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Abstract

This paper introduces the idea of using the Dempster-Shafer theory of evidence with
qualitative values. Dempster-Shafer theory is a formalism for reasoning under uncertainty
which may be viewed as a generalisation of probability theory with special advantages in
its treatment of ambiguous data and the ignorance arising from it. Here we are interested
in applying the theory when the numbers that it usually operates over are not universally
available. To cope with this lack of numbers, we use qualitative, semiqualitative, and
linguistic values, and apply a form of order of magnitude reasoning.

1 Introduction

Dempster-Shafer theory is a numerical method for evidential reasoning. The theory origi-
nated with a paper by the statistician Arthur Dempster [7] who wanted to free probability
theory from the need to attach a measure of uncertainty to every hypothesis under con-
sideration [11]. His work remained hidden in the statistics literature until Glenn Shafer,
one of Dempster’s students, brought the material to a wider audience in his doctoral
dissertation [16]. The method has become popular, and the basic model has been ex-
tended in a number of directions in recent years [17], [19], [20]. In this paper I propose
another adaptation of the model. My interest is in reasoning under uncertainty when all
the numerical information required by methods such as Dempster-Shafer theory are not
available, handling such a lack of information [13] [14] by using techniques from qualita-
tive reasoning [1]. Extending the approach first suggested in [15], I consider replacing the
numerical operands of more usual applications of Dempster-Shafer theory with qualitative
values. These give degraded, but still useful, results which are illustrated by a number of
examples.

In Section 2, the basics of Dempster-Shafer theory are explained for the benefit of those
who are not familiar with the approach. Section 3 introduces the qualitative version
of the theory, and Section 4 applies the theory to linguistic and other semiqualitative



values, while Section 5 assesses what can be done with knowledge of the absolute order
of magnitude of values. Section 6 concludes.

2 Dempster-Shafer theory

The basic idea of the Dempster-Shafer theory is that numerical measures of uncertainty,
termed basic probability masses, may be assigned to sets of hypotheses as well as individ-
ual hypotheses. Consider the following example, adapted from the work of Philippe Smets
[17]. Mr Jones has been murdered. We know that the murderer was one of three notorious
assassins, Peter, Paul and Mary, so we have a set of hypotheses © = { Peter, Paul, Mary}.
The only evidence that we have initially is that of Mrs Jones who saw the killer leaving
the scene of the murder and is 80% sure that it was a man. Thus all we know is that
p(Man) = 0.8. If we were using probability theory we would have to:

(a) allocate p(—-Man) = p(Mary) =1-0.8 =0.2
(b) allocate p(Man) = 0.8 = p(Peter) + p(Paul) = 0.4 + 0.4

The first since p(Man)+p(—~Man) = 1, and the second by some principle such as the prin-
ciple of maximum entropy. With evidence theory, however, we are not limited to allocating
probability to the members of the set {{Peter}, {Paul},{Mary}}. We have instead a
mass assignment function m(-) where m : 22 + [0, 1] assigns probabilities to any set which
is a member of the power set of O, that is the set 22 = {{ Peter, Paul, Mary}, { Peter,
Paul},{Peter, Mary}, {Paul, Mary},{Peter},{Paul},{Mary},0}. The only restric-

tions on m(-) are:
> m(z)=1 (1)

m(f) =10 (2)

so that all the assigned probabilities sum to unity, and there is no belief in the empty
set. Note that any subset x of the frame © for which m(x) is non-zero is called a focal
element.

In the case of Mr Jones” murder we can assign values to equate with what we know and
nothing more. We know that p(Man) = 0.8 so that the focal element is {Peter, Paul}
and m({Peter, Paul}) = 0.8. We know nothing about the remaining probability so it
is allocated to the whole frame of discernment— m({Peter, Paul, Mary}) = 0.2. Now,
consider that a second piece of evidence comes to light. It is reported with confidence
0.6 that Peter was leaving on a jet plane when the murder occurred, so that we have
m/({Paul, Mary}) = 0.6, and m/({Peter, Paul, Mary}) = 0.4. We would like to combine
these two pieces of evidence, and this may be done by combining the mass assignments
using Dempster’s rule to create a new mass assignment m” defined by:

m"(C)=" 3 m(A)m'(B;) (3)

Aiﬂ%]:jzc
We will write m” = m @n m’ as a shorthand for this operation. Put simply, the result of
combining two assignments is that for any intersecting sets A and B, where A has mass
M from assignment m and B has mass M’ from assignment m’, the belief accruing to
their intersection is the product of M and M’. the combination for our example is given
in Table 1. Having established the final mass assignments of the set of hypotheses we can



‘ Pn H m({Peter, Paul})= 0.8 ‘ m(0) = 0.2 ‘
m/({Paul, Mary}) = 0.6 m"({Paul}) = 0.48 m"({Paul, Mary}) = 0.12
m'(0) =04 m"({ Peter, Paul}) = 0.32 m"(©) = 0.08

Table 1: Combining the mass functions for the murder example

assess the belief and plausibility of any set of hypotheses as follows:

Bel(4)= Y m(B) (4)

Pi(A)= Y m(B) (5)
BNA#D

These measures are clearly related to one another:
Bel(A)=1— PIl(-A) (6)
PI(A)=1— Bel(-A) (7)

The belief in any set is the sum of all the probabilities of all the subsets of that set. The
plausibility is the sum of all the values not accruing to any sets that are exclusive of the
one in question. The function Bel : 29 + [0,1] is known as a belief function [16] and
its dual Pl : 2% + [0,1] is called a plausibility function [17]. Calculating the belief and
plausibility in the case of Mr Jones” murder:

Bel({Paul}) = 0.48
Bel({Peter, Paul}) = m"({Peter})+ m"({Paul}) + m"({Peter, Paul})
04 0.48 4+ 0.32
0.8
Bel({Peter, Paul, Mary}) = 1

Pl({Peter}) m"({Peter, Paul}) + m"({Peter, Paul, Mary})
0.4
Pi{Mary}) = 0.2

In a similar way, Bel({Peter}) = Bel({Mary}) = Bel({Peter, Mary}) = 0, Bel({ Paul,
Mary}) = 0.6, Pl({Peter, Mary}) = 0.52, and PI({Paul}) = PI({Paul,Mary}) =

Pi({Peter, Paul, Mary}) = 1. This rule of combination is unproblematic so long as
no two focal elements have an empty intersection, that is as long as

m(@) = > m(A)m(B;) =0 (8)
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Violations of this condition are problematic. What a non-zero mass for ) suggests is that
there is belief in a hypothesis that is not in the frame of discernment. However, the frame
of discernment is an exhaustive set of hypotheses, and so it is not possible to have belief
in something outside it.

One possible way around the problem is to normalise the result of applying Dempster’s
rule, dividing the mass assigned to every focal element of m” by:

L= > m(A)m'(B;) (9)

i,
AiﬂBj:@



This is the approach advocated by Shafer [16]. Thus the normalised version of Dempster’s
rule is: .
> m(A)m'(B;)

Ainléjj=c
1— X m(di)m/(B;)

i,
AiﬂBj:@

m"(C) = (10)

Now, normalisation is only required when the evidence that is described by the mass
assignments disagree. Thus, in the case of Mr Jones’ murder, normalisation would be
required if the second piece of evidence were that both Peter and Paul were on the ’plane.
Then one piece of evidence would indicate that the culprit was either Peter or Paul and the
other would indicate that it was Mary. Recognising this has led some authors, including
Zadeh [21], to criticise the use of normalisation since it can lead to counter-intuitive results
if most of the mass after a combination, but before normalisation, is assigned to the empty
set.

The problem with assigning mass to the empty set arises from the assumption that ©
is exhaustive. Smets [17] gets around the problem by making an “open world assumption”
that the real solution may lie outside the frame of discernment. Under such an assumption
any mass that is assigned to ) after a combination is taken to be the belief that the solution
is a hypothesis that is not included in ©. This position is not without its critics, see for
example [3].

One point that should be noted is the interpretation of the belief and plausibility
measures. There are many points of view. Smets [18] takes Dempster-Shafer belief to be
a quantification of subjective credal belief that is distinct from the probabilistic pignistic
belief that is necessary for decision making. Others take belief and plausibility as lower
and upper bounds on the probability that may be assigned to an event. Under such an
interpretation, the results of applying the Dempster-Shafer theory are consistent with any
probabilistic analysis of the same problem, they just make less assumptions.

Finally in this section, it is worth noting that, despite the fact that it is often criticised
as being computationally intractable ! the Dempster-Shafer theory has been used to build
complex applications, including the combination of visual evidence in a robot navigation
system [10].

3 A qualitative approach to evidence theory

As it stands, evidence theory works very well as long as all the necessary numerical
information is available. Provided that we can put a basic probability mass on any piece
of evidence that comes to light then the theory gives us intuitive results. However, a
problem arises when we do not have easily quantifiable evidence. For instance we may
be taking readings from faulty sensors, or we may be dealing with data which relates
to occurrences that happen so rarely that no accurate numbers are available. In such
cases all we can say about a particular piece of evidence is that it indicates that certain
hypotheses are true to ‘a certain degree’. To what degree ‘a certain degree’ is we have
no idea. What we would like is to use the intuitive evidence theory style of reasoning to
combine such pieces of evidence to give us some idea of what the evidence implies. The
following sections describe a method, which is an extension of that discussed in [15], in
which qualitative values are used to provide representations of ‘a certain degree’ which

! This problem should have been comprehensively laid to rest by Wilson [20] who has provided efficient algo-
rithms for both exact and approximate computation of the result of combining mass functions



may be combined with other pieces of evidence and summed to give degrees of belief and
plausibility

3.1 Basic qualitative values

Consider what would have happened in the enquiry into Mr Jones’ murder if Mrs Jones
could not say how sure she was that the person she saw running from the house was a man.
Say that she is sure that it could be a man so that m(Man) > 0, and she is unable to say
for sure that it was a man so that m(Man) < 1, but is unwilling to commit herself further.
In such a case we have m({Peter, Paul}) = something, m({Peter, Paul, Mary}) = 1 —
something where 0 < something < 1. The value something may not be manipulated
using normal arithmetic. Instead we convert it to a qualitative value using the mapping

[[]: R~ {+,0}:

+, f0< M<1;

For any « € O, m(x) = M, becomes [m(z)] = {0 M = 0 (11)

which says that any mass that is known to be non-zero is represented by the qualitative
value + while zero values are represented by the value 0. It also makes the assumption
that a given basic probability assignment assigns mass to at least two members of 29
ensuring that 0 < m(x) < 1. Applying this mapping from unknown numerical values
to qualitative values makes no assumptions about the value of something, but enables
us to manipulate the unknown value using the well-established methods of qualitative
arithmetic [1]. Thus when Mrs Jones is unwilling to give a numerical estimate, we have
p(Man) = + so that m({Peter, Paul}) = + and m({Peter, Paul, Mary}) = +. Mass as-
signments are combined using Dempster’s rule as before, with arithmetic being performed
using restricted versions of the standard combinator tables for qualitative addition & and
qualitative multiplication @ [1].(see Table 2). So when the witness in the aeroplane also

o+ 0 (o] + 0]

+ + + [+
0 0 00

i

+ +

Table 2: Qualitative combinator tables

refuses to give a numerical estimate of how sure they are that Peter was on the plane, we
have m/({ Paul, Mary}) = +, m'({ Peter, Paul, Mary}) = +, and these may be combined
as in Table 3 to give the following qualitative beliefs and plausibilities:

Bel({Paul}) = +
Bel({Peter, Paul}) = m"({Peter})+ m"({Paul}) + m"({Peter, Paul})
= +
Bel({Peter, Paul, Mary}) = +

| Bn | m({Peter, Paul}) = + | m(0) = + |
m'({Paul, Mary}) = + m”({Paul}) = + m"({Paul, Mary}) =+
m'(0) =+ m"({Peter, Paul}) = + m"(0) = +

Table 3: Combining the qualitative mass functions for the murder example



Pi({Peter}) = m"({Peter, Paul})+ m"({Peter, Paul, Mary})
-+
Pi{Mary}) = +

At first sight these results don’t seem to be very helpful, since all the sets of hypotheses
have the same degree of support from the evidence. However, this first impression is not
really correct. What the stripping away of the numbers makes extremely clear is that the
beautiful and intuitive mechanism of evidence theory works just as well without numbers
as 1t does with them, and it continues to lay bare the implication of the evidence.

What we can see from this, just as well as we can see from the numerical example, is
that there is only one singleton hypothesis that is indicated by the evidence, { Paul}, and
that if we want to consider hypotheses of the form ‘A or B’, then there is evidence for
{Paul, Mary} and {Peter, Paul}?. The method will even detect evidence for solutions
other than those in the frame of discernment {Peter, Paul, Mary}, if the open world
assumption is accepted, by the accruing of a + to the empty set (} when the focal elements
of the mass functions do not intersect. This will be discussed further in Section 3.3.

Of course it is possible to invent pathological cases where the intuitive result is the
wrong one. Consider what would happen if m/({Paul, Mary}) were 0.1. The final result
of the weighing of the evidence would be Bel({Paul}) = 0.08, Bel({Peter, Paul}) =
0.8 which suggests that there is little evidence against Paul alone, while the qualitative
solution would be the same as before. However, this does not mean that there is no virtue
in using the qualitative approach to establish which way the evidence points in particular
situations where no numerical probability masses may be established, it merely makes
the point that this qualitative approach is heuristic. Thus it will often produce correct
answers where the numerical method would be unable to do so, but will, on occasion
produce incorrect answers.

3.2 A simple example

By way of illustrating the usefulness of qualitative evidence theory we will consider an
example from decision making in gastroenterology which was also studied in [15]. We
consider a clinic specialising in the diagnosis of gastroenterological complaints. These
complaints are gastric cancer, peptic ulcers (both gastric and duodenal ulcers), gallstones,
and functional disorders. The latter are conditions with no identifiable organic cause, and
are often stress related. Over many years, a number of symptoms and signs which provide
useful information for discriminating between complaints have been recorded from many
patients. These are signs of jaundice, pain after meals, weight loss and the age of the
patient.

The clinic’s research into gastric disorders has progressed since it was reported in
[15]. Workers at the clinic have now established that particular symptoms are evidence
for particular sets of diseases. Thus jaundice indicates gallstones or functional disorder
{gs, fd}, pain after meals indicates gastric cancer, peptic ulcer or functional disorder
{gc, pu, fd}, weight loss indicates gastric cancer {gc} and if the patient is elderly then
she is likely to be suffering from gastric cancer, peptic ulcer or gallstones {gc, pu, gs}. We

ZSince the set {Peter, Paul} not only represents the set of hypotheses { ‘Peter killed Mr Jones’,'Paul killed
Mr Jones’ } but is also the hypothesis ‘Peter or Paul killed Mr Jones’, I will use the term ‘hypothesis’ to denote
both the individual members of { Peter, Paul} and the set itself. Which is being referred to will be clear from the
context.



| @n | m{ge, pu, fd}) =+ | m({ge, pu, gs, fd}) = + |
m/({ge,pu,gs}) = + m"({ge,pu}) = + m"({ge, pu, gs}) = +
m/({ge,pu, gs, fd}) = + || m"({ge, pu, fd}) = + | m"({ge, pu, gs, fd}) = +

Table 4: The result of considering two pieces of evidence about Jack

"({ge}) =+ | m"ge,pu, gs, fd}) =+ |
m( ""({ge}) = + | m""({ge,pu}) = +
m"({gc, pu, gs}) = + ""({gc}) = + | m""({ge, pu, gs})
m"({ge, pu, fd}) = + ""({ge}) = + | m""({ge, pu, fd})
m"({ge, pu, gs, fd}) =+ || m""({ge}) = 4+ [ m""({ge, pu, gs, fd}) = +

Table 5: The result of considering a third piece of evidence about Jack

| ©n |
"({ge,pu}) = +

313333

=+
=+

are interested in the case of Jack, an elderly patient who shows no signs of jaundice but
has recently lost weight and often has pain after eating.

Considering the evidence of Jack’s age and the fact that he suffers pain after eating
gives us the results of Table 4, which suggests that the most specific diagnosis is that Jack
is suffering from either gastric cancer or peptic ulcer. Now we consider the evidence that
Jack has recently lost weight. This gives the results of Table 5.which strongly indicates
that Jack has gastric cancer since not only is gastric cancer the only singleton hypothesis
indicated by the evidence, but it is also a member of every single other set of hypotheses
that the evidence points to.

3.3 Extending the basic model

The basic approach discussed in Sections 3.1 and 3.2 is unproblematic when dealing with
simple sets of evidence. When there is only one set of hypotheses that is smaller than any
other, then it is clear which is the most specific set of hypotheses favoured by the evidence,
and it seems natural to make the heuristic assumption that this set of hypotheses is to
be preferred as an explanation of the evidence. Thus in Jack’s case the diagnosis of {gc}
is the one that best fits the evidence of his three symptoms. However, it will not always
be the case that the set of preferred hypotheses are so obvious. Take the case of Irwin,
another patient who comes to the clinic of Section 3.2 as an example of the problems that
might arise.

When Irwin’s symptoms are related to the diseases that the clinic specialises in, it
is clear that there is evidence for two possible sets of diseases, gallstones or functional
disorder {gs, fd} and gastric cancer or peptic ulcer {ge,pu}. The result of combining
this evidence is given in Table 6. The combined mass distribution given in Table 6
is somewhat more complicated to understand than those considered previous, largely
because it introduces the vexed issue of normalisation. Part of the basic probability
assignment m” is given to the empty set (). Under the closed world assumption this is
not permitted, and the mass must be re-distributed by dividing the masses of all the

[ ®n [ m({gs, Fd}) =+ [ m({ge,pu.gs, Fd}) = + |
m'({ge.pu}) = + m"(0) = + m"({ge,pu}) = +
m'({ge.pu.gs, Fa}) = + | m"({gs. fd}) = + | m"({ge.pu. gs, fd}) = +

Table 6: The result of considering two pieces of evidence about Irwin




remaining members of 2° by 1 — 4. This is easy to accomplish. Dividing the masses by
1 —+, which is positive since the 4+ discussed here is known to represent a number strictly
less than one (11), does not change anything, giving a new distribution:

m"({ge, pu, gs, fd}) = +

This clearly indicates that there are two preferred sets of hypotheses; {g¢s, fd} and
{gc, pu}. However, what normalising misses is the main conclusion of the evidence. The
reason that mass is assigned to the empty set is that the two pieces of evidence that
generate m and m’ are completely contradictory. One suggests gastric cancer or peptic
ulcer, the other suggests gallstones or functional disease, so that there is absolutely no
common ground between them. If we want to acknowledge this contradiction, we must
accept the open world assumption.

Under the open world assumption, the restriction concerning the assignment of mass
to the empty set (2) is dropped, and belief and plausibility in a set of hypotheses is
computed, as according to Smets [17], by:

Bel(4)= 3" m(B) (12)

BCA

BA0
As a result of the assumption, the mass assigned to the empty set has a new and useful
meaning. It allows us to compute the amount of belief in a hypothesis outside the frame of
discernment, that is a hypothesis that was not originally thought to be worth considering
(or even a hypothesis that was not even thought of) but which becomes a likely option in
the light of the evidence. It is worth noting that here the expression ‘a hypothesis’ (rather
than ‘a set of hypotheses’) is used advisedly, not least because Smets takes §) to be a single
hypothesis. It makes sense to assume it is a single hypothesis on similar grounds to those
on which the single fault hypothesis [5] is adopted— that if the evidence is pointing to
something that previously escaped notice, this is more likely to be one thing than many
things.

In the case of Irwin’s visit to the clinic, the meaning of the mass assigned to the
empty set is that he is suffering from none of the usual diseases. This interpretation
seems to be a natural and reasonable conclusion to draw from the conflict in the evidence,
and it certainly seems to be a better conclusion that that drawn using the closed world
assumption. Thus, we can say that when the redistribution of mass by normalisation fails
to suggest a single preferred hypothesis, then the open world assumption may provide a
better interpretation of the evidence 3.

This adoption of the open world assumption solves one possible problem with the
purely qualitative quantifiers, but there is another. Consider how the preferred hypothesis
changes when a third piece of evidence, which indicates that Irwin is suffering from gastric
cancer, is considered. The result of doing this is given in Table 7. Since the empty set is
taken to represent a single hypothesis outside O, the result of this third piece of evidence
is to suggest that there are two singleton hypotheses as to which disease Irwin is sufering
from. These are that Irwin is suffering from gastric cancer, and that Irwin is suffering
from something other than gastric cancer, peptic ulcer, gallstones or functional disorder.

3 And it is interesting to note that in most criticisms of normalisation this is indeed the case— equal masses
are assigned to the two contradictory hypotheses.



[ ®n | m"({gc}) =+ | m”({gc,pu,gs,fd}) =+ |
m"({gs, fd}) = + m™'(0) = + m""({gs, fd}) =
m"({ge, pu}) = + m""({gc}) = + | m""({ge, pu})
m///(@) — _I_ m////(@) — _I_ m////( )
m"({ge,pu, gs, fd}) =+ | m""({ge}) = + | m""({gc, pu, gs, fd}) =

Table 7: The result of considering a third piece of evidence about Irwin

This i1s as much as this qualitative application of the Dempster-Shafer theory will tell
us— that is there are two possibilities, each with weight 4. The question is, what is the
diagnosis?

There are a couple of options. One is not to choose one disease over another. We
could argue that since both () and {gc} are singleton hypotheses, and so are both ‘most
specific’ sets of hypotheses, both satisfy the heuristic condition discussed above for being
preferred hypotheses and so both should be taken as the most likely hypothesis. Thus we
have a preferred set of hypotheses {gc,)}. This is a rather cautious approach, which does
not discard any hypothesis which is strongly suggested by the evidence, and this caution
no doubt makes it attractive for some applications *. However, this interpretation of
results goes somewhat against the intuitions of the original Dempster-Shafer theory since
it suggests that the preferred set of hypotheses is one which is not a focal element of any
mass assignment (since it is a composite of two such focal elements). What this means is
that it should be possible to calculate seperate beliefs for both () and {gc} and use these
to make a choice between them, and doing so is perhaps more in keeping with the original
theory.

To calculate the beliefs for ) and {gc} with a view to selecting one as more likely than
the other involves the use of another heuristic, albeit one for which there is a good deal of
experimental support [2] [6]-— an improper linear model. Using an improper linear model
in this case is rather simple. We add up the number of pieces of evidence for each of
the two preferred hypotheses (since there are no pieces of evidence directly against them)
and select as most likely the singleton hypothesis with the most pieces of evidence in its
favour. In Irwin’s case, since there are more indications that he is suffering from a disease
outside the frame of discernment (three) than there are that he is suffering from gastric
cancer (two), we say that belief in him suffering from gastric cancer is less than belief in
him suffering from a disease that is not under consideration.

4 Semiqualitative approaches

It is possible to further refine the qualitative approach if we have some idea of the nu-
merical values of the mass assignments to the focal elements. This section discusses two
ways in which this may be done. Both combine elements of qualitative and quantitative
information, and so are known as semiqualitative approaches.

4.1 Using linguistic values

For instance, consider that we have information that allows us to quantify the mass
assignments in terms of a set of linguistic labels, which correspond to a subintervals of

‘Especially medical ones. If I were a patient at the clinic with the same symptoms as Irwin I would like the
suggestion of gastric cancer to be taken very seriously indeed.



the unit interval [0, 1], in a similar manner to that considered by [8]. We take the following
symmetric set of subintervals: P = {0, (¢, a], [a,1 — a],[1 — a,1 — €),1} whose names are,
respectively; None, Little, (About)Hal f, Much and All. These subintervals are ordered:

None < Little < Half < Much < All (13)

As in [8] we take € to be some positive infinitesimal quantity while @ is some number in
(0,0.5) and assume that we have enough knowledge to place the value of a mass assignment
into one of the intervals. In practice we take a = 0.3, so that it is appropriate to note (as
in [8]) that ‘about half’ is short for ‘neither little, nor much but somewhere in between’. In
order to manipulate these linguistic values we need some means of performing arithmetic
on numbers and intervals. This ability is provided by interval arithmetic [12]. For any
pair of intervals [a, b] and [c, d], where ¢ < b and ¢ < d, interval addition @', multiplication
®', subtraction &’ and division @ are defined by:

[a,b] & [e,d] = [a+c,b+d] (14)
[a,b] @ [e,d] = [ax ¢, bxd] (15)
[a,b] & [e,d] = [a—d,b— (] (16)
[a,b] @' [e,d] = la/d,b/c] (17)

Note that ‘degenerate’[12] intervals [a, b] where a = b are allowed so that interval arith-
metic may be applied to numbers and intervals together, and that interval division is not
defined for ¢ = 0 or d = 0. Given that the mass assignments are quantified with the set
of linguistic labels, we can use interval arithmetic and Dempster’s rule to compute the
result of combining evidence in terms of the linguistic labels and combinations of labels,
such as [Little, Much] = {X € P|Little < X < Much}. Such combinations of intervals
are necessary given the tendency of interval arithmetic to expand the bounds on intervals
when they are combined. Thus when adding Little and Little, which is performing the
interval calculation [0, 0.3] + [0, 0.3], we get [0,0.6] by (14). This is an interval which does
not have a linguistic label in P, but it is clear that the value which is known to lie in
[0,0.6] must lie in the interval [0,0.7] which is represented by [Little, Much], and is the
smallest compound interval that will contain [0,0.6]. This compound interval may be
given the gloss ‘between a little and most’.

Now, to hark back to Jack’s trip to the clinic, consider what would have happened if
we had the information that if a patient has pain after meals we should have much belief
in his having gastric cancer, peptic ulcer or functional disorder {gc, pu, fd}, whilst if a
patient is elderly then we should have a middling belief that he is suffering from gastric
cancer, peptic ulcer or gallstones {gc, pu, gs}. For Jack, we now have the combined mass
assignment given in Table 8 which is rather more precise than before. We could, of course,

| ©n [ m({ge, pu, fd)} = Much | m({ge, pu, gs, fd}) = Little |
m' ({gc, pu,gs}) = Hal f m' ({gc, pu}) = [Little, Hal f] m" ({ge, pu, gs}) = Little
m’({ge, pu, gs, fd}) = Half || m"({ge, pu, fd}) = [Litile, Half] | m”({gc, pu,gs, fd}) = Little

Table 8: The result of considering two pieces of semiqualitative information about Jack

add in the third mass assignment to make use of the fact that if the patient has recently
suffered a weight loss then we should have much belief in his having gastric cancer. This
gives the result that Bel({gc}) = [Little, Much] while all other sets of hypotheses have
belief Little (Table 9).
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"({ge}) = Much | " ({ge,pu, gs, fd}) |

m m
m' ({gc, pu}) = [Little, Hal f] m"" ({gc}) = [Little, Hal f] | m""({ge, pu}) = Little

m" ({ge, pu, gs}) = Little m"" ({gc}) = Little m"" ({ge, pu, gs}) = Little

m" ({ge, pu, fd}) = [Little, Hal f] || m""({ge}) = [Little, Half] | m'""'({gc, pu, fd}) = Little
m" ({gc, pu, gs, fd}) = Little m"" ({gc}) = Little m"" ({ge, pu, gs, fd}) = Little

Table 9: The result of considering the third piece of semiqualitative information about Jack

Clearly the method of semiqualitative linguistic labels would work equally well for
larger sets of labels, and, as Table 9 illustrates, mass assignments may be made in terms
of compound intervals. The use of linguistic labels works equally well with either the open
or closed world assumption since (16) and (17) provide us with the machinery to perform
normalisation when mass is assigned to the empty set.

4.2 Pre-compiling combinations of linguistic labels

Another way of reasoning with linguistic quantifiers is to ‘pre-compile’ the results of all
possible assignments of linguistically quantified mass assignments. This is possible since
there is a finite number of possible combinations (which is clearly not the case for the
quantitative theory), and means that the process of combining mass functions is replaced
by looking up the answer in a table. To demonstrate the idea, we deal with the case of
mass assignments where m(-) assigns belief to a single subset of 8, and we have just two
such assignments. The concept can of course be extended to arbitrarily large numbers of
focal elements and mass assignments.

For two mass assignments m; and my each with a single focal element F; and Fj,
such that my(Fy) = My, ma(Fy) = M,, there are four sets to which the combined mass is
assigned; F1NFy, Fy, F; and ©. These have belief masses M. My, M;.(1—My), (1—My). M,
and (1 — My).(1 — M) respectively, assigned to them. The set of hypotheses (which can
under the open world assumption include the hypothesis §) indicating something outside ©)
with the largest belief is the one preferred by the evidence. With a set of linguistic labels,
we can compute the most believable set of hypotheses for every possible mass assignment,
and the belief in that hypothesis. The result of doing this is summarised in Table 10.
Note that the Table assumes the adoption of the open world assumption since it considers
Fi N F; to be a valid hypothesis whether or not F; and F;, have a non-empty intersection.
However, if the closed world assumption is desired, it is of course possible to calculate
the hypothesis which has the second largest mass in those situtations in which Fy N F; is
preferred since this will clearly be the preferred hypothesis when FiNF, = (). To illustrate
the use of Table 10 consider what happens when Old Bull Hubbard attends the clinic.
Bull’s symptoms indicate that mq({pu, gs, fd}) = Much and ms({gc, fd}) = Little so we
can say that the most likely diagnosis is {pu, ¢s, fd} and that we should have between
half and much belief in this.

4.3 Interval values

It 1s possible to generalise the approach suggested in Section 4.1 by allowing mass as-
signments to be made using any interval value, and carrying out the usual addition and
multiplication of the application of Dempster’s rule using interval arithmetic. This gives
us an interval version of Dempster’s rule in both its normalised (10) and unnormalised
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Mass of focal elements || Preferred hypothesis

ml(Fl) = All Bel(F1 N FQ) = All

mo (FQ) = All

ml(Fl):All Bel(FlﬂFg):Much

mg(F3) = Much

ml(Fl):All Bel(FlﬂFg):Half

mg(Fs) = Hal f Bel(Fy) = Half

my (Fp) = All Bel(Fy) = Much

mo (FQ) = Little

mg(F3) = None

my(F1) = Much Bel(Fy N Fy) = [Hal f, All]

mg(F3) = Much

my(F1) = Much Bel(Fy N Fy) = [Little, Hal f]

mg(Fs) = Hal f Bel(Fy) = [Little, Hal f]

my(F1) = Much Bel(Fy) = [Hal f, Much]

mo (FQ) = Little

my(F1) = Much Bel(Fy) = Much

mg(F3) = None

mq(F1) = Half Bel(Fy N Fy) = [Little, Hal f]

mg(Fs) = Hal f Bel(Fy) = [Little, Hal f]
Bel(F;) = [Little, Hal f]
Bel(©) = [Little, Hal f]

mq(F1) = Half Bel(Fy) = [Little, Hal f]

mg(Fy) = Little Bel(©) = [Little, Hal f]

mq(F1) = Half Bel(Fy) = Half

mg(F3) = None Bel(©) = Half

my (Fy1) = Little Bel(©) = [Half, Most]

mo (FQ) = Little

my (Fy1) = Little Bel(©) = Most

mg(F3) = None

mq(F1) = None Bel(©) = All

mg(F3) = None

Table 10: All possible combinations of linguistically weighted mass assignments with single focal
elements

(3) forms. These can be written as:

w(C)= Y mi) @ m(B)) (13)
()= Y mA)em(B) o {16 Y mA) o' m(B)}  (19)

where % i1s a summation performed using interval addition. This approach makes it
possible to combine interval and exact numerical information since interval arithmetic
works equally well on interval and exact values, and gives more precise results than the
linguistic approach because intervals don’t have to be rounded to the nearest linguistic
interval.

As an illusration of this, consider the diagnosis of Jack’s disorders again. When the
linguistic labels are discarded, then we have my({ge, pu, fd}) = [0.7,1], mi({gc, pu, gs,
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fd}) = 10,0.3] and mz({gc, fd}) = 0.5 mzs({gc, pu,gs, fd}) = 0.5. Combining these
gives Table 11, which tells us that belief in Jack having one of the disorders in {gc,, pu}
is [0.35,0.5] which is more precise information than the value [Little, Half] that was
computed using the linguistic labels. However, the less precise information afforded by

[ ®n | m{ge,pu, f)} =[0.7,1] [ m(©) =0,0.3] |
m'({ge, pu, gs}) = 0.5 || m"({ge, pu}) = [0.35.0.5] m"({ge, pu, gs}) = [0,0.15]
m'(0) =10.5 m”({gc, pu, fd}) =[0.35,0.5] | m"(©) =1[0,0.15]

Table 11: The result of considering interval information about Jack

the use of liguistic labels may be useful especially when the initial mass assignments are
imprecisely known.

Having interval results introduces the problem of ranking intervals against one another
to determine which set of hypotheses are more likely. One means of doing this is to use
the ordering >gs [15] which is based on fuzzy arithmetic.

[a,b] >qs [¢,d] if and only if ¢ > cand b>d (20)

Other orderings are, of course, possible.

5 Absolute orders of magnitude

In Section 4.2 we performed an exhaustive analysis of the outcomes of different mass
assignments which enable us to predict the most likely set of hypotheses given the interval
value of the mass assignment. What we found was that in certain cases F; N Fy was
the most likely hypothesis, while under other conditions Fy, F,, or even O were most
likely. These results suggest a similar analysis in which we consider the limits on the
mass assignments to determine under which conditions particular combinations of focal
elements are preferred. That is, which combinations of focal elements have the, possibly
equal, largest mass assigned to them. As was the case in Section 4.2 the open world
assumption will be made.

5.1 Two mass assignments

We will begin the analysis by considering the combination of two mass assignments m;
and my which, as in Section 4.2 each have a single focal element F; and F, to which they
assign mass My and M, It is clear that £y N Fy is one of the most credible hypotheses if
belief in 1t is greater than or equal to the belief in Fy, F; or O. This will be the case if
My. My > My.(1— M), (1 — M;).M; and (1 — M;).(1 — M;).Thus we can say that Fy N F,
is one of the most credible hypotheses if:

M1 Z 0.5 and M2 Z 0.5
while F} is one of the most credible hypotheses if:

M1 Z 0.5 and M2 S 0.5

From these and similar calculations, we can determine a set of rules that specify the
result of combining a pair of mass functions based only on the relative sizes of the masses
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distributed.

IF M, >05 and M; >0.5 (21)
THEN FiNF, isoneof the preferred hypotheses

IF M, >05 and M; <0.5 (22)
THEN F is one of the preferred hypotheses

IF M; <05 and M; >0.5 (23)
THEN E is one of the preferred hypotheses

IF M; <05 and M; <0.5 (24)

THEN G is one of the preferred hypotheses

Clearly, these rules are not mutually exclusive, and we can have a set of hypotheses which
are all equally likely, and more likely than all hypotheses not in the set. Note that the
use of the size of the masses relative to the landmark value 0.5 is reminiscent of absolute
order of magnitude reasoning as discussed by [9], and the duality of the rules (21)—(24) and
Table 10 makes this approach similar to the use of specified rules and tabular combining
functions for combining evidence [4].

To illustrate the kind of reasoning that it is possible to perform with these rules,
consider what happens when Cody visits the clinic. Cody’s symptoms fall into two groups,
one of which suggests that he is suffering from {fd, gs} and the other of which suggests
that he has {gs,pu}. While it is not possible to put precise numbers on the degree to
which the symptoms suggest the sets of diseases, the physician who examines Cody is
confident that the belief mass that she assigns to the set {fd, ¢gs} is at least 0.5, and she
is even more sure that the second set of symptoms indicate {gs, pu}. Thus the first rule
may be applied to obtain the fact that the most credible diagnosis of Cody’s problem is
that he is suffering from {fd, gs} N {gs,pu} = {gs}, so that the disease that it is most
believable that Cody is suffering from is gallstones.

5.2 Three mass assignments

An obvious extension of the simple case analysed above is the case in which three simple
mass assignments are combined. Thus to m; and my we add m3 which allocates Mj to
its focal element F3 and 1 — M3 to ©. The result of this additional mass assignment
is to double the number of hypotheses which might be preferred, making the process of
determining the conditions under which they are preferred somewhat tedious but no more
difficult than for the case of two mass assignments. We have:

IF M >05 M;>05 M;>05 (25)
THEN FiNFE,NF; isone of the preferred hypotheses

IF M >05 M;>05 M;<0.5 (26)
THEN F,NFE, is one of the preferred hypotheses

IF M, >05 M;<05 M;>05 (27)
THEN F,NnF; is one of the preferred hypotheses

IF M, <05 M;>05 M;>05 (28)
THEN N Fs is one of the preferred hypotheses

IF M, >05 M; <05 M;<05 (29)
THEN F is one of the preferred hypotheses
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IF My <05 My>05 M;<0.5 (30)

THEN E is one of the preferred hypotheses

IF M, <05 M;<05 M;>05 (31)
THEN 3 is one of the preferred hypotheses

IF M, <05 M;<05 M;<05 (32)
THEN G is one of the preferred hypotheses

These results suggest that it is possible to predict the conditions for a certain hypothesis
being preferred for any number of simple support functions [16]— that is belief functions
generated by mass assignments with a single focal element. If we have n assignments,
my, ..., my, each with a single focal element Fy,..., F, to which it assigns, respectively,
My,...,M,, then for all 1 <: < j <n,

IF M, <05,...,Mi_; <0.5 (33)
M;>05,...,M; > 05
M1 <05,..., M, <05

THEN F,n...NFE; is one of the preferred hypotheses
IF M, <0.5,...,M, <05 (34)
THEN G is one of the preferred hypotheses

The discussion so far has concentrated on simple support functions since these are an
important class of belief functions with a large number of applications. However, it is also
interesting to analyse more complex functions, and this is the subject of the next section.

5.3 Several focal elements

The use of mass assignments that do not generate simple support functions is a little more
complex largely because of the number of possible hypotheses. Consider the combination
of two mass assignments m; and my where my allocates My, My, and 1 — My; — M5 to
Fi1, Fiy and O respectively while my allocates Myy, Myy, and 1 — My — My to Fyy, Fys
and 0. Once again determining the preferred hypotheses is tedious rather than difficult,
and the result is the following set of rules:

IF My, My, > My, Myy > % (35)
THEN FiinNFy is one of the preferred hypotheses.

IF My, Myy > My, My > % (36)
THEN Fiin Fyy is one of the preferred hypotheses.

IF My > My, > 4 (37)

% > My, My,

THEN iy is one of the preferred hypotheses.

IF My, My, > My, Myy > % (38)
THEN FioN Fy is one of the preferred hypotheses.

IF My, Myy > Myy, My > % (39)
THEN FioN Fy is one of the preferred hypotheses.
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IF My > My, > % (40)

% > My, May
THEN Fis is one of the preferred hypotheses.
IF My > My, > 4 (41)
% > My, My,
THEN Fy is one of the preferred hypotheses.
IF My > My > 4 (42)
% > My, My,
THEN Fy is one of the preferred hypotheses.
IF My, Myg, My, Myy < % (43)
THEN G is one of the preferred hypotheses.
These rules may be generalised to the case of two mass functions with arbitrary numbers
of focal elements. Consider we have m; which allocates My, ..., My,,, to Fiq,... Fi,
respectively and 1—My;—,...— My, to O while m, allocates My, ..., My, to Foy, ..., Fy,
and 1 — Moy—,....,—M;, to ©. Given 1 <1 < m, and 1 < 2 < n, and considering all
1 <7 < m such that j # ¢, and all 1 <y < n such that y # x, we have:
IF My > M;; >~ (44)
M2x Z M2y Z %
THEN Fi,N Fy, is one of the preferred hypotheses
IF My > M;; >~ (45)
% Z M2x Z M2y
THEN Fy; is one of the preferred hypotheses
IF % > My > My (46)
M2x Z M2y Z %
THEN . is one of the preferred hypotheses
IF % > My > My (47)
% Z M2x Z M2y
THEN G is one of the preferred hypotheses

And combining the results of Sections 5.2 and 5.3 will enable us to predict the outcome of
many applications of Dempster’s rule. It should be noted, however, that these conditions
are sufficient, but not necessary. That is, there are other conditions which will result in
the same preferred hypotheses. For instance, consider My, = My, = 0.3, My, = 0.8 and
My, = 0.1. In this case the preferred hypothesis is Fy; even though the conditions for
(41) are not satisfied. The necessary conditions are not given since they may not simply
be extended to the general case.

6 Summary

This paper has introduced a number of different ways in which the Dempster-Shafer
theory of evidence may be applied when precise numerical weights are not given for the
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various pieces of evidence. Firstly, the idea of a completely qualitative theory of evidence
was introduced. In this approach, all numbers are abstracted away to be replaced by the
qualitative values + and 0. This strips the theory down to its bare bones, which may still
prove useful in identifying which hypotheses are indicated by the evidence in situations
where numerical weights may not easily be identified. By assuming that the smallest set
of hypotheses is the most likely set it is possible to combine evidence to identify the most
likely hypothesis. Adopting the heuristic approach of the improper linear model allows
us to choose between several smallest sets. The paper then introduced a number of ways
of using the Dempster-Shafer theory with limited numerical information. Firstly, the
idea of using “linguistic quantifiers” in the sense of [8] was introduced, and results given
for all possible combinations of a pair of simple functions whose mass assignments were
taken from the set of linguistic quantifiers. Then this approach was generalised to deal
with mass assignments whose values are arbitrary intervals, and it was shown how this
approach may be used to combine exact and interval values. The third approach that was
introduced concerned means of predicting the outcome of a combination using Dempster’s
rule in its unnormalised form (in the sense of predicting which hypothesis is most likely)
based on how the mass of hypotheses compare to landmark values. Results are given for
the combination of any number of simple support functions, and the combination of a
pair of mass assignments with arbitrary numbers of focal elements.
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