
A Case Study in the Qualitative Veri�cation and Debuggingof Numerical UncertaintySimon Parsons1;2 and Alessandro Sa�otti31Imperial Cancer Research Fund,London, United Kingdom.2Queen Mary and West�eld College,London, United Kingdom.3IRIDIA, Universit�e Libre de Bruxelles,Bruxelles, Belgium.April 18, 1996AbstractQuantitative methods for reasoning under uncertainty have become well established, and manyalternative formalisms have been suggested. In recent years there has been a growing interest inqualitative methods as helpful in situtations in which the use of precise numerical methods is notappropriate. In this paper we demonstrate another use for qualitative models. The qualitativeanalysis of a quantitative model of uncertainty will reveal the qualitative behaviour of that modelwhen new evidence is obtained. This qualitative behaviour may be studied to identify those situationsin which the model does not behave as expected, and which quantitative values must be altered tocorrect this behaviour. The demonstration is set within the context of the diagnosis of faults inan electricity network, and reports the results of the veri�cation of a model representing a smallfragment of a real application. The model was built using Pulcinella, a tool based on Shenoy andShafer's valuation systems.1 INTRODUCTIONThe handling of uncertainty within arti�cial intelligence systems has long been recognised as a topicworthy of investigation. Over two decades of research has resulted in the availability of a large numberof formalisms intended for modelling di�erent aspects of uncertainty. This work has dealt largely withcomplex quantitative models such as probability theory [1], possibility theory [2, 3], and evidence theory[4]. More recently, however, there has been considerable interest in the qualitative representation ofreasoning under uncertainty in networks, including qualitative probabilistic networks [5, 6, 7, 8] as wellas qualitative possibilistic and evidential networks [9, 10].At the same time there has been an increase in interest in the problem of �nding a uni�ed approachto handling uncertainty, and the view that the di�erent formal models provide exclusive approaches hasbeen challenged by a number of authors, including Szolovits and Pauker [11], Fox [12], Sa�otti [13],Krause and Clark [14] and Neapolitan [15]. Instead the view that these formalisms are alternativesfrom which the most appropriate may be taken in any given situation is advanced. Such a position hasbeen supported by the development of a generalised approach to propagating uncertainty measures innetworks [16, 17], from which a general purpose tool, known as Pulcinella, for propagating uncertaintyby local computation has been developed [18]. This tool has been used [19, 20] to investigate the1
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 �	s ss s................................. .................................................................. D12S1D13D11D1D3 D2L1L3 L2Figure 1: The relevant fragment of the distribution network.modelling of various reasoning problems using di�erent uncertainty handling formalisms, thus providinga comparison of the di�erent ways in which the formalisms behave, and adding to our knowledge oftheir relative usefulness for solving particular problems.In this paper we extend two of the lines of work mentioned above, by using qualitative methods [9]to advance the work of Sa�otti and Umkehrer [19], and by analysing the qualitative behaviour of thedi�erent formalisms when they are used to represent a particular problem. This information can thenbe used, in conjunction with expert opinion as to how the models of the problem should behave, todetect anomalies in those models, and, if any are found, to correct them. The structure of the rest ofthe paper is as follows. Section 2 describes the problem which we are using in this case study, alongwith the models in various formalisms suggested in previous work [19, 20]. Section 3 then draws uponprevious results to suggest how the models may be qualitatively analysed. Section 4 uses the results ofthe qualitative analysis to verify the correctness of the models, and to detect some apparent anomalies.Finally Section 5 demonstrates how anomalies can be corrected, again making use of the qualitativeanalysis. Thus we suggest a procedure for veri�cation and debugging:1. Establish the qualitative behaviour of an uncertain model, whatever formalism is being used.2. Verify that this behaviour is as required and detect any anomalies that occur.3. Alter the model, if necessary, to ensure that the behaviour is correct.and illustrate its use on a real problem.2 PROBLEM DESCRIPTIONThis section describes a problem in the domain of electricity distribution, reported in previous work[19, 20]. We present the three solutions originally proposed [19], and illustrate our method of qualitativedebugging by analysing these solutions.2.1 Domain KnowledgeThe problem under study is to adequately model the uncertainty present in fault diagnosis in electricitynetworks. For the sake of clarity, both the structure of the problem and its quantitative knowledgehave been greatly simpli�ed. We consider here the fragment of an electricity network given in Figure 1.This fragment comprises four substations, linked by three lines L1, L2 and L3 (in the real network,the three outer substations would be connected to other lines, substations, and so on). The substationin the middle includes S1, a big conductive bar, known as a busbar, used for connecting lines together.The Dis and D1is are circuit breakers, that is devices which watch the part of the network on their\hot" side, marked by a dot in the picture, for overloads. If an overload is detected on a line, a circuitbreaker isolates this line and transmits an alarm to the control room. The alarm may be either an2



instantaneous alarm or a delayed alarm. An instantaneous alarm is generated when a big overload isdetected, and is normally caused by a fault in the line that the device is monitoring. A delayed alarm isgenerated by a small overload normally caused in an adjacent line to that being monitored. However,a delayed alarm may also be caused by an overload in the line being monitored if the overload occursat a considerable distance from the circuit breaker. Overloads in the busbar S1 are detected in justthe same way as faults in lines, that is an alarm from the outer circuit breakers D1{D3 may indicatea fault in S1. Note that a single fault can generate alarms in several circuit breakers.Talking to domain experts revealed that the behaviour of the circuit breakers exhibits uncertainty,which has been roughly quanti�ed by the experts:1. alarms are not very reliable: in roughly 10% of the cases, they do not correspond to the realsituation so that alarms are generated without faults or faults occur without alarms;2. if an instantaneous alarm is generated (correctly) on a circuit breaker, the fault is in the line thatthe breaker is on;3. if delayed alarm is generated (correctly) on a circuit breaker, the fault is in the line that thebreaker is on in roughly 30% of cases, and in an adjacent line in roughly 70%.In the fragment we are modelling, the \adjacent line" is the busbar S1 for the outer circuit breakers(i.e., D1, D2, D3); while it is some line outside our fragment for the inner circuit breakers (D11, D12,D13). Accordingly, we know what the qualitative behaviour of the modelled fragment should be (nomatter what formalism is used to model the uncertainty):1. an instantaneous alarm in an outer circuit breaker should increase our belief in the occurrence ofa fault in the line that the breaker is on;2. a delayed alarm in an outer circuit breaker should increase our belief in the occurrence of a faultin either the line the breaker is on, or in the busbar;3. an alarm (of any kind) in an inner circuit breaker should only increase our belief in the occurrenceof a fault in the line the breaker is on (in the real network, a delayed alarm would also indicate afault in another part of the network).2.2 Modelling the ProblemWe model our problem using Shenoy and Shafer's valuation system formalism [16, 17] which is a generalapproach to network-based local computation, in which many uncertainty handling formalisms can beembedded. The tool we have used for our experiment, Pulcinella1 , is an implementation of valuationsystems that exibits the same generality. Thanks to this generality, we have been able to use quantitativemodels of uncertainty as di�erent as probability theory, possibility theory, and the Dempster-Shafertheory of belief functions. As according to the valuation system formalism, we model our problemthrough a set of variables, and a set of valuations linking sets of related variables. Figure 2 shows agraphical representation of the model, where ovals stand for variables, and rectangles for valuations.A valuation over a set of variables expresses information about the values taken by the variables inthat set, in a form that depends upon the uncertainty formalism; typically, this information is either arelation between those variables, or prior information about some variable. In the experiment reportedhere, we have modelled uncertain relations using three alternative formalisms: probability theory,possibility theory [2, 3], and the Dempster-Shafer theory of belief functions [4].2 The Dis and D1is are1Pulcinella [18] was developed at IRIDIA, Universit�e Libre de Bruxelles, and is freely available for non-commercial use.More details are available on the Pulcinella Web Page, http://iridia.ulb.ac.be/pulcinella/2A quick introduction to the use of each of these formalisms in the context of the experiment described here can befound elsewhere [20]. 3
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Figure 2: The valuation system for the distribution network.variables representing circuit breaker states, with possible values ok (no alarm), del (delayed alarm),and inst (instantaneous alarm); Lis and S1 represent line and busbar states, with possible values okand fault; and the \alarm-is" relate generation of alarms by breakers with states of neighbouring lines.Once new information about the state of a breaker is received, this can be propagated through the\alarm-is" relations to produce updated estimates of the states of the various elements of the network(see [16] for more details on the propagation mechanism).In order to build the \alarm-i" valuations so that they behave as described above, we �rst splitthem into two groups: those referring to outer circuit breakers (alarm-1, alarm-2, alarm-3), and thosereferring to inner circuit breakers (alarm-11, alarm-12, alarm-13). We then enter the correspondingvalues. These values are meant to encode the three informal items of expert knowledge presented inSection 2.1 above. Tables 1{3 show the values for the two classes of valuations in each formalism.3In the probability case (Table 1), we use joint probability distributions. (For the user's convenience,these distributions are given un-normalized to Pulcinella, and then normalized by the program.) Theincomplete information given by the experts had to be integrated by \reasonable" assumptions: forexample, in the �rst column of the inner breaker case, the information \if no alarm is received, thenL1 is ok with 90% probability" has been split equally between the possibilities \L1=ok and S1= fault"and \L1 = ok and S1 = ok" (as the inner circuit breakers do not give any information about possiblefaults in the busbar). And in the case of outer breakers, the information about the 90% reliability ofalarms, and that about the relative probability of faults in L1 and S1 given a delayed alarm, have beencombined into the distributions shown in the second column. It appears that �lling a probability tablegiven the available expert knowledge may require a good deal of artistic creation!Inner breakers (D1i) P (�) Outer breakers (Di)ok del inst L1 S1 ok del inst0.45 0.05 0.05 ok ok 0.89 0.1 0.050.45 0.05 0.05 ok fault 0.05 0.6 0.050.05 0.89 0.89 fault ok 0.05 0.2 0.890.05 0.01 0.01 fault fault 0.001 0.1 0.01Table 1: The joint probability distributions for the alarm-i valuationsThe values are much less surprising for the possibilistic case, that is, when we use possibilitydistributions as valuations. This is mainly due to the looser contraints imposed by possibility theory.For instance, the values in the last column of the inner case (Table 2) can be read as follows: \When3The reader may not agree that this is the \best" way to model the given problem. This, of course, is not the pointhere, our aim being to illustrate the use of qualitative techniques to analyse and debug a possibly unsound model. To thisrespect, the interest of the proposed model is that it could be regarded|and indeed it has been|by a knowledge engineeras a plausible model for the given problem. 4



there is an instantaneous alarm, the possibility that L1 be ok is extremely weak, whatever the state ofS1; on the other hand, it is completely possible that L1 is faulty, both with S1 ok or faulty".Inner breakers (D1i) �(�) Outer breakers (Di)ok del inst L1 S1 ok del inst1 0.1 0.1 ok ok 1 0.1 0.11 0.1 0.1 ok fault 0.1 0.7 0.30.1 1 1 fault ok 0.1 0.3 10.1 1 1 fault fault 0.1 1 1Table 2: The joint possibility distributions for the alarm-i valuationsFinally, in the belief function case (Table 3), we represent the bits of our information as multiple basicmass assignments, which are then combined by Pulcinella into one mass assignment using Dempster'srule4. The three mass assignments used for the outer circuit breakers are meant to encode the followingbeliefs, which are a way to interpret the expert's statements reported in Section 2.1:� a 0.9 belief that when there is no alarm the lines are ok, and vice-versa; this is captured byassigning a 0.9 mass to the set of all possible con�gurations except those where we receive analarm but the lines are both ok, and those where there is a fault but we do not receive an alarm(since we are ignorant about how to distribute the remaining 0.1 we follow the usual procedurefor belief functions and allocate it to the full set of hypotheses expressing the fact that everythingis possible to some degree).� a 0.7 belief that if there is an instantaneous alarm, L1 is faulty; this is expressed by a 0.7 masson the set of all con�gurations, except those where we receive an instantaneous alarm but L1 isnot faulty (along with 0.3 to the full set, again due to ignorance). And� a 0.3 belief that when there is a delayed alarm, then either L1 or S1 is faulty (i.e., we only excludethe case D1=del & L1=ok & S1=ok).Things are similar for the inner breakers, except that there is no way to discriminate between S1 beingok or faulty|hence we omit the third mass assignment.
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Table 3: The joint belief distributions for the alarm-i relationsWe also have prior values for state of the breakers before any report is received (Table 4). In thecase of possibility theory and of belief functions, these values indicate total ignorance about the possiblestate of the breaker (everything is possible, but nothing is positively believed); that is, we are agnostic4The combined assignments are fairly intricate, and are not shown (but see [19]).5



about whether certain alarms (or no alarms) are a priori more likely than others5. This contrasts withthe probability case, where the axiom p(x) + p(:x) = 1 forces us to commit to :x whatever credibilityis not committed to x; here, we use a rough estimate of the priors given by the experts.ok inst delp(�) 0.998 0.001 0.001�(�) 1 1 1bel(�) 0 0 0Table 4: Prior valuesA comparison of these three methods for handling the uncertainty in the problem is given byelsewhere [19, 20]. In the rest of this paper we will investigate whether these models of uncertaintycorrectly encode the behaviour described in Section 2.1.3 QUALITATIVE ANALYSIS OF THE PROBLEMWhen we �nd new evidence about the state of the circuit breakers we update our prior values forfault hypotheses to take account of the evidence. This takes the form of �nding new values for, say,the probability of a line fault given that we have an increase in the probability of a delayed alarm(because we have evidence that one has occured). Thus we determine the change in probability of aline fault given the change in probability of a delayed alarm. When using probability, or any othertheory of uncertainty, we are interested in the new value obtained after updating. When verifying thebehaviour of the model, however, we are interested in checking that it corresponds to that describedby the domain expert whose knowledge is captured in the model. Thus, since the expert's knowledgeis often expressed in the form \if we observe A, then B is more likely", we may be more interested inknowing the way in which the values change than in the values themselves. Techniques of sensitivityanalysis are sometimes used to provide this sort of veri�cation for parametric models. Unfortunately,these techniques tend to be fairly complex, and they have only been extensively studied for the caseof probabilistic models. In this section, we establish a qualitative method for sensitivity analysis thatcan be applied to probability, possibility and belief-function models. That is we provide a method bywhich it is possible to determine in a qualitative way how the values of hypotheses change when wehave new evidence.The basic method underlying the analysis has been expounded elsewhere ([9], and for binary vari-ables [10]), and here we merely apply the results obtained there. However, for those unfamiliar withthis work, we provide the following sketch. Given the equations that relate two uncertainty values val1and val2 we can establish an expression, in terms of numerical uncertainty values, for the derivativedval1=dval2 that relates the two quantities. This expression allows us to determine the qualitative valueof the derivative (indicated by the use of square brackets), that is whether the derivative is positive,negative, or zero. A positive derivative, written as [dval1=dval2] = [+], means that val1 increases whenval2 increases and decreases when val2 decreases. Similarly, a negative derivative, [dval1=dval2] = [�],means that val1 decreases when val2 increases, and increases when val2 decreases. Finally, a zeroderivative, [dval1=dval2] = [0] means that val1 does not change when val2 increases or decreases. Thuswhen we have new evidence that changes the value of val2 the derivative tells us the change in val1, andfor a full analysis we need to establish [dval(h)=dval(e)] for every interesting hypothesis h and piece ofevidence e.5The last row is the result of using a vacuous basic mass assignment as prior, in other words one where all the mass isgiven to the full set. 6



3.1 The Representation for the Qualitative AnalysisThe valuation system representation introduced above is that in which the original problem was for-mulated and solved [19, 20], and it is possible to perform the qualitative analysis directly on thisrepresentation since it contains the relevant data. However, since our previous work on qualitativeanalysis of uncertainty handling formalisms has been discussed using a causal network representation,it is helpful to reformulate the problem in such a representation. We use a network representation,similar to that of Pearl [1] with the exception that the numerical value of the dependencies are encodedin possibility [21] and evidence [22] theories as well as probability theory. In these networks, two nodesrepresenting particular variables are joined by an arc if and only if the value of the variable representedby the node at one end of the arc is directly in
uenced by the value of the variable represented by thenode at the other end of the arc. The direction of the arc is normally taken to represent the directionof the causal in
uence between the variables. Thus the problem information of Section 2.1 may berepresented by the network of Figure 3.
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Figure 3: The causal network representation of the electricity distribution problem.In the qualitative analysis we will look at changes in value of S1 and Li given changes in value of Dior D1i. If we wanted to assess the impact of several alarms we could sum the impact of the individualalarms using qualitative arithmetic [23].3.2 The Probability CaseFigure 3 gives the causal network relating the causes of the di�erent types of alarm, viz. faults in thelines and busbars, and their e�ects, viz. the alarms generated by the breakers. We can analyse thisnetwork to relate changes in the probabilities of alarms to the probabilities of faults. In particular,we can write the partial derivatives of the probability of a line fault by the probability of the di�erentalarms [9], for instance: @p(Li= fault)@p(D= inst) = p(Li= fault jD= inst) (1)where D stands for both Di and D1i. Analagous results may be obtained for other alarm conditions.Now, this derivative tells us how p(Li= fault) varies with p(D = inst) ignoring the e�ects of changesin the probability of other values of D. We can also determine the total derivatives which tell us, forinstance, how p(Li= fault) varies when p(D= inst) changes taking into account the changes in p(D=del)and p(D=ok) [9, 10]: 7



�dp(Li= fault)dp(D= inst) � = (2)[p(Li= fault jD= inst)� p(Li= fault jD=del)]� [p(Li= fault jD= inst)� p(Li= fault jD=ok)]Note that this result assumes that changes in p(D= inst) are distributed among p(D=del) and p(D=ok)as a result of the fact that all three values sum to one. Again, analagous results may be obtained forother alarm states. Now, since: p(Li=ok) + p(Li= fault) = 1 (3)for any line, when we know how p(Li= fault) changes we can tell how p(Li=ok) changes. These resultsare true for both inner and outer circuit breakers, and furthermore are true for any numerical valueswe put into the model. We can repeat the calculation for the probability of a busbar failure obtaininganalagous results.The overall change in probability of line and busbar faults due to a change in the probability of analarm from a single circuit breaker can be calculated either from the partial derivatives, or the totalderivatives. For example, the change in probability of a fault in L1 given a change in the state of D1may be calculated as: [�p(L1= fault)] = �@p(L1= fault)@p(D1= inst) �
 [�p(D1= inst)] (4)� �@p(L1= fault)@p(D1=del) � 
 [�p(D1=del)]� �@p(L1= fault)@p(D1=ok) � 
 [�p(D1=ok)]or as: [�p(L1= fault)] = �dp(L1= fault)dp(D1= inst) �
 [�p(D1= inst)] (5)where 
 and � are qualitative multiplication and addition (Table 5) respectively. Note that in thesecond equation we could use the derivative with respect to any of the values of D. Note also that the
 [+] [0] [�] [?][+] [+] [0] [�] [?][0] [0] [0] [0] [0][�] [�] [0] [+] [?][?] [?] [0] [?] [?] � [+] [0] [�] [?][+] [+] [+] [?] [?][0] [+] [0] [�] [?][�] [?] [�] [�] [?][?] [?] [?] [?] [?]Table 5: Qualitative multiplication and additionderivatives cannot take arbitrary (qualitative) values, but are constrained to obey the laws of probability.Namely, the normalisation condition (3) given above ensures that the derivative [@p(Li= fault)=@p(D)]may be calculated as [�]
 [@p(Li=ok)=@p(D)] and [@p(S1= fault)=@p(D)] = [�]
 [@p(S1=ok)=@p(D)]for any value of D. These constraints hold whatever numerical values are used in the model. Thus,irrespective of the way in which a piece of evidence a�ects the probability of a line or busbar fault, itwill in
uence the probability of the component being ok in the opposite way.8



3.3 The Possibility CasePossibility theory is essentially qualitative [24] when it relies on maximum and minimum operations todetermine the updating of values, numbers being used simply as a convenient and easily comprehensibleset of suitably ordered values. The use of the max and min operations makes it impossible to obtaintrue derivatives, but a form of derivative based on small �nite, rather than ini�ntesimal, change maybe established [9]. Using the results established there, we can predict that:���(Li= fault)��(D= inst) � = [+] (6)if ��(D= inst) < �(Li= fault jD= inst)and �(Li= fault; D= inst) � �(Li= fault; D 6= inst)where ��(�) is the possibility once some information is received from the alarms6. Otherwise thederivative has the value [0]. Similar expressions will relate changes in �(Li= fault) to those in �(D=del)and �(D=ok).We can also chart the behaviour of the possibility of the line being ok. In (normalized) possibilitytheory this is only connected to the possibility of line fault by the relation:max (�(Li=ok);�(Li= fault)) = 1 (7)so that one of the two must be perfectly possible. Thus when no fault is observed, it must be perfectlypossible that the line is ok, and vice-versa. However, unlike the probability case, in general we are notable to determine how the possibility of the line being ok changes when we know how the possibilityof the line being faulty changes. As a result, we have to separately determine how the possibility of aline being ok changes with knowledge of alarms:� ��(Li=ok)��(D= inst)� = [+] (8)if ��(D= inst) < �(Li=ok jD= inst)and �(Li=ok; D= inst) � �(Li=ok; D 6= inst)Again similar expressions will relate changes in �(Li = ok) to those in �(D = del) and �(D = ok).Furthermore, we can relate changes in the possibility of busbar failure, and of the busbar beingok, to instantaneous alarm, delayed alarm, and no alarm. Now, the di�erence expressions such as[��(Li= fault)=��(D= inst)] that we are using are partial in that they only take account of changeswith respect to one possibility. As a result, we calculate the change in possibility of a line fault giveninformation about alarms using:[��(Li= fault)] = ���(Li= fault)��(D= inst) �
 [��(D= inst)] (9)� ���(Li= fault)��(D=del) �
 [��(D=del)]� ���(Li= fault)��(D=ok) �
 [��(D=ok)]and changes in the possibilities of the line being ok and busbar being both ok and faulty may becalculated in an analagous way. As noted above, the normalisation condition only weakly restricts theway possibility values change|it only prevents all the values of some variable from having a possibility ofless than one at the same time, and this requirement does not greatly restrict the qualitative derivatives.6The fact that we know how the possibility values change allows us to make more precise predictions than is generallythe case [9] 9



3.4 The Belief Function CaseOnce again we can use the results of [9] to determine the qualitative behaviour of the belief functionmodel of the distribution network. Since we are dealing with belief functions, D may take any value inthe power set of finst; del; okg, so D 2 finst; del; ok; inst[ del; inst[ ok; del[ ok; inst[ del[ okg, where wewrite inst for finstg, del for fdelg and ok for fokg for notational simplicity. As in the probability case,we can either write down partial derivatives of the form:@bel(Li= fault)@bel(D= inst) = bel(Li= fault jD= inst) (10)or more useful total derivatives such as dbel(Li= fault)=dbel(D= inst), which give changes in bel(Li=fault) that also take into account changes that take place in bel(D=del) and bel(D=ok). For the alarmsituations that we are interested in, we have, for instance:�dbel(Li= fault)dbel(D= inst) � = (11)[bel(Li jD= inst)�minX bel(Li= fault jX)]� [bel(Li= fault jD= inst)�maxX bel(Li= fault jX)]where X � fD= inst; D= del; D= okg; D= inst 2 X . Obviously we have analagous results for otheralarm types, and similar results about the busbar may be deduced. As in the probability case thederivatives are not theoretically unconstrained, but since in Dempster-Shafer theory there is only avery weak link between the belief in, say, a line being ok and being faulty:bel(Li=ok) + bel(Li= fault) � 1 (12)there are, in practice, no restrictions on the qualitative values of the derivatives, indicating that, inqualitative terms, belief functions are a generalisation of both probability and possibility theories.3.5 More Complex ModelsBecause our case study is concerned with the analysis of a relatively simple model, in that there is onlyone arc in the causal graph between any observation that we can make and any hypothesis in which weare interested, it is worth considering how more complex models may be analysed. In fact, the answeris simple. Because the results that we have used are the results of a truly local analysis|that is theanalysis of each arc may be carried out using just data about the conditional values that control thebehaviour of that arc|we can simply analyse the model arc by arc, and then combine the results alongthe path from observation to interesting hypothesis.For example, if we have an observation O, a hypothesis H and an intermediate variable I , sothat there is an arc from H to I and from I to O, we would analyse the model by determiningdval(I = ij)=dval(O = oi) for every value oi of O and ij of I , and then dval(H = hl)=dval(I = ij) forevery value hl of H and ij of I . Then to determine the e�ect of an observation that has the e�ect ofmaking a given val(oi) increase, we would calculate the change in a given val(hl) as:[�val(hl)] = "dval(H = hl)dval(I = ij) #
 � dval(I = ij)dval(O = oi)�
 [�val(oi)] (13)where ij is a suitably convenient value of I . In others words, large models may be handled by decom-posing them, analysing the components and combining the results in a modular way.10



4 VALIDATING THE BEHAVIOUR OF THE MODELSHaving now analysed the way in which qualitative uncertainty values are propagated through the kind ofnetwork structures found in our test case, and thus determined the general behaviour of the formalismsin which we are interested, we can use the numerical information of Section 2 to examine the exactbehaviour of the models we have proposed. This provides a qualitative comparison of the di�erentformalisms for our problem, as well as predicting how the quantitative formalisms will behave.The way new information coming from a circuit breaker is incorporated in the model is di�erentfor the three formalisms considered. In probability theory, the information that a particular alarmhas arrived from a breaker is typically introduced by increasing the value for the associated state, atthe expense of the values of the alternative states: for example, a report of an instantaneous alarm isencoded by forcing �p(D= inst) = [+], �p(D=del) = [�], and �p(D=ok) = [�]. In Dempster-Shafertheory, an alarm report is encoded by simply increasing the value of the associated state (the values ofaltermative states do not need to be decreased as they are initially 0); so, a report of an instantaneousalarm is encoded by �bel(D= inst) = [+], �bel(D= del) = [0], and �bel(D= ok) = [0]. Possibilitytheory di�ers in that an alarm report is not encoded by increasing the possibility value (which is whatwe are measuring) of that alarm, but by decreasing the possibility of all other alarm conditions, so thatfor an instantaneous alarm ��(D= inst) = [0], ��(D=del) = [�], and ��(D=ok) = [�].4.1 The Probability CaseThe analysis of Section 3.2 told us which conditional probabilities determine the behaviour of thesystem. Now, from Table 1 we can see that for the inner circuit breakers we have:p(Li= fault; S1= fault jD1i= inst) = 0.01p(Li= fault; S1= fault jD1i=del) = 0.01p(Li= fault; S1= fault jD1i=ok) = 0.05p(Li= fault; S1=ok jD1i= inst) = 0.89p(Li= fault; S1=ok jD1i=del) = 0.89p(Li= fault; S1=ok jD1i=ok) = 0.05so that p(Li= fault jD1i= inst) = 0:90, p(Li= fault jD1i=del) = 0:90, and p(Li= fault jD1i=ok) = 0:01.Using these values in (2) we �nd that the qualitative values of the derivatives that link the probabilityof a line fault to that of an alarm for the inner circuit breakers are:h dp(Li=fault)dp(D1i=inst)i = [+] hdp(Li=fault)dp(D1i=del)i = [+] hdp(Li=fault)dp(D1i=ok) i = [�]Now, from our knowledge of the prior probability values we can see that when we have an instantaneousalarm the change in the probability of a line fault calculated by (5) is:Report none inst delayed ok[�p(Li= fault)] [0] [+] [+] [�]In both these cases, the probability of the line being ok, p(Li=ok) may be calculated from 1� p(Li=fault), and thus varies inversely to p(Li= fault). For the outer circuit breakers:hdp(Li=fault)dp(Di=inst) i = [+] hdp(Li=fault)dp(Di=del) i = [?] hdp(Li=fault)dp(Di=ok) i = [�]where the [?] indicates that it is not possible to establish whether the value of the derivative is positive,negative, or zero. Thus we have: Report none inst delayed ok[�p(Li= fault)] [0] [+] [?] [�]11



Here the [?] indicates that we can not predict precisely whether the probability of a line fault willincrease, decrease, or not change based on purely qualitative information (the same result will alsobe obtained from (4) if we use the partial derivatives derived from (1)). However, it is possible toheuristically re�ne the prediction using some numerical order-of-magnitude information. For instance,taking the quantitative expressions from (1) and the relevant conditional values, comparing the valuesof the partial derivatives we �nd that:@p(Li=fault)@p(Di=inst) > @p(Li=fault)@p(Di=del) � @p(Li=fault)@p(Di=ok)where � indicates a di�erence of at least an order of magnitude. Now, from the prior probabilities weknow that when a delayed alarm takes place j�p(Di= ok)j � j�p(Di= del)j � j�p(Di= inst)j sincethe change in p(Di= ok) and p(Di= del) is around a thousand times that in p(Di= inst). Thus whenevaluating (4) to establish the change in line fault probability for a delayed alarm, the second termdominates, and we have [�p(Li= fault)] = [+]. Thus, overall:Report none inst delayed ok[�p(Li= fault)] [0] [+] [+] [�]Thus the outer circuit breakers work as intended, with the probability of failure of the line increasingwith instantaneous and delayed alarms. Thus for both inner and outer breakers, the probability ofthe line being ok falls with both instantaneous and delayed alarms, and the model is an accuraterepresentation of the behaviour of the target system. Now considering busbar faults; for the innercircuit breakers we have:h dp(S1=fault)dp(D1i=inst)i = [�] hdp(S1=fault)dp(D1i=del) i = [�] hdp(S1=fault)dp(D1i=ok) i = [+]Report none inst delayed ok[�p(S1= fault)] [0] [�] [�] [+]This means that if we have a report of any kind of alarm in the inner breakers then the probability ofa busbar fault decreases, while knowing for sure that there is no alarm means that the probability offailure increases. This behaviour is rather odd since we would expect knowledge of an alarm to increasethe probability of a fault, and a no-alarm report to decrease the probability of a fault. We will considerthis strange behaviour again in Section 5. Finally, for the outer circuit breakers we have:hdp(S1=fault)dp(Di=inst) i = [?] hdp(S1=fault)dp(Di=del) i = [�] hdp(S1=fault)dp(Di=ok) i = [�]and the purely qualitative approach gives:Report none inst delayed ok[�p(S1= fault)] [0] [?] [+] [�]This time order of magnitude considerations cannot help us, and in order to resolve the qualitativeambiguity, we will have to carry out a full numerical calculation using Pulcinella. When this is done,we �nd, as we would hope, that an instantaneous alarm will cause the probability of a busbar fault toincrease. Overall we have: Report none inst delayed ok[�p(S1= fault)] [0] [+] [+] [�]which are much as we would expect. 12



4.2 The Possibility CaseFor the case in which the model is quanti�ed using possibility values we �nd that because the derivativesdepend upon the �nal possibility values of the alarm states, ��(D= inst), ��(D=del) and ��(D=ok)(6) we have di�erent values for di�erent pieces of evidence. For an instantaneous or delayed alarm wehave: h��(Li=fault)��(D=inst) i = [0] h ��(Li=fault)��(D=del) i = [0] h ��(Li=fault)��(D=ok) i = [0]while for no alarm we have:h ��(Li=fault)��(D=inst) i = [+] h ��(Li=fault)��(D=del) i = [+] h��(Li=fault)��(D=ok) i = [0]so that from (9): Report none inst delayed ok[��(Li= fault)] [0] [0] [0] [�]and the model behaves as expected. If there is an instantaneous or delayed alarm on either the inneror outer breakers, a line fault remains perfectly possible. If there is no alarm the possibility of a linefault falls. We can also consider how the possibility of the line being ok changes. We �nd that for bothtypes of breaker, for all alarm states:h ��(Li=ok)��(D=inst)i = [0] h ��(Li=ok)��(D=del)i = [0] h ��(Li=ok)��(D=ok) i = [+]which gives: Report none inst delayed ok[��(Li=ok)] [0] [�] [�] [0]So, for both instantaneous and delayed alarms in both inner and outer breakers, the possibility of theline being ok will fall. Thus the possibility of the line being ok does not change7 as long as there is noalarm on either type of breaker, but falls as soon as we have any kind of alarm. Similar results may beobtained for the possibilities that the busbar has a fault or is ok. It is clear that we can derive conditionssimilar to those of (6) and (8) to predict how the possibility of the busbar being faulty depends uponthe possibilitites of the di�erent types of alarm. We �nd that for the outer breakers we have:h ��(S1=fault)��(Di=inst) i = [0] h��(S1=fault)��(Di=del) i = [0] h��(S1=fault)��(Di=ok) i = [0]for instantaneous and delayed alarms, while no alarm gives us:h��(S1=fault)��(Di=inst) i = [+] h��(S1=fault)��(Di=del) i = [+] h ��(S1=fault)��(Di=ok) i = [0]while for the inner breakers we have, for all alarm states:h ��(S1=fault)��(D1i=inst)i = [0] h ��(S1=fault)��(D1i=del) i = [0] h ��(S1=fault)��(D1i=ok) i = [0]Thus from the analagous result to (6), for the outer breakers we get:7Notice that the values of both �(Li= fault) and �(Li= ok) are initially 1. As was the case for the assignment ofpriors to circuit breaker states, possibility theory (as well as belief functions|see below) allows us to remain agnosticabout whether a fault is a priori more likely than no fault. This is again not the case for probability theory, due to theadditivity axiom. 13
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Li LiFigure 4: Conditional belief functions for the \alarm" relationsReport none inst delayed ok[��(S1= fault)] [0] [0] [0] [�]while for the inner breakers, we get:Report none inst delayed ok[��(S1= fault)] [0] [0] [0] [0]So, when the possibility of instantaneous and delayed alarms in the outer breakers increases, thepossibility of the busbar being faulty will not fall, but this possibility is independent from that of analarm in the inner breakers. In a similar way, we can determine how the possibility of the busbar beingok will vary. The reader should by now be able to perform all the computations herself, so we onlyindicate the results|for the outer circuit breakers:Report none inst delayed ok[��(S1=ok)] [0] [0] [�] [0]and for the inner circuit breakers:Report none inst delayed ok[��(S1=ok)] [0] [0] [0] [0]As we would expect, only the detection of a delayed alarm on the outer breakers suggests that thepossibility of the busbar being ok should fall, while no alarm state on the inner breakers will cause thepossibility to change. In conclusion, the qualitative behaviour of the model developed using possibilitytheory corresponds to our expectations given the domain knowledge.4.3 The Belief Function CaseThe belief function case is rather di�erent to the others in that the values given in Section 2 do notcorrespond to those needed in (10) and (11) to establish the qualitative values of the derivatives. Insteadwe have to extract the conditional beliefs from the joint mass assignment given in Section 2.2. In orderto compute the mass distribution of, say, L1 and S1 given that D1=del, that is bel(L1; S1 jD1=del),we just consider all the second rows in the joint distributions (those corresponding to D1= del), andcombine them in the usual way for belief functions [4]. Thus, for the outer set of circuit breakers wecompute the value of bel(L1; S1 jD1=del) as (0:9� (0:7+ 0:3)� 0:7)+ (0:9� (0:7+ 0:3)� 0:7)+ (0:1�(0:7+ 0:3)� 0:3)). The full set of conditional assignments over Li and S1 is shown in Figure 4, where,for instance, the second row of the \Inner circuit breaker" column gives us bel(Li; S1 jD1i=del) for thevarious values of S1 and any Li. Similarly, the �rst row of the \Outer circuit breaker" column gives usthe values of bel(Li; S1 jDi=ok).From this we can establish that for the inner circuit breakers bel(Li = ok j D1i = ok) = 0:9,14



bel(Li = fault j D1i = del) = 0:9, and bel(Li = fault j D1i = inst) = 0:97, while for the outer circuitbreakers, bel(Li = ok \ S1 = ok j Di = ok) = 0:9, bel(Li = fault [ S1 = fault j Di = del) = 0:93,bel(Li= fault [ S1= fault jDi= inst) = 0:27, bel(Li= fault jDi= inst) = 0:7 and all other conditionalbeliefs are zero8. From bel(Li= ok \ S1= ok jDi= ok) = 0:9 we know that bel(Li= ok jDi= ok) � 0:9and bel(S1=okjDi=ok) � 0:9. From (11) we learn that for the inner circuit breakers we have:h dbel(Li=fault)dbel(D1i=inst)i = [+] hdbel(Li=fault)dbel(D1i=del) i = [+] hdbel(Li=fault)dbel(D1i=ok) i = [0]while for the outer circuit breakers:hdbel(Li=fault)dbel(Di=inst) i = [+] hdbel(Li=fault)dbel(Di=del) i = [0] hdbel(Li=fault)dbel(Di=ok) i = [0]When we have evidence of an instantaneous alarm, and belief in an instantaneous alarm thus increases,there is no change in belief in a delayed alarm or no alarm. With this knowledge we can predict thatthe model behaves as it should. Indeed, for the inner circuit breakers we have:Report none inst delayed ok[�bel(Li= fault)] [0] [+] [+] [0]while for the outer circuit breakers:Report none inst delayed ok[�bel(Li= fault)] [0] [+] [0] [0]Thus, if there is an instantaneous or delayed alarm from the inner breakers, belief in a line faultincreases. An instantaneous alarm from the outer breakers also increases belief in a line fault, but adelayed alarm does not a�ect this belief. Knowing that there is no alarm from the breakers does nota�ect belief in a line fault. These behaviours do not exactly match the speci�cations in Section 2|namely, we were expecting bel(Li= fault) to increase in response to a delayed alarm in an outer breaker.A similar phenomenon appears in other cases, and we will discuss it in the next section. Using (11) topredict how the our belief in the line being ok changes. We �nd that for both inner and outer circuitbreakers: h dbel(Li=ok)dbel(D=inst)i = [0] hdbel(Li=ok)dbel(D=del)i = [0] hdbel(Li=ok)dbel(D=ok) i = [+]from which we know: Report none inst delayed ok[�bel(Li=ok)] [0] [0] [0] [+]So, for both instantaneous and delayed alarms in both inner and outer breakers, our belief in the linebeing ok is unchanged, but this belief will increase when we have evidence that there is no alarm.Similar results may be established for the busbar. Since all the relevant conditional values are zeroexcept bel(S1=okjD=ok), the only derivative relevant to the busbar that is non-zero is:hdbel(S1=ok)dbel(Di=ok)i = [+]for the outer breakers, meaning that, when we look at how the beliefs change we �nd that, for the innerbreakers:8Note that for notational simplicity we write bel(Li=ok\S1=ok jDi=ok) to denote bel(hLi; S1i = fhok; okigjDi=ok),the conditional belief that the joint variable hLi; S1i takes the value hok; oki. bel(Li= fault [ S1= fault jDi= inst) is usedin a similar way. 15



Report none inst delayed ok[�bel(S1= fault)] [0] [0] [0] [0][�bel(S1=ok)] [0] [0] [0] [0]while for the outer breakers: Report none inst delayed ok[�bel(S1= fault)] [0] [0] [0] [0][�bel(S1=ok)] [0] [0] [0] [+]Thus, belief in the busbar failing or being ok is insensitive to anything happening on the inner breakers,as well as to instantaneous and delayed faults on the outer breaker. Belief in the busbar being okincreases when it is known that there is no fault on the outer breaker which is the only one that pointsto the busbar. Overall, the belief function model of the alarm system behaves largely as one wouldexpect on reading the description in Section 2 with the exception of the anomaly described above|beliefin a fault in the busbar does not increase with belief in a delayed alarm in an outer breaker.4.4 Discussion of Veri�cationThe main result that emerges from this section is that we have shown how the qualitative analysismay be used to validate the quantitative model. It can do this since it is possible to make qualitativepredictions of the behaviour of the quantitative model using the numerical values. This qualitativeprediction may be compared against the original opinion of the domain expert to determine whetherthe quantitative model has captured the expert's knowledge. We emphasize that this technique isanalytic rather than experimental, and can be carried out for formalisms other than probability theory.The usefulness of our technique is highlighted by the fact that it threw up some anomalies in thequantitative model that we were using (these are examined in the next section). In other words, theinitial valuation system model, with values as ascertained by the knowledge engineer, does not behavequite as might be expected from the description of its intended behaviour that is supplied in Section 2.Since the validation is purely qualitative, the extent of any anomalies cannot be predicted withoutperforming a numerical calculation. The fact that the validation is purely qualitative also means thatthere are circumstances under which it gives ambiguous results. Sometimes these can be resolved usinga form of order-of-magnitude reasoning (which is formalised in [25]), and sometimes it is necessary tocarry out a numerical calculation to tell exactly what happens.5 DEBUGGING THE VALUESThe qualitative analysis of the probabilistic model of the distribution network revealed that any alarmon an inner circuit breaker will cause the probability of busbar failure to decrease, whilst the observationof \no alarm" will actually cause the probability of busbar failure to increase! This kind of behaviourwas a considerable surprise to the knowledge engineer who performed the original elicitation, andit was certainly not intended when the original model was built. Furthermore, because it was sounexpected, such behaviour is unlikely to have been exposed without the qualitative analysis. Nowthat the anomaly has been spotted, we can run Pulcinella over the speci�c data, and the quantitativedata can be examined to evaluate the impact of the discrepancy. In this case we �nd that:Report none inst delayed okp(S1= fault) 0:000175 0:000088 0:000088 0:000176This makes it clear that the change of value is so small that it is probably not bothering with. However,even though the values are small, the fact that the behaviour is reversed for all the possible states ofthe breaker may induce us to try to debug it. 16



A second anomaly was detected in the belief function model. This occurs in the system's responseto delayed alarms from the outer breakers|such an alarm should, according to the speci�cations inSection 2.1, increase belief in both a busbar fault and in a fault in the line that the breaker is on.However, in the model no such e�ects are observed, with the alarm failing to change any of thesebeliefs. In fact, running Pulcinella on this scenario yields the following results for the outer circuitbreakers: Report none inst delayed okbel(Li= fault) 0 0:98 0 0After some thought, however, what could have been seen as a bug in the model turns out to beacceptable behaviour. In the case of a delayed alarm in an outer breaker, say D1, the belief functionmodel makes the belief in the event \fault in L1 OR S1" increase; however, this belief is not committedto either of the two fault events individually9 . This should not to be seen as a loss of inferential power|the arrival of subsequent items of evidence (i.e., the receipt of new alarm reports) will disambiguatethe situation. To see this, suppose that a new delayed alarm is received from D3. This supports thehypothesis \fault in L3 OR S1", and the two pieces of evidence together support the hypothesis \faultin S1".So, for both these anomalies it is possible to argue that what has been detected is not really aproblem. However, we might wish to \correct" such behaviours so that inner circuit breaker alarmscause the probability of busbar failure to increase (on the grounds that there is an error somewhere)and delayed alarms on a single outer circuit breaker cause belief in busbar and line failure to increase.If we do so, we can use the qualitative analysis to guide us.5.1 A Procedure for DebuggingThe qualitative analysis tells us two things. Firstly it tells us how particular pieces of evidence a�ect thefault hypotheses and thus enables us to detect when the model deviates from its intended behaviour.It also tells us which conditional values determine the qualitative behaviour, and this is the key todebugging the model. We can use the analysis to identify which conditional values cause the unwantedbehaviour, which ones help to determine the correct behaviour, and which ones do not a�ect either.We can then alter the values that cause the unwanted behaviour but which do not a�ect the desiredbehaviour. To do this, the following informal procedure is suggested:1. Establish the set of incorrect derivatives by comparing the behaviour of the model to the systembehaviour given by the domain expert.2. For every incorrect derivative, identify the set of equations that determine it, and for everyequation e construct the corresponding set of conditionals C(e) that are mentioned in it.3. For each set C(e) so constructed, let U(e) be the set of conditionals in C(e) that are unused byall other equations.4. If U(e) is non-empty, then �nd a new distribution of values to the conditionals in it so that thecorrect value for the corresponding derivatives are obtained, and the new distribution is as closeas possible to the old one.5. If U(e) is empty, then let U(e) be the set of conditionals in C(e) that do not determine any correctderivatives.9As may be seen from the fact that the relevant conditional belief (identi�ed by rewriting (11) with L1= fault[S1= faultin place of L1= fault), bel(L1= fault [ S1= fault jD=del) = 0:93 while bel(L1= fault jD=del) = bel(S1= fault jD=del) =0. 17



6. Find a new distribution for the values to the conditionals in U(e) such that every equation whichpreviously determined an incorrect derivative now produces a correct derivative, no derivativescorrected in step 4 are made incorrect, and the new distribution is as close as possible to the oldone.7. If there are certain equations which may not be corrected in this way (because for instance thereare no conditionals in step 5 that do not help to determine initially correct derivatives) thenidentify the set of all such equations.8. Find a new distribution over the full set of conditionals involved in these equations such thatall of them now predict the correct values of the derivatives, no previously correct or correctedderivatives are made incorrect, and the new distribution is as close as possible to the old one.\As close as possible" should be interpreted relative to the judgement of the knowledge engineer, whodecides how large a deviation from intended behaviour can be tolerated, and which deviations are lesstolerable than others. Of course the new distribution must conform to the normalisation condition forthe calculus the values are expressed in.5.2 Correcting the Behaviour of the Probabilistic ModelWe can use this procedure to correct the behaviour of the probabilistic model regarding the detectionof busbar faults on the inner breakers. Section 4.1 gives us the following set of incorrect derivativessince every single behaviour of the model is qualitatively incorrect:nh dp(S1=fault)dp(D1i=inst)i hdp(S1=fault)dp(D1i=del) i hdp(S1=fault)dp(D1i=ok) ioNow, these are determined by the equations:� dp(S1= fault)dp(D1i= inst)� = (14)[p(S1= fault jD1i= inst)� p(S1= fault jD1i=del)]� [p(S1= fault jD1i= inst)� p(S1= fault jD1i=ok)]�dp(S1= fault)dp(D1i=del) � = (15)[p(S1= fault jD1i=del)� p(S1= fault jD1i= inst)]� [p(S1= fault jD1i=del)� p(S1= fault jD1i=ok)]�dp(S1= fault)dp(D1i=ok) � = (16)[p(S1= fault jD1i=ok)� p(S1= fault jD1i= inst)]� [p(S1= fault jD1i=ok)� p(S1= fault jD1i=del)]now, since p(S1= fault jD1i) = p(S1= fault; Li= fault jD1i) + p(S1= fault; Li= ok jD1i) for any valueof D1i, the set of conditionals used by (14), (15), and (16) is (it is the same for all of them):fp(S1= fault; Li == faultjD1i= inst); p(S1= fault; Li=ok jD1i= inst) ;p(S1= fault; Li == faultjD1i=del); p(S1= fault; Li=ok jD1i=del);p(S1= fault; Li == faultjD1i=ok); p(S1= fault; Li=ok jD1i=ok)gClearly all the conditionals in each set are used in other equations, so we have to look for conditionalsthat do not help to determine currently correct derivatives. Since conditionals such as p(S1= fault; Li=fault jD1i) help to determine the currently correct derivatives that relate p(Li= fault) to p(D1i), the18



conditionals we are looking for are:fp(S1= fault; Li=ok jD1i= inst) ;p(S1= fault; Li=ok jD1i=del);p(S1= fault; Li=ok jD1i=ok)gWe then choose a new distribution to minimise change, and a brief experiment should su�ce to satisfythe reader that a suitable new distribution is:p(S1= fault; Li=ok jD=ok) = 0:15p(S1= fault; Li=ok jD= inst) = 0:2p(S1= fault; Li=ok jD=del) = 0:25.3 Correcting the Behaviour of the Belief Function ModelIn the belief function model, the problem is that belief in line fault and busbar fault does not increasewhen there is a delayed alarm in the outer breakers, in other words, [dbel(Li= fault; S1= fault)=dbel(Di=del)] = [0] instead of [+]. Thus the incorrect derivative is:��dbel(S1= fault; Li= fault)dbel(Di=del) ��And so from (11) we can tell, by analogy, that the relevant equation is:�dbel(S1= fault; Li= fault)dbel(Di=del) � = [bel(S1= fault; Li= fault jDi= inst)�minX bel(S1= fault; Li= fault jX)]� [bel(S1= fault; Li= fault jDi= inst)�maxX bel(S1= fault; Li= fault jX)]where X � fDi= inst; Di=del; Di=okg; Di=del 2 X , so that the set of conditionals in which we areinterested is: fbel(S1= fault; Li= fault jDi=del [Di= inst [Di=ok) ;bel(S1= fault; Li= fault jDi=del [Di= inst);bel(S1= fault; Li= fault jDi=del [Di=ok);bel(S1= fault; Li= fault jDi=del)gNone of these conditional values is used in any other equation, so that any of the conditional values maybe changed without altering other derivatives. In addition, all the relevant conditionals are currentlyzero, so that [dbel(Li = fault; S1 = fault)=dbel(Di= del)] may be made positive by making bel(Li =fault; S1= fault jDi= del) positive while leaving all other relevant conditionals unchanged. This maybe achieved by adding another belief function to the basic probability assignment of Section 2.2 sothat we have the basic belief assignments of Figure 5. Note that the change in distribution here is notstrictly minimal, since setting the mass of the new basic probability assignment to 0:0000 : : :01 wouldhave su�ced to make the relevant derivative positive. However, it seemed reasonable to our knowledgeengineer to change the distribution to a value that generates a signi�cant change in bel(Li= fault; S1=fault) given the evidence of a delayed alarm. 19
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Figure 5: The new joint belief distribution5.4 System Behaviour after DebuggingHaving made the changes outlined in Sections 5.2 and 5.3 we can test the behaviour of the new mod-els. First consider the probabilistic model. Entering the new conditional values into Pulcinella andpropagating we obtain, for alarms in the inner circuit breaker:Report none inst delayed okp(S1= fault) 0:000007 0:00004 0:0006 0:000006So an alarm now causes the probability of busbar failure to increase, and the system has had the \bug"removed. Similarly for the belief function model, we have, for the outer breaker:Report none inst delayed okbel(S1= fault) 0 0 0:09 0bel(Li= fault) 0 0 0:09 0which corrects the \bug" detected in the original behaviour by relating a delayed alarm from an outerbreaker with an increase in the belief in a fault in the busbar and line. Notice that the behaviour forall the other cases remains unchanged.6 SUMMARYThis paper has investigated one of the uses of reasoning about qualitative changes in uncertainty valuein the context of a real world problem. We have illustrated our approach to the qualitative analysis ofquantitative models of uncertainty [9] by analysing the behaviour of three models that had been built todiagnose faults in an electricity distribution network. As the analysis is conducted on a local basis, theproposed approach should scale well to larger problems|we can simply analyse the model arc by arc,and then combine the results along the path from observation to interesting hypothesis. The number ofsteps in the analysis is only dependent upon the number of arcs in the network, and the computationale�ort to calculate their e�ect is quadratic in the number of nodes [26]. This analysis is useful becauseit provides a way of determining the behaviour of a model at a high level of abstraction. As such itrelies on weak information and produces results that, although correct, may at times be too weak tobe useful. As a result we enriched the purely qualitative analysis by introducing some informal orderof magnitude reasoning which gave stronger results. It should be noted that this form of reasoning,like any other kind of order of magnitude reasoning, is essentially heuristic, and may at times cause20
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