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Abstract

We presentMABLE, a fully implemented programming language for multi-
agent systems, which is intended to support the automatification of such
systems via model checking. In addition to the conventiaoalstructs of im-
perative programming languagesABLE provides a number of agent-oriented
development features. First, agents/isBLE are endowed with aDpi-like men-
tal state they have data structures corresponding to beliefs, elesand inten-
tions, and these mental states may be arbitrarily nestehn8eagents iMABLE
communicate viacL-like performatives: however, neither the performatives n
their semantics are hardwired into the language. It is ptesgy define the perfor-
matives and the semantics of these performatives indepépaé the system in
which they are used. Using this feature, a developer camexfiie design space
of AcL performatives and semantics without changing the targeny. Finally,
MABLE supports automatic verification via model checking. Cla#insut the be-
haviour of aMABLE system can be expressed in a linear-t@ne-like logic, and
the truth, or otherwise, of these claims can be automagidatlermined. Follow-
ing a description of th&ABLE language and the languagen4BLE claims, we
present two case studies to illustrate the language andétsnuthe verification
of multiagent systems. We then describe the key ideas umhéng the current
implementation ofvABLE. Finally, we survey related work, and discuss some
avenues for future research.
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1 Introduction

We presenivaBLE, a fully implemented programming language for multiageyd-s
tems [45], which is intended to support the automatic vexifom of such systems via
model checking [4]mABLE is novel in three key respects:

e Agents inmABLE have amental stateonsisting of beliefs, desires and intentions;
mental states may be nested, so that (for example), one &gehte to have
beliefs about another agent’s intentions.

e Agents inMABLE communicate using asynchronous message passing, in ke sty
of theFipA [11] andkQML [22] agent communication languages [7]. However,
in MABLE, neither the agent communication language performativesselves,
nor their semantics, are hardwired into the language. ddsti¢ is possible for
a developer to define both the performatives and the sersaotithese per-
formativesindependentlyof the system in which they are used. In this way,
a developer can explore the design spaceaf performatives and semantics
without changing the target system itself.

e MABLE supports automatic verification via model checking [4]. rRal claims
about the behaviour ofi@aBLE system can be expressed in a linear-tsme-like
logic, and the truth or otherwise of these claims can be aatically verified.
Thus, in contrast to most logic-based agent programmirguiages, which per-
form reasoning atun time reasoning about the correctness ofsLE system
is carried out atlesign timgwe comment in more detail about the relationship
of mABLE to other agent programming languages in section 5).

We emphasise that theasLE language, as described in this paper, has been fully im-
plemented. The implementation makes ussmi [16, 17], a freely available model
checking tool for Linear Temporal LogiaxL). The maBLE compiler takes, as in-
put, amABLE System together with associated claims about this systgprggsed in
aBDI-like logic), and generates, as output, both a representafi themasLE system
in PROMELA (the model specification language usedsi®yN), and a translation of the
BDI logic claims into the.TL logic used bysPIN. SPINis then invoked, either to auto-
matically verify the truth (or otherwise) of the claims, dseto simulate the execution
of themaBLE system, using theROMELA interpreter provided as part ePIN.

The remainder of this paper is structured as follows. Werbbgiintroducing the
MABLE language, describe how claims can be made abegItE programs using aD!
logic called MOR.A, and show how these claims can be automatically verifiedgusin
MABLE. We then present two detailed case studies, which illustizd use ofABLE
in the verification of multiagent systems. In the first casglgt we demonstrate how
MABLE can be applied to the problem of verifying that multiagenstegns conform
to the semantics of a particular agent communication laggu&Vhile this is a well-
known problem in the multiagent systems literature [41,2&,34], our work is, to
the best of our knowledge, the first to apply model chechiegrigjues in this area.
In the second case study, we present an implementation afélieknown Contract
Net task allocation protocol [36, 35], and show how projgsrof this protocol can be
verified usingvasLE. We proceed to describe the operation ofdaeLe compiler, and



outline the key techniques used in its implementation. biise 5, we describe the
relationship ofwABLE to other research on agent programming languages and model
checking for multiagent systems. Finally, we present soomlasions, and some
pointers to future research.

Throughout the paper, we assume some familiarity with mgétht systems [45],
model checking [4], and a basic understanding of conveatiprogramming language
design.

2 ThewmaABLE Programming L anguage

MABLE is intended to be used as a language in which programmersxpaess and
verify designs for multiagent systems. As such, one of thesaifmasLE is to provide

a collection of constructs which closely resemble those irseonventional program-
ming languages. However, a design requirememaef € was that it should be possi-
ble to automatically verify properties of systems using siathecking: this require-
ment imposes some significant constraints on the facilitieedable to programmers in
MABLE. For example, at an early stageniBLE's development, the possibility of pro-
viding a JAVA-like object-oriented programming model was investigatétbwever,
to provide such features would have necessitated the ingpigtion of an object-
oriented interpreter (similar to thava virtual machine) in the modelling language of
the target model checker, resulting in a dramatic blow-uphésize and complexity
of models. The resulting state space explosion would alwersainly make the ver-
ification of systems impossible. For this reason, it wasdktinstead to provide a
c-like imperative language, enriched by a number of key agernted constructs. In
particular, the key agent oriented features provideaiABLe over and above the basic
system modelling facilities available in model checkingteyns such asPIN[16, 17],
sMv [24], andMOCHA [1] are as follows:

e Agents inmABLE have amental stateonsisting of beliefs, desires and intentions.

e Agents inMABLE communicate usingcL performatives, and it is possible for a
developer to define both the performatives and the semarftibese performa-
tives independently of the system in which they are used.

In addition, MmABLE provides “syntactic sugar” for many programming languageg- f
tures that are not provided as standard in most model chegkégm modelling lan-
guages (which tend to be rather low-level guarded commarglikeges). In particular,
MABLE provides the full range of iteration, sequence, and seleaperations familiar
from languages such a@sandJava, c-like structure type declarations, and several high
level synchronisation constructs. Note that we commenterrelationship ofAsLE

to other agent programming languages in section 5.

Over the past two decades, many logics and related formalisxe been pro-
posed for representing and reasoning about multiagenéragstof which Rao and
Georgeff’sBDI logics are perhaps the best known [29, 44]. Ideally, thenywoeld
like to take aBDI logic such asLOR.A (described in [44]) off the shelf, and develop
verification tools that would allow us to determine whethenaot systems implement
specifications expressed in this logic. However, it is vkelbwn that the link between



such logics and implemented systems is informal at besteTisein general, no sys-
tematic way of associating models for such logics with impated systems: this is
known as the problem afomputational grounding40, 43]. So, what we have done
instead is to develop a slightly simplified and cut-down i@rof LOR.A, known as
MORA, in which claims about systems can be expressed. We havalévetoped
a mapping from thisDi-like logic to the Linear Temporal Logic used by tseIN
model checker; in this way, we can leverage existing modetking tools — and in
particular,SPIN[16, 17] — to verify properties ofiaBLE systems.

In summary, then, &ABLE system consists of:

e a number of agent definitions and associated type and varidlarations,
where each agent is programmed usingvbeLE agent programming language;

e explicit semantics for the performatives used in the system

e a number of formal claims about the system.

In the subsections that follow, we briefly describe thesedt@ements. We begin with
a survey of the agent programming language; we then dedtrbeay in which the
semantics of communication language performatives mayelieet!, and the use of
claims inMABLE systems.

2.1 The Agent Programming Language

For a programmer, the core componentvaBLE is of course the agent programming
language. As noted above, this language is in essemchka imperative language,

enriched by agent-oriented features. The concrete syftére @onventional program

constructs invABLE is based on that of/iava, and so we will not give a detailed

description here. Instead, we will give an overview of thenmanguage features,

focussing on those that are uniquevisBLE.

Agent declarations and initialisation

Agents are declared via tregent keyword, followed by the agent’'s name (which
must be unique), and the body of the agent. At startup, ageetsnvoked in the
order in which they are declared; an agent terminates wheradhes the end of its
code body. (Agents are not functions, and therefore doetatn  values; however,
there is aunction  facility in mABLE, described below.) There is at present no way
of invoking multiple copies of the same agentnnBLE, or of passing initialisation
parameters to agents. However, it is possible for programitioedeclare an explicit
init  section, which can be used for initialisation of system peat@rs. Thenit
section is executed before any agent is invoked.

Beliefs, desires, and intentions

Perhaps the most obvious way in whigkeLE differs from conventional programming
languages is that the processes — agents —wmneae system have explicitly repre-
sented data structures corresponding to beliefs, deainesntentions [29, 44]. These



mental states can be nested, so that (for example) an agehtea beliefs about an-
other agents intentions. Intuitively, an agent’s beligts the information it has about
the environment; these beliefs may be incorrect. An agelg&res and intentions
come into play primarily when the agent is involved in comiwgation.

In MABLE an agent’s mental states are attitudes to the variable®inytstem. So,
for example, agenbne might have the belief that agetwo intends that variabla
has value greater than 10. Programmers can directly refer &agent’s mental state by
means omodal expression®r modalities The intended meaning of the modal(tyn
ag c) is that agentzg has attituden (wherem is believe , desire ,orintend )
towards the condition (predicate) The identifierag must be the name of an agent
in the system, and must be auasLE condition. The following is thus a legal modal
expression iMABLE.

(believe agentl (a == 10))

Suppose this expression is evaluatedaggnt2 . Then it will “true” if agent2 be-
lieves thatagentl believes thalh == 10. Mental states are implementedvngsLE
as nested sets of facts (in the style of [18]): to evaluate éxpressionagent2
will check in its belief set, and inside this set will look ftire set of facts represent-
ing agentl ’s beliefs. If it finds thata == 10 in this set (i.e., the set representing
agent2 ’'sbeliefs abouagentl 'sbeliefs), then the expression will evaluate to “true”.
As modalities are themselves conditions, they may be arbijtrnested. For ex-
ample, the following is also a legal modal expressioNABLE:

(intend agentl (believe agent2 (a == 10)))

Again, suppose this expression is evaluatecggntl : it will evaluate to “true” if
agent2 believes thaagentl intends thatgent2 believes thah == 10.

In order to directly manipulate beliefs, desires, and itit&rs, MABLE provides
assert andretract statements. These statements take a single argument — a con-
dition — and behave rather like ti/ROLOG assert andretract  predicates [5].
Thus, for example, consider the followingsLE statement.

assert((intend agent2 x == 10))

The effect of this statement is to make the agent executsupsequently believes that
agent2 intends that variabl& has the value 10.

An agent’s mental state can also be modified in two other wajst, an agent’s
beliefs can be changed by assignment abgerve statements, as described in the
following section. Second, communication actions may geaan agent's mental
state, as defined by in the performative semantics; we skallhsw this works in
section 2.2.

Types, variables, expressions, and assignments

MABLE supportsc-style structure and array declarations, which may be caegban
terms of integer and boolean data types. Variablegam e may belocal, shared or
global. A local variable is private to an individual agent. A shavadable is declared
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outside an agent, and is visible to all agents in the systdinmgants implicitly have
access to shared variables, and moreover all agents cantwshared variables.

Like shared variables, global variables are also declatgside the scope of an
agent. However, there is an important difference betweebagland shared variables.
All agents implicitly know the value of shared variablest @ajents have complete,
correct, up-to-datéeliefsabout the value of shared variables. With global variables,
however, the situation is slightly different. While all adgg may still access global
variables,they must explicitly request access in order to discoveir tredue. They
do this by executing &ABLE observe statement. Thebserve construct can thus
be viewed as a@ensing actionWhen an agent executes abserve instruction, its
beliefs about the value of the variable it observes are spmited with the true value
of this variable. However, if the value of the variable issetuently changed, then the
agent will not necessarily be aware of this — its beliefs alblo@ value of the variable
may thus become “out of date”. If an agent modifies the valua global variable,
then its beliefs about the value of this variable are sirtyilaynchronised. Once again,
however, its beliefs may become out of date if the value &f ¥hariable is changed by
some other agent.

The syntax of variable declarations is broadly the santasA. Expressions and
assignment statements masLE also follow the conventions af/JAvA; all the arith-
metic operators that one would expect to find in an imperdéinguage are present.

Conditional expressions

Conditional (boolean) expressionsnasLE may be constructed from expressions via
the usual relational operators, (>, ==, ...). HowevermaBLE also permits conditions
to contain modalities, as described above: in particulalieh) desire, and intention
modalities.

Selection

MABLE contains the selection statements that one would expeutdroimperative pro-
gramming language —# ...else and multi-way selection viawitch statements.
However, as noted earlier, the conditions in these cortstraay contain belief, desire,
and intention modalities. For example, suppose that sageritl was executing the
following statement.

if (intend agent2 (a == 10)) XYZ;

Then, in this caseagentl would execute statemeMtyZif it believed thatagent2
intended thath == 10.

L oops

MABLE provides all the loop constructs found @isava (i.e., for , while , anddo),
and the syntax follows the conventions of these languadestelis an additional loop-
like construct, which is not found in languages lik&ava: await . This construct
implements an idle (non-busy) wait construct: it takes glsiparameter, a condition,
and the effect is that the agent executing dla&it is suspended until it believes the
condition is satisfied.



Communication

MABLE provides two built-in communication primitivesend andreceive . Their
syntax is as follows:

send( p ag of ¢);
receive(  p ag of c¢);

whereyp is the performativeqg is the name of an agent (the recipient of the message,
in the case oBend , the sender in the case mceive ), andc is the message con-
tent, which must be aasLE conditional expression. For example, the following is a
syntactically acceptablgeend statement.

send(inform agent2 of (x == 10));

(Note thatof is just syntactic sugar, which play no other role.) The folltg is also
a legalsend statement.

send(inform agent2 of (intend agent3 x == 10));

The effect of communication is to change the mental stathefécipient of the mes-
sage. However, the actual effect that a message has is no¢d@fithin the program.
It is defined externally, in the semantic definition file, asa#ed below.

Note that message delivery is guaranteed, but is asynchsoneceive  state-
ments block until a message is available to be receivedyuthsend statements do
not block. Broadcast message passing is not currently stgapo

Synchronisation

In order to allow agents to synchronise their activitieagLe provides facilities for
enforcing mutual exclusion over critical sections of cafleuABLE system can contain
an arbitrary number dbcks each of which is identified by a unique name. Sections
of code can be wrapped inack statement, associated with a particular named lock.
Only one agent can access a lock at any given time. When an eger®s across a
locked section of code, it suspends until the associatddifofree, at which point it
obtains the lock in an atomic operation, and enters thecaliiection; when it exits
the code, the lock is released.

In addition,mABLE enables an agent to obtain exclusive access to a sharetdlgaria
via theread construct. As long as an agent usesrigd construct, it is impossible
for other agents to access the variable locked with thistoacts The lock is released
when the agent exits tiread block.

Functions

MABLE provides functions as a structuring mechanism for progrand the syntax
used for defining and invoking functions is again based ohdha. Functions may
take arbitrary parameters, although at present may @ilyn integer (nt ) val-
ues. All functions have global scope, and can be invokeaelili agents or by other
functions.
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MABLE is intended primarily as a framework for model checking aa&l such, there
are critical limitations on the/o facilities available in the language. Contemporary
model checking techniques are focussed ardimiig stateand hencelosedsystems.
Thus it is not possible for maBLE system to obtain input at run time from the outside
environment. Where this is desired, a solution is to model ghvironment as an
agent that provides appropriate input to other agents. Mewvaprint  statement is
provided as a means to display output fremsLE.

Pre-processing

Before processing source code, tinaLE compiler runs the standartpre-processor
over files. This makes it possible to use all the pre-proceadisectives available irT:

e macro definitions, via thédefine directive;
e textual file inclusion, via thétinclude directive;

e conditional compilation, via th&if ...#endif directive.

2.2 Communication in MABLE

A key component of the current versionsfsLE is that programmers can define their
own semantics for performatives, separately from a programhichvthese perfor-
matives are used. The formalism we use for defining semaistsTRIPSStyle pre-
/post-condition model, in the way pioneered for the sensartf speech acts by Cohen
and Perrault [6], and subsequently applied to the semauitibe KQMmL [19] andFIPA
languages [11]. Thus, to give a semantics to performativessLE, a user must de-
fine, for every such communicative act, a pre-condition apaist-condition. Formally,
the semantics for a communicative @ is defined as a paitCA ., CA,os:), Where
CA,,. is a condition (amasLE predicate), and’'4,,; is a condition to be asserted. The
basic idea is that, when an agent executsgrad statement with performativé’4,
this message will not be sent un@,,. is true. When an agent executeseaeive
statement with performativé’4, then when the message is received, the assertion
CAypost Will be made true.

By default, themasLE compiler looks for performative semantics in a file that is
namedmable.sem . A mable.sem file contains a number of performative defini-
tions, where each performative definition has the follonstrgicture:

i CA(, phi)
pre-condition
post-condition

wherei , ] andphi are bound to the sender, recipient, and content of the messag
respectively, anc€CAis the name of the performative. The following two lines defin
the pre-condition and post-condition associated with tmaraunicative acCA

The way in which pre-conditions are used is as follows. Sep@m agerdagentl
executes the following statement



send(P agent2 of C)

where the semantics of the performatRare defined as follows.

i: P(j, phi)
pre
post

Then the agermagentl will suspendi.e., enter a non-busy wait state) until the con-
dition pre is believed to be true bggentl , at which point it will send the message.
Notice that it is possible to define the pre-condition of dqenative simply as 1”,
i.e., a logical constant for truth. In this case, the ageetating thesend will never

be suspended — the message will be sent immediately.

With respect to the post-condition, the idea is that once ssage is received,
the corresponding post-condition will be made true. Notia post-conditions in a
mable.sem file do notcorrespond to the “rational effect” parts of messagesma
semantics [9]; we elaborate on the distinction below.

Here is a concrete example ofreable.sem performative semantic definition:

i:inform(j,phi)
1
(believe j (intend i (believe j phi)))

This says that the sender of a message will always senmf@mn message directly;
it will not wait to check whether any condition is true. It alsays that when an agent
receives amnform message, it will subsequently believe that the senderdstédmat
the receiver believes the content.

By disconnecting the semantics of a communicative act frpnogram that carries
out such an act, we can experiment to see the effect thatetiff&inds of semantics
can have on the same agent.

2.3 Claims

Another key component ofABLE is that agents may be augmented with forgclalms
about their behaviour. Claims are expressed @R .4, a subset of th€ OR.A BDI
logic introduced in [44]. These claims candgtomaticallychecked, by making use of
the underlyingsPIN model checker. If the claim is disproved, then a counter gtam
is provided, illustrating why the claim is false.

A claim is introduced outside the scope of an agent, with thevordclaim  fol-
lowed by aMOR.A formula, and terminated by a semi-colon. The formal synfax o
MORA claims is given in Figure 1. The language of claims is thus dfiguantified
linear temporaBDI logic, with the dynamic logic styleHappens ” operator, similar
in intent and role to that I OR.A [44]. The operators aMOR.A have the following
intuitive meaning. First, any validasLE condition is an acceptabl® OR.A formula,
and thus it is possible to express conditions over all shanebiglobal variables of a
system. maABLE also supports theTL operators ofspiN, as follows. First[] (“al-
ways”) is thealways in the futureoperator: thus a formulgP asserts thaP will
be true now (i.e., in the present state) and forever (i.eg)lifuture states). The>P
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(formulay ::=

forall  IDEN: (domain) (formula) /* universal quantification */
| exists (IDEN): (domain) (formula) [* existential quantification */
| any primitve MABLE condition /* primitive conditions */
| ( (formula)) /* parentheses */
| (happens (Ag) (stmt)) /* statement is executed by agent *
| (believe (Ag) (formula)) /* agent believes formula */
| (desire (Ag) (formula)) /* agent desires formula */
| (intend (Ag) (formula)) /* agent intends formula */
| 0 (formula) /* always in the future */
| <> (formula) /* sometime in the future */
| (formula) U (formula) /* until */
| ! formula * negation */
| (formula) && (formula) /* conjunction */
| (formula) || (formula) /* disjunction */
| (formula) -> (formula) /* implication */
(domain) :=

agent /* set of all agents */
|  (NUMERIC) .. (NUMERIC) /* number range */
|  { (IDEN),..., (IDEN) } /* a set of names */

Figure 1: The syntax aMOR.A claims.

(“sometimesP”) construct means “eventuallf2 will be true”. In other wordsP will
either be true in the present state, or at some future stalte < construct does not
assert theaunique existencef such a state: it may be th&tis several times in the
future, or even tha® is always true.) Th& (“until”) operator is a binary operator, and
aformulaP U Qasserts tha® is true now, and will remain true unt®is true.

MOTR.A supports quantification over finite domains, and in paréicubver the
following sets:

e agents (e.g., “every agent believgy;
e finite sets of objects (e.g., enumeration types); and

e integer number ranges.

The believe , desire , andintend operators make it possible to make claims
about agents’ mental states. These constructs have thdrsanpeetation inMIORA
claims as in conditionals, as described above.

To better understand how these constructs may be combirmaeke claims, con-
sider the following informal examples.

First, suppose we want to express the fact that, whenevertt agdelieves the
reactor failed, thery; intends thata, believes the reactor failed (i.eq; wants to
communicate this tay).

We can express such a property directly as the followid@R.A claim.

claim
[1 ((believe al reactorFailed)
-> (intend al (believe a2 reactorFailed)));

10



The outer[] is the temporal “always” operator, and ensures that thigemnty
is checked in every possible state that the system entersre, Hee variable
reactorFailed is assumed to be boolean.

Next, suppose we want to say that if some agent wants ageatbelieve that the
reactor has failed, then eventualby, will believe it has failed.

This translates directly into the following1OR.A claim.

claim

forall i : agent

[((intend 1 (believe a2 reactorFailed))
-> <>(believe a2 reactorFailed));

Next, we describe thetfappens ” construct. Recall that the syntax of this construct
is as follows:

(happens ag stmj

whereag is the name of an agent artint is amaABLE program statement. This pred-
icate will be true in a state whenever the next statementathpamtag will perform is
stmt. Consider the following concrete example.

claim
[]((happens al x = 10;)
-> <>(believe al x==10));

This claim says that, whenever the next statement to be tecby agenal is the as-
signmentx=10; , then eventuallyal believes that variable has the value 10. Notice
that the semi-colon is part of the assignment program st&ienand must therefore
be included in thdnappens construct. Also recall that a single equals sigmisBLE
is an assignment, while a double equals sign is the equakiyigate. As we will see
below, thehappens construct plays a key role in our approachatoL compliance
verification.

Finally, let us consider exactly how claims are checked leymheLeE compiler.
Suppose that a system contains a single claimand that the programmer invokes
the masLE compiler signalling that this claim should be checked@henmasLe will
systematically generate, (by means of #mN system), every possible computation
c = s,s1,S8,... of the system. Each computatiancorresponds to anodelfor
MORA, and the claimp will either be true or false when interpreted in this model.
So, for every computation, maLE will check whether this computation satisfiesif
MABLE ever encounters a computatiersuch thatc (= ¢, thenmasLE halts, and reports
¢ as a counterexample to the claim If no such computation is found, themsLe
(or more accuratelysPIN!) will continue until it has exhaustively examined the eati
space of possible computations.

1The default behaviour of thRIABLE compiler is to ignore claims; a user indicates to the compile
that claims should be checked by means of a command line armgum
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3 Two Case Studies

This section presents two detailed case studies. The fgststady demonstrates how
MABLE can be used to verify that agents correctly implement theaséios of an agent
communication language [41]. In the second case study, w& BlowmMABLE can be
used to implement the Contract Net protocol [36, 36], and aswshow properties of
this protocol can be established via model checking.

3.1 Verifying Compliance with respect to ACL Semantics

In this section, we will show how conformance to the pre-¢tmial and rational effect
parts ofacL semantics can be verified withasLE. We also show how, by varying the
semantics of performatives, we achieve different resoltstfe same agent programs.
We begin with a brief introduction to thecL verification problem.

The need for agents to be able to inter-operate has led tetlebagppment of several
standardise@dgent communication languagéscLs) [22, 10]. However, in order to
gain acceptance, particularly for sensitive applicatisash as electronic commerce,
it must be possible to determine whether or not any systemncthans toconform
to an AcL standard actually does so. We say thataan standard isverifiable if
it enjoys this property. FIPA — currently the main standardisation body for agent
communication languages — recognises that “demonstratiag unambiguous way
that a given agent implementation is correct with respedthte semantics] is not
a problem which has been solved” [10], and identify it as anasf future work.
(Checking that an implementation respectsdietaxof anAcL such as that proposed
by FIPA is, of course, trivial.) If an agent communication languageh asriPA’'s
is ever to be widely used — particularly for such sensitivpligptions as electronic
commerce — then such compliance testimgrification) is important. However, the
problem of compliance testing is not actually given a cotecdefinition byripA, and
no indication is given of how it might be done.

In [41], the verification problem for agent communicationdaages was formally
defined for the first time. It was shown that verifying comptia to some agent com-
munication language reduced to a verification problem ircixahe sense that the
term in used in theoretical computer science. To see whaeanirby this, consider
the semantics afiPA’s inform  performative [10, p25]:

(i, inform(j, ¢))

FP: Bip A =Bi(Bifip V Ujp) 1)

RE: Bjy
Here(i, inform(j, ¢)) is aFiPA message: the message type (performativiefsm ,
the content of the messagedsand the message is being sent frbta j. The intuition
is that agent is attempting to convince (inform) agenof the truth ofy. TherFp and
RE components define the semantics of the messerys:thefeasibility pre-condition
which states the conditions that must hold in order for thmelee of the message to be
considered as sincergg is therational effectof the message, which defines what a
sender of the message is attempting to achieve. H;his a modal logic connective
for referring to the beliefs of agents (see e.g., [14)f is a modal logic connective
that allows us to express whether an agent has a definiteoopame way or the other
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about the truth or falsity of its parameter; afidis a modal connective that allows us
to represent the fact that an agent is “uncertain” aboutdtameter. Thus, an agent
sending annform message with content to agentj will be respecting the semantics
of the FIPA ACL if it believesy, and it it not the case that it believes joéither that;
believes whethep is true or false, or that is uncertain of the truth or falsity af.

It was noted in [41] that thep acts in effect as apecificationor contractthat the
sender of the message must satisfy if it is to be consideregspecting the semantics
of the message: an agent respects the semantics atthd, when it sends the mes-
sage, it satisfies the specification. Although this idea leas lunderstood in principle
for some time, no serious attempts have been made until n@ddpt this idea for
ACL compliance testing.

Note that a number of other approacheatn compliance testing have been pro-
posed in the literature. Although it is not the purpose o$ thaper to contribute to
this debate, we mention some of the key alternatives. PittMamdani defined a
protocol-based semantiésr ACLS [26]: the idea here is that the semantics ohan
are defined in terms of the way that they may be used in the xiosftiarger structures,
i.e., protocols. Singh championed the idesatialsemantics: the idea here being that
anAcCL semantics should be understood in terms of the observadiéiable changes
in social state (the relationships between agents) thaifusperformative causes [34].

We begin with a running example that we will use in the follog/sections to illustrate
the approach. The example employs thddrm " performative, which is one of the
two key performatives in theipa framework [11]. (The other isrequest ", which
can be dealt with using the same techniques.) MAgeE code for this example is given
in Figures 2 and 3. Two agents have several beliefs and thgylysisend messages
among themselves communicating these beliefs. The samiectithe message to be
sent is carried out non-deterministically, via ttleoose construct. The insertion of
these beliefs in agents’ mental state is done througlaskert statements.

Verifying Performative Pre-Conditions

Verifying pre-conditions means verifying that agents sgtithe pre-condition part
of anAcL performative’s semantics whenever they send the correlspgmmessage.
There are essentially two possibilities with respect teqmeditions: either agents are
sincere(they only ever send aimform message if they believe its content), or else
they are not (in which case they can send a message withockiobgo see whether
they believe it). We can useaBLE’'S ACL semantics to define these two types of agents.
Consider first the followingnable.sem definition.

i:inform(j,phi)
(believe i phi)
(believe | (intend i (believe j phi)))

This says that the pre-condition for arfiorm performative is that the agent believes
the contenphi of the message. By defining the semantics in this way, an agént
only send the message if it believes it. (If the sendererbelieves the content, then
its execution is indefinitely postponed.)
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int selection-agentl;

int selection-agent2;

agent agentl {
int inform-agent2;
inform-agent2 = 0;
selection-agentl = 0;
assert((believe agentl (a == 10)));
assert((believe agentl (b == 2)));

assert((believe agentl (c == 5)));
choose(selection-agentl, 1, 2, 3);
if (selection-agentl == 1) {

print("agentl -> a = 10 \n ");
send(inform agent2 of (a == 10));
}
if (selection-agentl == 2) {
print(*agentl -> b = 2 \n ");
send(inform agent2 of (b == 2));
}
if (selection-agentl == 3) {
print("agentl -> ¢ = 5 \n ");

send(inform agent2 of (c == 5));
}
receive(inform agent2 of inform-agent2);
print("agentl receives %d \n ", inform-agent2);

Figure 2: The base example (agent 1).

agent agent2 {

int inform-agent1,;

inform-agentl = 0;

selection-agent2 = 0;

assert((believe agent2 (d == 3)));

assert((believe agent2 (e == 1)));

assert((believe agent2 (f == 7)));

choose(selection-agent2, 1, 2, 3);

if (selection-agent2 == 1) {
print("agent2 -> d = 3 \n ");
send(inform agentl of (d == 3));

}

if (selection-agent2 == 2) {
print(*agent2 -> e = 1 \n ");

send(inform agentl of (e == 1));
}
if (selection-agent2 == 3) {
print(*agent2 -> f = 7 \n ");
send(inform agentl of (f == 7));
}
receive(inform agentl of inform-agentl);
print("agent2 receives %d \n", inform-agentl);

Figure 3: The base example (agent 2).

By way of contrast, consider the followingable.sem definition of theinform
performative.

i:inform(j,phi)
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1
(believe j (intend i (believe j phi)))

Here, the guard to theend statement i4, which, as in languages such@gs inter-
preted as a logical constant for truth. Hence, the pre-tiondiest willalwayssucceed,
and the message send statement will always be enablegeicte® of whether or not
the agent actually believes the message content. Notitthikgdecond case is actually
the more general one, which we would expect to find in mostiegubns.

The next stage is to consider the process of actually chgekinether or not agents
respect the semantics of the language; of course, if we @foompliance by way
of the mable.sem file, then we would hope that our agents will always satisty th
semantics. But it is also possible that an agent will resfiecsemantics even though
they are not enforced by the definitionrmable.sem . (Again, this is in fact the most
general case.)

For FIpA-style inform  performatives, the property we want is that, whenever
agenti sends afmnform message to agentwith contentp, then: believesy. Now,
given the enriched form afiaBLE claims that we described above, we can directly
encode this formula ilMOR A, as follows:

claim

I

(
(happens agentl

send(inform agent2 of (a == 10));)
->
(believe agentl (a == 10))
)i

This claim will hold of a system if, whenever the program eta¢nt
send(inform agent2 of (a == 10));

is executed byagentl , then in the system state from which tbend statement is
executedagentl believes thaa == 10.

We can insert this claim into the system given in Figures 2 &rahd usevABLE
to check whether it is valid. If we do this, then we find that tih&m is indeed valid;
inspection of the code suggests that this is what we expect.

Verifying pre-conditions also implies that we ensure agedtd not inform other
agents about facts that they do not believe. In our runniagrge, we simply have to
remove the line

assert((believe agentl (a == 10)));
and then set the pre-condition of tiiform to 1 (i.e., true) in themable.sem

file, and check the previous claim. The claim is now not vadislagentl informs
agent2 about something it does not believe.
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Verifying Performative Rational Effects

We consider an agent to be respecting the semantics ataiif it satisfies the spec-
ification defined by the pre-condition part of a message wemie sends the mes-
sage [41]. The rational effect part of a performative’s setica defines what the
sender of the message wants to achieve by sending it; butidieis not imply that
sending the message is sufficient to ensure that the ratdieat is achieved. This is
because the agents that receive messages are assumed tortmenaus, exhibiting
control over their own mental state. Nevertheless, it iSuite be able to determine,
in principle, whether an agent respects the rational effadt of anAacL semantics or
not, and this is the issue we discuss in this section.

We will consider two casescredulousagents andcepticalagents. Credulous
agents correspond to agents that always believe the infanmsent by other agents.
We can directly define credulous agents via the followimaple.sem file.

i:inform(j, phi)
(believe i phi)
(believe | phi)

This says that the recipieptof aninform message will always come to believe the
contents of ainform message.

Sceptical agents are those that believe that the sendedmtbat they believe
the information, but do not necessarily come to directlyidwel the contents of the
message.

i:inform(j, phi)
(believe i phi)
(believe j (intend i (believe j phi)))

We can directly define a1OR.A claim to determine whether or not an agent that is
sent a message eventually comes to believe it.

claim []
(
(happens agentl
send(inform agent2 of (a == 10));)
->
<>(believe agent2 (a == 10))
)i

This claim is clearly valid for credulous agents, as defimethe mable.sem file
given above; runningiasLE with the example system immediately confirms this.

Of course, the claim may also be true for sceptical agenpering on how their
program is defined. We can directly check whether or not aqodait sceptical agent
comes to believe the message it has been sent, with the fotjahaim:

claim

I
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((believe agent2
(intend agentl
(believe agent2 (a == 10))))
->
<>(believe agent2 (a == 10))
)i

3.2 TheContract Net Protocol

In the section, we will show how the well-known Contract Nedtpcol can be imple-
mented usinguasLE [36, 35], and then demonstrate how properties of this implem
tation may be verified usingasLE claims.

The Contract Net Protocol was proposed by Smith [36, 35] as@anism for task
allocation in distributed problem solving systems. Thaidéthis protocol is that one
agent (the initiator of the interaction) has a task to cartrly but requires cooperation
for this task — either because the task requires resoure¢sth unavailable to the
initiator, or else because a cooperative solution will befgrred to a non-cooperative
one. The initiator takes the role tdsk manageand broadcasts an announcement of
the task to other agents. In general, the task announceipecitiss the properties of
the task — quality of service parameters, and any otherrimftion that a potential
bidder may require to determine whether or not to submit adichrry out the task.
In our implementation, the task announcement defines tlls skquired to solve the
task (its “weight”).

Agents receiving a task announcement have several chdibey.can either sub-
mit a bid for the task (e.g., specifying a price for carryihg task out), or else they
can choose not to bid. When the task manager has the answibies lmflders, it can
choose a bidder, to whom it awards the task.

The implementation of the Contract Net protocolMmsLE represents about 250
lines of code. It contains three agents: the task managetvemdidding agents.
Additionally two functions are declared.

The variable declarations for the system are shown in Figufieheinit  section
for the system is shown in Figure 5. In this section, we firdtngethe task, then
we define bidders’ parameters: the maximum size of task taeyperform, and their
expected reward for a task. These values are set non-detstinally, through the
choose construct.

The implementation of the task manager is given in Figure e thsk manager
first informs the two bidders that a task has to be performad,then waits for an
answer. In our model, bidders are obliged to answer eith#r an acceptance or a
rejection. As soon as the task manager has received all es\Stveelects at most one
bidder to process the task. ThaskManager uses theselect function to choose
which agent to award the task to. Finally, the task managaissa message to the
successful bidder.

The implementation of bidding agents is shown in Figure 7 fiitst action of the
bidders is to wait for the task announcement. Then, theytlvallecision function
to determine if they are able to do the task. The decision denum the basis of the
task type and the reward.

We have two functions in the Contract Net implementatioe:silect function,
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|+ use for the loop to set type skills and reward for each bidder */
int i, value;

/I used in the “decision” function
int a;

/* used in function select */
int max-value;

int accepted;

int index;

int index-reward;

int ca-bidder[2]; int value-bidder[2];
int number-accepted;

int accept-bidder[2];

int rank;

/ = structures containing the maximum type possible
and the minimum expected reward for a task for each bidder */
struct capability {
int max-type;
int min-reward;
h
struct capability capabilities[2];
[+ structure of a task */
struct task {
int id;
int type;
int reward;
h
/* since it is not possible to send structures in messages,
the task is declared globally */
struct task one-task;

Figure 4: Contract Net Protocol Declarations.

used by the task manager to select a bidder to perform the daskthedecision
function, used by bidders to ascertain if they are able téoperthe task. The im-
plementation of theselect function is shown in Figure 8, while theéecision
function is shown in Figure 9.

Thedecision function is used by the bidders to know if they are able toqurenf

init {
| =set the task */
one-task.id = 1;
one-task.type = 10;
one-task.reward = 5;

| =set bidders’ competences, type and price are set at random */
i =0;
while (i < 2) {

choose(value, 8, 10, 15);
capabilities[i].max-type = value;
choose(value, 2, 5, 7, 8, 10);
capabilities[i].min-reward = value;
=i+ 1

Figure 5: Initialisation for the Contract Net.
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/ = definition of the task manager agent, it is responsible to ad vertise
the task, to select a bid and to request the task to be performe dx/
agent TaskManager {

/ =return of the function accept, if the value is 0, there is no

clear accept, else the value corresponds to the id of the

bidder, 1 for Bidder 1, etc. */
int result;
| *these values store the message content of bidders’ answer */

int valuel, value2;
| * TaskManager needs to use these variables since it does not
know in advance what messages will be sent: accept or refuse */
int ca-Bidderl, ca-Bidder2;
print("TaskManager launched!");
| =task advertisement */
send(inform Bidderl of one-task.id);
send(inform Bidder2 of one-task.id);
|/ = collecting the answers from bidders; ca-BidderX contains
either accept or refuse, that is to say 1 or 2 */
valuel = 0; value2 = 0;
receive(ca-Bidderl Bidderl of valuel);
receive(ca-Bidder2 Bidder2 of value2);
| * TaskManager has to select a bidder */
ca-bidder[0] = ca-Bidderl; value-bidder[0] = valuel,;
ca-bidder[1] = ca-Bidder2; value-bidder[1] = value2;
result = select();
switch(result) {
case 0: send(request Bidderl of one-task.id);
case 1: send(request Bidder2 of one-task.id);

Figure 6: The Task Manager Definition.

the task. This decision is determined by the task type anckethard. If the task type is

within their capabilities, and if the reward is greater onalqo their request, then they
accept the task. If the task type is beyond their capalts|itieey refuse the task. If the
reward is less than the one expected, they accept the tasilyuior their requested

reward.

Running the example

After writing the maBLE code, designers can execute the system: the following out-
put was generated hyasLE when it was invoked with the Contract Net example in
simulation modé.

Bidder 0 launched!

TaskManager launched!

Bidder 1 launched!

Bidder 1 refuses the task, too heavy!

Bidder 0 accepts the task but with a different reward
quitting...

quitting...

Bidder 0: | do the task

quitting..

7 processes created

2Note that this is just one possible run among several.
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agent Bidderl {
/ xthis variable contains the id of the task */
int task-advertised;
/= the result whether the bidder accepts the bid or
not given the constraints
1 corresponds to a clear accept, 2 to a rejection, > 2 the
new proposed reward  */
int result;
print("Bidder O launched!");
/ =waiting for the task advertisement */
receive(inform TaskManager of task-advertised);
/ =the bidder decides if it is able to do the task */
result = decision(0);
if (result == 1) {
send(accept TaskManager of task-advertised);
}

if (result == 2) {
send(refuse TaskManager of task-advertised);

}
if (result > 2) {
send(accept TaskManager of result);

}
/ =waiting for a possible answer from TaskManager */
if (result == 1 || result > 2) {

receive(request TaskManager of task-advertised);

/ «if the bidder receives a message, it means it has
to perform the task */

print("Bidder 0: | do the task");
}

Figure 7: The Bidder Definition.

Model Checking the Contract Net Protocol

Having implemented the Contract NetNmBLE, it is natural to then usRABLE’S veri-
fication capabilities to check the implementation. We wiitjgive two properties that
may be checked:

1. when the task is advertised, eventually it will be awarlesbme agent;

2. when the task is advertised, eventually it will be perfednat a different reward.

As stated in section 2.3, properties have to be expressddiasdo be checked. The
first property gives the following claim:

claim
[J((happens TaskManager
send(inform Bidderl of one_task.id);)
->
<> exists ag : agent
(happens ag
receive(request TaskManager
of task_advertised);));

The second property corresponds to the following claim.
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function int select() {
accepted = 0;
max-value = 65535;
index = O;
index-reward = 0;
number-accepted = O;
rank = 0;
while (index < 2) {
if (a-bidder[index]==1 && value-bidder[index]==one-tas
/ xthis is a clear accept */
accept-bidder[number-accepted] = index;
number-accepted = number-accepted + 1;
accepted = 1;
index = index + 1,
}
else {
if (laccepted && ca-bidder[index] == 1 &&
value-bidder[index] != one-task.id) {
if (max-value > value-bidder[index]) {
max-value = value-bidder[index];
index-reward = index;
}

index = index + 1;

else {
if (ca-bidder[index] == 2) {
index = index + 1;
}

}
}
| = clear accept */
if (accepted) {
if (number-accepted == 1) {
rank = accept-bidder[0];
return rank;

if (number-accepted == 2) {
choose(rank, 0, 1);
rank = accept-bidder[rank];
return rank;

}
}
else {
if (max-value !'= 65535) {
return index-reward;
}
else {
return -1;
}
}

kid) {

Figure 8: The Select Function.
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/ =function that decides if bidders are able to do the task */
function int decision(bidder) {
/ *we need to store the field of the structure since
they are not available in conditions */
a = capabilities[bidder].max-type;
| «first, we test if the type is much more than accepted for this
bidder =/
/ in this 'if’, bidders accept or accept with a greater reward */
if (a >= one-task.type) {
/ *then, we test if the reward is greater than the one expected */
a = capabilities[bidder].min-reward;
if (a <= one-task.reward) {
print("Bidder %d accepts the task", bidder);
return 1;
}
else {
/ *the reward is less than the one expected, the bidder proposes
a new reward to the TaskManager  */
print("Bidder %d accepts the task with different reward", b idder);
return a;
}
}
/ *in this case, bidders refuse the task, too heavy */
else {
print("Bidder %d refuses the task, too heavy!", bidder);
return 2;

Figure 9: The Decision Function.

claim
[I((happens TaskManager
send(inform Bidderl of one_task.id);)
-> <>(one_task.reward < max_value));

It took about six minutes on ac with an Intel Pentium 11l 500MHz processor and
256MbRAM to verify each of these results.

4 ThewmasLE Compiler

In this section, we give a brief overview of the way in whick tineLe compiler works.
The compiler translatesasLE systems into a form that can be processed bysthal
model checker [16, 17]. The way in which tlwasLe compiler interacts witlsPIN is
illustrated in Figure 10.

There are four key components to thesLe compiler: the way in which individual
agents and their control constructs (e.g., loops) are lagtstoPROMELA; the way
in which belief-desire-intention states are implementiéeé; way in which MOR.A
claims are dealt with; and the way in which performative setica are dealt with.

Agentsand Basic Control Structures

Dealing with the basicvaBLE control constructs is straightforward.  Although
PROMELA is a relatively low-level language, it is straightforwamdmapmaBsLE’s con-
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Figure 10: Operation of theaBLE system.
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trol constructs into those provided IBROMELA. Agents inMABLE are implemented
as processegpfoctype s) in PROMELA; additionalPROMELA initialisation code is
generated to (automatically) start agents simultaneously

Mental States

More interesting is the way that mental states are dealt Witle idea is to model these
as finitely nested data structures (in the style of [18, 2i¢diRates are represented by
propositional abstraction where a predicate appears in the context of a modality, a
new proposition symbol is introduced to represent thisipedd. This new proposition

is then used in theDI data structures. A key disadvantage of this approach igtthat
causes a blow-up in the size of the state space. For thismeassted mental states
are only generated on an “as needed” basis.

Claims

To implement claims, we need to mag OR.A formulae into theeTL form accepted
by spIN. In this mapping, we need to deal with a number of features daha not
supported directly byTL:

e Quantifiers are removed bgxpansion Quantification is over finite domains,
and so any quantified formula can be rewritten into a quanfifez formula by
expanding universal quantification into a conjunction, exidtential quantifica-
tion into a disjunction.

e BDI modalities are removed by replacing them with predicatesiathe corre-
sponding data structures in the implemented system.

e Predicates are removed by propositional abstraction: peethicate is replaced
by proposition, the truth of which is bound to the predicareplaces.

e To deal withhappens operators, we insert new code into the program itself,
flagging the occurrence of statements that occurappens operators. These
flags can then be referred to in theL formulae generated byasLE. Suppose
we have an operatdhappens ag s) occurring in a claim. FirstMABLE
replaces this operator in the claim with a new propositi@y, & The MABLE
compiler then passes over the parse tree ofvMks e program for agentg,
looking for the statemens in the program code. Whenever it findsin the
parse tree, it inserts a new statement into the program inatiedg befores,
setting the corresponding new propositto true; and following the statement
s, another new program statement is inserted, setting theopitionp to false.
The toggling of the propositiop is wrapped withinPROMELA atomic con-
structs, to ensure that the toggling process itself doegltet the control flow
of the generated system. In this way, the truth of the projposp indicates that
the next statement to be executeddnyis s.

The end result is a propositionatL formula, suitable for input to thepiN model
checker, together with a list of predicates and the namégegittopositions with which
they were replaced. Together with the generatedMELA code, these can be fed
directly into spiN for checking.
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Perfor mative Semantics

Recall that it is possible to define the semantics of perftiues separately from the
MABLE system itself, using thmable.sem file. ThemasLE compiler looks for such a
file containing a number of performative definitions, wheaeleperformative defini-
tion has the following structure:

i: CA(, phi)
pre-condition
post-condition

wherei ,] andphi are the sender, recipient, and content of the message tiespgc
andCAis the name of the performative. These semantic definitioesl@alt with as
follows.

With respect to the pre-condition, suppose that a particateent contained a
send statement with the performativ@A Then thissend would be translated into a
PROMELA guarded commanuith the following structure.

pre-condition -> send the message

The “>"is PROMELA's guarded command structure: to the leftsf is a condition,
and to the right is a program statement (an action). The siérsaof this construct
are that the process executing this statementsuspendin effect, go to sleep) until
the condition on the left hand side is true. When (more ately;aif) the condition
becomes true, then the right hand side is “enabled”: thétisready to be executed,
and assuming a fair process scheduler, will indeed be es@cut

With respect to the post-condition, suppose an agent cdareceive state-
ment with the performativeCA Then thisreceive statement would be translated
into PROMELA code with the following structure.

receive message;
make post-condition true

Thus once a message is received, the post-condition wikkgerted.

5 Reated Work

In recent years, a number of logic-oriented multi-agengmomming languages have
been developed, which attempt to bring logics of ration&nag somewhat closer to
programming languages. In this section, we will briefly ¢desthe relationship of
MABLE to this work.

Perhaps the best-known multiagent languageGeNnTO [33]. Developed by
Shoham in the late 1980s, this was the first language to béciypteferred to as
an “agent-oriented programming” language; additiongizpoham was keen to link
AGENTO to a multimodal logic of rational agency [39]. The logic wasarly intended
to provide a logical semantics for the language, althougtptiecise details were never
made formal. The programming model f@6ENTO was that of rule-based systems:
one programmed an agent in terms of a set of commitment nwlgish defined how
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an agent formed and discharged commitments to action. Agemhmunicated with
one-another using three performativesquest , unrequest , andinform . The
semantics of these performatives was not really hardwineal the language: a pro-
grammer defined their effects by writing rules to handle them

A number of later languages were developed inAb&NTO mould. ThePLACA
language, adopting a rule-based programming model vemesita that of AGENTO,
was intended to overcome a number of deficienciesad#NTO, such as the ability of
agents to explicitly plan how to meet their commitments [38]

Rao’s AGENTSPEAK was another influential agent-oriented programming lan-
guage [28]. Agents iInGENTSPEAK are programmed by defining a set of plans (some-
what like Shoham’s commitment rules), which are executdd beactively (plans are
invoked in response to events in the environment), and pligedy (plans can be ex-
plicitly invoked by other plans). This programming modekssentially a distillation
of Georgeff and Lansky’s Procedural Reasoning Systaxg)([13], a reactive planning
framework developed in the mid-1980s that subsequentipddrthe basis of several
other agent-oriented programming systems, notabiaRS [8]. Rao and Georgeff
developed a number @&bI logics, which, like Shoham’s logics, were ultimately in-
tended to provide a semanticSAGENTSPEAK and theprs[29]. However, as with
Shoham'’s language, while there was plenty of intuition albow the logics related to
the programming language [30], the precise relationshipiden language and logic
was never made formal. As a consequence, one could nevir ciain that a for-
mula of the logic expressed a property of a system; and assequaence, one could
never verify whether the formula represented a property e true or false of a
given system. It is worth noting that Rao and Georgeff dguetdopreliminary model
checking techniques faDI logics [31], although because the relationship between
the logic and theeRIAGENTSPEAK was never made precise, these model checking
techniques could not be deployed to vemfg JAGENTSPEAK systems [40, 43]. (Itis
worth noting that at the time of writing, work is underway tevelop techniques for
model checkinprGENTSPEAK systems [3].) Note that Hindriks'AL language was
a direct descendant alGENSPEAK[15]. In 3APL, agents are also programmed using
a rule-like model; the semantics and proof theory aPB8 were developed in some
detail.

GOLOG[21, 32] and its multiagent siblingoONGOLOG[20] represent another rich
seam of work on logic-oriented approaches to programmitigna agents. Essen-
tially, GoLOG is a framework for executing a fragment of the situation wlais; the
situation calculus is a well known logical framework for seaing about action [23].
Put crudely, writing aOLOG program involves expressing a logical theory of what
action an agent should perform, using the situation cas;uhis theory, together with
some background axioms, represents a logical expressiovhaf it means for the
agent to do the right action. Executing such a program redigceonstructively solv-
ing a deductive proof problem, broadly along the lines ofwghg that there is a se-
guence of actions representing an acceptable computatoamding to the theory [32,
p.121]; the witness to this proof will be a sequence of astiomhich can then be
executed.

A closely related approach is that of teTATEM paradigm [12]. INMETATEM,
an agent is programmed by giving it a temporal logic spetificeof the behaviour it
should exhibit, where this specification is a conjunctiorpa$t=- future rules. The
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process of executing the specification corresponds to gooanstructive proof of the
satisfiability of the program formula, where the model bedagstructed is built in
part by the agent, and part by the environment. Another sdraevelated language
is the IMPACT framework of Subrahmanian et al. [37MPACT is a rich framework
for programming agents, which draws upon and considerattgnds some ideas from
logic programming. Agents iMPACT are programmed by using rules that incorporate
deontic modalities (permitted, forbidden, obliged [29]hese rules can be interpreted
to determine the actions that an agent should perform atigsey gnoment [37, p.171].

A common feature of all the languages mentioned in this @edt that the rea-
soning used to determine the action to perform takes placenatime Moreover,
as we are in all cases essentially executing a logical fanthk issue of verification
does not really arise — for example, we can be assured thagxagution trace of a
METATEM program is a model of the program formula. Indeed, this isairtbe key
arguments in favour of using an executable logic framewas.can be assured that a
logical program will execute according to its semantics.

There are, however, several disadvantages to deciding actian to perform by
reasoning at run time. The most obvious of these is that neagas generally compu-
tationally costly: see, for example, the complexity resa$sociated with algorithms
for theIMPACT framework [37, pp.399—460]. A more subtle problem is thgumeng
a programmer to express a program in the language of logiit @iteiation calculus,
temporal logic, or deontic logic) is often not desirableedtly, we want to be able
to let the programmer use their most preferred programnooést and then verify
their work, rather than imposing a programming regime omthén this sense, we
believe MABLE is closer to the reality of everyday programming. It progidenstructs
corresponding to those that programmers everywhere aliédamith, enriched with
agent-oriented constructs. As verification is done at ahetsige, the issue of run-time
reasoning (and all the potential difficulties it entailspdamot arise. The disadvantage
of themaBLE approach is of course that we lose the elegant logical sersassociated
with directly executing logical formulae; but we argue thatwe can directly verify
MABLE Systems, this is not a major issue.

6 Conclusions

In this paper, we have described tiigsLE language for multiagent systems. This
fully-implemented language supports the development ehtsgin an imperative pro-
gramming language, enriched by some features from the -agemted programming
paradigm. However, the most important (and novel) featdiressLE is that it sup-
ports the automatic verification ofaBLE systems via model checking. A designer
can formally express the requirementsmafBLE systems as formulae of linear-time
BDI logic, andvaBLE is capable of automatically verifying whether or not theteys
does or does not satisfy these requirements. Another neatlre is that although the
key communication mechanismmasLE is asynchronous message passing in the style
of FIPA andKQML, mMABLE does not dictate a semantics for the performatives used in
communication. Instead, a designer can explicitly defimesgamantics of performa-
tives separately from a system and, in this way, can expladédehaviour of the same
system for a range of performative semantics. Combinirgféature with the model
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checking capabilities ofiasLE, it becomes possible to automatically verify compliance
to agent communication language performatives — a problesore interest to the
agent communication language community.

There are a number of obvious avenues for future researcst, Wie hope to fur-
ther extend the language and its model checking facilities. example, it would be
useful to add features such as true unification to the largyuagl other similar reason-
ing features. However, the addition of such features wélitably lead to a (further)
blow-up in the state space of the generated system. Fortason, we intend to study
the possibility ofautomatic abstractiof MABLE systems: essentially, strippimgsLE
systems down to their leanest possible representationth&ngssue we are pursuing
is that of automatically generatirigvAa code frommasLE systems. For example, sup-
pose we have &aBLE system that we have verified complies with the semantics of
theFIPA language. Then automatically generatiaga code that implements thepA
performatives via theADE implementation of th&iPA language [27], we can plausi-
bly (if not entirely accurately) claim that the resultaava system respects tierPA
semantics.
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