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Abstract

In recent years, several papers have described systems for plausible
reasoning which do not use numerical measures of uncertainty. Some
of these have been based on logic and some have been based on causal
influences. This paper suggests one way of combining the advantages of
both types of approach by introducing a means of reasoning with causal
influences in a proof theoretic way.

1 Introduction

In the last few years there have been a number of attempts to build systems for
reasoning under uncertainty that are of a qualitative nature—that is they use
qualitative rather than numerical values, dealing with concepts such as increases
in belief and the relative magnitude of values. Between them, these systems ad-
dress the problem of reasoning in situations in which knowledge is uncertain,
but in which there is a limited amount of numerical information quantifying
the degree of uncertainty. Three main classes of system can be distinguished—
systems of abstraction, infinitesimal systems, and systems of argumentation. In
systems of abstraction, the focus is mainly on modelling how the probability of
hypotheses changes when evidence is obtained and there is no need to commit
to exact probability values. They thus provide an abstract version of probability
theory, known as qualitative probabilistic networks (QPNs), which ignores the
actual values of individual probabilities but which is nevertheless sufficient for
planning [30], explanation [6] and prediction [22] tasks. Similar systems have



also been used to provide an account of default reasoning [17, 18]. Infinitesi-
mal systems deal with beliefs that are very nearly 1 or 0, providing formalisms
that handle order of magnitude probabilities. Infinitesimal systems may be used
for diagnosis [4] as well as providing a general model of default reasoning [13],
and have been extended with infinitesimal utilities to give complete decision
theories [26, 32]. Systems of argumentation are based on the idea of construct-
ing logical arguments for and against formulae, establishing the overall validity
of such formulae by assessing the persuasiveness of the individual arguments.
Systems of argumentation have been applied to a problems such as diagnosis,
protocol management and risk assessment [10], as well as handling inconsistent
information [2], and providing a framework for default reasoning [9, 16, 27].
This paper provides a hybridisation of the logical and abstraction approaches
by introducing a logical approach to reasoning about how probabilities change,
which will be called the qualitative probabilistic reasoner (QPR). As is argued
below, QPR provides a more flexible, expressive, and natural means of reasoning
about such changes than is currently possible in systems of abstraction. The
development of QPR relies upon a number of results established in the study of
QPNs. Such results are not explained in any detail since they are easily found in
the literature (in [7] and [30]) and would further lengthen this already lengthy

paper.

2 The logical language

2.1 Basic concepts

We start with a set of atomic propositions £. We also have a set of connec-
tives {—, A, =, W,~}, and the following set of rules for building the well-formed
formulae (wffs) of the language.

1. If I € £ then [ is a simple well-formed formula (swff).
2. If [ is an swff, then =l is an swff.
3. If [ and m are swffs then [ A m is an swff.

4. If [ and m are swffs then | — m is an implicational well-formed formula

(dwff).
5. If I, m and n are swffs then [Wdm ~» n is a synergistic well-formed formula

(ywff).

6. The set of all wffs is the union of the set of swffs, the set of iwffs, and
the set of ywffs.

There are a couple of points that should be noted about the connectives which
go to make up these formulae. The first point is that neither — or ~» rep-
resents material implication. Instead both represent a constraint on the con-
ditional probabilities relating the formulae they connect. The second point is



that this is not the complete set of connectives which can be handled within the
framework—it is also possible to deal with disjunction and material implication
[21]—the set is made up of the connectives necessary to capture qualitative prob-
abilistic reasoning of a slightly richer form than that exhibited by Wellman’s
qualitative probabilistic networks (QPNs) [30].

The set of all wffs that may be defined using £, may then be used to build
up a database A where every item d € A is a triple (¢ : [ : s) in which i is a
token uniquely identifying the database item (for convenience we will use the
letter ‘i’ as an anonymous identifier), [ is a wff, and s gives information about
the probability of [. In particular we take triples (i : [ : 1) to denote the fact
that Pr(l) increases, and similar triples (i : [ : |), to denote the fact that Pr(l)
decreases. Triples (i : I : <), denote the fact that Pr(l) is known to neither
increase nor decrease. It should be noted that the triple (i : [ : 1) indicates
that Pr(l) either goes up, or does not change—this inclusive interpretation of
the notion of “increase” is taken from QPNs—and of course a similar proviso
applies to (¢ : I : }). Since we want to reason about changes in belief which
equate to the usual logical notion of proof, we also consider changes in belief to
1 and decrease in belief to 0, indicating these by the use of the symbols 1 and
| and values which are 1 and 0. The meaning of a triple (i : I : {}) is that the
probability of [ becomes 1, (7 : [ : |}) means that the probability of [ becomes
0, (7 : [ : 1) means that the probability of [ is 1 and (7 : [ : 0) means that the
probability of [ is 0. We also have triples (i : [ : ) which indicate that the
change in Pr(l) is unknown. In addition, for reasons which will become clear
later, we need a symbol to denote a probability whose value is not known (as
distinct from a change in probability whose value is not known). This symbol
will be ¢, so the triple (i : I : 1) means that the value of Pr(l) is unknown. While
this profusion of symbols might seem baroque, it is unfortunately necessary in
order to distinguish the different aspects of qualitative probabilistic reasoning.

In fact the use of this kind of set of symbols should be familiar from qual-
itative reasoning [15]. In qualitative reasoning we consider variables and the
changes in value of those variables. A given variable z can have a positive or
negative value, denoted [+] or [—], and we also distinguish the landmark value
[0]. We are also interested in the way x changes over time and handle this by
considering the values of dz/dt. These values may also be [+], [0] and [-]. In
QPR the same distinctions are made. We have the probability value {, which
corresponds to [+], and landmark values of 0 and 1. We also have the changes
in probability 1, | which correspond to [+] and [—] derivatives, and distinguish
the landmark changes <>, f} and {}. The additional symbols obviate the use of
explicit derivatives.

2.2 Non-material implication

As mentioned above, — does not represent material implication but a connection
between the probabilities of antecedent and consequent. This is the key to
understanding the system. We take iwffs, which we will also call “implications”,
to denote that the antecedent of the jwff has a probabilistic influence on the



consequent. Thus we are not concerned with the probability of the wff, but
what the wffsays about the probabilities of its antecedent and consequent. More
precisely we take the triple (i : @ — ¢ : +) to denote the fact that:

Pr(cla, X) > Pr(c|—a, X)

for all X € {z,—z} for which there is a triple (i : © — ¢ : s) (where s is
any sign) or (i : =@ — ¢ : s). The effect of the X in this inequality is to
ensure that the restriction holds whatever is known about formulae other than
c and a—whatever the probabilities of a and ¢, the constraint on the conditional
probabilities holds. Similarly the triple (i : @ — ¢ : —) denotes the fact that:

Pr(c|a, X) < Pr(c|—a, X)

again for all X € {z, -z} for which there is a triple (i : z = c:s) or (i : ~x —
¢ :s). It is possible to think of an implication (i : @ — ¢ : +) as meaning that
there is a constraint on the probability distribution over the formulae ¢ and a
such that an increase in the probability of a entails an increase in the probability
of ¢, and an implication (i : @ — ¢ : —) means that there is a constraint on the
probability distribution over the formulae ¢ and a such that an increase in the
probability of a entails a decrease in the probability of c. We do not make much
use of triples such as (i : ¢ — a : 0)! since they have no useful effect but include
them for completeness—(i : ¢ — a : 0) indicates that:

Pr(cla, X) = Pr(c|—a, X)

for all X € {x,~a} for which there is a triple (i : @ = c:s) or (i : "z — ¢ : 5),
and so denotes the fact that Pr(c) does not change when Pr(a) changes. We
also have implications such as (i : @ — ¢ : ?) which denotes the fact that
the relationship between Pr(c|a, X) and Pr(c|—a, X) is not known, so that if
the probability of a increases it is not possible to say how the probability of
c will change. With this interpretation, implications correspond to qualitative
influences in QPNs. Just as in QPNs, we require that implications are causally
directed, by which we mean that the antecedent is a cause of the consequent.
This is the usual restriction imposed in probabilistic networks [25] and, as will
become apparent, is necessary to ensure that the system is sound.

This simple picture is complicated because we have categorical implications
which allow formulae to be proved true or false. In particular, an implication
(i : a — ¢: ++) indicates that when a is known to be true, then so is ¢. Thus
it denotes a constraint on the probability distribution across a and ¢ such that
if Pr(a) becomes 1, then so does Pr(c). This requires that:

Pr(cla,X) =1

for all X € {z, -z} for which there is a triple (i : x = c:s)or (i : ~x = c:s)
[19]. Note that this type of implication also conforms to the conditions for

LAs a result we will not worry about the possibility of confusing (i : ¢ — a : 0) with
(¢:1:0) where [ is an swff.



implications labelled with +, and that if Pr(c|—a, X) = 1 then Pr(c) is always
equal to Pr(a). Similarly, a probabilistic interpretation of an implication (i :
a — ¢: ——) which denotes the fact that if a is true then c is false requires that:

Pr(cla,X) =0

for all X € {z, -z} for which there is a triple (i : @ = ¢:s) or (i : =z — ¢ : s5).
The conditions imposed on the conditional values by these implications suggest
the existence of a further pair of types of categorical implication which are
symmetric to those already introduced. We have an implication (i : @ — ¢ : —+)
which denotes the constraint:

Pr(¢|—a,X) =1

for all X € {z,~z} for which there is a triple (i 1z = c:s) or (i : "z = ¢ : s),
and an implication (i : @ = ¢ : +—) which denotes the constraint:

Pr(¢|—a,X) =0

for all X € {z, -z} for which there is a triple (i : @ = c:s) or (i : 7z — ¢ : s).

2.3 Synergy

Being able to handle synergy relations is an important part of any qualitative
probabilistic system, and while a detailed discussion of synergy is beyond the
scope of this article (see instead [6, 8, 30]), the following brief explanation is
worthwhile.

The basic idea, in the language we are discussing here, is that the rela-
tionships between formulae are not completely modular in the same way that
they are in logic. As an example, consider two implications (i : a = ¢ : +)
and (i : b > ¢ : +). If these were logical implications, whatever was known
about a would not affect the relationship between b and c. However, because we
are dealing with probability, a change in what is known about a might change
the relationship between b and c. For instance when the probability of a in-
creases, this change may mean that Pr(c) increases less than before when Pr(b)
increases?. It is this kind of interaction that synergy was first introduced [30]
to capture, and the variety of synergy which describes this kind of interaction
was later called additive synergy.

Additive synergy, however, is not sufficient to describe all the possible types
of interaction between the causes of some formula. Consider the implications
(i : sprinkler — wet_grass : +) and (i : rain — wet_grass : +) which capture the
fact that both rain and the use of a sprinkler make it more likely that the grass
of my lawn will be wet. Now, if I know that my grass is wet, then as Pearl [25]

21t should be noted that because the constraint on the probabilities of b and ¢ is written
in the way it is, taking into account all the possible other things that may affect Pr(c) in
addition to Pr(b), it can never be the case that a change in Pr(a) will change the relationship
between b and c to the extent that increasing Pr(b) leads to a decrease in Pr(c).



famously pointed out, if Pr(sprinkler) increases, then Pr(rain) decreases because
the use of the sprinkler explains away the wet grass. This kind of intercausal
[8] reasoning is described by another form of synergy—product synergy.

As mentioned above, in this paper synergies are represented by formulae
such as a W b ~ ¢ which represents the synergy which exists between a and b
with respect to ¢. Such synergistic formulae form the basis of triples such as
(i:aWb~ c:+) in just the same way as simple and implicational formulae
do, but with yet another denotation. In particular, (i : a W b~ ¢ : +) denotes
the fact that:

Pr(c|a,b, X). Pr(c|—a, —b, X) > Pr(c|—a,b, X). Pr(c|a, =b, X)

where as before, X ranges across all other formulae such that there are triples
(i :x — c:s). Similarly, (i : a Wb~ c: —) denotes the fact that:

Pr(c|a,b, X). Pr(c|-a, b, X) < Pr(c|—a, b, X). Pr(c|a, —b, X)
and (i : aWb~ c¢:0) denotes the fact that:
Pr(c|a,b, X). Pr(c|—a, —b, X) = Pr(c|—a, b, X). Pr(c|a, =b, X)

In the terminology of [6] these are product synergies. In this paper we do
not consider additive synergies, though they could be incorporated into the
framework if it were desired, because they are of less direct use than product
synergies. Furthermore we only consider synergies with values +, 0, and —
though categorical synergies are certainly conceivable.

3 The proof theory

The previous section introduced a language for describing probabilistic influ-
ences between formulae. For this to be useful we need to give a mechanism for
taking sentences in that language and using them to derive new sentences. In
particular we need to be able to take sentences describing changes in probability
in particular formulae and use these, along with implicational and synergistic
formulae to establish changes in probability in other formulae. This is done
using the consequence relation Fgp which is defined in Figure 1. The defini-
tion is in terms of Gentzen-style proof rules where the antecedents are written
above the line and the consequence is written below. The consequence relation
operates on a database of the kind of triples introduced in the previous section
and derives arguments about formulae from them. The concept of an argument
is formally defined as follows:

Definition 1 An argument for a well-formed formula p from a database A is
a triple (p, G, s) such that A Fgp (p, G, s)

The sign s of the argument denotes something about the probability of p while
the grounds G identify the elements of the database used in the derivation of p.



C-rules

A T or (56,{1),5g) iStismea

gL AbFop (StASt, G, Sy)
A I—Qp (St, G, Conjelim(Sg))

py_ A Fop (StASt, G, Sg)
A I—Qp (Stl, G, Conjelim(Sg))

i Alop (St,G,Sg) Atgp (S, Sg")
Atqp (StASH,G UG, conjineo(Sg, S9))

A Fgp (=St,G, Sg)

- A I_QP (St7G7 neg(Sg))

A I_QP (Sta G: Sg)

A Tor (<51, G, neg(Sg))

Atop (St,G,Sg) Abgp (St— St',G',Sq)

o AFop (ST,GUG, impam(S9,597)
E-rules
L Abor (St,G,Sg) Atgr (St— St,G",Sg)
ATFop (St,GUG, imper(S9,59))
I-rules

o AFop (StYSt ~ St".G,8g) Atop (St,G",Sg) Algp (St",G",1)
AFgp (St,GUG UG syngim(Sg, Sg"))

oy Abop (StWSH ~ St",.G,Sg) Albqp (St,G",Sg') Alqp (St",G",1)

AFop (St,GUG UG, syneim(Sg,59"))

Figure 1: The consequence relation Fgp

To see how the idea of an argument fits in with the proof rules in Figure 1,
consider the rules ‘Ax’, ‘A-I’ and ‘—-E’. The first says that from a triple (i : [ : s)
it is possible to build an argument for [ which has sign s and a set of grounds
{i} (the grounds thus identify which elements from the database are used in
the derivation). The rule is thus a kind of bootstrap mechanism to allow the
elements of the database to be turned into arguments which other rules can



then be applied to. The second rule says that from arguments for two different
formulae it is possible to build an argument for their conjunction. The set of
grounds for this argument is the union of the grounds for the two individual
arguments and the sign is a function of their signs. The rule ‘—-E’ can be
thought of as analogous to modus ponens. From an argument for ¢ and an
argument for a — c it is possible to build an argument for ¢ once the necessary
book-keeping with grounds and signs has been carried out.

Example 1. Consider the following database which denotes the fact that the
proposition “premise” has a probability which increases to 1, and that there
is a relation between the proposition premise and the proposition “conclusion”
such that if the probability of premise becomes 1, so does the probability of
conclusion.

(f1: premise : ) A

(rl : premise — conclusion : ++)

From the database, by application of Ax and —-E, it is possible to build the
argument:
Ay Fop (conclusion, {rl, f1}, 1)

since applying impeim to 1} and ++ yields 1} (as we will see in a little while).
Thus from the database it is possible to build an argument for the probability
of conclusion becoming 1. O

The proof procedure used here differs in a couple of important ways from other
similar logical proof systems. Both of these differences stem from the fact that
QPRis dealing with probability values (albeit changes in probability) rather
than just truth and falsity as is the case in classical logic. The first difference is
that it matters whether there are several proofs for a given formula. In logic once
there is a valid proof for a formula, the formula is known to be true. Here there
may be an argument which suggests that the probability of a formula increases
and another which suggests it decreases—to resolve the conflict it is necessary
to combine the arguments as discussed later on. The second difference is that it
is usual to have two sets of proof rules for each connective, one set which specify
how to introduce the connective into formulae and one set which specify how to
eliminate connectives from formulae. The proof rules in Figure 1 mainly consist
of elimination rules. This reflects the focus of the system described in the paper
which is intended to capture the reasoning possible in qualitative probabilistic
networks. The system is thus intended to be used to establish changes in the
probability of sets of formulae rather than to establish connections between sets
of formulae—it is connections between sets of formulae, themselves formulae of
the form ¢ — ¢, which are the kind of formulae that the proof rules cannot
build. Were the missing introduction rules included we would have a system
which was capable, in the language of probabilistic networks, of inferring new
arcs connecting nodes in addition to inferring things about nodes.

In order to apply the proof rules to build arguments, it is necessary to supply
the functions used in Figure 1 to combine signs. This section introduces those
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Table 1: Conjunction introduction conjinre for conjuncts that are known to be
independent.

functions and makes some remarks about the proof rules. The following section
then proves the soundness and completeness of the proof procedure.

We start with conjunction introduction and elimination. When introducing
conjunction it is crucially important whether the propositions in question are
independent or not (since it is often not possible to establish the probability of
the conjunction of a pair of dependent formulae from the probabilities of the
formulae alone). If the formulae are known to be independent then the following
definition applies.

Definition 2 The function conjintro : Sg € {1, M1, 1, 4,4, 1,0,3,10 x S¢’ € {1, 1,
e b U,0,3,0 = S € {1,101, 4, 4, 1,0, 3,1} s specified by Table 1 where,
as with all combinator tables in this paper, the first argument is taken from the
first column and the second argument is taken from the first row.

If the formulae are not known to be independent, then the following definition
applies instead.

Definition 3 The function conjingo : Sg € {1,111, 4>, 1, 4,0,3,0} x S¢’ € {1,1,
T4 0,0, = Sg" € {1,011, 4,1, 1,0,3,1} is specified by Table 2.

and it is clear that in most cases it is not possible to tell how the probability
of the conjunction changes. Note that both Table 1 and Table 2 are written
so that when the result of a combination could be either { or a change in value
(as when ! is combined with <+) the result given is always the change. This is
because we always know that the value of a probability is { so giving it as a
result is less informative—it is only included to ensure that the functions used
by Fgp, in particular impeim and impye,, are closed. The reason for bothering
to have separate definitions for independent and non-independent conjuncts is
that it is possible to identify independent formulae once arguments have been
built, and doing so allows more precise inferences to be made (as is easily seen
by comparing Tables 1 and 2).
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Table 3: Negation of swff's neg

When eliminating a conjunction with sign Sg we assign both conjuncts the
sign:

LA if Sg=1
conjeiim(Sg) = ¢ 1 if Sg=1
) otherwise

where conjeim(Sg) = 1,1} means that conjeim(Sg) is either 1 or f} (such values
are propagated by carrying out the appropriate computation on both the signs
in question [22]). What this means is that most of the time it is not possible to
determine how the probability of the conjuncts change. This is an unfortunate
but unavoidable property of probability theory and can be seen to follow from
conjunction introduction—conje;im is just the inverse of conjintro.

The rules for handling negation are applicable only to swffs and permit
negation to be either introduced or eliminated by altering the sign, for example
allowing (i : —a : 1) to be rewritten as (i : @ : }). This leads to the definition of
neg:

Definition 4 The function neg : (i : —a : s),s € {1,f,1,¢,1,4,0,3,0 — (i :
a:s'),s e {1,M1,¢,4,,0,3,1} relates s to s' by Table 3.

Note that neg is not defined over the values ++, +—, +, 0, —, —+, and ——.
Although an implication (¢ : @ — b : +) has a kind of inverse relation with
(i : @ > b: —), there is no such relation with (i : =(a — b) : s). Indeed,
(i : =(a — b) : s) is not even an implication, since its main connective is —. It
is not possible to apply neg to an implication—if neg is applicable, the formula
it is applied to is not an implication. (In fact the alert reader will have noticed
that (i : =(a — b) : s) is not even a well-formed formula.)

10
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Table 4: Implication elimination impejim

To deal with implication we need two further functions, impe;m to establish
the sign of formulae generated by the rule of inference —-E, and imp, to
establish the sign of formulae generated by —-R. This means that impeji, is used
to combine the change in probability of a formula a, say, with the constraint that
the probability of a imposes upon the probability of another formula c. Since
this constraint is expressed in exactly the same way as qualitative influences
are in QPNs, impeim performs the same function as ® [30], and is merely an
extension of it.

Definition 5 The function impeim : Sg € {1, 1,1, 4,1, 4,0,3,1} x S¢' € {++,
+_7 +7 07 ) _+7 T ?} = Sg” € {Lﬂ;T; H;J/;U;O;:I:; Z} 18 speCiﬁed by Table 4

There are two things that are notable about Table 4. First, the asymmetry
in the table. This stems from the definition of the categorical implications. If
the asymmetry did not exist, categorical implications would be close to logical
bi-implications. Second, the fact that in this table, unlike those introduced
previously, ¢ is the result of combining two signs neither of which is ¢, for instance
1 and 4. This is the justification for including ? as a sign—if it were not included
the set of signs would not be closed under impejim .

The function impye, which computes the sign of the antecedent of an impli-
cation from that of the implication and its consequent, is similar, only differing
in the way it handles categorical implications:

Definition 6 The function impey, : Sg € {1, 1,1, 4,1, 4,0,3,0} x S¢’ € {++,
+—,+,0,—,—+,——, 7} = S¢" € {1,M, 1, ,1,4,0,3,1} is specified by Table 5.

The difference is that categorical implications are only categorical in the direc-
tion in which they are specified. When reversed implications with signs ++ and
+— behave in the same way as implications with sign +, and implications with
signs —— and —+ behave in the same way as implications with sign —. Note
that, once again, 1 is required to ensure closure.

We also need the function syngjim in order to be able to reason with synergies.
This is follows directly from [31]:

11
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Table 6: Synergy elimination synejim.

Definition 7 The function syneim : Sg € {+,0,—} x S¢’ € {1, f,1,+>,1,4,0,7
Qe Sg" e {11, ¢, 1, 4,0,1,0} is specified by Table 6.

The function synejim is the last function required to define Fgp, and we can turn
to issues of soundness and completeness.

4 Soundness and completeness

Now, the aforementioned baroque appearance of the system might lead the
sceptical reader to assume that the definitions given above are rather ad hoc and
not to be trusted. However, they are not. The proof mechanism given above is
provably sound and complete for the propagation of changes in probability in
the sense that it only computes changes that will occur according to probability
theory, and it computes all such changes. This is shown by the results in this
section. However, the business of proving soundness and completeness is not
straightforward. The main problem is that the form of the results depends
heavily on the kind of reasoning. As a result we have three sets of soundness and
completeness results. The first is for causal reasoning, that is reasoning in the
direction of the implications only. The second is for evidential reasoning, that
is reasoning both in the direction of implications and in the opposite direction
to implications, and involves dealing with the problems of d-separation. The
third is for intercausal reasoning, that is reasoning that includes the elimination
of synergies.

12



4.1 Causal reasoning

As mentioned above, a restriction when writing implicational formulae in QPR
is that the direction of the implications must reflect causality in the same way
that the direction of a directed arc in a probabilistic network [25] does. That is
the consequent of an implication must be an effect of the antecedent. The reason
for insisting on this direction is exactly the same as in probabilistic networks—
to ensure that reasonable conclusions are drawn. If we restrict the kinds of
arguments we build to those in which implications are only used in a causal
direction, in other words we only use the C-rules of Fgp to build arguments,
soundness and completeness results are quite straightforward.

To show this we first need to define what it means for formulae to be causes
and effects of one another:

Definition 8 A well-formed formula p is said to be a cause of a well-formed
formula q if and only if it is possible to identify an ordered set of iwfls {a; —
Cly-..,an = Cp} such that q is one of the conjuncts that make up c,, or includes
one or more of the conjuncts that make up c,, one or more of the conjuncts
in every a; is also in c;—1, and p is one of the conjuncts that make up a1 or
includes one or more of the conjuncts in a.

In other words In other words p is a cause of q if it is possible to build up a trail
of (causally directed) implications which link p to g.

Definition 9 A well-formed formula p is said to be an effect of a well-formed
formula q if and only if it is possible to identify an ordered set of iwffs {a3 —
Cly-..,an = Cp} such that q is one of the conjuncts that make up ay or includes
one or more of the conjuncts that make up ay, one or more of the conjuncts
in every c; is also in a;y1, and p is one of the conjuncts that make up c, or
includes one of the conjuncts in c,.

Thus p is an effect of ¢ if it is possible to build up a trail of (causally directed)
implications that link q to p.

Given these definitions, it is possible to show that given information about
the change in probability of some formula p, the C-rules of -gp may be used to
soundly and completely compute arguments about the changes in probability of
the effects of p. However, this is not enough to show that QPR is sound and
complete when using the C-rules. The problem is that, in general, there may be
several different arguments for a single formula, and we therefore need a means
of combining these in a sound way. We therefore define a flattening function
flat which combines arguments by mapping from a set of arguments A to the
supported formula p and some overall measure of validity:

flat: A — (p,v)

where v is the result of a suitable combination of the signs of the arguments.
Now, because the effect of each implication is defined to occur whatever other
arguments are formed (this is a result of the constraint imposed on the condi-
tional probabilities by the implications), all combinations are completely local,
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Table 7: Flattening flat

and the structure of the arguments may be disregarded when flattening® (for
exactly the same reason as when combining evidential trails in QPNs [7]). As a
result, v is simply calculated as:

vz@Sgi

for all (p, Gy, Sg;) € A where @ is an extended version of the qualitative addition
function used by QPNs, defined as follows:

Definition 10 The function & : Sg € {1,1, 1,4, 1, 4,0,3,1} x Sg" € {1,111,
o, L0 eS¢ e {1 e, U, 3,0 is specified by Table 7. Blank spaces
represent impossible combinations.

With this function established we can at last give the overall procedure for
determining the change in a formula p in which we are interested. Assuming
that all known changes in probability in formulae are in the database, this is:

1. Add a triple (i : ¢ : s) for every formula ¢ whose change in probability is
known.

2. Build A, the set of all arguments for p using the C-rules.
3. Flatten this set to Flatc(A) where Flat.(A) = flat(A)*.

This naturally backward chaining procedure can obviously be extended to com-
pute all the causal consequences of a given set of changes in probability.

From the definitions of how changes in probability are combined and then
flattened, it is possible to show that using the C-rules of Fgp is sound:

Theorem 11 The construction and flattening of arguments in QPR using the
C-rules of Fgp is sound with respect to probability theory.

3Though in other argumentation systems where structure is important, as when dealing
with numerical probabilities for instance, structure can be taken into account when flattening.
4The reason for doing this should become clear in the next section.

14



Proof: The proof starts by proving the soundness of the combinator tables
used when applying the C-rules of Fgp:

(Conjunction introduction): Consider the probabilities Pr(a) and Pr(b) of
the two formulae being conjoined. There are two cases to consider, in the
first the formulae are known to be independent and in the second they are not
known to be independent. If Pr(a) and Pr(b) are independent, then Pr(a Ab) =
Pr(a).Pr(b). Thus if at least one of Pr(a) and Pr(b) increases and the other does
not decrease, then Pr(a A b) will increase. If one increases and one decreases,
then the change in Pr(a A b) cannot be determined. If one increases to 1, and
the other is either 1 or increases to 1, Pr(a Ab) increases to 1. If both Pr(a) and
Pr(b) are 1 then Pr(a A b) is 1. Furthermore, if at least one of Pr(a) and Pr(b)
decreases and the other does not increase, then Pr(a A b) will decrease. If one
decreases and one increases, then the change in Pr(a Ab) cannot be determined.
If either Pr(a) or Pr(b) decrease to 0, then Pr(a Ab) decreases to 0, and if either
is 0, then so is Pr(a A b). If either a or b has the sign J, then that is the sign
of the conjunction, unless the other conjunct has a probability which is 0 or
decreases to 0, since nothing can be said about its value. If one of a or b has the
sign <+, and the other has a sign which is either 1, <+ or ! then the probability
of the conjunction does not change and so the conjunction has the sign <. If
a or b has the sign ! and the other has the sign ! or 1, then the probability of
the conjunction is not known, though it does not change and so we give the
conjunction the sign ! (preferring this to <> since it makes it clear that there has
been no combination with a value which is known to be <, though it would not
be incorrect to use «»). This completes the proof for the case in which Pr(a)
and Pr(b) are independent.

Turning to the case in which Pr(a) and Pr(b) are not independent, the same
sets of values can be considered. However, since Pr(a A b) = Pr(a). Pr(bla) =
Pr(alb). Pr(b), it rapidly becomes clear that unless either Pr(a) or Pr(b) is 0 or
decreases to 0, in which case Pr(a A b) is zero and decreases to zero respectively,
there is little that can be said about the probability of the conjunction because
there is no constraint on the way in which Pr(b|a) and Pr(a|b) change. Indeed,
the only time that the probability of the conjunction can be predicted is when
both Pr(a) and Pr(b) are 1 or increase to 1. If both are 1 then so is Pr(a A b),
and if one increases to 1 and the other is either 1 or increases to 1, the Pr(a Ab)
increases to 1. In all other cases, Pr(a A b) will have the sign J.

(Conjunction elimination): There are two parts to the proof. One for the
part of the function that gives f} or 1, and one for the part that gives J. For the
first, the following suffices and follows directly from the functions for conjunction
introduction. The only way in which Pr(a A b) can be 1 is if both Pr(a) and
Pr(b) are 1. The only way in which Pr(aAb) can increase to 1 is if either Pr(a)
or Pr(b) increases to 1 and the other increases to 1 or is 1. Thus picking one
of the two conjuncts, its probability either increases to 1 or is 1. Thus the first
part is proved. For the second part we need the following argument. Giving
any sign as J is always sound (since it means that nothing at all is being said
about the relevant probability). However, it is also possible to prove that no
more precise rule can be proposed. This is done by considering the tables for
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conjunction introduction. Looking at the values in the tables it is clear that
any sign that might be assigned to Pr(a A b) might be produced by a number of
possible values of Pr(a) and Pr(b). Thus no firm conclusions about changes in
Pr(a) and Pr(b) can be drawn from particular changes in Pr(a A b) other than
forl.

(Implication elimination): First consider implications labelled with +. From
the definition of such implications it is clear that combining any increase in
probability (either 1 or f}) with such an implication will generate a possible
increase in probability, in other words a 1. Similarly, combining any decrease
in probability (either | or ||) with an implication labelled + will generate |,
combining no change in probability with such an implication will generate ¢,
and combining a change of J with such an implication will generate a change
of $. Next, consider implications labelled with —. Such an implication will also
generate J when combined with a change of { and > when combined with <,
but will otherwise have the opposite behaviour to that of an implication labelled
+. It is also clear that implications labelled with O will generate changes of <
whatever change they are combined with, and implications labelled with J will
generate J when combined with all changes except +>—in the latter case they
will generate a change of <». Combining any of these implications with values
that are not changes (that is 1, 0 or ) will not yield either a change or a value
which is known, in other words they will generate 1. This takes care of all
non-categorical implications.

Turning to categorical implications, the results also follow almost immedi-
ately from the definitions. Consider an implication labelled ++. By definition
this yields a change of f} when combined with a change of { and a value of 1
when combined with 1, and otherwise behaves exactly like an implication la-
belled with +. Similarly, by definition an implication labelled +— will give {}
when combined with a change of |} and 0 when combined with 0, but will oth-
erwise behave like an implication labelled with +. The last two implications,
—— and —+ behave in a complementary fashion to ++ and +— respectively.
(Negation elimination and introduction): Consider a, the formula whose
sign is being computed. If Pr(—a) increases to 1 then clearly Pr(a) decreases
to zero, and if Pr(—a) decreases to 0 then clearly Pr(a) increases to one. This
takes care of the function for |} and {}. The other cases are handled similarly.
This completes the proof of the soundness of the relevant combinator tables.
Because the tables are sound, the arguments built using them are also sound.
Thus all the arguments that may be built concerning a formula are sound. All
that remains is to show that when several arguments for a formula are combined,
the combination itself is sound. Thus it is necessary to show that flattening is
sound.

(Flattening): The soundness of flattening follows from the fact that Table 7 is
an extension of the qualitative addition function & used to combine changes in
probability in qualitative probabilistic networks [30]. The differences between
flat and @ reflect the fact that categorical changes in probability cannot be
altered by non-categorical changes and the spaces in the table follow from the
fact that the probability of any variable cannot both increase to 1 and decrease
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to 0 simultaneously [19]. Thus flattening is sound.
Since both building and flattening arguments is sound, QPR itself is sound. O

The notable thing about this result, in contrast to later ones, is that the sound-
ness of the individual arguments generated by Fgp does not depend upon flat-
tening. Each argument is itself sound—once we have an argument which says,
for instance, that the probability of p may increase, that is we have an argument
(p,G, 1), it is not possible to deduce that the probability of p won’t increase.
The closest that one can come to deducing that p won’t increase is if it is possi-
ble to build another argument (p : G’ : |), which says that the probability of p
might decrease. Then the result of flattening these two is the conclusion (p, )
which indicates that it is not possible to rule out any change in p. The whole
deduction has a certain locality which makes QPR rather closer to logic than
to probabilistic networks. However, the fact that later conclusions can throw
doubt on earlier ones means that QPR is not monotonic (a point explored at
greater length in [23]).

Before moving on to completeness, we need to identify precisely what kind
of completeness we are talking about. What we want to show is that when using
the C-rules, QPR computes all the changes in probability of all the effects of a
formula:

Definition 12 The construction and flattening of arguments is said to be cau-
sally complete in some system of qualitative probability with respect to some
formula p if it is possible to use that system to compute the sign of all the

effects of p.

With this definition it is possible to state and prove the following theorem.

Theorem 13 The construction and flattening of arguments in QPR with -gp
defined by the C-rules only is causally complete with respect to any well-formed
formula.

Proof: Thanks to the careful choice of proof rules, the completeness proof
follows from the definition of Fgp. That is the change in probability of all the
effects of any well-formed formula p which may be stated in QPR can be made
by the application of the appropriate proof rules. This can be seen as follows.
Consider the addition of the triple (i : p : 1) where p contains no negation
symbols, to a database which only contains formulae without negation symbols.
There are six types of effect of p. The first are the consequents of implications
in which p forms the antecedent. The changes in probability of such effects may
be established using —-E. The second are the consequents of implications in
which p is one of the conjuncts of the antecedent. The changes in probability
of such effects may be established using A-I and —-E. The third are are the
consequents of implications the antecedent of which involves some conjuncts
that are part of p. The changes in probability of such effects may be established
using A-E1, A-E2 and —-E. The fourth set of effects are those which are subsets
of the conjuncts in the consequents of implications which have p either as the
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antecedent, one of the conjuncts of the antecedent, or for which some of the
conjuncts that make up p are the antecedent. The changes in probability of such
effects may be established by the following method. Use what is known about p
to establish the change in probability of the whole consequent by applying the
appropriate method (one of the first three) and then applying A-E and A-E2.
A very similar procedure can be used to establish the change in probability of
effects which include some conjuncts in the consequent of implications for which
p relates to the antecdent, possibly using A-I as well. Such formulae constitute
the fifth set of effects. These five sets of effects are all those which are connected
in some way to p by a single implication. The sixth set of effects are those which
are related to p by two or more implications. The changes in probability of such
sets may be obtained by recursively applying the procedure for the first five
sets of effects. The appropriate use of —-I and —-E make it possible to formulae
situations in which negation symbols appear. Thus all the changes in causes of
p that result from the change in probability of p can be computed, and QPR is
causally complete with respect to any formula. O

Example 2. As an example of causal reasoning consider the following example
borrowed from [7]. We have the following probabilistic influences®:

(rl: HeOx_Temp — Ox_Tank_Leak : +) Ay
(r2: HeOx_Temp — High Ox_Temp : +)
(r3 : High_.Ox_Temp — Ox_Tank_Leak : +)

When we have evidence that Pr(HeOz_Temp) is increasing, so that the triple
(f1 : HeOxz_Temp : 1) is added to the database, it is possible to build two
arguments concerning Pr(Oz_Tank_Leak):

Ay Fop (Ox Tank_Leak,{f1,r1}, 1)
Ay Fgp (OxTank_Leak,{f1,r1,r2}, 1)

The first is built by combining f1 and r1 using —-E. The second is built by
combining f1 and r2 using —-R and then chaining the result of this with r3
using —-E again. These two arguments may then be flattened to give the pair
(Ox_Tank_Leak, 1). O

This is all we will say about causal reasoning using QPR, and we turn to
using the system to reason both in the direction of the implications, and in the
opposite direction to the implications.

4.2 Evidential reasoning

Unfortunately there is more to allowing implications to be reversed than just
adding the proof rule —+-R to Fgp. In particular there are two problems which

50f course the variables are binary valued rather than continuous as in the original so we
must think of variable values such as HeOz_T'emp = high rather than actual temperatures.
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need to be solved. The first problem arises because when implications are re-
versed it is possible for the proof procedure to loop and therefore build an infinite
number of arguments. This is illustrated by the following example.

Example 3. Consider the following database:

(flia:) A
(rl:a—b:+
(r2:b—d: +
(r3:a—c:—
(rd:c—>d: +

By applying —-E twice to f1, 1 and 72 it is possible to build an argument for
an increase in the probability of d and then by using —-R twice on r4 and r3 it
is possible to build an argument for a decrease in the probability of a. This new
information about a may then be used to build a new argument for a decrease
in the probability of d, and this in turn can be used to build a new argument
for an increase in the probability of a. This process could clearly be continued
for ever. O

In fact, it is not even necessary to have a “loop” in the implications since it is
perfectly possible to build a causal argument from a to b and then to d and then
build an evidential argument back to b and then to a. Happily this problem is
easy to solve by introducing the idea of a minimal argument.

Definition 14 A minimal argument is an argument in which no implication
appears more than once.

The way that minimality is introduced in QPR, as we shall see, is in the flat-
tening of evidential arguments. This is conceptually simple since it allows the
construction (as opposed to flattening) of arguments to be the same in both
causal and evidential cases. However, there are a couple of points that should
be made with reference to this. The first is that in practice it is both simple and
desirable to check for minimality during the construction of arguments. Simple
because it is easy to check whether an implication has been used before when
applying the proof rules and desirable since it prevents the proof system being
used to build infinite arguments. The second point is that under the usual re-
striction placed on probabilistic networks, cycles of implications (which would
make it possible to reason causally from a formula and cycle back to it again) are
forbidden in QPR so that non-minimal arguments are not a feature of causal
reasoning. It is also worth noting that minimal arguments mirror the idea of
minimal trails introduced by Druzdzel [7].

The second problem with evidential arguments arises due to the need to
handle conditional independence properly. If we apply the proof rules blindly,
we may build arguments concerning a formula which depend upon informa-
tion about other formulae which are conditionally independent of it. Thus it is
possible to build arguments which are not valid according to probability the-
ory, and, just like the non-minimal arguments discussed above, they must be
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weeded out in the flattening process. To identify invalid arguments we need to
develop something for arguments in QPR which is analagous to d-separation
[25] in probabilistic networks. We do this using the following definition of d-
separation adapted from those in Jensen’s recent book [14] (because I can’t
imagine bettering Jensen’s motivation for d-separation, any reader who wants
more information about what it is and why it is important is referred to [14],
pages 7-14). First, however, we need some additional definitions:

Definition 15 A source of an argument (p,G,s) is an swif from G.

Thus a source of an argument is one of the simple formula which ground it, and
form the head of a chain of implications.

Definition 16 The destination of an argument (p,G,s) is p.

Definition 17 Two formulae p and q are d-separated if for all arguments which
have p as a source and q as their destination, there is another formula r such
that either:

1. pis a cause of v, r is a cause of q and the probability of r is 1 or 0; or

2. p and q are both causes of r and there is no argument (r,G', s') such that
all the swits in G' are effects of r.

With these ideas fixed we can establish the idea of an invalid argument as one
that is built without taking account of d-separation:

Definition 18 An argument A = (p,G, s) is invalid if all the sources of A are
d-separated from p.

Definition 19 An argument A = (p, G, s) is valid if it is not invalid.

In other words there are two situations in which an argument is invalid. The
first is if it involves a chain of implications through some formula which is known
to be either true or false. The second is if it involves a chain of implications
from the causes of some formula r to r and then back to further causes of r
and there is no argument for r from any of its effects. This is illustrated by the
following example.

Example 4. Consider the following database:

(flia:1) A,
(rl:a—b:+)
(r2:b—=c:+)
(r3:e—c:—)
(rd:c— f:4)

By applying —-E twice to f1, r1 and r2 it is possible to build an argument
(¢, {f1,71,72}, 1) for an increase in the probability of ¢. This argument is
valid, but would be invalid if the triple (f2:b:1) were also in Ay.
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Now, consider extending the argument for an increase in probability of ¢ by
using —-R on r3 and what was deduced about ¢ to build an argument for a
decrease in the probability of e. This second argument (e, {f1,r1,r2,73}, |) is
invalid, but would be valid if the triple (f3 : f : 1) were in the database because
it would then be possible to build a valid argument whose destination was ¢ and
whose grounds only included the effects of ¢. O

The idea of an invalid argument makes it possible to eliminate the kind of
problems discussed by Pearl [24] in his exhortation for the use of causality in
default reasoning without the need to distinguish between causal and evidential
rules. Furthermore, it gives QPR the same kind of ability as symbolic causal
networks [5] to ensure that changes in belief, expressed as probabilities, are
consistent with ideas of causality without the need to associate a network with
a set of logical clauses. Of course, the need to identify invalid arguments and
rule them out means that, when used for evidential reasoning, QPR is no longer
purely local in the way in which it is when used for causal reasoning. However,
it is precisely this non-locality which makes it possible to ensure that adequate
account is taken of d-separation without the need to have a graphical model as
well as the logical clauses.

In keeping with the style of presentation adopted so far, we can think of
applying the minimality and validity restrictions on arguments by applying a
function flate, to the set of all arguments A for a formula p:

flate, : A= {A € A | A is minimal and valid}

Now, if there are several minimal valid arguments for a given formula, we can
combine these to get a single overall argument using a second flattening function
flate,. Like flate, this maps from a set of arguments A to the supported formula
p and some overall measure of validity:

flate, : A = (p,v)

where v is once again the result of a suitable combination of the signs of the
arguments. In fact it turns out that v is computed in exactly the same way as
for causal reasoning, so that the function flate, is exactly the same as flat. Thus
the procedure for finding the sign of a formula p when reasoning both causally
and evidentially is:

1. Add a triple (i : ¢ : s) for every formula ¢ whose change in probability is
known.

2. Build A, the set of all arguments for p using the C-rules and E-rules.
3. Flatten this set to Flate(A) where Flat.(A) = flat(flate, (A)).
With this procedure in mind, we can prove the following.

Theorem 20 The construction and flattening of arguments in QPR using the
C-rules and E-rules of Fqp is sound with respect to probability theory.
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Proof: The proof proceeds by showing first that the individual proof rules are
locally sound, in that given particular premises they generate the appropriate
conclusions, and then showing that the flattening procedure rules ensures the
soundness of whole arguments. The first stage is particularly easy since the
soundness of the C-rules was proved in Theorem 11. We therefore need only to
consider implication reversal.

(Implication reversal): The soundness of Table 5 can be proved as follows.
Any implication (i : @ — ¢ : +) indicates a constraint Pr(c|a,z) > Pr(c|-a, x).
This constraint implies that Pr(alc,y) > Pr(a|-c¢,y) as proved by Wellman [30].
This can be considered as meaning that a consequence of the first implication is
that there is another implication (i : ¢ — a : +) (though this will not be causally
directed). This second implication can then be combined with information about
the change in probability of ¢ to obtain the relevant column in the table just
as for implication elimination in the proof of Theorem 11. Similar reasoning
takes care of the cases for which the sign of the implication is —, 0 and 7. A
categorical implication (i : @ — ¢ : +4) or (i : @ — ¢ : —+) is just a more
extreme version of (i : @ — ¢ : +), and while it won’t necessarily reverse to
give a categorical implication, it will reverse just like (i : @ — ¢ : +). Similarly
a categorical implication (i : @ = ¢: ——) or (i : @ = ¢ : +—) is just a more
extreme version of (i : a — ¢: —), and while it won’t necessarily reverse to give
a categorical implication, it will reverse just like (i : @ — ¢ : —). This completes
the proof of the soundness of implication reversal.

Now, this local procedure will sometimes be unsound, but only in the course
of building an invalid argument (since the only unsound arguments which may
be built are invalid), and such an argument will be rejected by the flattening
function. In fact, strictly speaking, we don’t actually need to worry about d-
separation at all. The worst that could happen if we ignored it is that some
formula whose probability cannot change, because it is d-separated from the only
formula whose probability is known to change, has its change in probability
computed as T or | (it cannot be f} or | because categorical changes cannot
result from the application of —-R). Since 1 and | indicate either a change or
no change this is not incorrect, but it is possibly misleading.

(Flattening): There are two aspects to the soundness of flattening. The first
is the soundness of minimal valid arguments, and the second is the soundness of
the way in which such arguments are combined. Both follow from the close cor-
respondence between implications and arcs in qualitative probabilistic networks.
The first is proven as follows. Minimal valid arguments correspond to minimal
active trails in QPNs [7] and the soundness of the changes in probability that
they identify follows from the soundness of the individual combinations proven
above and the fact that non-valid, non-minimal arguments (where the calcu-
lation of changes is not sound) are removed. The second aspect of soundness
may then be shown. The validity of combining different arguments also follows
from the correspondence with evidential trails and the fact that Table 7 is an
extension of the qualitative addition function & used to combine the results of
such trails [7]. The differences between flat and & reflect the fact that cate-
gorical changes in probability cannot be altered by non-categorical changes and
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the spaces in the table follow from the fact that the probability of any variable
cannot both increase to 1 and decrease to 0 simultaneously [19]. Thus flattening
is sound.

Since both building and flattening arguments is sound, QPR itself is sound. O

Given that evidential reasoning is sound, the next question is to what extent is
it complete. We are interested in the following notion of completeness:

Definition 21 The construction and and flattening of arguments is said to be
evidentially complete in some system of qualitative probability with respect to
some formula p if it is possible to use that system to compute the signs of all the
effects of p, all the causes of p and all the causes and effects of all the causes
and effects of p.

With this definition it is possible to prove the following:

Theorem 22 The construction and flattening of arguments in QPR is causally
and evidentially complete with respect to any formula.

Proof: Given information about the change in probability of any well-formed
formula, by Theorem 13 it is possible to calculate the change in probability of
any effect of that formula. Now, a procedure which is identical to that described
in Theorem 13 but using —-R as well as —-E may be applied to establish the
change in probability of any effect of any well-formed formula. Applying both
procedures recursively as necessary suffices to ensure evidential completeness.
O

Finally, we have an example of evidential reasoning in QPR.

Example 5. As an example of the kind of reasoning possible in QPR consider
the extension of the example of causal reasoning:

(rl: HeOz_Temp — HeOzxz_Temp_Probe : +) As
(r2: HeOz_Temp — High Oz _Temp : +)

(r3: HeOx_Temp — Ox_Tank_Leak : +)

(rd : High-Ox_Temp — Ox_Tank_Leak : +)

When we have evidence that Pr(HeOz_Temp_Probe) is increasing, so that the
triple (f1 : HeOz_Temp_Probe : 1) is added to the database, it is possible to
build two minimal, valid arguments concerning Pr(Ox_Tank_Leak):

As top (Ox_Tank_Leak,{f1,r1,73}, 1)
As; Fgp (Oz_Tank_Leak,{f1,rl,r2,r4}, 1)

The first is built by combining f1 and r1 using —-R and then combining the
result of this with r3 using —-E. The second is built by combining f1 and
rl using —-R and then chaining the result of this with r2 and r4 using —-
E twice. These combine to give the pair (Oz_Tank_Leak, 1) indicating that
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overall it is possible to infer that knowledge about the increasing probability of
HeOx_Temp_Probe, which is the kind of thing that can be observed, makes it
possible to infer that the probability of Ox_Tank_Leak may increase, which is
the kind of thing that would be useful to know in the context of this example.
O

Using the C and E-rules, QPR captures Wellman’s version of QPNs [30] up
to the handling of additive synergy. The next section discusses how to extend
QPR so that it handles intercausal reasoning. Doing so permits QPR to capture
Druzdzel’s [6] version of QPNs which don’t deal with additive synergy but do
employ intercausal reasoning.

4.3 Intercausal reasoning

In comparison to the extension to evidential reasoning, the extension of QPR
to enable it to allow intercausal reasoning is relatively straightforward. Because
of the way the synergy elimination rules ~»-E1 and ~»-E2 are defined, it is only
ever possible to apply them validly. Thus, all that we have to do is to add
the I-rules to the proof procedure and we can immediately obtain a sound and
complete system. No new flattening function is required since the I-rules do not
introduce new forms of invalid argument.

As ever, before showing soundness we need to state the complete proof pro-
cedure, and we do this in the familiar backward chaining way—the procedure
for finding the sign of a formula p when reasoning causally, evidentially and
intercasually is:

1. Add a triple (i : ¢ : s) for every formula ¢ whose change in probability is
known.

2. Build A, the set of all arguments for p using the C-rules, E-rules and
I-rules.

3. Flatten this set to Flate(A) where Flat.(A) = flat(flate, (A)).

Theorem 23 The construction and flattening of arguments in QPR using the
C-rules, E-rules and I-rules of Fgp is sound with respect to probability theory.

Proof: We already have Theorem 20 which shows that Fgp combined with
Flate(-) is sound when using the C-rules and the E-rules. Thus all we need to
show is that synergy elimination is sound with respect to probability theory.
Fortunately the soundness of synergy elimination follows directly from the defi-
nition of syngim and Druzdzel’s results on intercausal reasoning, and so the use
of QPR with the C-rules, E-rules and I-rules is sound. O

So proving soundness is relatively easy. Proving completeness, as ever, is depen-

dent upon defining a notion of completeness, and to do this we need to capture
the fact that one formula can be related intercausally with another. In fact we
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need to express the idea that two formulae can be directly related by an inter-
causal link (when they share a common effect and so are the two antecedents
of a synergistic wff) and may also be indirectly related (when they are related
via a number of intermediate formulae some of which are synergistic wffs). The
first idea is captured by the notion of intercausal connection, the second by the
notion of intercausal relation:

Definition 24 A well-formed formula p is said to be intercausally connected
to a well-formed formula q if and only if there is a ywff pW q ~ r for some
formula r.

Definition 25 A well-formed formula p is said to be intercausally related to a
well-formed formula q if and only if it is possible to identify an ordered set of
ywils {1 Wy ~ 21,...2, Wy, ~ 2,}, where there is an argument (z; : G; : 1)
for each z;, and p is either a cause or effect of x1, each y; is a cause or an effect
of each x; 1 and q is a cause or effect of y,,.

In other words, two formulae are intercausally related if it is possible to build
an argument which has one as its source and the other as its destination, and
they are joined by a chain of implications and synergy relations. We then have:

Definition 26 The construction and and flattening of arguments is said to
be intercausally complete in some system of qualitative probability with respect
to some well-formed formula p if in addition to being evidentially complete, it
is possible to calculate all the changes in probability of all formulae that p is
intercausally related to.

With this definition it is possible to prove the following:

Theorem 27 The construction and flattening of arguments in QPR is inter-
causally complete with respect to any formula.

Proof: Again the proof follows almost immediately from the corresponding
result for evidential reasoning. Starting from a known change in a proposition p,
evidential completeness guarantees that we can find the changes in probability of
all causes and effects of p and the causes and effects of those causes and effects.
Synergy elimination then makes it possible to soundly establish any changes
in probability of any formulae that are intercausally connected to any of the
causes and effects of p. Once again the calculation of changes in probability
of the causes and effects of the intercausally connected formulae is guaranteed
by evidential completeness, and the recursive application of synergy elimination
ensures intercausal completeness. O

This kind of completeness is the same as is possible in a probabilistic network.
In a probabilistic network it is possible to calculate the probability of any node
which is connected, via a set of nodes, to nodes about which evidence is obtained.
In QPR, it is possible to compute the change in probability of any formula which
is “connected”, in the sense of being a cause of or an effect of or intercausally
related to, any formula for which the change in probability is known.
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Finally, we give an example of intercausal reasoning in QPR.

Example 6. As an example of the kind of reasoning possible in the full version
of QPR consider this final extension of the running example:

(rl: HeOx_Temp — HeOx_Temp_Probe : +) Ag
(r2: HeOx_Temp — High Oz Temp : +)

(r3: HeOx_Temp — Ox_Tank_Leak : +)

(rd : High_ Ox_Temp — Ox_Tank_Leak : +)

(r5 : Ox_Tank_Leak — Ox_Pressure_Low : —)

(r6 : HeOz_Valve_Problem — Oz_Pressure_Low : —)

(r7: Ox_Tank_-Leak W HeOx_V alve_Problem ~» Ox_Pressure_Low : —)

When we have evidence that Pr(HeOxz_Temp_Probe) is increasing and oxygen
pressure is known to be low so that the formulae (f1: HeOz_Temp_Probe : 1)
and (f2 : Ox_Pressure_Low : 1) are added to the database, as before it is
possible to build two minimal, valid arguments concerning Pr(Oz_Tank_Leak):

A¢ Fop (OxTank_Leak,{f1,r1,73}, 1)
Ag Fop (Oz_Tank_Leak,{f1,r1,r2,r4}, 1)

Both of these may then be used along with f2, r7, and ~»-E1 to build arguments
concerning Pr(HeOxz_Valve_Problem):

Ag Fgp (HeOz_Valve_Problem,{f1, f2,r1,r4,r7}, })
Ag Fgp (HeOz_Valve_Problem,{f1, f2,r1,r2,r3,r7}, 1)

which flatten to tell us that the probability of HeOz_Valve_Problem may de-
crease. Thus the overall impact of the evidence is to suggest that it has become
more likely that there is a leak in the oxygen tank and less likely that there is
a problem with the helium/oxygen tank valve. O

With these results, QPR gives us a sound proof-theoretic means of comput-
ing changes in probability propagated in both causal and evidential directions
as well as across intercausal links. Thus QPR captures Druzdzel’s version of
QPNs. What this means is that if we encode our probabilistic knowledge of
the world by writing down any set of swffs, ‘wffs and ywffs we can then build
arguments for and against formulae using Fgp and use these to identify the
changes in probability of those formulae warranted by probability theory. If, af-
ter building arguments and flattening we have an pair (St, Sg) where St is any
wff then Sg indicates the change in probability of St, indicating it increases to 1
if Sg = 1, decreases if Sg = | and so on. If, on the other hand we have (St, Sg)
where St is an swff St' — St” then Sg indicates the constraint between Pr(St')
and Pr(St"), and if St is a ywff then Sg indicates the constraint between the
three constituent formulae. The full denotation of any pair (St,Sg) is given by
Tables 8, 9 and 10. Since QPR is sound and complete any sign computed in
this way will be correct, and if there is enough information to compute the sign,
then it will be computed.
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If and and then

St=w Sg=1 Pr(w) fina =1

St=w Sg=1 Pr(w) fina =1

St=w Sg=1 Pr(w)initiat = p p < Pr(w )fmal <1

St=w Sg= ¢ Pr(w)initiat = P Pr(w)fmal p

St=w Sg=1{ Pr(w)initiat = P p > Pr(w )fmal =0

St=w Sg=1 Pr(w)fmal =0

St=w Sg=0 P( )fmal—o

St=w 59 = i Pr(w)im’tial =p 0<Pr ( )fmal <1

St=w Sg = 0 < Pr(w)pina <1
Table 8: What a derived formula means (part 1).

If and then

St=v—-w Sg =++ Pr(w|v,z) =1

St=v—-ow Sg=+— Pr(w|—w,z) =0

St=v—-ow Sg=+ Pr(w|v, z) > Pr(w|—w, )

St=v—-ow Sg=0 r(w|v z) = Pr(w|—w, z)

St=v—-w Sg=—- Pr(w|v, z) < Pr(w|-w,z)

St=v—-w Sg=—+ Pr(w|—w,z) =1

St=v—-w Sg=—— Pr(w|v,z) =0

St=v—ow Sg="7 The relationship between Pr(w|v, x)

and Pr(w|-w, z) is unknown.

Table 9: What a derived formula means (part 2).

5 Discussion

The first question that arises when considering QPR is why QPR is better than
the QPN formalism, and so worth developing. There are a couple of reasons why
I think that this is so. Firstly, the system has the potential to be considerably
more expressive than QPNs. As it stands, QPR can reason about conjunctions
which QPNs can’t, so it is more expressive (though it is arguable how useful
the conjunctions are) and it is possible to extend QPR to handle disjunction
and thus material implication [21] which makes it possible to combine logical
deduction with the kind of probabilistic propagation discussed in this paper.
Secondly, QPR has the potential to be a first order system and so could be
used as a means of building specific QPNs from more general knowledge—a form
of model-based knowledge construction. Thirdly, QPR seems to offer a more
natural means of representing the kind of qualitative probabilistic information
discussed here than QPNs do. The key to both QPNs and QPR is that the
influences that they deal with are defined to hold irrespective of what other
influences also hold. In other words the information contained in an fwff or an
arc in a QPN is essentially modular and unaffected by whatever other influences
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If and then

St=uWv~w Sg=+ Pr(w|u,v, X). Pr(w|—u, w, X))

> Pr(w|u, w, X). Pr(w|—u, v, X)
St=uWv~w Sg=0 Pr(w|u,v, X). Pr(w|—u, w, X))

= Pr(w|u, w, X). Pr(w|-u,v, X)
St=uWv~w Sg=— Pr(w|u,v, X). Pr(w|—u, w, X))

< Pr(wlu, —w, X). Pr(w|—u, v, X)

Table 10: What a derived formula means (part 3).

exist in a particular model. This is reflected more directly in QPR than in
QPNs since QPR only takes the structure of the influences into account when
necessary (which is when d-separation comes into play).

Another question that might be posed is how QPR relates to Neufeld’s
probabilistic default reasoner [17, 18]. The answer seems to be that because the
“rules” in QPR make stronger assertions than those in Neufeld’s system, it is
possible to get completeness results in QPR which are not possible in Neufeld’s
work. As an example, consider the way in which both systems represent the
fact that c is positively influenced by both a and b. Both can conclude that ¢
becomes more probable if a becomes more probable and that ¢ becomes more
probable if b becomes more probable. In QPR it is also possible to conclude
that ¢ becomes more probable if both a and b become more probable because
the effects of a and b are defined to occur whatever other influences bear on c.
However, in Neufeld’s system if both a and b become more probable, nothing can
be said about the change in probability of ¢. The relationship between Neufeld’s
system and the kind of proof theoretic reasoning provided by QPR is discussed
further in [20, 21]. Of course, the flipside of this completeness is the need to
make stronger assertions when writing down rules, and this will lead to more
influences being given the sign ? because it is not possible to state that they
hold whatever other information is true. Thus one can think of QPR as being
limited to expressing precise assertions about less of the world than Neufeld’s
system but as a result being able to be more complete in the inferences it makes
about the portion of the world it represents.

6 Summary

This paper has discussed a means of building a proof theoretic system which is
capable of reasoning about changes in probability. It is thus in some senses an
extension of previous work on systems of argumentation and of systems of qual-
itative probability. With a solid basis in probability theory, the system can be
used to combine the advantages of a sound means of handling uncertainty with
the flexibility of a logical method of knowledge representation [1], a flexibility
that can be increased by extending it to a full first order system and includ-
ing disjunction and material implication. Because of its qualitative nature, the
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system may be used when probabilistic knowledge of a domain is incomplete,
making it applicable to a wider range of situations than systems that depend
on complete probabilistic information, while the fact that it is soundly based on
probability theory make it a useful basis for a qualitative decision theory [11, 12].
The system described in this paper clearly has similarities with other systems
described in the literature. Some of these similarities have been described in
the paper. Others are explored elsewhere [20, 21]. Yet others, including those
with the systems described in [3, 28, 29], are the subject of on-going work.
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