc; pug) = +m000(;) = + m0000(;) = + m0000(;) = +m000(fgc; pu; gs; fdg) = + m0000(fgcg) = + m0000(fgc; pu; gs; fdg) = +Table 7: The result of considering a third piece of evidence about IrwinThis is as much as this qualitative application of the Dempster-Shafer theory will tellus| that is there are two possibilities, each with weight +. The question is, what is thediagnosis?There are a couple of options. One is not to choose one disease over another. Wecould argue that since both ; and fgcg are singleton hypotheses, and so are both `mostspeci�c' sets of hypotheses, both satisfy the heuristic condition discussed above for beingpreferred hypotheses and so both should be taken as the most likely hypothesis. Thus wehave a preferred set of hypotheses fgc; ;g. This is a rather cautious approach, which doesnot discard any hypothesis which is strongly suggested by the evidence, and this cautionno doubt makes it attractive for some applications 4. However, this interpretation ofresults goes somewhat against the intuitions of the original Dempster-Shafer theory sinceit suggests that the preferred set of hypotheses is one which is not a focal element of anymass assignment (since it is a composite of two such focal elements). What this means isthat it should be possible to calculate seperate beliefs for both ; and fgcg and use theseto make a choice between them, and doing so is perhaps more in keeping with the originaltheory.To calculate the beliefs for ; and fgcg with a view to selecting one as more likely thanthe other involves the use of another heuristic, albeit one for which there is a good deal ofexperimental support [2] [6]| an improper linear model. Using an improper linear modelin this case is rather simple. We add up the number of pieces of evidence for each ofthe two preferred hypotheses (since there are no pieces of evidence directly against them)and select as most likely the singleton hypothesis with the most pieces of evidence in itsfavour. In Irwin's case, since there are more indications that he is su�ering from a diseaseoutside the frame of discernment (three) than there are that he is su�ering from gastriccancer (two), we say that belief in him su�ering from gastric cancer is less than belief inhim su�ering from a disease that is not under consideration.4 Semiqualitative approachesIt is possible to further re�ne the qualitative approach if we have some idea of the nu-merical values of the mass assignments to the focal elements. This section discusses twoways in which this may be done. Both combine elements of qualitative and quantitativeinformation, and so are known as semiqualitative approaches.4.1 Using linguistic valuesFor instance, consider that we have information that allows us to quantify the massassignments in terms of a set of linguistic labels, which correspond to a subintervals of4Especially medical ones. If I were a patient at the clinic with the same symptoms as Irwin I would like thesuggestion of gastric cancer to be taken very seriously indeed.9



the unit interval [0; 1], in a similar manner to that considered by [8]. We take the followingsymmetric set of subintervals: P = f0; (�; a]; [a; 1� a]; [1� a; 1� �); 1g whose names are,respectively; None; Little; (About)Half;Much and All. These subintervals are ordered:None � Little � Half �Much � All (13)As in [8] we take � to be some positive in�nitesimal quantity while a is some number in(0; 0:5) and assume that we have enough knowledge to place the value of a mass assignmentinto one of the intervals. In practice we take a = 0:3, so that it is appropriate to note (asin [8]) that `about half' is short for `neither little, nor much but somewhere in between'. Inorder to manipulate these linguistic values we need some means of performing arithmeticon numbers and intervals. This ability is provided by interval arithmetic [12]. For anypair of intervals [a; b] and [c; d], where a � b and c � d, interval addition �0, multiplication
0, subtraction 	0 and division �0 are de�ned by:[a; b]�0 [c; d] = [a+ c; b+ d] (14)[a; b]
0 [c; d] = [a� c; b� d] (15)[a; b]	0 [c; d] = [a� d; b� c] (16)[a; b]�0 [c; d] = [a=d; b=c] (17)Note that `degenerate'[12] intervals [a; b] where a = b are allowed so that interval arith-metic may be applied to numbers and intervals together, and that interval division is notde�ned for c = 0 or d = 0. Given that the mass assignments are quanti�ed with the setof linguistic labels, we can use interval arithmetic and Dempster's rule to compute theresult of combining evidence in terms of the linguistic labels and combinations of labels,such as [Little;Much] = fX 2 PjLittle � X � Muchg. Such combinations of intervalsare necessary given the tendency of interval arithmetic to expand the bounds on intervalswhen they are combined. Thus when adding Little and Little, which is performing theinterval calculation [0; 0:3]+ [0; 0:3], we get [0; 0:6] by (14). This is an interval which doesnot have a linguistic label in P, but it is clear that the value which is known to lie in[0; 0:6] must lie in the interval [0; 0:7] which is represented by [Little;Much], and is thesmallest compound interval that will contain [0; 0:6]. This compound interval may begiven the gloss `between a little and most'.Now, to hark back to Jack's trip to the clinic, consider what would have happened ifwe had the information that if a patient has pain after meals we should have much beliefin his having gastric cancer, peptic ulcer or functional disorder fgc; pu; fdg, whilst if apatient is elderly then we should have a middling belief that he is su�ering from gastriccancer, peptic ulcer or gallstones fgc; pu; gsg. For Jack, we now have the combined massassignment given in Table 8 which is rather more precise than before. We could, of course,
\ m(fgc; pu; fd)g = Much m(fgc; pu; gs; fdg) = Littlem0(fgc; pu; gsg) = Half m00(fgc; pug) = [Little;Half ] m00(fgc; pu; gsg) = Littlem0(fgc; pu; gs; fdg) = Half m00(fgc; pu; fdg) = [Little;Half ] m00(fgc; pu; gs; fdg) = LittleTable 8: The result of considering two pieces of semiqualitative information about Jackadd in the third mass assignment to make use of the fact that if the patient has recentlysu�ered a weight loss then we should have much belief in his having gastric cancer. Thisgives the result that Bel(fgcg) = [Little;Much] while all other sets of hypotheses havebelief Little (Table 9). 10




\ m000(fgcg) = Much m000(fgc; pu; gs; fdg)m00(fgc; pug) = [Little;Half ] m0000(fgcg) = [Little;Half ] m0000(fgc; pug) = Littlem00(fgc; pu; gsg) = Little m0000(fgcg) = Little m0000(fgc; pu; gsg) = Littlem00(fgc; pu; fdg) = [Little;Half ] m0000(fgcg) = [Little;Half ] m0000(fgc; pu; fdg) = Littlem00(fgc; pu; gs; fdg) = Little m0000(fgcg) = Little m0000(fgc; pu; gs; fdg) = LittleTable 9: The result of considering the third piece of semiqualitative information about JackClearly the method of semiqualitative linguistic labels would work equally well forlarger sets of labels, and, as Table 9 illustrates, mass assignments may be made in termsof compound intervals. The use of linguistic labels works equally well with either the openor closed world assumption since (16) and (17) provide us with the machinery to performnormalisation when mass is assigned to the empty set.4.2 Pre-compiling combinations of linguistic labelsAnother way of reasoning with linguistic quanti�ers is to `pre-compile' the results of allpossible assignments of linguistically quanti�ed mass assignments. This is possible sincethere is a �nite number of possible combinations (which is clearly not the case for thequantitative theory), and means that the process of combining mass functions is replacedby looking up the answer in a table. To demonstrate the idea, we deal with the case ofmass assignments where m(�) assigns belief to a single subset of �, and we have just twosuch assignments. The concept can of course be extended to arbitrarily large numbers offocal elements and mass assignments.For two mass assignments m1 and m2 each with a single focal element F1 and F2,such that m1(F1) = M1, m2(F2) = M2, there are four sets to which the combined mass isassigned; F1\F2, F1, F2 and �. These have belief massesM1:M2,M1:(1�M2), (1�M1):M2and (1 �M1):(1�M2) respectively, assigned to them. The set of hypotheses (which canunder the open world assumption include the hypothesis ; indicating something outside �)with the largest belief is the one preferred by the evidence. With a set of linguistic labels,we can compute the most believable set of hypotheses for every possible mass assignment,and the belief in that hypothesis. The result of doing this is summarised in Table 10.Note that the Table assumes the adoption of the open world assumption since it considersF1 \F2 to be a valid hypothesis whether or not F1 and F2 have a non-empty intersection.However, if the closed world assumption is desired, it is of course possible to calculatethe hypothesis which has the second largest mass in those situtations in which F1 \ F2 ispreferred since this will clearly be the preferred hypothesis when F1\F2 = ;. To illustratethe use of Table 10 consider what happens when Old Bull Hubbard attends the clinic.Bull's symptoms indicate that m1(fpu; gs; fdg) = Much and m2(fgc; fdg) = Little so wecan say that the most likely diagnosis is fpu; gs; fdg and that we should have betweenhalf and much belief in this.4.3 Interval valuesIt is possible to generalise the approach suggested in Section 4.1 by allowing mass as-signments to be made using any interval value, and carrying out the usual addition andmultiplication of the application of Dempster's rule using interval arithmetic. This givesus an interval version of Dempster's rule in both its normalised (10) and unnormalised11



Mass of focal elements Preferred hypothesism1(F1) = All Bel(F1 \ F2) = Allm2(F2) = Allm1(F1) = All Bel(F1 \ F2) = Muchm2(F2) =Muchm1(F1) = All Bel(F1 \ F2) = Halfm2(F2) = Half Bel(F1) = Halfm1(F1) = All Bel(F1) =Muchm2(F2) = Littlem1(F1) = All Bel(F1) = Allm2(F2) = Nonem1(F1) =Much Bel(F1 \ F2) = [Half;All]m2(F2) =Muchm1(F1) =Much Bel(F1 \ F2) = [Little;Half ]m2(F2) = Half Bel(F1) = [Little;Half ]m1(F1) =Much Bel(F1) = [Half;Much]m2(F2) = Littlem1(F1) =Much Bel(F1) =Muchm2(F2) = Nonem1(F1) = Half Bel(F1 \ F2) = [Little;Half ]m2(F2) = Half Bel(F1) = [Little;Half ]Bel(F2) = [Little;Half ]Bel(�) = [Little;Half ]m1(F1) = Half Bel(F1) = [Little;Half ]m2(F2) = Little Bel(�) = [Little;Half ]m1(F1) = Half Bel(F1) = Halfm2(F2) = None Bel(�) = Halfm1(F1) = Little Bel(�) = [Half;Most]m2(F2) = Littlem1(F1) = Little Bel(�) =Mostm2(F2) = Nonem1(F1) = None Bel(�) = Allm2(F2) = NoneTable 10: All possible combinations of linguistically weighted mass assignments with single focalelements(3) forms. These can be written as:m00(C) = �Xi;jAi\Bj=C m(Ai)
0m0(Bj) (18)m00(C) = �Xi;jAi\Bj=C m(Ai)
0 m0(Bj)�0 �1	0 �Xi;jAi\Bj=; m(Ai)
0m0(Bj)� (19)where �P is a summation performed using interval addition. This approach makes itpossible to combine interval and exact numerical information since interval arithmeticworks equally well on interval and exact values, and gives more precise results than thelinguistic approach because intervals don't have to be rounded to the nearest linguisticinterval.As an illusration of this, consider the diagnosis of Jack's disorders again. When thelinguistic labels are discarded, then we have m1(fgc; pu; fdg) = [0:7; 1], m1(fgc; pu; gs;12



fdg) = [0; 0:3] and m2(fgc; fdg) = 0:5 m2(fgc; pu; gs; fdg) = 0:5. Combining thesegives Table 11, which tells us that belief in Jack having one of the disorders in fgc; ; pugis [0:35; 0:5] which is more precise information than the value [Little;Half ] that wascomputed using the linguistic labels. However, the less precise information a�orded by
\ m(fgc; pu; fd)g = [0:7; 1] m(�) = [0; 0:3]m0(fgc; pu; gsg) = 0:5 m00(fgc; pug) = [0:35:0:5] m00(fgc; pu; gsg) = [0; 0:15]m0(�) = 0:5 m00(fgc; pu; fdg) = [0:35; 0:5] m00(�) = [0; 0:15]Table 11: The result of considering interval information about Jackthe use of liguistic labels may be useful especially when the initial mass assignments areimprecisely known.Having interval results introduces the problem of ranking intervals against one anotherto determine which set of hypotheses are more likely. One means of doing this is to usethe ordering �Q3 [15] which is based on fuzzy arithmetic.[a; b] �Q3 [c; d] if and only if a � c and b � d (20)Other orderings are, of course, possible.5 Absolute orders of magnitudeIn Section 4.2 we performed an exhaustive analysis of the outcomes of di�erent massassignments which enable us to predict the most likely set of hypotheses given the intervalvalue of the mass assignment. What we found was that in certain cases F1 \ F2 wasthe most likely hypothesis, while under other conditions F1, F2, or even � were mostlikely. These results suggest a similar analysis in which we consider the limits on themass assignments to determine under which conditions particular combinations of focalelements are preferred. That is, which combinations of focal elements have the, possiblyequal, largest mass assigned to them. As was the case in Section 4.2 the open worldassumption will be made.5.1 Two mass assignmentsWe will begin the analysis by considering the combination of two mass assignments m1and m2 which, as in Section 4.2 each have a single focal element F1 and F2 to which theyassign mass M1 and M2 It is clear that F1 \ F2 is one of the most credible hypotheses ifbelief in it is greater than or equal to the belief in F1, F2 or �. This will be the case ifM1:M2 �M1:(1�M2), (1�M1):M2 and (1�M1):(1�M2).Thus we can say that F1\F2is one of the most credible hypotheses if:M1 � 0:5 and M2 � 0:5while F1 is one of the most credible hypotheses if:M1 � 0:5 and M2 � 0:5From these and similar calculations, we can determine a set of rules that specify theresult of combining a pair of mass functions based only on the relative sizes of the masses13



distributed. IF M1 � 0:5 and M2 � 0:5 (21)THEN F1 \ F2 is one of the preferred hypothesesIF M1 � 0:5 and M2 � 0:5 (22)THEN F1 is one of the preferred hypothesesIF M1 � 0:5 and M2 � 0:5 (23)THEN F2 is one of the preferred hypothesesIF M1 � 0:5 and M2 � 0:5 (24)THEN � is one of the preferred hypothesesClearly, these rules are not mutually exclusive, and we can have a set of hypotheses whichare all equally likely, and more likely than all hypotheses not in the set. Note that theuse of the size of the masses relative to the landmark value 0:5 is reminiscent of absoluteorder of magnitude reasoning as discussed by [9], and the duality of the rules (21){(24) andTable 10 makes this approach similar to the use of speci�ed rules and tabular combiningfunctions for combining evidence [4].To illustrate the kind of reasoning that it is possible to perform with these rules,consider what happens when Cody visits the clinic. Cody's symptoms fall into two groups,one of which suggests that he is su�ering from ffd; gsg and the other of which suggeststhat he has fgs; pug. While it is not possible to put precise numbers on the degree towhich the symptoms suggest the sets of diseases, the physician who examines Cody iscon�dent that the belief mass that she assigns to the set ffd; gsg is at least 0:5, and sheis even more sure that the second set of symptoms indicate fgs; pug. Thus the �rst rulemay be applied to obtain the fact that the most credible diagnosis of Cody's problem isthat he is su�ering from ffd; gsg \ fgs; pug = fgsg, so that the disease that it is mostbelievable that Cody is su�ering from is gallstones.5.2 Three mass assignmentsAn obvious extension of the simple case analysed above is the case in which three simplemass assignments are combined. Thus to m1 and m2 we add m3 which allocates M3 toits focal element F3 and 1 � M3 to �. The result of this additional mass assignmentis to double the number of hypotheses which might be preferred, making the process ofdetermining the conditions under which they are preferred somewhat tedious but no moredi�cult than for the case of two mass assignments. We have:IF M1 � 0:5 M2 � 0:5 M3 � 0:5 (25)THEN F1 \ F2 \ F3 is one of the preferred hypothesesIF M1 � 0:5 M2 � 0:5 M3 � 0:5 (26)THEN F1 \ F2 is one of the preferred hypothesesIF M1 � 0:5 M2 � 0:5 M3 � 0:5 (27)THEN F1 \ F3 is one of the preferred hypothesesIF M1 � 0:5 M2 � 0:5 M3 � 0:5 (28)THEN F2 \ F3 is one of the preferred hypothesesIF M1 � 0:5 M2 � 0:5 M3 � 0:5 (29)THEN F1 is one of the preferred hypotheses14



IF M1 � 0:5 M2 � 0:5 M3 � 0:5 (30)THEN F2 is one of the preferred hypothesesIF M1 � 0:5 M2 � 0:5 M3 � 0:5 (31)THEN F3 is one of the preferred hypothesesIF M1 � 0:5 M2 � 0:5 M3 � 0:5 (32)THEN � is one of the preferred hypothesesThese results suggest that it is possible to predict the conditions for a certain hypothesisbeing preferred for any number of simple support functions [16]| that is belief functionsgenerated by mass assignments with a single focal element. If we have n assignments,m1; : : : ;mn each with a single focal element F1; : : : ; Fn to which it assigns, respectively,M1; : : : ;Mn, then for all 1 � i � j � n,IF M1 � 0:5; : : : ;Mi�1 � 0:5 (33)Mi � 0:5; : : : ;Mj � 0:5Mj+1 � 0:5; : : : ;Mn � 0:5THEN Fi \ : : : \ Fj is one of the preferred hypothesesIF M1 � 0:5; : : : ;Mn � 0:5 (34)THEN � is one of the preferred hypothesesThe discussion so far has concentrated on simple support functions since these are animportant class of belief functions with a large number of applications. However, it is alsointeresting to analyse more complex functions, and this is the subject of the next section.5.3 Several focal elementsThe use of mass assignments that do not generate simple support functions is a little morecomplex largely because of the number of possible hypotheses. Consider the combinationof two mass assignments m1 and m2 where m1 allocates M11, M12, and 1�M11�M12 toF11, F12 and � respectively while m2 allocates M21, M22, and 1 �M21 �M22 to F21, F22and �. Once again determining the preferred hypotheses is tedious rather than di�cult,and the result is the following set of rules:IF M11;M21 �M12;M22 � 13 (35)THEN F11 \ F21 is one of the preferred hypotheses:IF M11;M22 �M12;M21 � 13 (36)THEN F11 \ F22 is one of the preferred hypotheses:IF M11 �M12 � 13 (37)13 �M21;M22THEN F11 is one of the preferred hypotheses:IF M12;M21 �M11;M22 � 13 (38)THEN F12 \ F21 is one of the preferred hypotheses:IF M12;M22 �M11;M21 � 13 (39)THEN F12 \ F22 is one of the preferred hypotheses:15



IF M12 �M11 � 13 (40)13 �M21;M22THEN F12 is one of the preferred hypotheses:IF M21 �M22 � 13 (41)13 �M11;M12THEN F21 is one of the preferred hypotheses:IF M22 �M21 � 13 (42)13 �M11;M12THEN F22 is one of the preferred hypotheses:IF M11;M12;M21;M22 � 13 (43)THEN � is one of the preferred hypotheses:These rules may be generalised to the case of two mass functions with arbitrary numbersof focal elements. Consider we have m1 which allocates M11; : : : ;M1m, to F11; : : : F1mrespectively and 1�M11�; : : :�M1m to � whilem2 allocatesM21; : : : ;M2n, to F21; : : : ; F2nand 1 �M21�; : : : ;�M2n to �. Given 1 � i � m, and 1 � x � n, and considering all1 � j � m such that j 6= i, and all 1 � y � n such that y 6= x, we have:IF M1i �M1j � 1m (44)M2x �M2y � 1nTHEN F1i \ F2x is one of the preferred hypothesesIF M1i �M1j � 1m (45)1n �M2x �M2yTHEN F1i is one of the preferred hypothesesIF 1m �M1i �M1j (46)M2x �M2y � 1nTHEN F2x is one of the preferred hypothesesIF 1m �M1i �M1j (47)1n �M2x �M2yTHEN � is one of the preferred hypothesesAnd combining the results of Sections 5.2 and 5.3 will enable us to predict the outcome ofmany applications of Dempster's rule. It should be noted, however, that these conditionsare su�cient, but not necessary. That is, there are other conditions which will result inthe same preferred hypotheses. For instance, consider M11 = M12 = 0:3, M21 = 0:8 andM22 = 0:1. In this case the preferred hypothesis is F21 even though the conditions for(41) are not satis�ed. The necessary conditions are not given since they may not simplybe extended to the general case.6 SummaryThis paper has introduced a number of di�erent ways in which the Dempster-Shafertheory of evidence may be applied when precise numerical weights are not given for the16



various pieces of evidence. Firstly, the idea of a completely qualitative theory of evidencewas introduced. In this approach, all numbers are abstracted away to be replaced by thequalitative values + and 0. This strips the theory down to its bare bones, which may stillprove useful in identifying which hypotheses are indicated by the evidence in situationswhere numerical weights may not easily be identi�ed. By assuming that the smallest setof hypotheses is the most likely set it is possible to combine evidence to identify the mostlikely hypothesis. Adopting the heuristic approach of the improper linear model allowsus to choose between several smallest sets. The paper then introduced a number of waysof using the Dempster-Shafer theory with limited numerical information. Firstly, theidea of using \linguistic quanti�ers" in the sense of [8] was introduced, and results givenfor all possible combinations of a pair of simple functions whose mass assignments weretaken from the set of linguistic quanti�ers. Then this approach was generalised to dealwith mass assignments whose values are arbitrary intervals, and it was shown how thisapproach may be used to combine exact and interval values. The third approach that wasintroduced concerned means of predicting the outcome of a combination using Dempster'srule in its unnormalised form (in the sense of predicting which hypothesis is most likely)based on how the mass of hypotheses compare to landmark values. Results are given forthe combination of any number of simple support functions, and the combination of apair of mass assignments with arbitrary numbers of focal elements.AcknowledgementThis work was partially supported by a grant from BT. Thanks to Robin Smith and ChrisWhitney at BT for help in explaining the domain for which this approach was developed,advice to the e�ect that it was not possible to publish anything to do with this domain, andencouragement to write the paper anyway. Thanks are also due to the Imperial CancerResearch Fund who paid for me to travel to Barcelona where a preliminary version of thispaper was presented.References[1] Bobrow, D. Qualitative reasoning about physical systems. Elsevier Publishers Ltd,North-Holland, 1984.[2] Chard, T. Qualitative probability versus quantitative probability in clinical diagnosis:a study using computer simulation, Medical Decision Making, 11, 38{41, (1991).[3] Clarke, M. R. B. Discussion of `Belief functions' by Ph. Smets [17], in Non-standardlogics for automated reasoning, Ed. Smets, Ph., Mamdani, E. H., Dubois, D. andPrade, H., Academic Press, London, 1988.[4] Cohen, P. R., Shafer, G., Shenoy, P. P., Modi�able combining functions, in Uncer-tainty in Arti�cial Intelligence 3, L. N. Kanal, Levitt, T. S. and Lemmer, J. F. ed.,Elsevier, North-Holland, 1989.[5] Davis, R. Diagnostic reasoning based on structure and behaviour, Arti�cial Intelli-gence, 24 (1984) 347{410.[6] Dawes, R. M. The robust beauty of improper linear models in decision making, inJudgement under uncertainty: Heuristics and biases, Ed. Kahnemann, D., Slovic, P.,and Tversky, A., Cambridge University Press, Cambridge, 1982, 391{408.17
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