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Abstract

Quantitative methods for reasoning under uncertainty have become well established, and many
alternative formalisms have been suggested. In recent years there has been a growing interest in
qualitative methods as helpful in situtations in which the use of precise numerical methods is not
appropriate. In this paper we demonstrate another use for qualitative models. The qualitative
analysis of a quantitative model of uncertainty will reveal the qualitative behaviour of that model
when new evidence is obtained. This qualitative behaviour may be studied to identify those situations
in which the model does not behave as expected, and which quantitative values must be altered to
correct this behaviour. The demonstration is set within the context of the diagnosis of faults in
an electricity network, and reports the results of the verification of a model representing a small
fragment of a real application. The model was built using Pulcinella, a tool based on Shenoy and
Shafer’s valuation systems.

1 INTRODUCTION

The handling of uncertainty within artificial intelligence systems has long been recognised as a topic
worthy of investigation. Over two decades of research has resulted in the availability of a large number
of formalisms intended for modelling different aspects of uncertainty. This work has dealt largely with
complex quantitative models such as probability theory [1], possibility theory [2, 3], and evidence theory
[4]. More recently, however, there has been considerable interest in the qualitative representation of
reasoning under uncertainty in networks, including qualitative probabilistic networks [5, 6, 7, 8] as well
as qualitative possibilistic and evidential networks [9, 10].

At the same time there has been an increase in interest in the problem of finding a unified approach
to handling uncertainty, and the view that the different formal models provide exclusive approaches has
been challenged by a number of authors, including Szolovits and Pauker [11], Fox [12], Saffiotti [13],
Krause and Clark [14] and Neapolitan [15]. Instead the view that these formalisms are alternatives
from which the most appropriate may be taken in any given situation is advanced. Such a position has
been supported by the development of a generalised approach to propagating uncertainty measures in
networks [16, 17], from which a general purpose tool, known as Pulcinella, for propagating uncertainty
by local computation has been developed [18]. This tool has been used [19, 20] to investigate the
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Figure 1: The relevant fragment of the distribution network.

modelling of various reasoning problems using different uncertainty handling formalisms, thus providing
a comparison of the different ways in which the formalisms behave, and adding to our knowledge of
their relative usefulness for solving particular problems.

In this paper we extend two of the lines of work mentioned above, by using qualitative methods [9]
to advance the work of Saffiotti and Umkehrer [19], and by analysing the qualitative behaviour of the
different formalisms when they are used to represent a particular problem. This information can then
be used, in conjunction with expert opinion as to how the models of the problem should behave, to
detect anomalies in those models, and, if any are found, to correct them. The structure of the rest of
the paper is as follows. Section 2 describes the problem which we are using in this case study, along
with the models in various formalisms suggested in previous work [19, 20]. Section 3 then draws upon
previous results to suggest how the models may be qualitatively analysed. Section 4 uses the results of
the qualitative analysis to verify the correctness of the models, and to detect some apparent anomalies.
Finally Section 5 demonstrates how anomalies can be corrected, again making use of the qualitative
analysis. Thus we suggest a procedure for verification and debugging:

1. Establish the qualitative behaviour of an uncertain model, whatever formalism is being used.
2. Verify that this behaviour is as required and detect any anomalies that occur.
3. Alter the model, if necessary, to ensure that the behaviour is correct.

and illustrate its use on a real problem.

2 PROBLEM DESCRIPTION

This section describes a problem in the domain of electricity distribution, reported in previous work
[19, 20]. We present the three solutions originally proposed [19], and illustrate our method of qualitative
debugging by analysing these solutions.

2.1 Domain Knowledge

The problem under study is to adequately model the uncertainty present in fault diagnosis in electricity
networks. For the sake of clarity, both the structure of the problem and its quantitative knowledge
have been greatly simplified. We consider here the fragment of an electricity network given in Figure 1.

This fragment comprises four substations, linked by three lines L1, L2 and L3 (in the real network,
the three outer substations would be connected to other lines, substations, and so on). The substation
in the middle includes S1, a big conductive bar, known as a busbar, used for connecting lines together.
The Dis and D1is are circuit breakers, that is devices which watch the part of the network on their
“hot” side, marked by a dot in the picture, for overloads. If an overload is detected on a line, a circuit
breaker isolates this line and transmits an alarm to the control room. The alarm may be either an



instantaneous alarm or a delayed alarm. An instantaneous alarm is generated when a big overload is
detected, and is normally caused by a fault in the line that the device is monitoring. A delayed alarm is
generated by a small overload normally caused in an adjacent line to that being monitored. However,
a delayed alarm may also be caused by an overload in the line being monitored if the overload occurs
at a considerable distance from the circuit breaker. Overloads in the busbar S1 are detected in just
the same way as faults in lines, that is an alarm from the outer circuit breakers D1-D3 may indicate
a fault in S1. Note that a single fault can generate alarms in several circuit breakers.

Talking to domain experts revealed that the behaviour of the circuit breakers exhibits uncertainty,
which has been roughly quantified by the experts:

1. alarms are not very reliable: in roughly 10% of the cases, they do not correspond to the real
situation so that alarms are generated without faults or faults occur without alarms;

2. if an instantaneous alarm is generated (correctly) on a circuit breaker, the fault is in the line that
the breaker is on;

3. if delayed alarm is generated (correctly) on a circuit breaker, the fault is in the line that the
breaker is on in roughly 30% of cases, and in an adjacent line in roughly 70%.

In the fragment we are modelling, the “adjacent line” is the busbar S1 for the outer circuit breakers
(i.e., D1, D2, D3); while it is some line outside our fragment for the inner circuit breakers (D11, D12,
D13). Accordingly, we know what the qualitative behaviour of the modelled fragment should be (no
matter what formalism is used to model the uncertainty):

1. an instantaneous alarm in an outer circuit breaker should increase our belief in the occurrence of
a fault in the line that the breaker is on;

2. a delayed alarm in an outer circuit breaker should increase our belief in the occurrence of a fault
in either the line the breaker is on, or in the busbar;

3. an alarm (of any kind) in an inner circuit breaker should only increase our belief in the occurrence
of a fault in the line the breaker is on (in the real network, a delayed alarm would also indicate a
fault in another part of the network).

2.2 Modelling the Problem

We model our problem using Shenoy and Shafer’s valuation system formalism [16, 17] which is a general
approach to network-based local computation, in which many uncertainty handling formalisms can be
embedded. The tool we have used for our experiment, Pulcinella!, is an implementation of valuation
systems that exibits the same generality. Thanks to this generality, we have been able to use quantitative
models of uncertainty as different as probability theory, possibility theory, and the Dempster-Shafer
theory of belief functions. As according to the valuation system formalism, we model our problem
through a set of variables, and a set of valuations linking sets of related variables. Figure 2 shows a
graphical representation of the model, where ovals stand for variables, and rectangles for valuations.
A valuation over a set of variables expresses information about the values taken by the variables in
that set, in a form that depends upon the uncertainty formalism; typically, this information is either a
relation between those variables, or prior information about some variable. In the experiment reported
here, we have modelled uncertain relations using three alternative formalisms: probability theory,
possibility theory [2, 3], and the Dempster-Shafer theory of belief functions [4].2 The Dis and D1is are

"Pulcinella [18] was developed at IRIDIA, Université Libre de Bruxelles, and is freely available for non-commercial use.
More details are available on the Pulcinella Web Page, http://iridia.ulb.ac.be/pulcinella/

2A quick introduction to the use of each of these formalisms in the context of the experiment described here can be
found elsewhere [20].



Figure 2: The valuation system for the distribution network.

variables representing circuit breaker states, with possible values ok (no alarm), del (delayed alarm),
and inst (instantaneous alarm); Lis and S1 represent line and busbar states, with possible values ok
and fault; and the “alarm-is” relate generation of alarms by breakers with states of neighbouring lines.
Once new information about the state of a breaker is received, this can be propagated through the
“alarm-1s” relations to produce updated estimates of the states of the various elements of the network
(see [16] for more details on the propagation mechanism).

In order to build the “alarm-¢” valuations so that they behave as described above, we first split
them into two groups: those referring to outer circuit breakers (alarm-1, alarm-2, alarm-3), and those
referring to inner circuit breakers (alarm-11, alarm-12, alarm-13). We then enter the corresponding
values. These values are meant to encode the three informal items of expert knowledge presented in
Section 2.1 above. Tables 1-3 show the values for the two classes of valuations in each formalism.?
In the probability case (Table 1), we use joint probability distributions. (For the user’s convenience,
these distributions are given un-normalized to Pulcinella, and then normalized by the program.) The
incomplete information given by the experts had to be integrated by “reasonable” assumptions: for
example, in the first column of the inner breaker case, the information “if no alarm is received, then
L1 is ok with 90% probability” has been split equally between the possibilities “L1=ok and S1=fault”
and “L1=ok and S1=o0k” (as the inner circuit breakers do not give any information about possible
faults in the busbar). And in the case of outer breakers, the information about the 90% reliability of
alarms, and that about the relative probability of faults in L1 and S1 given a delayed alarm, have been
combined into the distributions shown in the second column. It appears that filling a probability table
given the available expert knowledge may require a good deal of artistic creation!

Inner breakers (D17) P() Outer breakers (D7)
ok  del inst L1 S1 ok  del inst
0.45 | 0.05 0.05 ok ok 0.89 | 0.1 0.05
0.45 | 0.05 0.05 ok  fault | 0.05 | 0.6 | 0.05
0.05 | 0.89 0.89 fault ok 0.05 | 0.2 ] 0.89
0.05] 0.01 0.01 fault fault | 0.001 | 0.1 0.01

Table 1: The joint probability distributions for the alarm-i valuations

The values are much less surprising for the possibilistic case, that is, when we use possibility
distributions as valuations. This is mainly due to the looser contraints imposed by possibility theory.
For instance, the values in the last column of the inner case (Table 2) can be read as follows: “When

*The reader may not agree that this is the “best” way to model the given problem. This, of course, is not the point
here, our aim being to illustrate the use of qualitative techniques to analyse and debug a possibly unsound model. To this
respect, the interest of the proposed model is that it could be regarded—and indeed it has been—by a knowledge engineer
as a plausible model for the given problem.



there is an instantaneous alarm, the possibility that L1 be ok is extremely weak, whatever the state of
S1; on the other hand, it is completely possible that L1 is faulty, both with S1 ok or faulty”.

Inner breakers (D17) I(-) Outer breakers (D7)
ok del inst L1 S1 ok del inst

1 ]0.1 0.1 ok ok 1 101 0.1

1 ]0.1 0.1 ok  fault | 0.1 | 0.7 0.3
0.1] 1 1 fault ok |0.1]0.3 1

0.1] 1 1 fault fault | 0.1 | 1 1

Table 2: The joint possibility distributions for the alarm-i valuations

Finally, in the belief function case (Table 3), we represent the bits of our information as multiple basic
mass assignments, which are then combined by Pulcinella into one mass assignment using Dempster’s
rule*. The three mass assignments used for the outer circuit breakers are meant to encode the following
beliefs, which are a way to interpret the expert’s statements reported in Section 2.1:

e a 0.9 belief that when there is no alarm the lines are ok, and vice-versa; this is captured by
assigning a 0.9 mass to the set of all possible configurations except those where we receive an
alarm but the lines are both ok, and those where there is a fault but we do not receive an alarm
(since we are ignorant about how to distribute the remaining 0.1 we follow the usual procedure
for belief functions and allocate it to the full set of hypotheses expressing the fact that everything
is possible to some degree).

e a 0.7 belief that if there is an instantaneous alarm, L1 is faulty; this is expressed by a 0.7 mass
on the set of all configurations, except those where we receive an instantaneous alarm but L1 is
not faulty (along with 0.3 to the full set, again due to ignorance). And

e a 0.3 belief that when there is a delayed alarm, then either L1 or S1 is faulty (i.e., we only exclude
the case D1=del & L1=o0k & S1=o0k).

Things are similar for the inner breakers, except that there is no way to discriminate between S1 being
ok or faulty—hence we omit the third mass assignment.

Inner circuit breaker Outer circuit breaker

ok ok
fault

fault
fault

fault
ok

ok fault  fault
fault ok fault

del | 0.9
inst

Table 3: The joint belief distributions for the alarm-: relations

We also have prior values for state of the breakers before any report is received (Table 4). In the
case of possibility theory and of belief functions, these values indicate total ignorance about the possible
state of the breaker (everything is possible, but nothing is positively believed); that is, we are agnostic

*The combined assignments are fairly intricate, and are not shown (but see [19]).



about whether certain alarms (or no alarms) are a priori more likely than others®. This contrasts with
the probability case, where the axiom p(z)+ p(—2) = 1 forces us to commit to =2 whatever credibility
is not committed to z; here, we use a rough estimate of the priors given by the experts.

ok inst del
p(-) 0.998 0.001 0.001
() 1 1 1
bel(-) | 0 0 0

Table 4: Prior values

A comparison of these three methods for handling the uncertainty in the problem is given by
elsewhere [19, 20]. In the rest of this paper we will investigate whether these models of uncertainty
correctly encode the behaviour described in Section 2.1.

3 QUALITATIVE ANALYSIS OF THE PROBLEM

When we find new evidence about the state of the circuit breakers we update our prior values for
fault hypotheses to take account of the evidence. This takes the form of finding new values for, say,
the probability of a line fault given that we have an increase in the probability of a delayed alarm
(because we have evidence that one has occured). Thus we determine the change in probability of a
line fault given the change in probability of a delayed alarm. When using probability, or any other
theory of uncertainty, we are interested in the new value obtained after updating. When verifying the
behaviour of the model, however, we are interested in checking that it corresponds to that described
by the domain expert whose knowledge is captured in the model. Thus, since the expert’s knowledge
is often expressed in the form “if we observe A, then B is more likely”, we may be more interested in
knowing the way in which the values change than in the values themselves. Techniques of sensitivity
analysis are sometimes used to provide this sort of verification for parametric models. Unfortunately,
these techniques tend to be fairly complex, and they have only been extensively studied for the case
of probabilistic models. In this section, we establish a qualitative method for sensitivity analysis that
can be applied to probability, possibility and belief-function models. That is we provide a method by
which it is possible to determine in a qualitative way how the values of hypotheses change when we
have new evidence.

The basic method underlying the analysis has been expounded elsewhere ([9], and for binary vari-
ables [10]), and here we merely apply the results obtained there. However, for those unfamiliar with
this work, we provide the following sketch. Given the equations that relate two uncertainty values valy
and wvaly we can establish an expression, in terms of numerical uncertainty values, for the derivative
dvaly /dval, that relates the two quantities. This expression allows us to determine the qualitative value
of the derivative (indicated by the use of square brackets), that is whether the derivative is positive,
negative, or zero. A positive derivative, written as [dval; /dvals] = [+], means that valy increases when
valy increases and decreases when valy decreases. Similarly, a negative derivative, [dvaly/dvals] = [—],
means that val; decreases when wvaly, increases, and increases when valy decreases. Finally, a zero
derivative, [dvaly /dval;] = [0] means that val; does not change when valy increases or decreases. Thus
when we have new evidence that changes the value of valy the derivative tells us the change in valy, and
for a full analysis we need to establish [dval(h)/dval(e)] for every interesting hypothesis & and piece of
evidence e.

®The last row is the result of using a vacuous basic mass assignment as prior, in other words one where all the mass is
given to the full set.



3.1 The Representation for the Qualitative Analysis

The valuation system representation introduced above is that in which the original problem was for-
mulated and solved [19, 20], and it is possible to perform the qualitative analysis directly on this
representation since it contains the relevant data. However, since our previous work on qualitative
analysis of uncertainty handling formalisms has been discussed using a causal network representation,
it is helpful to reformulate the problem in such a representation. We use a network representation,
similar to that of Pearl [1] with the exception that the numerical value of the dependencies are encoded
in possibility [21] and evidence [22] theories as well as probability theory. In these networks, two nodes
representing particular variables are joined by an arc if and only if the value of the variable represented
by the node at one end of the arc is directly influenced by the value of the variable represented by the
node at the other end of the arc. The direction of the arc is normally taken to represent the direction
of the causal influence between the variables. Thus the problem information of Section 2.1 may be
represented by the network of Figure 3.

Figure 3: The causal network representation of the electricity distribution problem.

In the qualitative analysis we will look at changes in value of S1 and L¢ given changes in value of D3
or D1¢. If we wanted to assess the impact of several alarms we could sum the impact of the individual
alarms using qualitative arithmetic [23].

3.2 The Probability Case

Figure 3 gives the causal network relating the causes of the different types of alarm, viz. faults in the
lines and busbars, and their effects, viz. the alarms generated by the breakers. We can analyse this
network to relate changes in the probabilities of alarms to the probabilities of faults. In particular,
we can write the partial derivatives of the probability of a line fault by the probability of the different
alarms [9], for instance:

dp(Li=fault)

8p(D:|nst) = p(L’LIfaUIt|D:|nst) (1)

where D stands for both Di and D1i. Analagous results may be obtained for other alarm conditions.
Now, this derivative tells us how p(L:=fault) varies with p(D =inst) ignoring the effects of changes
in the probability of other values of D. We can also determine the total derivatives which tell us, for
instance, how p(Li:=fault) varies when p(D =inst) changes taking into account the changes in p(D =del)

and p(D=ok) [9, 10]:



dp(Li=fault)]
[ dp(D=inst) ] N
[p(Li=fault| D=inst) — p(Li=fault| D=del)]
@ [p(Li=fault| D=inst) — p(Li=fault| D =o0k)]

Note that this result assumes that changes in p(D =inst) are distributed among p(D =del) and p(D =ok)
as a result of the fact that all three values sum to one. Again, analagous results may be obtained for
other alarm states. Now, since:

p(Li=ok) 4+ p(Li=fault) = 1 (3)

for any line, when we know how p(Li=fault) changes we can tell how p(Li=o0k) changes. These results
are true for both inner and outer circuit breakers, and furthermore are true for any numerical values
we put into the model. We can repeat the calculation for the probability of a busbar failure obtaining
analagous results.

The overall change in probability of line and busbar faults due to a change in the probability of an
alarm from a single circuit breaker can be calculated either from the partial derivatives, or the total
derivatives. For example, the change in probability of a fault in L1 given a change in the state of D1
may be calculated as:

[Ap(L1=fault)] [M

Ip(D1=inst) ] @ [Ap(D1=inst)] (4)

[%} ® [Ap(D1=del)]
[%} @ [Ap(D1=0k)]
[Ap(L1=fault)] = [%] @ [Ap(D1=inst)] (%)

where @ and & are qualitative multiplication and addition (Table 5) respectively. Note that in the
second equation we could use the derivative with respect to any of the values of . Note also that the

© | o] =] [ S I G I (U I Gl R
O] =] T
[0] | [0] [0] [0] [O] o] | [+] [0 [-] [7]
S I (U G I S I S I S I K
1] [o] 7 [7] K I kA kA

Table 5: Qualitative multiplication and addition

derivatives cannot take arbitrary (qualitative) values, but are constrained to obey the laws of probability.
Namely, the normalisation condition (3) given above ensures that the derivative [0p(Li=fault)/9p(D)]
may be calculated as [—] @ [0p(Li=o0k)/dp(D)] and [0p(S1=fault)/dp(D)] = [-] @ [0p(S1=0k)/Ip(D)]
for any value of D. These constraints hold whatever numerical values are used in the model. Thus,
irrespective of the way in which a piece of evidence affects the probability of a line or busbar fault, it
will influence the probability of the component being ok in the opposite way.



3.3 The Possibility Case

Possibility theory is essentially qualitative [24] when it relies on maximum and minimum operations to
determine the updating of values, numbers being used simply as a convenient and easily comprehensible
set of suitably ordered values. The use of the max and min operations makes it impossible to obtain
true derivatives, but a form of derivative based on small finite, rather than inifintesimal, change may
be established [9]. Using the results established there, we can predict that:

Sl (Li=fault) B

[ SII(D=inst) ] = ] (6)
if  II*(D=inst) < II(Li=fault| D=inst)
and [I(Li=fault, D=inst) > [I(Li=fault, D # inst)

where I1%(+) is the possibility once some information is received from the alarms®. Otherwise the
derivative has the value [0]. Similar expressions will relate changes in I1(Li=fault) to those in lI(D =del)
and I1(D=ok).

We can also chart the behaviour of the possibility of the line being ok. In (normalized) possibility
theory this is only connected to the possibility of line fault by the relation:

max (II(Li=ok), II(Li=fault)) = 1 (7)

so that one of the two must be perfectly possible. Thus when no fault is observed, it must be perfectly
possible that the line is ok, and vice-versa. However, unlike the probability case, in general we are not
able to determine how the possibility of the line being ok changes when we know how the possibility
of the line being faulty changes. As a result, we have to separately determine how the possibility of a
line being ok changes with knowledge of alarms:

ST(Li=ok)]
[5H(D:inst)] = (8)
if  I"(D=inst) < II(Li=ok|D=inst)
and II(Li=ok, D=inst) > [I(Li=ok, D # inst)

Again similar expressions will relate changes in II(Li = ok) to those in II(D = del) and II(D = ok).
Furthermore, we can relate changes in the possibility of busbar failure, and of the busbar being
ok, to instantaneous alarm, delayed alarm, and no alarm. Now, the difference expressions such as
[0I1(Li=fault)/éII(D=inst)] that we are using are partial in that they only take account of changes
with respect to one possibility. As a result, we calculate the change in possibility of a line fault given
information about alarms using:

[ATI(Li=fault)] = [%} @ [ATI(D =inst)] (9)
[—5?11((%:;32:;)] @ [ATI(D =del)]
() o

and changes in the possibilities of the line being ok and busbar being both ok and faulty may be
calculated in an analagous way. As noted above, the normalisation condition only weakly restricts the
way possibility values change—it only prevents all the values of some variable from having a possibility of
less than one at the same time, and this requirement does not greatly restrict the qualitative derivatives.

5The fact that we know how the possibility values change allows us to make more precise predictions than is generally
the case [9]



3.4 The Belief Function Case

Once again we can use the results of [9] to determine the qualitative behaviour of the belief function
model of the distribution network. Since we are dealing with belief functions, D may take any value in
the power set of {inst, del, ok}, so D € {inst, del, ok, inst U del, inst U ok, del U ok, inst U del U ok}, where we
write inst for {inst}, del for {del} and ok for {ok} for notational simplicity. As in the probability case,
we can either write down partial derivatives of the form:

dbel(Li=fault)

——————— = bel(Li=fault| D=inst 1
dbel(D=inst) el(Li=fault| inst) (10)

or more useful total derivatives such as dbel(Li=fault)/dbel(D=inst), which give changes in bel(Li=
fault) that also take into account changes that take place in bel(D=del) and bel(D =ok). For the alarm
situations that we are interested in, we have, for instance:

dbel(Li=fault)
dbel(D=inst)
[bel(Li| D=inst) — m)}n bel(Li=fault| X)]

@ [bel(Li=fault| D=inst) — m)?xbel(Li:faulﬂX)]

- (11)

where X C {D=inst, D =del, D=0k}, D=inst € X. Obviously we have analagous results for other
alarm types, and similar results about the busbar may be deduced. As in the probability case the
derivatives are not theoretically unconstrained, but since in Dempster-Shafer theory there is only a
very weak link between the belief in, say, a line being ok and being faulty:

bel(Li=ok) + bel(Li=fault) <1 (12)

there are, in practice, no restrictions on the qualitative values of the derivatives, indicating that, in
qualitative terms, belief functions are a generalisation of both probability and possibility theories.

3.5 More Complex Models

Because our case study is concerned with the analysis of a relatively simple model, in that there is only
one arc in the causal graph between any observation that we can make and any hypothesis in which we
are interested, it is worth considering how more complex models may be analysed. In fact, the answer
is simple. Because the results that we have used are the results of a truly local analysis—that is the
analysis of each arc may be carried out using just data about the conditional values that control the
behaviour of that arc—we can simply analyse the model arc by arc, and then combine the results along
the path from observation to interesting hypothesis.

For example, if we have an observation O, a hypothesis H and an intermediate variable I, so
that there is an arc from H to I and from I to O, we would analyse the model by determining
dval(I = ¢;)/dval(O = 0;) for every value o; of O and ¢; of I, and then dval(H = h;)/dval(l = i;) for
every value h; of H and 4; of I. Then to determine the effect of an observation that has the effect of
making a given val(o;) increase, we would calculate the change in a given val(h;) as:

] @ [Aval(0;)] (13)

| dval(H = Iy) dval(I = i)
[Aval(hi)] = [Wzlyl)] [m

where ¢; is a suitably convenient value of I. In others words, large models may be handled by decom-
posing them, analysing the components and combining the results in a modular way.

10



4 VALIDATING THE BEHAVIOUR OF THE MODELS

Having now analysed the way in which qualitative uncertainty values are propagated through the kind of
network structures found in our test case, and thus determined the general behaviour of the formalisms
in which we are interested, we can use the numerical information of Section 2 to examine the exact
behaviour of the models we have proposed. This provides a qualitative comparison of the different
formalisms for our problem, as well as predicting how the quantitative formalisms will behave.

The way new information coming from a circuit breaker is incorporated in the model is different
for the three formalisms considered. In probability theory, the information that a particular alarm
has arrived from a breaker is typically introduced by increasing the value for the associated state, at
the expense of the values of the alternative states: for example, a report of an instantaneous alarm is
encoded by forcing Ap(D=inst) = [+], Ap(D=del) = [—], and Ap(D =o0k) = [—]. In Dempster-Shafer
theory, an alarm report is encoded by simply increasing the value of the associated state (the values of
altermative states do not need to be decreased as they are initially 0); so, a report of an instantaneous
alarm is encoded by Abel(D =inst) = [+], Abel(D = del) = [0], and Abel(D = ok) = [0]. Possibility
theory differs in that an alarm report is not encoded by increasing the possibility value (which is what
we are measuring) of that alarm, but by decreasing the possibility of all other alarm conditions, so that

for an instantaneous alarm AII(D=inst) = [0], All(D=del) =[], and AIl(D=o0k) = [—-].

4.1 The Probability Case

The analysis of Section 3.2 told us which conditional probabilities determine the behaviour of the
system. Now, from Table 1 we can see that for the inner circuit breakers we have:

p(Li=fault, S1=fault| Dli=inst) = 0.01
p(Li=fault, S1=fault| Dli=del) = 0.01
p(Li=fault, S1=fault| Dli=0k) = 0.05
p(Li=fault, S1=o0k| D1i=inst) = 0.89
p(Li=fault, S1=o0k| D1i=del) = 0.89
p(Li=fault, S1=o0k| D1i=o0k) = 0.05

so that p(Li=fault| D1i=inst) = 0.90, p(Li=fault| D1i=del) = 0.90, and p(Li=fault| D1i=o0k) = 0.01.
Using these values in (2) we find that the qualitative values of the derivatives that link the probability
of a line fault to that of an alarm for the inner circuit breakers are:
dp(Li=fault) T _ dp(Li=fault)] _ dp(Li=fault)] _
{—'_d]]))(Dli:mst)} =[+] [d];(Dli:del)} =[+] {dZ;(Dli:ok)} =[]
Now, from our knowledge of the prior probability values we can see that when we have an instantaneous
alarm the change in the probability of a line fault calculated by (5) is:

Report none | inst | delayed | ok
[Ap(Li=fault)] | [0] | [+] | [ |[-]

In both these cases, the probability of the line being ok, p(Li=o0k) may be calculated from 1 — p(Li=
fault), and thus varies inversely to p(Li=fault). For the outer circuit breakers:

dp(Li=faul dp(Li=faul dp(Li=faul
[dz;((Di:ainustt))} = [+] { 5;(172':?1[;:))} =[7] { Zl)g()(Di:aouk‘):)} =[]

where the [7] indicates that it is not possible to establish whether the value of the derivative is positive,
negative, or zero. Thus we have:

Report none | inst | delayed | ok
[Ap(Li=fault)] | [0] | [+ | [7] |[-]




Here the [?] indicates that we can not predict precisely whether the probability of a line fault will
increase, decrease, or not change based on purely qualitative information (the same result will also
be obtained from (4) if we use the partial derivatives derived from (1)). However, it is possible to
heuristically refine the prediction using some numerical order-of-magnitude information. For instance,
taking the quantitative expressions from (1) and the relevant conditional values, comparing the values
of the partial derivatives we find that:

Ip(Li=fault) > Ip(Li=fault) > Ip(Li=fault)
dp(Di=Inst) dp(Di=del) dp(Di=0k)

where >> indicates a difference of at least an order of magnitude. Now, from the prior probabilities we
know that when a delayed alarm takes place |[Ap(Di=ok)| = |Ap(Di=del)| > |Ap(Di=inst)| since
the change in p(Di=o0k) and p(Di=del) is around a thousand times that in p(Di=inst). Thus when
evaluating (4) to establish the change in line fault probability for a delayed alarm, the second term
dominates, and we have [Ap(Li=fault)] = [+]. Thus, overall:

Report none | inst | delayed | ok
[Ap(Li=fault)] | [0] | [+] | [+ |[-]

Thus the outer circuit breakers work as intended, with the probability of failure of the line increasing
with instantaneous and delayed alarms. Thus for both inner and outer breakers, the probability of
the line being ok falls with both instantaneous and delayed alarms, and the model is an accurate
representation of the behaviour of the target system. Now considering busbar faults; for the inner
circuit breakers we have:

dp(S1=faul dp(S1=faul dp(S1=faul
[ =) [ =) [25E] = [+

Report none | inst | delayed | ok
[Ap(Si=fault)] | [0] | [=] | [=] |[4]

This means that if we have a report of any kind of alarm in the inner breakers then the probability of
a busbar fault decreases, while knowing for sure that there is no alarm means that the probability of
failure increases. This behaviour is rather odd since we would expect knowledge of an alarm to increase
the probability of a fault, and a no-alarm report to decrease the probability of a fault. We will consider
this strange behaviour again in Section 5. Finally, for the outer circuit breakers we have:

dp(S1=faul dp(S1=faul dp(S1=faul
(St — ) [l ] — (] [2esfd] o |

and the purely qualitative approach gives:

Report none | inst | delayed | ok
[Ap(S1=fault)] | [0] | [7] [+ | []

This time order of magnitude considerations cannot help us, and in order to resolve the qualitative
ambiguity, we will have to carry out a full numerical calculation using Pulcinella. When this is done,
we find, as we would hope, that an instantaneous alarm will cause the probability of a busbar fault to
increase. Overall we have:

Report none | inst | delayed | ok
[Ap(Si=fault)] | [0] | [+] | [+ |[-]

which are much as we would expect.
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4.2 The Possibility Case

For the case in which the model is quantified using possibility values we find that because the derivatives
depend upon the final possibility values of the alarm states, II*(D =inst), II*(D=del) and I1*(D =ok)
(6) we have different values for different pieces of evidence. For an instantaneous or delayed alarm we
have:

STI(Li=faul STI(Li=faul STI(Li=faul
Stitoamer] = 01 | Sitraaent] = 01 | “iiesig] = 0]

while for no alarm we have:

STI(Li=faul STI(Li=faul STI(Li=faul
et = o] = S| = 0]

so that from (9):

Report none | inst | delayed | ok
AN(Li=fault)] [ 0] | 0] | ] | -]

and the model behaves as expected. If there is an instantaneous or delayed alarm on either the inner
or outer breakers, a line fault remains perfectly possible. If there is no alarm the possibility of a line
fault falls. We can also consider how the possibility of the line being ok changes. We find that for both
types of breaker, for all alarm states:

STI(Li=ok STI(Li=ok STI(Li=ok
ey =10 [Spsey] =0 [Sntpay] = [+

which gives:

Report none | inst | delayed | ok
[All(Li=ok)] | [0] | [-] ] [=] [[0]

So, for both instantaneous and delayed alarms in both inner and outer breakers, the possibility of the
line being ok will fall. Thus the possibility of the line being ok does not change” as long as there is no
alarm on either type of breaker, but falls as soon as we have any kind of alarm. Similar results may be
obtained for the possibilities that the busbar has a fault or is ok. It is clear that we can derive conditions
similar to those of (6) and (8) to predict how the possibility of the busbar being faulty depends upon
the possibilitites of the different types of alarm. We find that for the outer breakers we have:

STI(S1=faul STI(S1=faul STI(S1=faul
et =10 (S| =10 |G| =[o]

for instantaneous and delayed alarms, while no alarm gives us:

{SHQSI:fault)} 4] {SHQSI:fault)} 4] [ESE—‘CQ“'Q} = [0]

STI(Di=inst) STI(Di=del) | = STI(Di=ok)

while for the inner breakers we have, for all alarm states:

STI(S1=faul STI(S1=faul STI(S1=faul
{SH((Dlli:airL:s?)} = [0] {SH((Dlli:aéjelt))} = [0] [511((1711;5;))} = [0]

Thus from the analagous result to (6), for the outer breakers we get:

"Notice that the values of both TI(Li = fault) and TI(Li = ok) are initially 1. As was the case for the assignment of
priors to circuit breaker states, possibility theory (as well as belief functions—see below) allows us to remain agnostic
about whether a fault is a priori more likely than no fault. This is again not the case for probability theory, due to the
additivity axiom.
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Figure 4: Conditional belief functions for the “alarm” relations

Report none | inst | delayed | ok
[AII(S1=fault)] | [0] [0] [0] [—]

while for the inner breakers, we get:
Report none | inst | delayed | ok

[AII(S1=fault)] [0] [0]

So, when the possibility of instantaneous and delayed alarms in the outer breakers increases, the
possibility of the busbar being faulty will not fall, but this possibility is independent from that of an

alarm in the inner breakers. In a similar way, we can determine how the possibility of the busbar being
ok will vary. The reader should by now be able to perform all the computations herself, so we only
indicate the results—for the outer circuit breakers:

Report none | inst | delayed | ok
[All(S1=o0k)] [ [0] | [0] | [=] |I0]
and for the inner circuit breakers:
Report none | inst | delayed | ok
[AII(S1=o0k)] [ [0] | [0] [0 [ [0]

As we would expect, only the detection of a delayed alarm on the outer breakers suggests that the
possibility of the busbar being ok should fall, while no alarm state on the inner breakers will cause the
possibility to change. In conclusion, the qualitative behaviour of the model developed using possibility
theory corresponds to our expectations given the domain knowledge.

4.3 The Belief Function Case

The belief function case is rather different to the others in that the values given in Section 2 do not
correspond to those needed in (10) and (11) to establish the qualitative values of the derivatives. Instead
we have to extract the conditional beliefs from the joint mass assignment given in Section 2.2. In order
to compute the mass distribution of, say, L1 and S1 given that D1=del, that is bel(L1,S1|D1=del),
we just consider all the second rows in the joint distributions (those corresponding to D1=del), and
combine them in the usual way for belief functions [4]. Thus, for the outer set of circuit breakers we
compute the value of bel(L1, 51| D1=del) as (0.9 x (0.740.3) X 0.7) + (0.9 x (0.7+0.3) x 0.7) 4 (0.1 X
(0.740.3) x 0.3)). The full set of conditional assignments over Li and S1 is shown in Figure 4, where,
for instance, the second row of the “Inner circuit breaker” column gives us bel(Li, 51| D1i=del) for the
various values of S1 and any Lz. Similarly, the first row of the “Outer circuit breaker” column gives us
the values of bel(Li, S1| Di=ok).

From this we can establish that for the inner circuit breakers bel(L: = ok | D1i = ok) = 0.9,
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bel(Li = fault | D1: = del) = 0.9, and bel(Li = fault | D1: = inst) = 0.97, while for the outer circuit

breakers, bel(Li = ok N S1 = ok | Di = ok) = 0.9, bel(Li = fault U S1 = fault | Di = del) = 0.93,

bel(Li=fault U S1=fault| Di=inst) = 0.27, bel(Li="fault | Di=inst) = 0.7 and all other conditional

beliefs are zero®. From bel(Li=o0k N S1=ok|Di=o0k) = 0.9 we know that bel(Li=ok|Di=ok) > 0.9

and bel(S1=ok|Di=ok) > 0.9. From (11) we learn that for the inner circuit breakers we have:
{dbel!Li:fault!} _ [_I_] {dbel!Li:fault!} . [_I_] {dbel!Li:fault!} . [0]

dbel( D1i=inst) dbel(Dli=del) | — dbel(Dli=ok) | —
while for the outer circuit breakers:

{dbel!Li:fault!} _ [_I_] {dbel!Li:fault!} . [0] {dbel!Li:fault!} . [0]

dbel(Di=inst) dbel(Di=del) | — dbel(Di=0k)

When we have evidence of an instantaneous alarm, and belief in an instantaneous alarm thus increases,
there is no change in belief in a delayed alarm or no alarm. With this knowledge we can predict that
the model behaves as it should. Indeed, for the inner circuit breakers we have:

Report none | inst | delayed | ok
[Abel(Li=fault)] | [0] | [+] [+] [0]

while for the outer circuit breakers:

Report none | inst | delayed | ok
[Abel(Li=fault)] | [0] | [+] [0] [0]

Thus, if there is an instantaneous or delayed alarm from the inner breakers, belief in a line fault
increases. An instantaneous alarm from the outer breakers also increases belief in a line fault, but a
delayed alarm does not affect this belief. Knowing that there is no alarm from the breakers does not
affect belief in a line fault. These behaviours do not exactly match the specifications in Section 2—
namely, we were expecting bel(Li=fault) to increase in response to a delayed alarm in an outer breaker.
A similar phenomenon appears in other cases, and we will discuss it in the next section. Using (11) to
predict how the our belief in the line being ok changes. We find that for both inner and outer circuit
breakers:

{dbel{Li:ok)} _ (0] {dbel{Li:ok)} — [0] {Mﬂl} = [+]

dbel(D=Inst) dbel(D=del) dbel(D=0k)

from which we know:

Report none | inst | delayed | ok
[Abel(Li=ok)] [ 0] | [0 | _[0] |+

So, for both instantaneous and delayed alarms in both inner and outer breakers, our belief in the line
being ok is unchanged, but this belief will increase when we have evidence that there is no alarm.
Similar results may be established for the busbar. Since all the relevant conditional values are zero
except bel(S1=ok| D=ok), the only derivative relevant to the busbar that is non-zero is:

{dbel{Sl:ok)} _

Tel(Dizoky | = L]
for the outer breakers, meaning that, when we look at how the beliefs change we find that, for the inner
breakers:

#Note that for notational simplicity we write bel(Li =0kNS1=ok | Di=ok) to denote bel({Li, S1) = {{ok, ok}}| Di=ok),
the conditional belief that the joint variable (Li, S1) takes the value {(ok,ok). bel(Li=fault U S1=fault| Di=inst) is used
in a similar way.
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Report none | inst | delayed | ok
[Abel(S1=fault)] | [0] [0] [0] [0]
[Abel(S1=o0k)] [0] [0] [0] [0]

while for the outer breakers:

Report none | inst | delayed | ok
[Abel(S1=fault)] | [0] [0] [0] [0]
[Abel(S1=0k)] | [0] | [0] | [0] | [+

Thus, belief in the busbar failing or being ok is insensitive to anything happening on the inner breakers,
as well as to instantaneous and delayed faults on the outer breaker. Belief in the busbar being ok
increases when it is known that there is no fault on the outer breaker which is the only one that points
to the busbar. Overall, the belief function model of the alarm system behaves largely as one would
expect on reading the description in Section 2 with the exception of the anomaly described above—belief
in a fault in the busbar does not increase with belief in a delayed alarm in an outer breaker.

4.4 Discussion of Verification

The main result that emerges from this section is that we have shown how the qualitative analysis
may be used to validate the quantitative model. It can do this since it is possible to make qualitative
predictions of the behaviour of the quantitative model using the numerical values. This qualitative
prediction may be compared against the original opinion of the domain expert to determine whether
the quantitative model has captured the expert’s knowledge. We emphasize that this technique is
analytic rather than experimental, and can be carried out for formalisms other than probability theory.
The usefulness of our technique is highlighted by the fact that it threw up some anomalies in the
quantitative model that we were using (these are examined in the next section). In other words, the
initial valuation system model, with values as ascertained by the knowledge engineer, does not behave
quite as might be expected from the description of its intended behaviour that is supplied in Section 2.
Since the validation is purely qualitative, the extent of any anomalies cannot be predicted without
performing a numerical calculation. The fact that the validation is purely qualitative also means that
there are circumstances under which it gives ambiguous results. Sometimes these can be resolved using
a form of order-of-magnitude reasoning (which is formalised in [25]), and sometimes it is necessary to
carry out a numerical calculation to tell exactly what happens.

5 DEBUGGING THE VALUES

The qualitative analysis of the probabilistic model of the distribution network revealed that any alarm
on an inner circuit breaker will cause the probability of busbar failure to decrease, whilst the observation
of “no alarm” will actually cause the probability of busbar failure to increase! This kind of behaviour
was a considerable surprise to the knowledge engineer who performed the original elicitation, and
it was certainly not intended when the original model was built. Furthermore, because it was so
unexpected, such behaviour is unlikely to have been exposed without the qualitative analysis. Now
that the anomaly has been spotted, we can run Pulcinella over the specific data, and the quantitative
data can be examined to evaluate the impact of the discrepancy. In this case we find that:

Report none inst delayed ok
p(S1=fault) | 0.000175 | 0.000088 | 0.000088 | 0.000176

This makes it clear that the change of value is so small that it is probably not bothering with. However,
even though the values are small, the fact that the behaviour is reversed for all the possible states of
the breaker may induce us to try to debug it.
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A second anomaly was detected in the belief function model. This occurs in the system’s response
to delayed alarms from the outer breakers—such an alarm should, according to the specifications in
Section 2.1, increase belief in both a busbar fault and in a fault in the line that the breaker is on.
However, in the model no such effects are observed, with the alarm failing to change any of these
beliefs. In fact, running Pulcinella on this scenario yields the following results for the outer circuit
breakers:

Report none | inst | delayed | ok
bel(Li=fault) 0 ]0.98 0 0

After some thought, however, what could have been seen as a bug in the model turns out to be
acceptable behaviour. In the case of a delayed alarm in an outer breaker, say D1, the belief function
model makes the belief in the event “fault in L1 OR 517 increase; however, this belief is not committed
to either of the two fault events individually®. This should not to be seen as a loss of inferential power—
the arrival of subsequent items of evidence (i.e., the receipt of new alarm reports) will disambiguate
the situation. To see this, suppose that a new delayed alarm is received from D3. This supports the
hypothesis “fault in L3 OR 517, and the two pieces of evidence together support the hypothesis “fault
in S17.

So, for both these anomalies it is possible to argue that what has been detected is not really a
problem. However, we might wish to “correct” such behaviours so that inner circuit breaker alarms
cause the probability of busbar failure to increase (on the grounds that there is an error somewhere)
and delayed alarms on a single outer circuit breaker cause belief in busbar and line failure to increase.
If we do so, we can use the qualitative analysis to guide us.

5.1 A Procedure for Debugging

The qualitative analysis tells us two things. Firstly it tells us how particular pieces of evidence affect the
fault hypotheses and thus enables us to detect when the model deviates from its intended behaviour.
It also tells us which conditional values determine the qualitative behaviour, and this is the key to
debugging the model. We can use the analysis to identify which conditional values cause the unwanted
behaviour, which ones help to determine the correct behaviour, and which ones do not affect either.
We can then alter the values that cause the unwanted behaviour but which do not affect the desired
behaviour. To do this, the following informal procedure is suggested:

1. Establish the set of incorrect derivatives by comparing the behaviour of the model to the system
behaviour given by the domain expert.

2. For every incorrect derivative, identify the set of equations that determine it, and for every
equation e construct the corresponding set of conditionals C'(e) that are mentioned in it.

3. For each set C'(e) so constructed, let U(e) be the set of conditionals in C'(e) that are unused by
all other equations.

4. If U(e) is non-empty, then find a new distribution of values to the conditionals in it so that the
correct value for the corresponding derivatives are obtained, and the new distribution is as close
as possible to the old one.

5. If U(e) is empty, then let U(e) be the set of conditionals in C'(e) that do not determine any correct
derivatives.

® As may be seen from the fact that the relevant conditional belief (identified by rewriting (11) with L1=faultUS1=fault
in place of L1=fault), bel(L1=fault U S1=fault| D =del) = 0.93 while bel(L1=fault| D =del) = bel(S1=fault| D =del) =
0.
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6. Find a new distribution for the values to the conditionals in U(e) such that every equation which
previously determined an incorrect derivative now produces a correct derivative, no derivatives
corrected in step 4 are made incorrect, and the new distribution is as close as possible to the old
one.

7. If there are certain equations which may not be corrected in this way (because for instance there
are no conditionals in step 5 that do not help to determine initially correct derivatives) then
identify the set of all such equations.

8. Find a new distribution over the full set of conditionals involved in these equations such that
all of them now predict the correct values of the derivatives, no previously correct or corrected
derivatives are made incorrect, and the new distribution is as close as possible to the old one.

“As close as possible” should be interpreted relative to the judgement of the knowledge engineer, who
decides how large a deviation from intended behaviour can be tolerated, and which deviations are less
tolerable than others. Of course the new distribution must conform to the normalisation condition for
the calculus the values are expressed in.

5.2 Correcting the Behaviour of the Probabilistic Model

We can use this procedure to correct the behaviour of the probabilistic model regarding the detection
of busbar faults on the inner breakers. Section 4.1 gives us the following set of incorrect derivatives
since every single behaviour of the model is qualitatively incorrect:

[[fsicfaun]  [dasicfouly]  [detsi—fau )}

Now, these are determined by the equations:

dp(S1=fault)
[dp(Dli:inst)]
[p(S1=fault| Dli=inst) — p(S1=fault| D1i=del)]
@ [p(S1=fault| D1i=inst) — p(S1=fault| D1i=o0k)]
dp(S1=fault)
[dp(Dli:del)]
[p(S1=fault| D1i=del) — p(S1=fault| D1i=inst)]
@& [p(S1=fault| D1li=del) — p(S1=fault| D1i=0k)]
dp(S1=fault)
[dp(Dli:ok) ]
[p(S1=fault| D1i=0k) — p(S1=fault| Dli=inst)]
@ [p(S1=fault| D1i=0k) — p(S1=fault| D1i=del)]

- (14)

- (15)

= (16)

now, since p(S1=fault| D1¢) = p(S1=fault, Li =fault| D1:) 4+ p(S1=fault, Li =0k | D1i) for any value
of D1i, the set of conditionals used by (14), (15), and (16) is (it is the same for all of them):
{p(S1=fault, Li =fault| D1i=inst), p(S1=fault, Li=ok| D1li=inst) ,
p(S1=fault, Li =fault| D1i=del), p(S1=fault, Li=ok| D1i=del),
p(S1=fault, Li =fault| D1i=o0k), p(S1=fault, Li=ok| D1i=ok)}

Clearly all the conditionals in each set are used in other equations, so we have to look for conditionals
that do not help to determine currently correct derivatives. Since conditionals such as p(S1=fault, Li=
fault | D17) help to determine the currently correct derivatives that relate p(Li="fault) to p(D1¢), the
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conditionals we are looking for are:
{p(S1=fault, Li=ok| Dli=inst) ,
p(S1=fault, Li=ok| D1i=del),
p(S1=fault, Li=ok|Dli=o0k)}

We then choose a new distribution to minimise change, and a brief experiment should suffice to satisfy
the reader that a suitable new distribution is:

p(S1=fault, Li=ok|D=0k) = 0.15
p(S1=fault, Li=ok| D=inst) = 0.2
p(S1=fault, Li=ok|D=del) = 0.2

5.3 Correcting the Behaviour of the Belief Function Model

In the belief function model, the problem is that belief in line fault and busbar fault does not increase
when there is a delayed alarm in the outer breakers, in other words, [dbel(Li=fault, S1=fault)/dbel(Di=
del)] = [0] instead of [+]. Thus the incorrect derivative is:

{ [dbel(Sl =fault, Li=fault) ] }
dbel(Di=del)

And so from (11) we can tell, by analogy, that the relevant equation is:

dbel(S1=fault, Li =fault) . ..
’ bel(S1=fault, Li=fault| Di=inst
dbel(Di=del) ] [bel(S1=fault, Li=fault| Di=inst)
— m)}n bel(S1=fault, Li=fault| X)]

@ [bel(S1=fault, Li=fault| Di=inst)
— max bel(S1=fault, Li=fault| X)]

where X C {Di=inst, Di=del, Di=ok}, Di=del € X, so that the set of conditionals in which we are
interested is:

{bel(S1=fault, Li=fault| Di=del U Di=inst U Di=ok) ,
bel(S1=fault, Li=fault| Di=del U Di=inst),
bel(S1=fault, Li=fault| Di=del U Di=0k),
bel(S1=fault, Li=fault| Di=del)}

None of these conditional values is used in any other equation, so that any of the conditional values may
be changed without altering other derivatives. In addition, all the relevant conditionals are currently
zero, so that [dbel(Li = fault, S1 = fault) /dbel(Di = del)] may be made positive by making bel(Li =
fault, S1=fault | Di = del) positive while leaving all other relevant conditionals unchanged. This may
be achieved by adding another belief function to the basic probability assignment of Section 2.2 so
that we have the basic belief assignments of Figure 5. Note that the change in distribution here is not
strictly minimal, since setting the mass of the new basic probability assignment to 0.0000...01 would
have sufliced to make the relevant derivative positive. However, it seemed reasonable to our knowledge
engineer to change the distribution to a value that generates a significant change in bel(Li=fault, S1=
fault) given the evidence of a delayed alarm.
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Figure 5: The new joint belief distribution

5.4 System Behaviour after Debugging

Having made the changes outlined in Sections 5.2 and 5.3 we can test the behaviour of the new mod-
els. First consider the probabilistic model. Entering the new conditional values into Pulcinella and
propagating we obtain, for alarms in the inner circuit breaker:

Report none inst delayed ok
p(S1=fault) | 0.000007 | 0.00004 | 0.0006 | 0.000006

So an alarm now causes the probability of busbar failure to increase, and the system has had the “bug”
removed. Similarly for the belief function model, we have, for the outer breaker:

Report none | inst | delayed | ok
bel(S1=fault) 0 0 0.09 0
bel(Li=fault) 0 0 0.09 0

which corrects the “bug” detected in the original behaviour by relating a delayed alarm from an outer
breaker with an increase in the belief in a fault in the busbar and line. Notice that the behaviour for
all the other cases remains unchanged.

6 SUMMARY

This paper has investigated one of the uses of reasoning about qualitative changes in uncertainty value
in the context of a real world problem. We have illustrated our approach to the qualitative analysis of
quantitative models of uncertainty [9] by analysing the behaviour of three models that had been built to
diagnose faults in an electricity distribution network. As the analysis is conducted on a local basis, the
proposed approach should scale well to larger problems—we can simply analyse the model arc by arc,
and then combine the results along the path from observation to interesting hypothesis. The number of
steps in the analysis is only dependent upon the number of arcs in the network, and the computational
effort to calculate their effect is quadratic in the number of nodes [26]. This analysis is useful because
it provides a way of determining the behaviour of a model at a high level of abstraction. As such it
relies on weak information and produces results that, although correct, may at times be too weak to
be useful. As a result we enriched the purely qualitative analysis by introducing some informal order
of magnitude reasoning which gave stronger results. It should be noted that this form of reasoning,
like any other kind of order of magnitude reasoning, is essentially heuristic, and may at times cause
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errors. However, such problems can often be avoided, especially if the order of magnitude reasoning
is formalised [25]. Of course, it is also possible to resolve overly weak results in other ways—most
obviously by running numerical simulations in the relevant places.

Having performed the analysis, we then used the results to predict the behaviour of models built
using all three uncertainty formalisms. This made it easy to check the behaviour of the models against
the behaviour which the knowledge engineer who originally elicited the information intended them to
have. In particular we checked the way in which the value of a fault hypothesis changed as single
pieces of evidence were observed. As a result of this validation a couple of anomalies in behaviour were
discovered in which the value of various fault hypotheses did not change as expected. After a discussion
of the nature of these anomalies, we presented a procedure for removing them if desired. This procedure
makes use of the qualitative analysis to identify which parts of the numerical model must be altered
in order to correct the behaviours, and which parts should not be altered in order to prevent changing
behaviours that are already correct. We then applied this procedure to correct the anomalies, and were
able to demonstrate that after correction the models behaved as they were originally intended to do.
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