
A proof theoreti approah to qualitativeprobabilisti reasoningSimon ParsonsDepartment of Eletroni Engineering,Queen Mary and West�eld College,University of London,London E1 4NS,United Kingdom.S.D.Parsons�qmw.a.ukMarh 17, 1998AbstratIn reent years, several papers have desribed systems for plausiblereasoning whih do not use numerial measures of unertainty. Someof these have been based on logi and some have been based on ausalinuenes. This paper suggests one way of ombining the advantages ofboth types of approah by introduing a means of reasoning with ausalinuenes in a proof theoreti way.1 IntrodutionIn the last few years there have been a number of attempts to build systems forreasoning under unertainty that are of a qualitative nature|that is they usequalitative rather than numerial values, dealing with onepts suh as inreasesin belief and the relative magnitude of values. Between them, these systems ad-dress the problem of reasoning in situations in whih knowledge is unertain,but in whih there is a limited amount of numerial information quantifyingthe degree of unertainty. Three main lasses of system an be distinguished|systems of abstration, in�nitesimal systems, and systems of argumentation. Insystems of abstration, the fous is mainly on modelling how the probability ofhypotheses hanges when evidene is obtained and there is no need to ommitto exat probability values. They thus provide an abstrat version of probabilitytheory, known as qualitative probabilisti networks (QPNs), whih ignores theatual values of individual probabilities but whih is nevertheless suÆient forplanning [30℄, explanation [6℄ and predition [22℄ tasks. Similar systems have1



also been used to provide an aount of default reasoning [17, 18℄. In�nitesi-mal systems deal with beliefs that are very nearly 1 or 0, providing formalismsthat handle order of magnitude probabilities. In�nitesimal systems may be usedfor diagnosis [4℄ as well as providing a general model of default reasoning [13℄,and have been extended with in�nitesimal utilities to give omplete deisiontheories [26, 32℄. Systems of argumentation are based on the idea of onstrut-ing logial arguments for and against formulae, establishing the overall validityof suh formulae by assessing the persuasiveness of the individual arguments.Systems of argumentation have been applied to a problems suh as diagnosis,protool management and risk assessment [10℄, as well as handling inonsistentinformation [2℄, and providing a framework for default reasoning [9, 16, 27℄.This paper provides a hybridisation of the logial and abstration approahesby introduing a logial approah to reasoning about how probabilities hange,whih will be alled the qualitative probabilisti reasoner (QPR). As is arguedbelow,QPR provides a more exible, expressive, and natural means of reasoningabout suh hanges than is urrently possible in systems of abstration. Thedevelopment of QPR relies upon a number of results established in the study ofQPNs. Suh results are not explained in any detail sine they are easily found inthe literature (in [7℄ and [30℄) and would further lengthen this already lengthypaper.2 The logial language2.1 Basi oneptsWe start with a set of atomi propositions L. We also have a set of onne-tives f:;^;!;℄;;g, and the following set of rules for building the well-formedformulae (w� s) of the language.1. If l 2 L then l is a simple well-formed formula (sw� ).2. If l is an sw�, then :l is an sw�.3. If l and m are sw� s then l ^m is an sw�.4. If l and m are sw� s then l ! m is an impliational well-formed formula(iw� ).5. If l, m and n are sw� s then l℄m; n is a synergisti well-formed formula(yw� ).6. The set of all w� s is the union of the set of sw� s, the set of iw� s, andthe set of yw� s.There are a ouple of points that should be noted about the onnetives whihgo to make up these formulae. The �rst point is that neither ! or ; rep-resents material impliation. Instead both represent a onstraint on the on-ditional probabilities relating the formulae they onnet. The seond point is2



that this is not the omplete set of onnetives whih an be handled within theframework|it is also possible to deal with disjuntion and material impliation[21℄|the set is made up of the onnetives neessary to apture qualitative prob-abilisti reasoning of a slightly riher form than that exhibited by Wellman'squalitative probabilisti networks (QPNs) [30℄.The set of all w� s that may be de�ned using L, may then be used to buildup a database � where every item d 2 � is a triple (i : l : s) in whih i is atoken uniquely identifying the database item (for onveniene we will use theletter `i' as an anonymous identi�er), l is a w�, and s gives information aboutthe probability of l. In partiular we take triples (i : l : ") to denote the fatthat Pr(l) inreases, and similar triples (i : l : #), to denote the fat that Pr(l)dereases. Triples (i : l : $), denote the fat that Pr(l) is known to neitherinrease nor derease. It should be noted that the triple (i : l : ") indiatesthat Pr(l) either goes up, or does not hange|this inlusive interpretation ofthe notion of \inrease" is taken from QPNs|and of ourse a similar provisoapplies to (i : l : #). Sine we want to reason about hanges in belief whihequate to the usual logial notion of proof, we also onsider hanges in belief to1 and derease in belief to 0, indiating these by the use of the symbols * and+ and values whih are 1 and 0. The meaning of a triple (i : l : *) is that theprobability of l beomes 1, (i : l : +) means that the probability of l beomes0, (i : l : 1) means that the probability of l is 1 and (i : l : 0) means that theprobability of l is 0. We also have triples (i : l : l) whih indiate that thehange in Pr(l) is unknown. In addition, for reasons whih will beome learlater, we need a symbol to denote a probability whose value is not known (asdistint from a hange in probability whose value is not known). This symbolwill be o, so the triple (i : l : o) means that the value of Pr(l) is unknown. Whilethis profusion of symbols might seem baroque, it is unfortunately neessary inorder to distinguish the di�erent aspets of qualitative probabilisti reasoning.In fat the use of this kind of set of symbols should be familiar from qual-itative reasoning [15℄. In qualitative reasoning we onsider variables and thehanges in value of those variables. A given variable x an have a positive ornegative value, denoted [+℄ or [�℄, and we also distinguish the landmark value[0℄. We are also interested in the way x hanges over time and handle this byonsidering the values of dx=dt. These values may also be [+℄, [0℄ and [�℄. InQPR the same distintions are made. We have the probability value o, whihorresponds to [+℄, and landmark values of 0 and 1. We also have the hangesin probability ", # whih orrespond to [+℄ and [�℄ derivatives, and distinguishthe landmark hanges $, * and +. The additional symbols obviate the use ofexpliit derivatives.2.2 Non-material impliationAs mentioned above,! does not represent material impliation but a onnetionbetween the probabilities of anteedent and onsequent. This is the key tounderstanding the system. We take iw� s, whih we will also all \impliations",to denote that the anteedent of the iw� has a probabilisti inuene on the3



onsequent. Thus we are not onerned with the probability of the iw�, butwhat the w� says about the probabilities of its anteedent and onsequent. Morepreisely we take the triple (i : a!  : +) to denote the fat that:Pr(ja;X) � Pr(j:a;X)for all X 2 fx;:xg for whih there is a triple (i : x !  : s) (where s isany sign) or (i : :x !  : s). The e�et of the X in this inequality is toensure that the restrition holds whatever is known about formulae other than and a|whatever the probabilities of a and , the onstraint on the onditionalprobabilities holds. Similarly the triple (i : a!  : �) denotes the fat that:Pr(ja;X) � Pr(j:a;X)again for all X 2 fx;:xg for whih there is a triple (i : x !  : s) or (i : :x ! : s). It is possible to think of an impliation (i : a !  : +) as meaning thatthere is a onstraint on the probability distribution over the formulae  and asuh that an inrease in the probability of a entails an inrease in the probabilityof , and an impliation (i : a!  : �) means that there is a onstraint on theprobability distribution over the formulae  and a suh that an inrease in theprobability of a entails a derease in the probability of . We do not make muhuse of triples suh as (i : ! a : 0)1 sine they have no useful e�et but inludethem for ompleteness|(i : ! a : 0) indiates that:Pr(ja;X) = Pr(j:a;X)for all X 2 fx;:xg for whih there is a triple (i : x !  : s) or (i : :x !  : s),and so denotes the fat that Pr() does not hange when Pr(a) hanges. Wealso have impliations suh as (i : a !  : ?) whih denotes the fat thatthe relationship between Pr(ja;X) and Pr(j:a;X) is not known, so that ifthe probability of a inreases it is not possible to say how the probability of will hange. With this interpretation, impliations orrespond to qualitativeinuenes in QPNs. Just as in QPNs, we require that impliations are ausallydireted, by whih we mean that the anteedent is a ause of the onsequent.This is the usual restrition imposed in probabilisti networks [25℄ and, as willbeome apparent, is neessary to ensure that the system is sound.This simple piture is ompliated beause we have ategorial impliationswhih allow formulae to be proved true or false. In partiular, an impliation(i : a !  : ++) indiates that when a is known to be true, then so is . Thusit denotes a onstraint on the probability distribution aross a and  suh thatif Pr(a) beomes 1, then so does Pr(). This requires that:Pr(ja;X) = 1for all X 2 fx;:xg for whih there is a triple (i : x !  : s) or (i : :x !  : s)[19℄. Note that this type of impliation also onforms to the onditions for1As a result we will not worry about the possibility of onfusing (i :  ! a : 0) with(i : l : 0) where l is an sw�. 4



impliations labelled with +, and that if Pr(j:a;X) = 1 then Pr() is alwaysequal to Pr(a). Similarly, a probabilisti interpretation of an impliation (i :a!  : ��) whih denotes the fat that if a is true then  is false requires that:Pr(ja;X) = 0for all X 2 fx;:xg for whih there is a triple (i : x !  : s) or (i : :x !  : s).The onditions imposed on the onditional values by these impliations suggestthe existene of a further pair of types of ategorial impliation whih aresymmetri to those already introdued. We have an impliation (i : a!  : �+)whih denotes the onstraint: Pr(j:a;X) = 1for all X 2 fx;:xg for whih there is a triple (i : x !  : s) or (i : :x !  : s),and an impliation (i : a!  : +�) whih denotes the onstraint:Pr(j:a;X) = 0for all X 2 fx;:xg for whih there is a triple (i : x!  : s) or (i : :x!  : s).2.3 SynergyBeing able to handle synergy relations is an important part of any qualitativeprobabilisti system, and while a detailed disussion of synergy is beyond thesope of this artile (see instead [6, 8, 30℄), the following brief explanation isworthwhile.The basi idea, in the language we are disussing here, is that the rela-tionships between formulae are not ompletely modular in the same way thatthey are in logi. As an example, onsider two impliations (i : a !  : +)and (i : b !  : +). If these were logial impliations, whatever was knownabout a would not a�et the relationship between b and . However, beause weare dealing with probability, a hange in what is known about a might hangethe relationship between b and . For instane when the probability of a in-reases, this hange may mean that Pr() inreases less than before when Pr(b)inreases2. It is this kind of interation that synergy was �rst introdued [30℄to apture, and the variety of synergy whih desribes this kind of interationwas later alled additive synergy.Additive synergy, however, is not suÆient to desribe all the possible typesof interation between the auses of some formula. Consider the impliations(i : sprinkler ! wet grass : +) and (i : rain ! wet grass : +) whih apture thefat that both rain and the use of a sprinkler make it more likely that the grassof my lawn will be wet. Now, if I know that my grass is wet, then as Pearl [25℄2It should be noted that beause the onstraint on the probabilities of b and  is writtenin the way it is, taking into aount all the possible other things that may a�et Pr() inaddition to Pr(b), it an never be the ase that a hange in Pr(a) will hange the relationshipbetween b and  to the extent that inreasing Pr(b) leads to a derease in Pr().5



famously pointed out, if Pr(sprinkler ) inreases, then Pr(rain) dereases beausethe use of the sprinkler explains away the wet grass. This kind of interausal[8℄ reasoning is desribed by another form of synergy|produt synergy.As mentioned above, in this paper synergies are represented by formulaesuh as a ℄ b ;  whih represents the synergy whih exists between a and bwith respet to . Suh synergisti formulae form the basis of triples suh as(i : a ℄ b ;  : +) in just the same way as simple and impliational formulaedo, but with yet another denotation. In partiular, (i : a ℄ b ;  : +) denotesthe fat that:Pr(ja; b;X):Pr(j:a;:b;X) � Pr(j:a; b;X):Pr(ja;:b;X)where as before, X ranges aross all other formulae suh that there are triples(i : x!  : s). Similarly, (i : a ℄ b;  : �) denotes the fat that:Pr(ja; b;X):Pr(j:a;:b;X) � Pr(j:a; b;X):Pr(ja;:b;X)and (i : a ℄ b;  : 0) denotes the fat that:Pr(ja; b;X):Pr(j:a;:b;X) = Pr(j:a; b;X):Pr(ja;:b;X)In the terminology of [6℄ these are produt synergies. In this paper we donot onsider additive synergies, though they ould be inorporated into theframework if it were desired, beause they are of less diret use than produtsynergies. Furthermore we only onsider synergies with values +, 0, and �though ategorial synergies are ertainly oneivable.3 The proof theoryThe previous setion introdued a language for desribing probabilisti inu-enes between formulae. For this to be useful we need to give a mehanism fortaking sentenes in that language and using them to derive new sentenes. Inpartiular we need to be able to take sentenes desribing hanges in probabilityin partiular formulae and use these, along with impliational and synergistiformulae to establish hanges in probability in other formulae. This is doneusing the onsequene relation `QP whih is de�ned in Figure 1. The de�ni-tion is in terms of Gentzen-style proof rules where the anteedents are writtenabove the line and the onsequene is written below. The onsequene relationoperates on a database of the kind of triples introdued in the previous setionand derives arguments about formulae from them. The onept of an argumentis formally de�ned as follows:De�nition 1 An argument for a well-formed formula p from a database � isa triple (p;G; s) suh that � `QP (p;G; s)The sign s of the argument denotes something about the probability of p whilethe grounds G identify the elements of the database used in the derivation of p.6



C-rulesAx � `QP (St; fig; Sg) (i : St : Sg) 2 �^-E1 � `QP (St ^ St0; G; Sg)� `QP (St;G; onjelim(Sg))^-E2 � `QP (St ^ St0; G; Sg)� `QP (St0; G; onjelim(Sg))^-I � `QP (St;G; Sg) � `QP (St0; G0; Sg0)� `QP (St ^ St0; G [G0; onjintro(Sg; Sg0)):-E � `QP (:St;G; Sg)� `QP (St;G; neg(Sg)):-I � `QP (St;G; Sg)� `QP (:St;G; neg(Sg))!-E � `QP (St;G; Sg) � `QP (St! St0; G0; Sg0)� `QP (St0; G [G0; impelim(Sg; Sg0))E-rules!-R � `QP (St0; G; Sg) � `QP (St! St0; G0; Sg0)� `QP (St;G [G0; imprev(Sg; Sg0))I-rules;-E1 � `QP (St ℄ St0 ; St00; G; Sg) � `QP (St;G00; Sg0) � `QP (St00; G000; 1)� `QP (St0; G [G0 [G000; synelim(Sg; Sg0));-E2 � `QP (St ℄ St0 ; St00; G; Sg) � `QP (St0; G00; Sg0) � `QP (St00; G000; 1)� `QP (St;G [G0 [G000; synelim(Sg; Sg0))Figure 1: The onsequene relation `QPTo see how the idea of an argument �ts in with the proof rules in Figure 1,onsider the rules `Ax', `^-I' and `!-E'. The �rst says that from a triple (i : l : s)it is possible to build an argument for l whih has sign s and a set of groundsfig (the grounds thus identify whih elements from the database are used inthe derivation). The rule is thus a kind of bootstrap mehanism to allow theelements of the database to be turned into arguments whih other rules an7



then be applied to. The seond rule says that from arguments for two di�erentformulae it is possible to build an argument for their onjuntion. The set ofgrounds for this argument is the union of the grounds for the two individualarguments and the sign is a funtion of their signs. The rule `!-E' an bethought of as analogous to modus ponens. From an argument for a and anargument for a!  it is possible to build an argument for  one the neessarybook-keeping with grounds and signs has been arried out.Example 1. Consider the following database whih denotes the fat that theproposition \premise" has a probability whih inreases to 1, and that thereis a relation between the proposition premise and the proposition \onlusion"suh that if the probability of premise beomes 1, so does the probability ofonlusion . (f1 : premise : *) �1(r1 : premise ! onlusion : ++)From the database, by appliation of Ax and !-E, it is possible to build theargument: �1 `QP (onlusion ; fr1; f1g; *)sine applying impelim to * and ++ yields * (as we will see in a little while).Thus from the database it is possible to build an argument for the probabilityof onlusion beoming 1. 2The proof proedure used here di�ers in a ouple of important ways from othersimilar logial proof systems. Both of these di�erenes stem from the fat thatQPRis dealing with probability values (albeit hanges in probability) ratherthan just truth and falsity as is the ase in lassial logi. The �rst di�erene isthat it matters whether there are several proofs for a given formula. In logi onethere is a valid proof for a formula, the formula is known to be true. Here theremay be an argument whih suggests that the probability of a formula inreasesand another whih suggests it dereases|to resolve the onit it is neessaryto ombine the arguments as disussed later on. The seond di�erene is that itis usual to have two sets of proof rules for eah onnetive, one set whih speifyhow to introdue the onnetive into formulae and one set whih speify how toeliminate onnetives from formulae. The proof rules in Figure 1 mainly onsistof elimination rules. This reets the fous of the system desribed in the paperwhih is intended to apture the reasoning possible in qualitative probabilistinetworks. The system is thus intended to be used to establish hanges in theprobability of sets of formulae rather than to establish onnetions between setsof formulae|it is onnetions between sets of formulae, themselves formulae ofthe form a ! , whih are the kind of formulae that the proof rules annotbuild. Were the missing introdution rules inluded we would have a systemwhih was apable, in the language of probabilisti networks, of inferring newars onneting nodes in addition to inferring things about nodes.In order to apply the proof rules to build arguments, it is neessary to supplythe funtions used in Figure 1 to ombine signs. This setion introdues those8



1 * " $ # + 0 l o1 1 * " $ # + 0 l o* * * " " l + 0 l "" " " " " l + 0 l "$ $ " " $ # + 0 l $# # l l # # + 0 l #+ + + + + + + 0 + +0 0 0 0 0 0 0 0 0 0l l l l l l + 0 l lo o " " $ # + 0 l oTable 1: Conjuntion introdution onjintro for onjunts that are known to beindependent.funtions and makes some remarks about the proof rules. The following setionthen proves the soundness and ompleteness of the proof proedure.We start with onjuntion introdution and elimination. When introduingonjuntion it is ruially important whether the propositions in question areindependent or not (sine it is often not possible to establish the probability ofthe onjuntion of a pair of dependent formulae from the probabilities of theformulae alone). If the formulae are known to be independent then the followingde�nition applies.De�nition 2 The funtion onjintro : Sg 2 f1;*; ";$; #;+; 0; l; og�Sg0 2 f1;*;";$; #;+; 0; l; og 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spei�ed by Table 1 where,as with all ombinator tables in this paper, the �rst argument is taken from the�rst olumn and the seond argument is taken from the �rst row.If the formulae are not known to be independent, then the following de�nitionapplies instead.De�nition 3 The funtion onjintro : Sg 2 f1;*; ";$; #;+; 0; l; og�Sg0 2 f1;*;";$; #;+; 0; l; og 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spei�ed by Table 2.and it is lear that in most ases it is not possible to tell how the probabilityof the onjuntion hanges. Note that both Table 1 and Table 2 are writtenso that when the result of a ombination ould be either o or a hange in value(as when o is ombined with $) the result given is always the hange. This isbeause we always know that the value of a probability is o so giving it as aresult is less informative|it is only inluded to ensure that the funtions usedby `QP , in partiular impelim and imprev, are losed. The reason for botheringto have separate de�nitions for independent and non-independent onjunts isthat it is possible to identify independent formulae one arguments have beenbuilt, and doing so allows more preise inferenes to be made (as is easily seenby omparing Tables 1 and 2). 9



1 * " $ # + 0 l o1 1 * l l l + 0 l l* * * l l l + 0 l "" l l l l l + 0 l l$ l l l l l + 0 l l# l l l l l + 0 l l+ + + + + + + 0 + +0 0 0 0 0 0 0 0 0 0l l l l l l + 0 l lo l l l $ l + 0 l lTable 2: Conjuntion introdution onjintro for onjunts that are not known tobe independent. s 1 * " $ # + 0 l os0 0 + # $ " * 1 l oTable 3: Negation of sw� s negWhen eliminating a onjuntion with sign Sg we assign both onjunts thesign: onjelim(Sg) = 8<: 1;* if Sg = *1 if Sg = 1l otherwisewhere onjelim(Sg) = 1;* means that onjelim(Sg) is either 1 or * (suh valuesare propagated by arrying out the appropriate omputation on both the signsin question [22℄). What this means is that most of the time it is not possible todetermine how the probability of the onjunts hange. This is an unfortunatebut unavoidable property of probability theory and an be seen to follow fromonjuntion introdution|onjelim is just the inverse of onjintro.The rules for handling negation are appliable only to sw� s and permitnegation to be either introdued or eliminated by altering the sign, for exampleallowing (i : :a : ") to be rewritten as (i : a : #). This leads to the de�nition ofneg:De�nition 4 The funtion neg : (i : :a : s); s 2 f1;*; ";$; #;+; 0; l; og 7! (i :a : s0); s0 2 f1;*; ";$; #;+; 0; l; og relates s to s0 by Table 3.Note that neg is not de�ned over the values ++, +�, +, 0, �, �+, and ��.Although an impliation (i : a ! b : +) has a kind of inverse relation with(i : a ! b : �), there is no suh relation with (i : :(a ! b) : s). Indeed,(i : :(a ! b) : s) is not even an impliation, sine its main onnetive is :. Itis not possible to apply neg to an impliation|if neg is appliable, the formulait is applied to is not an impliation. (In fat the alert reader will have notiedthat (i : :(a! b) : s) is not even a well-formed formula.)10



++ +� + 0 � �+ �� ?1 1 o o o o o 0 o* * " " $ # # + l" " " " $ # # # l$ $ $ $ $ $ $ $ $# # # # $ " l " l+ # + # $ " * " l0 o 0 o o o 1 o ol l l l $ l l l lo o o o o o o o oTable 4: Impliation elimination impelimTo deal with impliation we need two further funtions, impelim to establishthe sign of formulae generated by the rule of inferene !-E, and imprev toestablish the sign of formulae generated by!-R. This means that impelim is usedto ombine the hange in probability of a formula a, say, with the onstraint thatthe probability of a imposes upon the probability of another formula . Sinethis onstraint is expressed in exatly the same way as qualitative inuenesare in QPNs, impelim performs the same funtion as 
 [30℄, and is merely anextension of it.De�nition 5 The funtion impelim : Sg 2 f1;*; ";$; #;+; 0; l; og� Sg0 2 f++;+�;+; 0;�;�+;��; ?g 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spei�ed by Table 4.There are two things that are notable about Table 4. First, the asymmetryin the table. This stems from the de�nition of the ategorial impliations. Ifthe asymmetry did not exist, ategorial impliations would be lose to logialbi-impliations. Seond, the fat that in this table, unlike those introduedpreviously, o is the result of ombining two signs neither of whih is o, for instane1 and +. This is the justi�ation for inluding o as a sign|if it were not inludedthe set of signs would not be losed under impelim.The funtion imprev whih omputes the sign of the anteedent of an impli-ation from that of the impliation and its onsequent, is similar, only di�eringin the way it handles ategorial impliations:De�nition 6 The funtion imprev : Sg 2 f1;*; ";$; #;+; 0; l; og � Sg0 2 f++;+�;+; 0;�;�+;��; ?g 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spei�ed by Table 5.The di�erene is that ategorial impliations are only ategorial in the dire-tion in whih they are spei�ed. When reversed impliations with signs ++ and+� behave in the same way as impliations with sign +, and impliations withsigns �� and �+ behave in the same way as impliations with sign �. Notethat, one again, o is required to ensure losure.We also need the funtion synelim in order to be able to reason with synergies.This is follows diretly from [31℄: 11



++ +� + 0 � �+ �� ?1 o o o o o o o o* " " " $ # # # l" " " " $ # # # l$ $ $ $ $ $ $ $ $# # # # $ " l " l+ # # # $ " " " l0 o o o o o o o ol l l l $ l l l lo o o o o o o o oTable 5: Impliation reversal imprev.1 * " $ # + 0 l+ o " " $ # # o l0 $ $ $ $ $ $ $ $� o # # $ " " o lTable 6: Synergy elimination synelim.De�nition 7 The funtion synelim : Sg 2 f+; 0;�g� Sg0 2 f1;*; ";$; #;+; 0; l; og 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spei�ed by Table 6.The funtion synelim is the last funtion required to de�ne `QP , and we an turnto issues of soundness and ompleteness.4 Soundness and ompletenessNow, the aforementioned baroque appearane of the system might lead theseptial reader to assume that the de�nitions given above are rather ad ho andnot to be trusted. However, they are not. The proof mehanism given above isprovably sound and omplete for the propagation of hanges in probability inthe sense that it only omputes hanges that will our aording to probabilitytheory, and it omputes all suh hanges. This is shown by the results in thissetion. However, the business of proving soundness and ompleteness is notstraightforward. The main problem is that the form of the results dependsheavily on the kind of reasoning. As a result we have three sets of soundness andompleteness results. The �rst is for ausal reasoning, that is reasoning in thediretion of the impliations only. The seond is for evidential reasoning, thatis reasoning both in the diretion of impliations and in the opposite diretionto impliations, and involves dealing with the problems of d-separation. Thethird is for interausal reasoning, that is reasoning that inludes the eliminationof synergies. 12



4.1 Causal reasoningAs mentioned above, a restrition when writing impliational formulae in QPRis that the diretion of the impliations must reet ausality in the same waythat the diretion of a direted ar in a probabilisti network [25℄ does. That isthe onsequent of an impliation must be an e�et of the anteedent. The reasonfor insisting on this diretion is exatly the same as in probabilisti networks|to ensure that reasonable onlusions are drawn. If we restrit the kinds ofarguments we build to those in whih impliations are only used in a ausaldiretion, in other words we only use the C-rules of `QP to build arguments,soundness and ompleteness results are quite straightforward.To show this we �rst need to de�ne what it means for formulae to be ausesand e�ets of one another:De�nition 8 A well-formed formula p is said to be a ause of a well-formedformula q if and only if it is possible to identify an ordered set of iw�s fa1 !1; : : : ; an ! ng suh that q is one of the onjunts that make up n or inludesone or more of the onjunts that make up n, one or more of the onjuntsin every ai is also in i�1, and p is one of the onjunts that make up a1 orinludes one or more of the onjunts in a1.In other words In other words p is a ause of q if it is possible to build up a trailof (ausally direted) impliations whih link p to q.De�nition 9 A well-formed formula p is said to be an e�et of a well-formedformula q if and only if it is possible to identify an ordered set of iw�s fa1 !1; : : : ; an ! ng suh that q is one of the onjunts that make up a1 or inludesone or more of the onjunts that make up a1, one or more of the onjuntsin every i is also in ai+1, and p is one of the onjunts that make up n orinludes one of the onjunts in n.Thus p is an e�et of q if it is possible to build up a trail of (ausally direted)impliations that link q to p.Given these de�nitions, it is possible to show that given information aboutthe hange in probability of some formula p, the C-rules of `QP may be used tosoundly and ompletely ompute arguments about the hanges in probability ofthe e�ets of p. However, this is not enough to show that QPR is sound andomplete when using the C-rules. The problem is that, in general, there may beseveral di�erent arguments for a single formula, and we therefore need a meansof ombining these in a sound way. We therefore de�ne a attening funtionat whih ombines arguments by mapping from a set of arguments A to thesupported formula p and some overall measure of validity:at : A 7! hp; viwhere v is the result of a suitable ombination of the signs of the arguments.Now, beause the e�et of eah impliation is de�ned to our whatever otherarguments are formed (this is a result of the onstraint imposed on the ondi-tional probabilities by the impliations), all ombinations are ompletely loal,13



1 * " $ # + 0 l o1 1 1 1 1 1 1 1* 1 * * * * * *" 1 * " " l + 0 l "$ 1 * " $ # + 0 l $# 1 * l # # + 0 l #+ + + + + 0 + +0 0 0 0 0 0 0 0l 1 * l l l + 0 l lo 1 * l l l + 0 l oTable 7: Flattening atand the struture of the arguments may be disregarded when attening3 (forexatly the same reason as when ombining evidential trails in QPNs [7℄). As aresult, v is simply alulated as: v =Mi Sgifor all (p;Gi; Sgi) 2 A where� is an extended version of the qualitative additionfuntion used by QPNs, de�ned as follows:De�nition 10 The funtion � : Sg 2 f1;*; ";$; #;+; 0; l; og � Sg0 2 f1;*; ";$; #;+; l; og 7! Sg00 2 f*; ";$; #;+; l; og is spei�ed by Table 7. Blank spaesrepresent impossible ombinations.With this funtion established we an at last give the overall proedure fordetermining the hange in a formula p in whih we are interested. Assumingthat all known hanges in probability in formulae are in the database, this is:1. Add a triple (i : q : s) for every formula q whose hange in probability isknown.2. Build A, the set of all arguments for p using the C-rules.3. Flatten this set to Flat(A) where Flat(A) = at(A)4.This naturally bakward haining proedure an obviously be extended to om-pute all the ausal onsequenes of a given set of hanges in probability.From the de�nitions of how hanges in probability are ombined and thenattened, it is possible to show that using the C-rules of `QP is sound:Theorem 11 The onstrution and attening of arguments in QPR using theC-rules of `QP is sound with respet to probability theory.3Though in other argumentation systems where struture is important, as when dealingwith numerial probabilities for instane, struture an be taken into aount when attening.4The reason for doing this should beome lear in the next setion.14



Proof: The proof starts by proving the soundness of the ombinator tablesused when applying the C-rules of `QP :(Conjuntion introdution): Consider the probabilities Pr(a) and Pr(b) ofthe two formulae being onjoined. There are two ases to onsider, in the�rst the formulae are known to be independent and in the seond they are notknown to be independent. If Pr(a) and Pr(b) are independent, then Pr(a^ b) =Pr(a):Pr(b). Thus if at least one of Pr(a) and Pr(b) inreases and the other doesnot derease, then Pr(a ^ b) will inrease. If one inreases and one dereases,then the hange in Pr(a ^ b) annot be determined. If one inreases to 1, andthe other is either 1 or inreases to 1, Pr(a^ b) inreases to 1. If both Pr(a) andPr(b) are 1 then Pr(a ^ b) is 1. Furthermore, if at least one of Pr(a) and Pr(b)dereases and the other does not inrease, then Pr(a ^ b) will derease. If onedereases and one inreases, then the hange in Pr(a^ b) annot be determined.If either Pr(a) or Pr(b) derease to 0, then Pr(a^ b) dereases to 0, and if eitheris 0, then so is Pr(a ^ b). If either a or b has the sign l, then that is the signof the onjuntion, unless the other onjunt has a probability whih is 0 ordereases to 0, sine nothing an be said about its value. If one of a or b has thesign $, and the other has a sign whih is either 1, $ or o then the probabilityof the onjuntion does not hange and so the onjuntion has the sign $. Ifa or b has the sign o and the other has the sign o or 1, then the probability ofthe onjuntion is not known, though it does not hange and so we give theonjuntion the sign o (preferring this to$ sine it makes it lear that there hasbeen no ombination with a value whih is known to be $, though it would notbe inorret to use $). This ompletes the proof for the ase in whih Pr(a)and Pr(b) are independent.Turning to the ase in whih Pr(a) and Pr(b) are not independent, the samesets of values an be onsidered. However, sine Pr(a ^ b) = Pr(a):Pr(bja) =Pr(ajb):Pr(b), it rapidly beomes lear that unless either Pr(a) or Pr(b) is 0 ordereases to 0, in whih ase Pr(a^ b) is zero and dereases to zero respetively,there is little that an be said about the probability of the onjuntion beausethere is no onstraint on the way in whih Pr(bja) and Pr(ajb) hange. Indeed,the only time that the probability of the onjuntion an be predited is whenboth Pr(a) and Pr(b) are 1 or inrease to 1. If both are 1 then so is Pr(a ^ b),and if one inreases to 1 and the other is either 1 or inreases to 1, the Pr(a^ b)inreases to 1. In all other ases, Pr(a ^ b) will have the sign l.(Conjuntion elimination): There are two parts to the proof. One for thepart of the funtion that gives * or 1, and one for the part that gives l. For the�rst, the following suÆes and follows diretly from the funtions for onjuntionintrodution. The only way in whih Pr(a ^ b) an be 1 is if both Pr(a) andPr(b) are 1. The only way in whih Pr(a^ b) an inrease to 1 is if either Pr(a)or Pr(b) inreases to 1 and the other inreases to 1 or is 1. Thus piking oneof the two onjunts, its probability either inreases to 1 or is 1. Thus the �rstpart is proved. For the seond part we need the following argument. Givingany sign as l is always sound (sine it means that nothing at all is being saidabout the relevant probability). However, it is also possible to prove that nomore preise rule an be proposed. This is done by onsidering the tables for15



onjuntion introdution. Looking at the values in the tables it is lear thatany sign that might be assigned to Pr(a^ b) might be produed by a number ofpossible values of Pr(a) and Pr(b). Thus no �rm onlusions about hanges inPr(a) and Pr(b) an be drawn from partiular hanges in Pr(a ^ b) other than* or 1.(Impliation elimination): First onsider impliations labelled with +. Fromthe de�nition of suh impliations it is lear that ombining any inrease inprobability (either " or *) with suh an impliation will generate a possibleinrease in probability, in other words a ". Similarly, ombining any dereasein probability (either # or +) with an impliation labelled + will generate #,ombining no hange in probability with suh an impliation will generate $,and ombining a hange of l with suh an impliation will generate a hangeof l. Next, onsider impliations labelled with �. Suh an impliation will alsogenerate l when ombined with a hange of l and $ when ombined with $,but will otherwise have the opposite behaviour to that of an impliation labelled+. It is also lear that impliations labelled with 0 will generate hanges of $whatever hange they are ombined with, and impliations labelled with l willgenerate l when ombined with all hanges exept $|in the latter ase theywill generate a hange of $. Combining any of these impliations with valuesthat are not hanges (that is 1, 0 or o) will not yield either a hange or a valuewhih is known, in other words they will generate o. This takes are of allnon-ategorial impliations.Turning to ategorial impliations, the results also follow almost immedi-ately from the de�nitions. Consider an impliation labelled ++. By de�nitionthis yields a hange of * when ombined with a hange of * and a value of 1when ombined with 1, and otherwise behaves exatly like an impliation la-belled with +. Similarly, by de�nition an impliation labelled +� will give +when ombined with a hange of + and 0 when ombined with 0, but will oth-erwise behave like an impliation labelled with +. The last two impliations,�� and �+ behave in a omplementary fashion to ++ and +� respetively.(Negation elimination and introdution): Consider a, the formula whosesign is being omputed. If Pr(:a) inreases to 1 then learly Pr(a) dereasesto zero, and if Pr(:a) dereases to 0 then learly Pr(a) inreases to one. Thistakes are of the funtion for + and *. The other ases are handled similarly.This ompletes the proof of the soundness of the relevant ombinator tables.Beause the tables are sound, the arguments built using them are also sound.Thus all the arguments that may be built onerning a formula are sound. Allthat remains is to show that when several arguments for a formula are ombined,the ombination itself is sound. Thus it is neessary to show that attening issound.(Flattening): The soundness of attening follows from the fat that Table 7 isan extension of the qualitative addition funtion � used to ombine hanges inprobability in qualitative probabilisti networks [30℄. The di�erenes betweenat and � reet the fat that ategorial hanges in probability annot bealtered by non-ategorial hanges and the spaes in the table follow from thefat that the probability of any variable annot both inrease to 1 and derease16



to 0 simultaneously [19℄. Thus attening is sound.Sine both building and attening arguments is sound, QPR itself is sound. 2The notable thing about this result, in ontrast to later ones, is that the sound-ness of the individual arguments generated by `QP does not depend upon at-tening. Eah argument is itself sound|one we have an argument whih says,for instane, that the probability of p may inrease, that is we have an argument(p;G; "), it is not possible to dedue that the probability of p won't inrease.The losest that one an ome to deduing that p won't inrease is if it is possi-ble to build another argument (p : G0 : #), whih says that the probability of pmight derease. Then the result of attening these two is the onlusion hp; liwhih indiates that it is not possible to rule out any hange in p. The wholededution has a ertain loality whih makes QPR rather loser to logi thanto probabilisti networks. However, the fat that later onlusions an throwdoubt on earlier ones means that QPR is not monotoni (a point explored atgreater length in [23℄).Before moving on to ompleteness, we need to identify preisely what kindof ompleteness we are talking about. What we want to show is that when usingthe C-rules, QPR omputes all the hanges in probability of all the e�ets of aformula:De�nition 12 The onstrution and attening of arguments is said to be au-sally omplete in some system of qualitative probability with respet to someformula p if it is possible to use that system to ompute the sign of all thee�ets of p.With this de�nition it is possible to state and prove the following theorem.Theorem 13 The onstrution and attening of arguments in QPR with `QPde�ned by the C-rules only is ausally omplete with respet to any well-formedformula.Proof: Thanks to the areful hoie of proof rules, the ompleteness prooffollows from the de�nition of `QP . That is the hange in probability of all thee�ets of any well-formed formula p whih may be stated in QPR an be madeby the appliation of the appropriate proof rules. This an be seen as follows.Consider the addition of the triple (i : p : ") where p ontains no negationsymbols, to a database whih only ontains formulae without negation symbols.There are six types of e�et of p. The �rst are the onsequents of impliationsin whih p forms the anteedent. The hanges in probability of suh e�ets maybe established using !-E. The seond are the onsequents of impliations inwhih p is one of the onjunts of the anteedent. The hanges in probabilityof suh e�ets may be established using ^-I and !-E. The third are are theonsequents of impliations the anteedent of whih involves some onjuntsthat are part of p. The hanges in probability of suh e�ets may be establishedusing ^-E1, ^-E2 and!-E. The fourth set of e�ets are those whih are subsetsof the onjunts in the onsequents of impliations whih have p either as the17



anteedent, one of the onjunts of the anteedent, or for whih some of theonjunts that make up p are the anteedent. The hanges in probability of suhe�ets may be established by the following method. Use what is known about pto establish the hange in probability of the whole onsequent by applying theappropriate method (one of the �rst three) and then applying ^-E and ^-E2.A very similar proedure an be used to establish the hange in probability ofe�ets whih inlude some onjunts in the onsequent of impliations for whihp relates to the antedent, possibly using ^-I as well. Suh formulae onstitutethe �fth set of e�ets. These �ve sets of e�ets are all those whih are onnetedin some way to p by a single impliation. The sixth set of e�ets are those whihare related to p by two or more impliations. The hanges in probability of suhsets may be obtained by reursively applying the proedure for the �rst �vesets of e�ets. The appropriate use of :-I and :-E make it possible to formulaesituations in whih negation symbols appear. Thus all the hanges in auses ofp that result from the hange in probability of p an be omputed, and QPR isausally omplete with respet to any formula. 2Example 2. As an example of ausal reasoning onsider the following exampleborrowed from [7℄. We have the following probabilisti inuenes5:(r1 : HeOx Temp! Ox Tank Leak : +) �2(r2 : HeOx Temp! High Ox Temp : +)(r3 : High Ox Temp! Ox Tank Leak : +)When we have evidene that Pr(HeOx Temp) is inreasing, so that the triple(f1 : HeOx Temp : ") is added to the database, it is possible to build twoarguments onerning Pr(Ox Tank Leak):�2 `QP (Ox Tank Leak; ff1; r1g; ")�2 `QP (Ox Tank Leak; ff1; r1; r2g; ")The �rst is built by ombining f1 and r1 using !-E. The seond is built byombining f1 and r2 using !-R and then haining the result of this with r3using !-E again. These two arguments may then be attened to give the pairhOx Tank Leak; "i. 2This is all we will say about ausal reasoning using QPR, and we turn tousing the system to reason both in the diretion of the impliations, and in theopposite diretion to the impliations.4.2 Evidential reasoningUnfortunately there is more to allowing impliations to be reversed than justadding the proof rule !-R to `QP . In partiular there are two problems whih5Of ourse the variables are binary valued rather than ontinuous as in the original so wemust think of variable values suh as HeOx Temp = high rather than atual temperatures.18



need to be solved. The �rst problem arises beause when impliations are re-versed it is possible for the proof proedure to loop and therefore build an in�nitenumber of arguments. This is illustrated by the following example.Example 3. Consider the following database:(f1 : a : ") �3(r1 : a! b : +)(r2 : b! d : +)(r3 : a!  : �)(r4 : ! d : +)By applying !-E twie to f1, r1 and r2 it is possible to build an argument foran inrease in the probability of d and then by using !-R twie on r4 and r3 itis possible to build an argument for a derease in the probability of a. This newinformation about a may then be used to build a new argument for a dereasein the probability of d, and this in turn an be used to build a new argumentfor an inrease in the probability of a. This proess ould learly be ontinuedfor ever. 2In fat, it is not even neessary to have a \loop" in the impliations sine it isperfetly possible to build a ausal argument from a to b and then to d and thenbuild an evidential argument bak to b and then to a. Happily this problem iseasy to solve by introduing the idea of a minimal argument.De�nition 14 A minimal argument is an argument in whih no impliationappears more than one.The way that minimality is introdued in QPR, as we shall see, is in the at-tening of evidential arguments. This is oneptually simple sine it allows theonstrution (as opposed to attening) of arguments to be the same in bothausal and evidential ases. However, there are a ouple of points that shouldbe made with referene to this. The �rst is that in pratie it is both simple anddesirable to hek for minimality during the onstrution of arguments. Simplebeause it is easy to hek whether an impliation has been used before whenapplying the proof rules and desirable sine it prevents the proof system beingused to build in�nite arguments. The seond point is that under the usual re-strition plaed on probabilisti networks, yles of impliations (whih wouldmake it possible to reason ausally from a formula and yle bak to it again) areforbidden in QPR so that non-minimal arguments are not a feature of ausalreasoning. It is also worth noting that minimal arguments mirror the idea ofminimal trails introdued by Druzdzel [7℄.The seond problem with evidential arguments arises due to the need tohandle onditional independene properly. If we apply the proof rules blindly,we may build arguments onerning a formula whih depend upon informa-tion about other formulae whih are onditionally independent of it. Thus it ispossible to build arguments whih are not valid aording to probability the-ory, and, just like the non-minimal arguments disussed above, they must be19



weeded out in the attening proess. To identify invalid arguments we need todevelop something for arguments in QPR whih is analagous to d-separation[25℄ in probabilisti networks. We do this using the following de�nition of d-separation adapted from those in Jensen's reent book [14℄ (beause I an'timagine bettering Jensen's motivation for d-separation, any reader who wantsmore information about what it is and why it is important is referred to [14℄,pages 7{14). First, however, we need some additional de�nitions:De�nition 15 A soure of an argument (p;G; s) is an sw� from G.Thus a soure of an argument is one of the simple formula whih ground it, andform the head of a hain of impliations.De�nition 16 The destination of an argument (p;G; s) is p.De�nition 17 Two formulae p and q are d-separated if for all arguments whihhave p as a soure and q as their destination, there is another formula r suhthat either:1. p is a ause of r, r is a ause of q and the probability of r is 1 or 0; or2. p and q are both auses of r and there is no argument (r;G0; s0) suh thatall the sw�s in G0 are e�ets of r.With these ideas �xed we an establish the idea of an invalid argument as onethat is built without taking aount of d-separation:De�nition 18 An argument A = (p;G; s) is invalid if all the soures of A ared-separated from p.De�nition 19 An argument A = (p;G; s) is valid if it is not invalid.In other words there are two situations in whih an argument is invalid. The�rst is if it involves a hain of impliations through some formula whih is knownto be either true or false. The seond is if it involves a hain of impliationsfrom the auses of some formula r to r and then bak to further auses of rand there is no argument for r from any of its e�ets. This is illustrated by thefollowing example.Example 4. Consider the following database:(f1 : a : ") �4(r1 : a! b : +)(r2 : b!  : +)(r3 : e!  : �)(r4 : ! f : +)By applying !-E twie to f1, r1 and r2 it is possible to build an argument(; ff1; r1; r2g; ") for an inrease in the probability of . This argument isvalid, but would be invalid if the triple (f2 : b : 1) were also in �4.20



Now, onsider extending the argument for an inrease in probability of  byusing !-R on r3 and what was dedued about  to build an argument for aderease in the probability of e. This seond argument (e; ff1; r1; r2; r3g; #) isinvalid, but would be valid if the triple (f3 : f : ") were in the database beauseit would then be possible to build a valid argument whose destination was  andwhose grounds only inluded the e�ets of . 2The idea of an invalid argument makes it possible to eliminate the kind ofproblems disussed by Pearl [24℄ in his exhortation for the use of ausality indefault reasoning without the need to distinguish between ausal and evidentialrules. Furthermore, it gives QPR the same kind of ability as symboli ausalnetworks [5℄ to ensure that hanges in belief, expressed as probabilities, areonsistent with ideas of ausality without the need to assoiate a network witha set of logial lauses. Of ourse, the need to identify invalid arguments andrule them out means that, when used for evidential reasoning, QPR is no longerpurely loal in the way in whih it is when used for ausal reasoning. However,it is preisely this non-loality whih makes it possible to ensure that adequateaount is taken of d-separation without the need to have a graphial model aswell as the logial lauses.In keeping with the style of presentation adopted so far, we an think ofapplying the minimality and validity restritions on arguments by applying afuntion ate1 to the set of all arguments A for a formula p:ate1 : A 7! fA 2 A j A is minimal and validgNow, if there are several minimal valid arguments for a given formula, we anombine these to get a single overall argument using a seond attening funtionate2 . Like ate2 this maps from a set of arguments A to the supported formulap and some overall measure of validity:ate2 : A 7! hp; viwhere v is one again the result of a suitable ombination of the signs of thearguments. In fat it turns out that v is omputed in exatly the same way asfor ausal reasoning, so that the funtion ate2 is exatly the same as at. Thusthe proedure for �nding the sign of a formula p when reasoning both ausallyand evidentially is:1. Add a triple (i : q : s) for every formula q whose hange in probability isknown.2. Build A, the set of all arguments for p using the C-rules and E-rules.3. Flatten this set to Flate(A) where Flate(A) = at(ate1(A)).With this proedure in mind, we an prove the following.Theorem 20 The onstrution and attening of arguments in QPR using theC-rules and E-rules of `QP is sound with respet to probability theory.21



Proof: The proof proeeds by showing �rst that the individual proof rules areloally sound, in that given partiular premises they generate the appropriateonlusions, and then showing that the attening proedure rules ensures thesoundness of whole arguments. The �rst stage is partiularly easy sine thesoundness of the C-rules was proved in Theorem 11. We therefore need only toonsider impliation reversal.(Impliation reversal): The soundness of Table 5 an be proved as follows.Any impliation (i : a !  : +) indiates a onstraint Pr(ja; x) � Pr(j:a; x).This onstraint implies that Pr(aj; y) � Pr(aj:; y) as proved by Wellman [30℄.This an be onsidered as meaning that a onsequene of the �rst impliation isthat there is another impliation (i : ! a : +) (though this will not be ausallydireted). This seond impliation an then be ombined with information aboutthe hange in probability of  to obtain the relevant olumn in the table justas for impliation elimination in the proof of Theorem 11. Similar reasoningtakes are of the ases for whih the sign of the impliation is �, 0 and ?. Aategorial impliation (i : a !  : ++) or (i : a !  : �+) is just a moreextreme version of (i : a !  : +), and while it won't neessarily reverse togive a ategorial impliation, it will reverse just like (i : a !  : +). Similarlya ategorial impliation (i : a !  : ��) or (i : a !  : +�) is just a moreextreme version of (i : a!  : �), and while it won't neessarily reverse to givea ategorial impliation, it will reverse just like (i : a!  : �). This ompletesthe proof of the soundness of impliation reversal.Now, this loal proedure will sometimes be unsound, but only in the ourseof building an invalid argument (sine the only unsound arguments whih maybe built are invalid), and suh an argument will be rejeted by the atteningfuntion. In fat, stritly speaking, we don't atually need to worry about d-separation at all. The worst that ould happen if we ignored it is that someformula whose probability annot hange, beause it is d-separated from the onlyformula whose probability is known to hange, has its hange in probabilityomputed as " or # (it annot be * or + beause ategorial hanges annotresult from the appliation of !-R). Sine " and # indiate either a hange orno hange this is not inorret, but it is possibly misleading.(Flattening): There are two aspets to the soundness of attening. The �rstis the soundness of minimal valid arguments, and the seond is the soundness ofthe way in whih suh arguments are ombined. Both follow from the lose or-respondene between impliations and ars in qualitative probabilisti networks.The �rst is proven as follows. Minimal valid arguments orrespond to minimalative trails in QPNs [7℄ and the soundness of the hanges in probability thatthey identify follows from the soundness of the individual ombinations provenabove and the fat that non-valid, non-minimal arguments (where the alu-lation of hanges is not sound) are removed. The seond aspet of soundnessmay then be shown. The validity of ombining di�erent arguments also followsfrom the orrespondene with evidential trails and the fat that Table 7 is anextension of the qualitative addition funtion � used to ombine the results ofsuh trails [7℄. The di�erenes between at and � reet the fat that ate-gorial hanges in probability annot be altered by non-ategorial hanges and22



the spaes in the table follow from the fat that the probability of any variableannot both inrease to 1 and derease to 0 simultaneously [19℄. Thus atteningis sound.Sine both building and attening arguments is sound, QPR itself is sound. 2Given that evidential reasoning is sound, the next question is to what extent isit omplete. We are interested in the following notion of ompleteness:De�nition 21 The onstrution and and attening of arguments is said to beevidentially omplete in some system of qualitative probability with respet tosome formula p if it is possible to use that system to ompute the signs of all thee�ets of p, all the auses of p and all the auses and e�ets of all the ausesand e�ets of p.With this de�nition it is possible to prove the following:Theorem 22 The onstrution and attening of arguments in QPR is ausallyand evidentially omplete with respet to any formula.Proof: Given information about the hange in probability of any well-formedformula, by Theorem 13 it is possible to alulate the hange in probability ofany e�et of that formula. Now, a proedure whih is idential to that desribedin Theorem 13 but using !-R as well as !-E may be applied to establish thehange in probability of any e�et of any well-formed formula. Applying bothproedures reursively as neessary suÆes to ensure evidential ompleteness.2Finally, we have an example of evidential reasoning in QPR.Example 5. As an example of the kind of reasoning possible in QPR onsiderthe extension of the example of ausal reasoning:(r1 : HeOx Temp! HeOx Temp Probe : +) �5(r2 : HeOx Temp! High Ox Temp : +)(r3 : HeOx Temp! Ox Tank Leak : +)(r4 : High Ox Temp! Ox Tank Leak : +)When we have evidene that Pr(HeOx Temp Probe) is inreasing, so that thetriple (f1 : HeOx Temp Probe : ") is added to the database, it is possible tobuild two minimal, valid arguments onerning Pr(Ox Tank Leak):�5 `QP (Ox Tank Leak; ff1; r1; r3g; ")�5 `QP (Ox Tank Leak; ff1; r1; r2; r4g; ")The �rst is built by ombining f1 and r1 using !-R and then ombining theresult of this with r3 using !-E. The seond is built by ombining f1 andr1 using !-R and then haining the result of this with r2 and r4 using !-E twie. These ombine to give the pair hOx Tank Leak; "i indiating that23



overall it is possible to infer that knowledge about the inreasing probability ofHeOx Temp Probe, whih is the kind of thing that an be observed, makes itpossible to infer that the probability of Ox Tank Leak may inrease, whih isthe kind of thing that would be useful to know in the ontext of this example.2Using the C and E-rules, QPR aptures Wellman's version of QPNs [30℄ upto the handling of additive synergy. The next setion disusses how to extendQPR so that it handles interausal reasoning. Doing so permitsQPR to aptureDruzdzel's [6℄ version of QPNs whih don't deal with additive synergy but doemploy interausal reasoning.4.3 Interausal reasoningIn omparison to the extension to evidential reasoning, the extension of QPRto enable it to allow interausal reasoning is relatively straightforward. Beauseof the way the synergy elimination rules ;-E1 and ;-E2 are de�ned, it is onlyever possible to apply them validly. Thus, all that we have to do is to addthe I-rules to the proof proedure and we an immediately obtain a sound andomplete system. No new attening funtion is required sine the I-rules do notintrodue new forms of invalid argument.As ever, before showing soundness we need to state the omplete proof pro-edure, and we do this in the familiar bakward haining way|the proedurefor �nding the sign of a formula p when reasoning ausally, evidentially andinterasually is:1. Add a triple (i : q : s) for every formula q whose hange in probability isknown.2. Build A, the set of all arguments for p using the C-rules, E-rules andI-rules.3. Flatten this set to Flate(A) where Flate(A) = at(ate1(A)).Theorem 23 The onstrution and attening of arguments in QPR using theC-rules, E-rules and I-rules of `QP is sound with respet to probability theory.Proof: We already have Theorem 20 whih shows that `QP ombined withFlate(�) is sound when using the C-rules and the E-rules. Thus all we need toshow is that synergy elimination is sound with respet to probability theory.Fortunately the soundness of synergy elimination follows diretly from the de�-nition of synelim and Druzdzel's results on interausal reasoning, and so the useof QPR with the C-rules, E-rules and I-rules is sound. 2So proving soundness is relatively easy. Proving ompleteness, as ever, is depen-dent upon de�ning a notion of ompleteness, and to do this we need to apturethe fat that one formula an be related interausally with another. In fat we24



need to express the idea that two formulae an be diretly related by an inter-ausal link (when they share a ommon e�et and so are the two anteedentsof a synergisti w� ) and may also be indiretly related (when they are relatedvia a number of intermediate formulae some of whih are synergisti w� s). The�rst idea is aptured by the notion of interausal onnetion, the seond by thenotion of interausal relation:De�nition 24 A well-formed formula p is said to be interausally onnetedto a well-formed formula q if and only if there is a yw� p ℄ q ; r for someformula r.De�nition 25 A well-formed formula p is said to be interausally related to awell-formed formula q if and only if it is possible to identify an ordered set ofyw�s fx1 ℄ y1 ; z1; : : : xn ℄ yn ; zng, where there is an argument (zi : Gi : 1)for eah zi, and p is either a ause or e�et of x1, eah yi is a ause or an e�etof eah xi+1 and q is a ause or e�et of yn.In other words, two formulae are interausally related if it is possible to buildan argument whih has one as its soure and the other as its destination, andthey are joined by a hain of impliations and synergy relations. We then have:De�nition 26 The onstrution and and attening of arguments is said tobe interausally omplete in some system of qualitative probability with respetto some well-formed formula p if in addition to being evidentially omplete, itis possible to alulate all the hanges in probability of all formulae that p isinterausally related to.With this de�nition it is possible to prove the following:Theorem 27 The onstrution and attening of arguments in QPR is inter-ausally omplete with respet to any formula.Proof: Again the proof follows almost immediately from the orrespondingresult for evidential reasoning. Starting from a known hange in a proposition p,evidential ompleteness guarantees that we an �nd the hanges in probability ofall auses and e�ets of p and the auses and e�ets of those auses and e�ets.Synergy elimination then makes it possible to soundly establish any hangesin probability of any formulae that are interausally onneted to any of theauses and e�ets of p. One again the alulation of hanges in probabilityof the auses and e�ets of the interausally onneted formulae is guaranteedby evidential ompleteness, and the reursive appliation of synergy eliminationensures interausal ompleteness. 2This kind of ompleteness is the same as is possible in a probabilisti network.In a probabilisti network it is possible to alulate the probability of any nodewhih is onneted, via a set of nodes, to nodes about whih evidene is obtained.InQPR, it is possible to ompute the hange in probability of any formula whihis \onneted", in the sense of being a ause of or an e�et of or interausallyrelated to, any formula for whih the hange in probability is known.25



Finally, we give an example of interausal reasoning in QPR.Example 6. As an example of the kind of reasoning possible in the full versionof QPR onsider this �nal extension of the running example:(r1 : HeOx Temp! HeOx Temp Probe : +) �6(r2 : HeOx Temp! High Ox Temp : +)(r3 : HeOx Temp! Ox Tank Leak : +)(r4 : High Ox Temp! Ox Tank Leak : +)(r5 : Ox Tank Leak ! Ox Pressure Low : �)(r6 : HeOx V alve Problem! Ox Pressure Low : �)(r7 : Ox Tank Leak ℄HeOx V alve Problem; Ox Pressure Low : �)When we have evidene that Pr(HeOx Temp Probe) is inreasing and oxygenpressure is known to be low so that the formulae (f1 : HeOx Temp Probe : ")and (f2 : Ox Pressure Low : 1) are added to the database, as before it ispossible to build two minimal, valid arguments onerning Pr(Ox Tank Leak):�6 `QP (Ox Tank Leak; ff1; r1; r3g; ")�6 `QP (Ox Tank Leak; ff1; r1; r2; r4g; ")Both of these may then be used along with f2, r7, and;-E1 to build argumentsonerning Pr(HeOx V alve Problem):�6 `QP (HeOx V alve Problem; ff1; f2; r1; r4; r7g; #)�6 `QP (HeOx V alve Problem; ff1; f2; r1; r2; r3; r7g; #)whih atten to tell us that the probability of HeOx V alve Problem may de-rease. Thus the overall impat of the evidene is to suggest that it has beomemore likely that there is a leak in the oxygen tank and less likely that there isa problem with the helium/oxygen tank valve. 2With these results, QPR gives us a sound proof-theoreti means of omput-ing hanges in probability propagated in both ausal and evidential diretionsas well as aross interausal links. Thus QPR aptures Druzdzel's version ofQPNs. What this means is that if we enode our probabilisti knowledge ofthe world by writing down any set of sw� s, iw� s and yw� s we an then buildarguments for and against formulae using `QP and use these to identify thehanges in probability of those formulae warranted by probability theory. If, af-ter building arguments and attening we have an pair (St; Sg) where St is anyw� then Sg indiates the hange in probability of St, indiating it inreases to 1if Sg = *, dereases if Sg = # and so on. If, on the other hand we have (St; Sg)where St is an iw� St0 ! St00 then Sg indiates the onstraint between Pr(St0)and Pr(St00), and if St is a yw� then Sg indiates the onstraint between thethree onstituent formulae. The full denotation of any pair (St; Sg) is given byTables 8, 9 and 10. Sine QPR is sound and omplete any sign omputed inthis way will be orret, and if there is enough information to ompute the sign,then it will be omputed. 26



If and and thenSt = w Sg = 1 Pr(w)final = 1St = w Sg = * Pr(w)final = 1St = w Sg = " Pr(w)initial = p p � Pr(w)final � 1St = w Sg = $ Pr(w)initial = p Pr(w)final = pSt = w Sg = # Pr(w)initial = p p � Pr(w)final = 0St = w Sg = + Pr(w)final = 0St = w Sg = 0 Pr(w)final = 0St = w Sg = l Pr(w)initial = p 0 � Pr(w)final � 1St = w Sg = o 0 � Pr(w)final � 1Table 8: What a derived formula means (part 1).If and thenSt = v ! w Sg = ++ Pr(wjv; x) = 1St = v ! w Sg = +� Pr(wj:v; x) = 0St = v ! w Sg = + Pr(wjv; x) � Pr(wj:v; x)St = v ! w Sg = 0 Pr(wjv; x) = Pr(wj:v; x)St = v ! w Sg = � Pr(wjv; x) � Pr(wj:v; x)St = v ! w Sg = �+ Pr(wj:v; x) = 1St = v ! w Sg = �� Pr(wjv; x) = 0St = v ! w Sg = ? The relationship between Pr(wjv; x)and Pr(wj:v; x) is unknown.Table 9: What a derived formula means (part 2).5 DisussionThe �rst question that arises when onsideringQPR is why QPR is better thanthe QPN formalism, and so worth developing. There are a ouple of reasons whyI think that this is so. Firstly, the system has the potential to be onsiderablymore expressive than QPNs. As it stands, QPR an reason about onjuntionswhih QPNs an't, so it is more expressive (though it is arguable how usefulthe onjuntions are) and it is possible to extend QPR to handle disjuntionand thus material impliation [21℄ whih makes it possible to ombine logialdedution with the kind of probabilisti propagation disussed in this paper.Seondly, QPR has the potential to be a �rst order system and so ould beused as a means of building spei� QPNs from more general knowledge|a formof model-based knowledge onstrution. Thirdly, QPR seems to o�er a morenatural means of representing the kind of qualitative probabilisti informationdisussed here than QPNs do. The key to both QPNs and QPR is that theinuenes that they deal with are de�ned to hold irrespetive of what otherinuenes also hold. In other words the information ontained in an iw� or anar in a QPN is essentially modular and una�eted by whatever other inuenes27



If and thenSt = u ℄ v ; w Sg = + Pr(wju; v;X):Pr(wj:u;:v;X))� Pr(wju;:v;X):Pr(wj:u; v;X)St = u ℄ v ; w Sg = 0 Pr(wju; v;X):Pr(wj:u;:v;X))= Pr(wju;:v;X):Pr(wj:u; v;X)St = u ℄ v ; w Sg = � Pr(wju; v;X):Pr(wj:u;:v;X))� Pr(wju;:v;X):Pr(wj:u; v;X)Table 10: What a derived formula means (part 3).exist in a partiular model. This is reeted more diretly in QPR than inQPNs sine QPR only takes the struture of the inuenes into aount whenneessary (whih is when d-separation omes into play).Another question that might be posed is how QPR relates to Neufeld'sprobabilisti default reasoner [17, 18℄. The answer seems to be that beause the\rules" in QPR make stronger assertions than those in Neufeld's system, it ispossible to get ompleteness results in QPR whih are not possible in Neufeld'swork. As an example, onsider the way in whih both systems represent thefat that  is positively inuened by both a and b. Both an onlude that beomes more probable if a beomes more probable and that  beomes moreprobable if b beomes more probable. In QPR it is also possible to onludethat  beomes more probable if both a and b beome more probable beausethe e�ets of a and b are de�ned to our whatever other inuenes bear on .However, in Neufeld's system if both a and b beome more probable, nothing anbe said about the hange in probability of . The relationship between Neufeld'ssystem and the kind of proof theoreti reasoning provided by QPR is disussedfurther in [20, 21℄. Of ourse, the ipside of this ompleteness is the need tomake stronger assertions when writing down rules, and this will lead to moreinuenes being given the sign ? beause it is not possible to state that theyhold whatever other information is true. Thus one an think of QPR as beinglimited to expressing preise assertions about less of the world than Neufeld'ssystem but as a result being able to be more omplete in the inferenes it makesabout the portion of the world it represents.6 SummaryThis paper has disussed a means of building a proof theoreti system whih isapable of reasoning about hanges in probability. It is thus in some senses anextension of previous work on systems of argumentation and of systems of qual-itative probability. With a solid basis in probability theory, the system an beused to ombine the advantages of a sound means of handling unertainty withthe exibility of a logial method of knowledge representation [1℄, a exibilitythat an be inreased by extending it to a full �rst order system and inlud-ing disjuntion and material impliation. Beause of its qualitative nature, the28
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