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h 17, 1998Abstra
tIn re
ent years, several papers have des
ribed systems for plausiblereasoning whi
h do not use numeri
al measures of un
ertainty. Someof these have been based on logi
 and some have been based on 
ausalin
uen
es. This paper suggests one way of 
ombining the advantages ofboth types of approa
h by introdu
ing a means of reasoning with 
ausalin
uen
es in a proof theoreti
 way.1 Introdu
tionIn the last few years there have been a number of attempts to build systems forreasoning under un
ertainty that are of a qualitative nature|that is they usequalitative rather than numeri
al values, dealing with 
on
epts su
h as in
reasesin belief and the relative magnitude of values. Between them, these systems ad-dress the problem of reasoning in situations in whi
h knowledge is un
ertain,but in whi
h there is a limited amount of numeri
al information quantifyingthe degree of un
ertainty. Three main 
lasses of system 
an be distinguished|systems of abstra
tion, in�nitesimal systems, and systems of argumentation. Insystems of abstra
tion, the fo
us is mainly on modelling how the probability ofhypotheses 
hanges when eviden
e is obtained and there is no need to 
ommitto exa
t probability values. They thus provide an abstra
t version of probabilitytheory, known as qualitative probabilisti
 networks (QPNs), whi
h ignores thea
tual values of individual probabilities but whi
h is nevertheless suÆ
ient forplanning [30℄, explanation [6℄ and predi
tion [22℄ tasks. Similar systems have1



also been used to provide an a

ount of default reasoning [17, 18℄. In�nitesi-mal systems deal with beliefs that are very nearly 1 or 0, providing formalismsthat handle order of magnitude probabilities. In�nitesimal systems may be usedfor diagnosis [4℄ as well as providing a general model of default reasoning [13℄,and have been extended with in�nitesimal utilities to give 
omplete de
isiontheories [26, 32℄. Systems of argumentation are based on the idea of 
onstru
t-ing logi
al arguments for and against formulae, establishing the overall validityof su
h formulae by assessing the persuasiveness of the individual arguments.Systems of argumentation have been applied to a problems su
h as diagnosis,proto
ol management and risk assessment [10℄, as well as handling in
onsistentinformation [2℄, and providing a framework for default reasoning [9, 16, 27℄.This paper provides a hybridisation of the logi
al and abstra
tion approa
hesby introdu
ing a logi
al approa
h to reasoning about how probabilities 
hange,whi
h will be 
alled the qualitative probabilisti
 reasoner (QPR). As is arguedbelow,QPR provides a more 
exible, expressive, and natural means of reasoningabout su
h 
hanges than is 
urrently possible in systems of abstra
tion. Thedevelopment of QPR relies upon a number of results established in the study ofQPNs. Su
h results are not explained in any detail sin
e they are easily found inthe literature (in [7℄ and [30℄) and would further lengthen this already lengthypaper.2 The logi
al language2.1 Basi
 
on
eptsWe start with a set of atomi
 propositions L. We also have a set of 
onne
-tives f:;^;!;℄;;g, and the following set of rules for building the well-formedformulae (w� s) of the language.1. If l 2 L then l is a simple well-formed formula (sw� ).2. If l is an sw�, then :l is an sw�.3. If l and m are sw� s then l ^m is an sw�.4. If l and m are sw� s then l ! m is an impli
ational well-formed formula(iw� ).5. If l, m and n are sw� s then l℄m; n is a synergisti
 well-formed formula(yw� ).6. The set of all w� s is the union of the set of sw� s, the set of iw� s, andthe set of yw� s.There are a 
ouple of points that should be noted about the 
onne
tives whi
hgo to make up these formulae. The �rst point is that neither ! or ; rep-resents material impli
ation. Instead both represent a 
onstraint on the 
on-ditional probabilities relating the formulae they 
onne
t. The se
ond point is2



that this is not the 
omplete set of 
onne
tives whi
h 
an be handled within theframework|it is also possible to deal with disjun
tion and material impli
ation[21℄|the set is made up of the 
onne
tives ne
essary to 
apture qualitative prob-abilisti
 reasoning of a slightly ri
her form than that exhibited by Wellman'squalitative probabilisti
 networks (QPNs) [30℄.The set of all w� s that may be de�ned using L, may then be used to buildup a database � where every item d 2 � is a triple (i : l : s) in whi
h i is atoken uniquely identifying the database item (for 
onvenien
e we will use theletter `i' as an anonymous identi�er), l is a w�, and s gives information aboutthe probability of l. In parti
ular we take triples (i : l : ") to denote the fa
tthat Pr(l) in
reases, and similar triples (i : l : #), to denote the fa
t that Pr(l)de
reases. Triples (i : l : $), denote the fa
t that Pr(l) is known to neitherin
rease nor de
rease. It should be noted that the triple (i : l : ") indi
atesthat Pr(l) either goes up, or does not 
hange|this in
lusive interpretation ofthe notion of \in
rease" is taken from QPNs|and of 
ourse a similar provisoapplies to (i : l : #). Sin
e we want to reason about 
hanges in belief whi
hequate to the usual logi
al notion of proof, we also 
onsider 
hanges in belief to1 and de
rease in belief to 0, indi
ating these by the use of the symbols * and+ and values whi
h are 1 and 0. The meaning of a triple (i : l : *) is that theprobability of l be
omes 1, (i : l : +) means that the probability of l be
omes0, (i : l : 1) means that the probability of l is 1 and (i : l : 0) means that theprobability of l is 0. We also have triples (i : l : l) whi
h indi
ate that the
hange in Pr(l) is unknown. In addition, for reasons whi
h will be
ome 
learlater, we need a symbol to denote a probability whose value is not known (asdistin
t from a 
hange in probability whose value is not known). This symbolwill be o, so the triple (i : l : o) means that the value of Pr(l) is unknown. Whilethis profusion of symbols might seem baroque, it is unfortunately ne
essary inorder to distinguish the di�erent aspe
ts of qualitative probabilisti
 reasoning.In fa
t the use of this kind of set of symbols should be familiar from qual-itative reasoning [15℄. In qualitative reasoning we 
onsider variables and the
hanges in value of those variables. A given variable x 
an have a positive ornegative value, denoted [+℄ or [�℄, and we also distinguish the landmark value[0℄. We are also interested in the way x 
hanges over time and handle this by
onsidering the values of dx=dt. These values may also be [+℄, [0℄ and [�℄. InQPR the same distin
tions are made. We have the probability value o, whi
h
orresponds to [+℄, and landmark values of 0 and 1. We also have the 
hangesin probability ", # whi
h 
orrespond to [+℄ and [�℄ derivatives, and distinguishthe landmark 
hanges $, * and +. The additional symbols obviate the use ofexpli
it derivatives.2.2 Non-material impli
ationAs mentioned above,! does not represent material impli
ation but a 
onne
tionbetween the probabilities of ante
edent and 
onsequent. This is the key tounderstanding the system. We take iw� s, whi
h we will also 
all \impli
ations",to denote that the ante
edent of the iw� has a probabilisti
 in
uen
e on the3




onsequent. Thus we are not 
on
erned with the probability of the iw�, butwhat the w� says about the probabilities of its ante
edent and 
onsequent. Morepre
isely we take the triple (i : a! 
 : +) to denote the fa
t that:Pr(
ja;X) � Pr(
j:a;X)for all X 2 fx;:xg for whi
h there is a triple (i : x ! 
 : s) (where s isany sign) or (i : :x ! 
 : s). The e�e
t of the X in this inequality is toensure that the restri
tion holds whatever is known about formulae other than
 and a|whatever the probabilities of a and 
, the 
onstraint on the 
onditionalprobabilities holds. Similarly the triple (i : a! 
 : �) denotes the fa
t that:Pr(
ja;X) � Pr(
j:a;X)again for all X 2 fx;:xg for whi
h there is a triple (i : x ! 
 : s) or (i : :x !
 : s). It is possible to think of an impli
ation (i : a ! 
 : +) as meaning thatthere is a 
onstraint on the probability distribution over the formulae 
 and asu
h that an in
rease in the probability of a entails an in
rease in the probabilityof 
, and an impli
ation (i : a! 
 : �) means that there is a 
onstraint on theprobability distribution over the formulae 
 and a su
h that an in
rease in theprobability of a entails a de
rease in the probability of 
. We do not make mu
huse of triples su
h as (i : 
! a : 0)1 sin
e they have no useful e�e
t but in
ludethem for 
ompleteness|(i : 
! a : 0) indi
ates that:Pr(
ja;X) = Pr(
j:a;X)for all X 2 fx;:xg for whi
h there is a triple (i : x ! 
 : s) or (i : :x ! 
 : s),and so denotes the fa
t that Pr(
) does not 
hange when Pr(a) 
hanges. Wealso have impli
ations su
h as (i : a ! 
 : ?) whi
h denotes the fa
t thatthe relationship between Pr(
ja;X) and Pr(
j:a;X) is not known, so that ifthe probability of a in
reases it is not possible to say how the probability of
 will 
hange. With this interpretation, impli
ations 
orrespond to qualitativein
uen
es in QPNs. Just as in QPNs, we require that impli
ations are 
ausallydire
ted, by whi
h we mean that the ante
edent is a 
ause of the 
onsequent.This is the usual restri
tion imposed in probabilisti
 networks [25℄ and, as willbe
ome apparent, is ne
essary to ensure that the system is sound.This simple pi
ture is 
ompli
ated be
ause we have 
ategori
al impli
ationswhi
h allow formulae to be proved true or false. In parti
ular, an impli
ation(i : a ! 
 : ++) indi
ates that when a is known to be true, then so is 
. Thusit denotes a 
onstraint on the probability distribution a
ross a and 
 su
h thatif Pr(a) be
omes 1, then so does Pr(
). This requires that:Pr(
ja;X) = 1for all X 2 fx;:xg for whi
h there is a triple (i : x ! 
 : s) or (i : :x ! 
 : s)[19℄. Note that this type of impli
ation also 
onforms to the 
onditions for1As a result we will not worry about the possibility of 
onfusing (i : 
 ! a : 0) with(i : l : 0) where l is an sw�. 4



impli
ations labelled with +, and that if Pr(
j:a;X) = 1 then Pr(
) is alwaysequal to Pr(a). Similarly, a probabilisti
 interpretation of an impli
ation (i :a! 
 : ��) whi
h denotes the fa
t that if a is true then 
 is false requires that:Pr(
ja;X) = 0for all X 2 fx;:xg for whi
h there is a triple (i : x ! 
 : s) or (i : :x ! 
 : s).The 
onditions imposed on the 
onditional values by these impli
ations suggestthe existen
e of a further pair of types of 
ategori
al impli
ation whi
h aresymmetri
 to those already introdu
ed. We have an impli
ation (i : a! 
 : �+)whi
h denotes the 
onstraint: Pr(
j:a;X) = 1for all X 2 fx;:xg for whi
h there is a triple (i : x ! 
 : s) or (i : :x ! 
 : s),and an impli
ation (i : a! 
 : +�) whi
h denotes the 
onstraint:Pr(
j:a;X) = 0for all X 2 fx;:xg for whi
h there is a triple (i : x! 
 : s) or (i : :x! 
 : s).2.3 SynergyBeing able to handle synergy relations is an important part of any qualitativeprobabilisti
 system, and while a detailed dis
ussion of synergy is beyond thes
ope of this arti
le (see instead [6, 8, 30℄), the following brief explanation isworthwhile.The basi
 idea, in the language we are dis
ussing here, is that the rela-tionships between formulae are not 
ompletely modular in the same way thatthey are in logi
. As an example, 
onsider two impli
ations (i : a ! 
 : +)and (i : b ! 
 : +). If these were logi
al impli
ations, whatever was knownabout a would not a�e
t the relationship between b and 
. However, be
ause weare dealing with probability, a 
hange in what is known about a might 
hangethe relationship between b and 
. For instan
e when the probability of a in-
reases, this 
hange may mean that Pr(
) in
reases less than before when Pr(b)in
reases2. It is this kind of intera
tion that synergy was �rst introdu
ed [30℄to 
apture, and the variety of synergy whi
h des
ribes this kind of intera
tionwas later 
alled additive synergy.Additive synergy, however, is not suÆ
ient to des
ribe all the possible typesof intera
tion between the 
auses of some formula. Consider the impli
ations(i : sprinkler ! wet grass : +) and (i : rain ! wet grass : +) whi
h 
apture thefa
t that both rain and the use of a sprinkler make it more likely that the grassof my lawn will be wet. Now, if I know that my grass is wet, then as Pearl [25℄2It should be noted that be
ause the 
onstraint on the probabilities of b and 
 is writtenin the way it is, taking into a

ount all the possible other things that may a�e
t Pr(
) inaddition to Pr(b), it 
an never be the 
ase that a 
hange in Pr(a) will 
hange the relationshipbetween b and 
 to the extent that in
reasing Pr(b) leads to a de
rease in Pr(
).5



famously pointed out, if Pr(sprinkler ) in
reases, then Pr(rain) de
reases be
ausethe use of the sprinkler explains away the wet grass. This kind of inter
ausal[8℄ reasoning is des
ribed by another form of synergy|produ
t synergy.As mentioned above, in this paper synergies are represented by formulaesu
h as a ℄ b ; 
 whi
h represents the synergy whi
h exists between a and bwith respe
t to 
. Su
h synergisti
 formulae form the basis of triples su
h as(i : a ℄ b ; 
 : +) in just the same way as simple and impli
ational formulaedo, but with yet another denotation. In parti
ular, (i : a ℄ b ; 
 : +) denotesthe fa
t that:Pr(
ja; b;X):Pr(
j:a;:b;X) � Pr(
j:a; b;X):Pr(
ja;:b;X)where as before, X ranges a
ross all other formulae su
h that there are triples(i : x! 
 : s). Similarly, (i : a ℄ b; 
 : �) denotes the fa
t that:Pr(
ja; b;X):Pr(
j:a;:b;X) � Pr(
j:a; b;X):Pr(
ja;:b;X)and (i : a ℄ b; 
 : 0) denotes the fa
t that:Pr(
ja; b;X):Pr(
j:a;:b;X) = Pr(
j:a; b;X):Pr(
ja;:b;X)In the terminology of [6℄ these are produ
t synergies. In this paper we donot 
onsider additive synergies, though they 
ould be in
orporated into theframework if it were desired, be
ause they are of less dire
t use than produ
tsynergies. Furthermore we only 
onsider synergies with values +, 0, and �though 
ategori
al synergies are 
ertainly 
on
eivable.3 The proof theoryThe previous se
tion introdu
ed a language for des
ribing probabilisti
 in
u-en
es between formulae. For this to be useful we need to give a me
hanism fortaking senten
es in that language and using them to derive new senten
es. Inparti
ular we need to be able to take senten
es des
ribing 
hanges in probabilityin parti
ular formulae and use these, along with impli
ational and synergisti
formulae to establish 
hanges in probability in other formulae. This is doneusing the 
onsequen
e relation `QP whi
h is de�ned in Figure 1. The de�ni-tion is in terms of Gentzen-style proof rules where the ante
edents are writtenabove the line and the 
onsequen
e is written below. The 
onsequen
e relationoperates on a database of the kind of triples introdu
ed in the previous se
tionand derives arguments about formulae from them. The 
on
ept of an argumentis formally de�ned as follows:De�nition 1 An argument for a well-formed formula p from a database � isa triple (p;G; s) su
h that � `QP (p;G; s)The sign s of the argument denotes something about the probability of p whilethe grounds G identify the elements of the database used in the derivation of p.6



C-rulesAx � `QP (St; fig; Sg) (i : St : Sg) 2 �^-E1 � `QP (St ^ St0; G; Sg)� `QP (St;G; 
onjelim(Sg))^-E2 � `QP (St ^ St0; G; Sg)� `QP (St0; G; 
onjelim(Sg))^-I � `QP (St;G; Sg) � `QP (St0; G0; Sg0)� `QP (St ^ St0; G [G0; 
onjintro(Sg; Sg0)):-E � `QP (:St;G; Sg)� `QP (St;G; neg(Sg)):-I � `QP (St;G; Sg)� `QP (:St;G; neg(Sg))!-E � `QP (St;G; Sg) � `QP (St! St0; G0; Sg0)� `QP (St0; G [G0; impelim(Sg; Sg0))E-rules!-R � `QP (St0; G; Sg) � `QP (St! St0; G0; Sg0)� `QP (St;G [G0; imprev(Sg; Sg0))I-rules;-E1 � `QP (St ℄ St0 ; St00; G; Sg) � `QP (St;G00; Sg0) � `QP (St00; G000; 1)� `QP (St0; G [G0 [G000; synelim(Sg; Sg0));-E2 � `QP (St ℄ St0 ; St00; G; Sg) � `QP (St0; G00; Sg0) � `QP (St00; G000; 1)� `QP (St;G [G0 [G000; synelim(Sg; Sg0))Figure 1: The 
onsequen
e relation `QPTo see how the idea of an argument �ts in with the proof rules in Figure 1,
onsider the rules `Ax', `^-I' and `!-E'. The �rst says that from a triple (i : l : s)it is possible to build an argument for l whi
h has sign s and a set of groundsfig (the grounds thus identify whi
h elements from the database are used inthe derivation). The rule is thus a kind of bootstrap me
hanism to allow theelements of the database to be turned into arguments whi
h other rules 
an7



then be applied to. The se
ond rule says that from arguments for two di�erentformulae it is possible to build an argument for their 
onjun
tion. The set ofgrounds for this argument is the union of the grounds for the two individualarguments and the sign is a fun
tion of their signs. The rule `!-E' 
an bethought of as analogous to modus ponens. From an argument for a and anargument for a! 
 it is possible to build an argument for 
 on
e the ne
essarybook-keeping with grounds and signs has been 
arried out.Example 1. Consider the following database whi
h denotes the fa
t that theproposition \premise" has a probability whi
h in
reases to 1, and that thereis a relation between the proposition premise and the proposition \
on
lusion"su
h that if the probability of premise be
omes 1, so does the probability of
on
lusion . (f1 : premise : *) �1(r1 : premise ! 
on
lusion : ++)From the database, by appli
ation of Ax and !-E, it is possible to build theargument: �1 `QP (
on
lusion ; fr1; f1g; *)sin
e applying impelim to * and ++ yields * (as we will see in a little while).Thus from the database it is possible to build an argument for the probabilityof 
on
lusion be
oming 1. 2The proof pro
edure used here di�ers in a 
ouple of important ways from othersimilar logi
al proof systems. Both of these di�eren
es stem from the fa
t thatQPRis dealing with probability values (albeit 
hanges in probability) ratherthan just truth and falsity as is the 
ase in 
lassi
al logi
. The �rst di�eren
e isthat it matters whether there are several proofs for a given formula. In logi
 on
ethere is a valid proof for a formula, the formula is known to be true. Here theremay be an argument whi
h suggests that the probability of a formula in
reasesand another whi
h suggests it de
reases|to resolve the 
on
i
t it is ne
essaryto 
ombine the arguments as dis
ussed later on. The se
ond di�eren
e is that itis usual to have two sets of proof rules for ea
h 
onne
tive, one set whi
h spe
ifyhow to introdu
e the 
onne
tive into formulae and one set whi
h spe
ify how toeliminate 
onne
tives from formulae. The proof rules in Figure 1 mainly 
onsistof elimination rules. This re
e
ts the fo
us of the system des
ribed in the paperwhi
h is intended to 
apture the reasoning possible in qualitative probabilisti
networks. The system is thus intended to be used to establish 
hanges in theprobability of sets of formulae rather than to establish 
onne
tions between setsof formulae|it is 
onne
tions between sets of formulae, themselves formulae ofthe form a ! 
, whi
h are the kind of formulae that the proof rules 
annotbuild. Were the missing introdu
tion rules in
luded we would have a systemwhi
h was 
apable, in the language of probabilisti
 networks, of inferring newar
s 
onne
ting nodes in addition to inferring things about nodes.In order to apply the proof rules to build arguments, it is ne
essary to supplythe fun
tions used in Figure 1 to 
ombine signs. This se
tion introdu
es those8



1 * " $ # + 0 l o1 1 * " $ # + 0 l o* * * " " l + 0 l "" " " " " l + 0 l "$ $ " " $ # + 0 l $# # l l # # + 0 l #+ + + + + + + 0 + +0 0 0 0 0 0 0 0 0 0l l l l l l + 0 l lo o " " $ # + 0 l oTable 1: Conjun
tion introdu
tion 
onjintro for 
onjun
ts that are known to beindependent.fun
tions and makes some remarks about the proof rules. The following se
tionthen proves the soundness and 
ompleteness of the proof pro
edure.We start with 
onjun
tion introdu
tion and elimination. When introdu
ing
onjun
tion it is 
ru
ially important whether the propositions in question areindependent or not (sin
e it is often not possible to establish the probability ofthe 
onjun
tion of a pair of dependent formulae from the probabilities of theformulae alone). If the formulae are known to be independent then the followingde�nition applies.De�nition 2 The fun
tion 
onjintro : Sg 2 f1;*; ";$; #;+; 0; l; og�Sg0 2 f1;*;";$; #;+; 0; l; og 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spe
i�ed by Table 1 where,as with all 
ombinator tables in this paper, the �rst argument is taken from the�rst 
olumn and the se
ond argument is taken from the �rst row.If the formulae are not known to be independent, then the following de�nitionapplies instead.De�nition 3 The fun
tion 
onjintro : Sg 2 f1;*; ";$; #;+; 0; l; og�Sg0 2 f1;*;";$; #;+; 0; l; og 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spe
i�ed by Table 2.and it is 
lear that in most 
ases it is not possible to tell how the probabilityof the 
onjun
tion 
hanges. Note that both Table 1 and Table 2 are writtenso that when the result of a 
ombination 
ould be either o or a 
hange in value(as when o is 
ombined with $) the result given is always the 
hange. This isbe
ause we always know that the value of a probability is o so giving it as aresult is less informative|it is only in
luded to ensure that the fun
tions usedby `QP , in parti
ular impelim and imprev, are 
losed. The reason for botheringto have separate de�nitions for independent and non-independent 
onjun
ts isthat it is possible to identify independent formulae on
e arguments have beenbuilt, and doing so allows more pre
ise inferen
es to be made (as is easily seenby 
omparing Tables 1 and 2). 9



1 * " $ # + 0 l o1 1 * l l l + 0 l l* * * l l l + 0 l "" l l l l l + 0 l l$ l l l l l + 0 l l# l l l l l + 0 l l+ + + + + + + 0 + +0 0 0 0 0 0 0 0 0 0l l l l l l + 0 l lo l l l $ l + 0 l lTable 2: Conjun
tion introdu
tion 
onjintro for 
onjun
ts that are not known tobe independent. s 1 * " $ # + 0 l os0 0 + # $ " * 1 l oTable 3: Negation of sw� s negWhen eliminating a 
onjun
tion with sign Sg we assign both 
onjun
ts thesign: 
onjelim(Sg) = 8<: 1;* if Sg = *1 if Sg = 1l otherwisewhere 
onjelim(Sg) = 1;* means that 
onjelim(Sg) is either 1 or * (su
h valuesare propagated by 
arrying out the appropriate 
omputation on both the signsin question [22℄). What this means is that most of the time it is not possible todetermine how the probability of the 
onjun
ts 
hange. This is an unfortunatebut unavoidable property of probability theory and 
an be seen to follow from
onjun
tion introdu
tion|
onjelim is just the inverse of 
onjintro.The rules for handling negation are appli
able only to sw� s and permitnegation to be either introdu
ed or eliminated by altering the sign, for exampleallowing (i : :a : ") to be rewritten as (i : a : #). This leads to the de�nition ofneg:De�nition 4 The fun
tion neg : (i : :a : s); s 2 f1;*; ";$; #;+; 0; l; og 7! (i :a : s0); s0 2 f1;*; ";$; #;+; 0; l; og relates s to s0 by Table 3.Note that neg is not de�ned over the values ++, +�, +, 0, �, �+, and ��.Although an impli
ation (i : a ! b : +) has a kind of inverse relation with(i : a ! b : �), there is no su
h relation with (i : :(a ! b) : s). Indeed,(i : :(a ! b) : s) is not even an impli
ation, sin
e its main 
onne
tive is :. Itis not possible to apply neg to an impli
ation|if neg is appli
able, the formulait is applied to is not an impli
ation. (In fa
t the alert reader will have noti
edthat (i : :(a! b) : s) is not even a well-formed formula.)10



++ +� + 0 � �+ �� ?1 1 o o o o o 0 o* * " " $ # # + l" " " " $ # # # l$ $ $ $ $ $ $ $ $# # # # $ " l " l+ # + # $ " * " l0 o 0 o o o 1 o ol l l l $ l l l lo o o o o o o o oTable 4: Impli
ation elimination impelimTo deal with impli
ation we need two further fun
tions, impelim to establishthe sign of formulae generated by the rule of inferen
e !-E, and imprev toestablish the sign of formulae generated by!-R. This means that impelim is usedto 
ombine the 
hange in probability of a formula a, say, with the 
onstraint thatthe probability of a imposes upon the probability of another formula 
. Sin
ethis 
onstraint is expressed in exa
tly the same way as qualitative in
uen
esare in QPNs, impelim performs the same fun
tion as 
 [30℄, and is merely anextension of it.De�nition 5 The fun
tion impelim : Sg 2 f1;*; ";$; #;+; 0; l; og� Sg0 2 f++;+�;+; 0;�;�+;��; ?g 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spe
i�ed by Table 4.There are two things that are notable about Table 4. First, the asymmetryin the table. This stems from the de�nition of the 
ategori
al impli
ations. Ifthe asymmetry did not exist, 
ategori
al impli
ations would be 
lose to logi
albi-impli
ations. Se
ond, the fa
t that in this table, unlike those introdu
edpreviously, o is the result of 
ombining two signs neither of whi
h is o, for instan
e1 and +. This is the justi�
ation for in
luding o as a sign|if it were not in
ludedthe set of signs would not be 
losed under impelim.The fun
tion imprev whi
h 
omputes the sign of the ante
edent of an impli-
ation from that of the impli
ation and its 
onsequent, is similar, only di�eringin the way it handles 
ategori
al impli
ations:De�nition 6 The fun
tion imprev : Sg 2 f1;*; ";$; #;+; 0; l; og � Sg0 2 f++;+�;+; 0;�;�+;��; ?g 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spe
i�ed by Table 5.The di�eren
e is that 
ategori
al impli
ations are only 
ategori
al in the dire
-tion in whi
h they are spe
i�ed. When reversed impli
ations with signs ++ and+� behave in the same way as impli
ations with sign +, and impli
ations withsigns �� and �+ behave in the same way as impli
ations with sign �. Notethat, on
e again, o is required to ensure 
losure.We also need the fun
tion synelim in order to be able to reason with synergies.This is follows dire
tly from [31℄: 11
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ation reversal imprev.1 * " $ # + 0 l+ o " " $ # # o l0 $ $ $ $ $ $ $ $� o # # $ " " o lTable 6: Synergy elimination synelim.De�nition 7 The fun
tion synelim : Sg 2 f+; 0;�g� Sg0 2 f1;*; ";$; #;+; 0; l; og 7! Sg00 2 f1;*; ";$; #;+; 0; l; og is spe
i�ed by Table 6.The fun
tion synelim is the last fun
tion required to de�ne `QP , and we 
an turnto issues of soundness and 
ompleteness.4 Soundness and 
ompletenessNow, the aforementioned baroque appearan
e of the system might lead thes
epti
al reader to assume that the de�nitions given above are rather ad ho
 andnot to be trusted. However, they are not. The proof me
hanism given above isprovably sound and 
omplete for the propagation of 
hanges in probability inthe sense that it only 
omputes 
hanges that will o

ur a

ording to probabilitytheory, and it 
omputes all su
h 
hanges. This is shown by the results in thisse
tion. However, the business of proving soundness and 
ompleteness is notstraightforward. The main problem is that the form of the results dependsheavily on the kind of reasoning. As a result we have three sets of soundness and
ompleteness results. The �rst is for 
ausal reasoning, that is reasoning in thedire
tion of the impli
ations only. The se
ond is for evidential reasoning, thatis reasoning both in the dire
tion of impli
ations and in the opposite dire
tionto impli
ations, and involves dealing with the problems of d-separation. Thethird is for inter
ausal reasoning, that is reasoning that in
ludes the eliminationof synergies. 12



4.1 Causal reasoningAs mentioned above, a restri
tion when writing impli
ational formulae in QPRis that the dire
tion of the impli
ations must re
e
t 
ausality in the same waythat the dire
tion of a dire
ted ar
 in a probabilisti
 network [25℄ does. That isthe 
onsequent of an impli
ation must be an e�e
t of the ante
edent. The reasonfor insisting on this dire
tion is exa
tly the same as in probabilisti
 networks|to ensure that reasonable 
on
lusions are drawn. If we restri
t the kinds ofarguments we build to those in whi
h impli
ations are only used in a 
ausaldire
tion, in other words we only use the C-rules of `QP to build arguments,soundness and 
ompleteness results are quite straightforward.To show this we �rst need to de�ne what it means for formulae to be 
ausesand e�e
ts of one another:De�nition 8 A well-formed formula p is said to be a 
ause of a well-formedformula q if and only if it is possible to identify an ordered set of iw�s fa1 !
1; : : : ; an ! 
ng su
h that q is one of the 
onjun
ts that make up 
n or in
ludesone or more of the 
onjun
ts that make up 
n, one or more of the 
onjun
tsin every ai is also in 
i�1, and p is one of the 
onjun
ts that make up a1 orin
ludes one or more of the 
onjun
ts in a1.In other words In other words p is a 
ause of q if it is possible to build up a trailof (
ausally dire
ted) impli
ations whi
h link p to q.De�nition 9 A well-formed formula p is said to be an e�e
t of a well-formedformula q if and only if it is possible to identify an ordered set of iw�s fa1 !
1; : : : ; an ! 
ng su
h that q is one of the 
onjun
ts that make up a1 or in
ludesone or more of the 
onjun
ts that make up a1, one or more of the 
onjun
tsin every 
i is also in ai+1, and p is one of the 
onjun
ts that make up 
n orin
ludes one of the 
onjun
ts in 
n.Thus p is an e�e
t of q if it is possible to build up a trail of (
ausally dire
ted)impli
ations that link q to p.Given these de�nitions, it is possible to show that given information aboutthe 
hange in probability of some formula p, the C-rules of `QP may be used tosoundly and 
ompletely 
ompute arguments about the 
hanges in probability ofthe e�e
ts of p. However, this is not enough to show that QPR is sound and
omplete when using the C-rules. The problem is that, in general, there may beseveral di�erent arguments for a single formula, and we therefore need a meansof 
ombining these in a sound way. We therefore de�ne a 
attening fun
tion
at whi
h 
ombines arguments by mapping from a set of arguments A to thesupported formula p and some overall measure of validity:
at : A 7! hp; viwhere v is the result of a suitable 
ombination of the signs of the arguments.Now, be
ause the e�e
t of ea
h impli
ation is de�ned to o

ur whatever otherarguments are formed (this is a result of the 
onstraint imposed on the 
ondi-tional probabilities by the impli
ations), all 
ombinations are 
ompletely lo
al,13
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atand the stru
ture of the arguments may be disregarded when 
attening3 (forexa
tly the same reason as when 
ombining evidential trails in QPNs [7℄). As aresult, v is simply 
al
ulated as: v =Mi Sgifor all (p;Gi; Sgi) 2 A where� is an extended version of the qualitative additionfun
tion used by QPNs, de�ned as follows:De�nition 10 The fun
tion � : Sg 2 f1;*; ";$; #;+; 0; l; og � Sg0 2 f1;*; ";$; #;+; l; og 7! Sg00 2 f*; ";$; #;+; l; og is spe
i�ed by Table 7. Blank spa
esrepresent impossible 
ombinations.With this fun
tion established we 
an at last give the overall pro
edure fordetermining the 
hange in a formula p in whi
h we are interested. Assumingthat all known 
hanges in probability in formulae are in the database, this is:1. Add a triple (i : q : s) for every formula q whose 
hange in probability isknown.2. Build A, the set of all arguments for p using the C-rules.3. Flatten this set to Flat
(A) where Flat
(A) = 
at(A)4.This naturally ba
kward 
haining pro
edure 
an obviously be extended to 
om-pute all the 
ausal 
onsequen
es of a given set of 
hanges in probability.From the de�nitions of how 
hanges in probability are 
ombined and then
attened, it is possible to show that using the C-rules of `QP is sound:Theorem 11 The 
onstru
tion and 
attening of arguments in QPR using theC-rules of `QP is sound with respe
t to probability theory.3Though in other argumentation systems where stru
ture is important, as when dealingwith numeri
al probabilities for instan
e, stru
ture 
an be taken into a

ount when 
attening.4The reason for doing this should be
ome 
lear in the next se
tion.14



Proof: The proof starts by proving the soundness of the 
ombinator tablesused when applying the C-rules of `QP :(Conjun
tion introdu
tion): Consider the probabilities Pr(a) and Pr(b) ofthe two formulae being 
onjoined. There are two 
ases to 
onsider, in the�rst the formulae are known to be independent and in the se
ond they are notknown to be independent. If Pr(a) and Pr(b) are independent, then Pr(a^ b) =Pr(a):Pr(b). Thus if at least one of Pr(a) and Pr(b) in
reases and the other doesnot de
rease, then Pr(a ^ b) will in
rease. If one in
reases and one de
reases,then the 
hange in Pr(a ^ b) 
annot be determined. If one in
reases to 1, andthe other is either 1 or in
reases to 1, Pr(a^ b) in
reases to 1. If both Pr(a) andPr(b) are 1 then Pr(a ^ b) is 1. Furthermore, if at least one of Pr(a) and Pr(b)de
reases and the other does not in
rease, then Pr(a ^ b) will de
rease. If onede
reases and one in
reases, then the 
hange in Pr(a^ b) 
annot be determined.If either Pr(a) or Pr(b) de
rease to 0, then Pr(a^ b) de
reases to 0, and if eitheris 0, then so is Pr(a ^ b). If either a or b has the sign l, then that is the signof the 
onjun
tion, unless the other 
onjun
t has a probability whi
h is 0 orde
reases to 0, sin
e nothing 
an be said about its value. If one of a or b has thesign $, and the other has a sign whi
h is either 1, $ or o then the probabilityof the 
onjun
tion does not 
hange and so the 
onjun
tion has the sign $. Ifa or b has the sign o and the other has the sign o or 1, then the probability ofthe 
onjun
tion is not known, though it does not 
hange and so we give the
onjun
tion the sign o (preferring this to$ sin
e it makes it 
lear that there hasbeen no 
ombination with a value whi
h is known to be $, though it would notbe in
orre
t to use $). This 
ompletes the proof for the 
ase in whi
h Pr(a)and Pr(b) are independent.Turning to the 
ase in whi
h Pr(a) and Pr(b) are not independent, the samesets of values 
an be 
onsidered. However, sin
e Pr(a ^ b) = Pr(a):Pr(bja) =Pr(ajb):Pr(b), it rapidly be
omes 
lear that unless either Pr(a) or Pr(b) is 0 orde
reases to 0, in whi
h 
ase Pr(a^ b) is zero and de
reases to zero respe
tively,there is little that 
an be said about the probability of the 
onjun
tion be
ausethere is no 
onstraint on the way in whi
h Pr(bja) and Pr(ajb) 
hange. Indeed,the only time that the probability of the 
onjun
tion 
an be predi
ted is whenboth Pr(a) and Pr(b) are 1 or in
rease to 1. If both are 1 then so is Pr(a ^ b),and if one in
reases to 1 and the other is either 1 or in
reases to 1, the Pr(a^ b)in
reases to 1. In all other 
ases, Pr(a ^ b) will have the sign l.(Conjun
tion elimination): There are two parts to the proof. One for thepart of the fun
tion that gives * or 1, and one for the part that gives l. For the�rst, the following suÆ
es and follows dire
tly from the fun
tions for 
onjun
tionintrodu
tion. The only way in whi
h Pr(a ^ b) 
an be 1 is if both Pr(a) andPr(b) are 1. The only way in whi
h Pr(a^ b) 
an in
rease to 1 is if either Pr(a)or Pr(b) in
reases to 1 and the other in
reases to 1 or is 1. Thus pi
king oneof the two 
onjun
ts, its probability either in
reases to 1 or is 1. Thus the �rstpart is proved. For the se
ond part we need the following argument. Givingany sign as l is always sound (sin
e it means that nothing at all is being saidabout the relevant probability). However, it is also possible to prove that nomore pre
ise rule 
an be proposed. This is done by 
onsidering the tables for15




onjun
tion introdu
tion. Looking at the values in the tables it is 
lear thatany sign that might be assigned to Pr(a^ b) might be produ
ed by a number ofpossible values of Pr(a) and Pr(b). Thus no �rm 
on
lusions about 
hanges inPr(a) and Pr(b) 
an be drawn from parti
ular 
hanges in Pr(a ^ b) other than* or 1.(Impli
ation elimination): First 
onsider impli
ations labelled with +. Fromthe de�nition of su
h impli
ations it is 
lear that 
ombining any in
rease inprobability (either " or *) with su
h an impli
ation will generate a possiblein
rease in probability, in other words a ". Similarly, 
ombining any de
reasein probability (either # or +) with an impli
ation labelled + will generate #,
ombining no 
hange in probability with su
h an impli
ation will generate $,and 
ombining a 
hange of l with su
h an impli
ation will generate a 
hangeof l. Next, 
onsider impli
ations labelled with �. Su
h an impli
ation will alsogenerate l when 
ombined with a 
hange of l and $ when 
ombined with $,but will otherwise have the opposite behaviour to that of an impli
ation labelled+. It is also 
lear that impli
ations labelled with 0 will generate 
hanges of $whatever 
hange they are 
ombined with, and impli
ations labelled with l willgenerate l when 
ombined with all 
hanges ex
ept $|in the latter 
ase theywill generate a 
hange of $. Combining any of these impli
ations with valuesthat are not 
hanges (that is 1, 0 or o) will not yield either a 
hange or a valuewhi
h is known, in other words they will generate o. This takes 
are of allnon-
ategori
al impli
ations.Turning to 
ategori
al impli
ations, the results also follow almost immedi-ately from the de�nitions. Consider an impli
ation labelled ++. By de�nitionthis yields a 
hange of * when 
ombined with a 
hange of * and a value of 1when 
ombined with 1, and otherwise behaves exa
tly like an impli
ation la-belled with +. Similarly, by de�nition an impli
ation labelled +� will give +when 
ombined with a 
hange of + and 0 when 
ombined with 0, but will oth-erwise behave like an impli
ation labelled with +. The last two impli
ations,�� and �+ behave in a 
omplementary fashion to ++ and +� respe
tively.(Negation elimination and introdu
tion): Consider a, the formula whosesign is being 
omputed. If Pr(:a) in
reases to 1 then 
learly Pr(a) de
reasesto zero, and if Pr(:a) de
reases to 0 then 
learly Pr(a) in
reases to one. Thistakes 
are of the fun
tion for + and *. The other 
ases are handled similarly.This 
ompletes the proof of the soundness of the relevant 
ombinator tables.Be
ause the tables are sound, the arguments built using them are also sound.Thus all the arguments that may be built 
on
erning a formula are sound. Allthat remains is to show that when several arguments for a formula are 
ombined,the 
ombination itself is sound. Thus it is ne
essary to show that 
attening issound.(Flattening): The soundness of 
attening follows from the fa
t that Table 7 isan extension of the qualitative addition fun
tion � used to 
ombine 
hanges inprobability in qualitative probabilisti
 networks [30℄. The di�eren
es between
at and � re
e
t the fa
t that 
ategori
al 
hanges in probability 
annot bealtered by non-
ategori
al 
hanges and the spa
es in the table follow from thefa
t that the probability of any variable 
annot both in
rease to 1 and de
rease16



to 0 simultaneously [19℄. Thus 
attening is sound.Sin
e both building and 
attening arguments is sound, QPR itself is sound. 2The notable thing about this result, in 
ontrast to later ones, is that the sound-ness of the individual arguments generated by `QP does not depend upon 
at-tening. Ea
h argument is itself sound|on
e we have an argument whi
h says,for instan
e, that the probability of p may in
rease, that is we have an argument(p;G; "), it is not possible to dedu
e that the probability of p won't in
rease.The 
losest that one 
an 
ome to dedu
ing that p won't in
rease is if it is possi-ble to build another argument (p : G0 : #), whi
h says that the probability of pmight de
rease. Then the result of 
attening these two is the 
on
lusion hp; liwhi
h indi
ates that it is not possible to rule out any 
hange in p. The wholededu
tion has a 
ertain lo
ality whi
h makes QPR rather 
loser to logi
 thanto probabilisti
 networks. However, the fa
t that later 
on
lusions 
an throwdoubt on earlier ones means that QPR is not monotoni
 (a point explored atgreater length in [23℄).Before moving on to 
ompleteness, we need to identify pre
isely what kindof 
ompleteness we are talking about. What we want to show is that when usingthe C-rules, QPR 
omputes all the 
hanges in probability of all the e�e
ts of aformula:De�nition 12 The 
onstru
tion and 
attening of arguments is said to be 
au-sally 
omplete in some system of qualitative probability with respe
t to someformula p if it is possible to use that system to 
ompute the sign of all thee�e
ts of p.With this de�nition it is possible to state and prove the following theorem.Theorem 13 The 
onstru
tion and 
attening of arguments in QPR with `QPde�ned by the C-rules only is 
ausally 
omplete with respe
t to any well-formedformula.Proof: Thanks to the 
areful 
hoi
e of proof rules, the 
ompleteness prooffollows from the de�nition of `QP . That is the 
hange in probability of all thee�e
ts of any well-formed formula p whi
h may be stated in QPR 
an be madeby the appli
ation of the appropriate proof rules. This 
an be seen as follows.Consider the addition of the triple (i : p : ") where p 
ontains no negationsymbols, to a database whi
h only 
ontains formulae without negation symbols.There are six types of e�e
t of p. The �rst are the 
onsequents of impli
ationsin whi
h p forms the ante
edent. The 
hanges in probability of su
h e�e
ts maybe established using !-E. The se
ond are the 
onsequents of impli
ations inwhi
h p is one of the 
onjun
ts of the ante
edent. The 
hanges in probabilityof su
h e�e
ts may be established using ^-I and !-E. The third are are the
onsequents of impli
ations the ante
edent of whi
h involves some 
onjun
tsthat are part of p. The 
hanges in probability of su
h e�e
ts may be establishedusing ^-E1, ^-E2 and!-E. The fourth set of e�e
ts are those whi
h are subsetsof the 
onjun
ts in the 
onsequents of impli
ations whi
h have p either as the17



ante
edent, one of the 
onjun
ts of the ante
edent, or for whi
h some of the
onjun
ts that make up p are the ante
edent. The 
hanges in probability of su
he�e
ts may be established by the following method. Use what is known about pto establish the 
hange in probability of the whole 
onsequent by applying theappropriate method (one of the �rst three) and then applying ^-E and ^-E2.A very similar pro
edure 
an be used to establish the 
hange in probability ofe�e
ts whi
h in
lude some 
onjun
ts in the 
onsequent of impli
ations for whi
hp relates to the ante
dent, possibly using ^-I as well. Su
h formulae 
onstitutethe �fth set of e�e
ts. These �ve sets of e�e
ts are all those whi
h are 
onne
tedin some way to p by a single impli
ation. The sixth set of e�e
ts are those whi
hare related to p by two or more impli
ations. The 
hanges in probability of su
hsets may be obtained by re
ursively applying the pro
edure for the �rst �vesets of e�e
ts. The appropriate use of :-I and :-E make it possible to formulaesituations in whi
h negation symbols appear. Thus all the 
hanges in 
auses ofp that result from the 
hange in probability of p 
an be 
omputed, and QPR is
ausally 
omplete with respe
t to any formula. 2Example 2. As an example of 
ausal reasoning 
onsider the following exampleborrowed from [7℄. We have the following probabilisti
 in
uen
es5:(r1 : HeOx Temp! Ox Tank Leak : +) �2(r2 : HeOx Temp! High Ox Temp : +)(r3 : High Ox Temp! Ox Tank Leak : +)When we have eviden
e that Pr(HeOx Temp) is in
reasing, so that the triple(f1 : HeOx Temp : ") is added to the database, it is possible to build twoarguments 
on
erning Pr(Ox Tank Leak):�2 `QP (Ox Tank Leak; ff1; r1g; ")�2 `QP (Ox Tank Leak; ff1; r1; r2g; ")The �rst is built by 
ombining f1 and r1 using !-E. The se
ond is built by
ombining f1 and r2 using !-R and then 
haining the result of this with r3using !-E again. These two arguments may then be 
attened to give the pairhOx Tank Leak; "i. 2This is all we will say about 
ausal reasoning using QPR, and we turn tousing the system to reason both in the dire
tion of the impli
ations, and in theopposite dire
tion to the impli
ations.4.2 Evidential reasoningUnfortunately there is more to allowing impli
ations to be reversed than justadding the proof rule !-R to `QP . In parti
ular there are two problems whi
h5Of 
ourse the variables are binary valued rather than 
ontinuous as in the original so wemust think of variable values su
h as HeOx Temp = high rather than a
tual temperatures.18



need to be solved. The �rst problem arises be
ause when impli
ations are re-versed it is possible for the proof pro
edure to loop and therefore build an in�nitenumber of arguments. This is illustrated by the following example.Example 3. Consider the following database:(f1 : a : ") �3(r1 : a! b : +)(r2 : b! d : +)(r3 : a! 
 : �)(r4 : 
! d : +)By applying !-E twi
e to f1, r1 and r2 it is possible to build an argument foran in
rease in the probability of d and then by using !-R twi
e on r4 and r3 itis possible to build an argument for a de
rease in the probability of a. This newinformation about a may then be used to build a new argument for a de
reasein the probability of d, and this in turn 
an be used to build a new argumentfor an in
rease in the probability of a. This pro
ess 
ould 
learly be 
ontinuedfor ever. 2In fa
t, it is not even ne
essary to have a \loop" in the impli
ations sin
e it isperfe
tly possible to build a 
ausal argument from a to b and then to d and thenbuild an evidential argument ba
k to b and then to a. Happily this problem iseasy to solve by introdu
ing the idea of a minimal argument.De�nition 14 A minimal argument is an argument in whi
h no impli
ationappears more than on
e.The way that minimality is introdu
ed in QPR, as we shall see, is in the 
at-tening of evidential arguments. This is 
on
eptually simple sin
e it allows the
onstru
tion (as opposed to 
attening) of arguments to be the same in both
ausal and evidential 
ases. However, there are a 
ouple of points that shouldbe made with referen
e to this. The �rst is that in pra
ti
e it is both simple anddesirable to 
he
k for minimality during the 
onstru
tion of arguments. Simplebe
ause it is easy to 
he
k whether an impli
ation has been used before whenapplying the proof rules and desirable sin
e it prevents the proof system beingused to build in�nite arguments. The se
ond point is that under the usual re-stri
tion pla
ed on probabilisti
 networks, 
y
les of impli
ations (whi
h wouldmake it possible to reason 
ausally from a formula and 
y
le ba
k to it again) areforbidden in QPR so that non-minimal arguments are not a feature of 
ausalreasoning. It is also worth noting that minimal arguments mirror the idea ofminimal trails introdu
ed by Druzdzel [7℄.The se
ond problem with evidential arguments arises due to the need tohandle 
onditional independen
e properly. If we apply the proof rules blindly,we may build arguments 
on
erning a formula whi
h depend upon informa-tion about other formulae whi
h are 
onditionally independent of it. Thus it ispossible to build arguments whi
h are not valid a

ording to probability the-ory, and, just like the non-minimal arguments dis
ussed above, they must be19



weeded out in the 
attening pro
ess. To identify invalid arguments we need todevelop something for arguments in QPR whi
h is analagous to d-separation[25℄ in probabilisti
 networks. We do this using the following de�nition of d-separation adapted from those in Jensen's re
ent book [14℄ (be
ause I 
an'timagine bettering Jensen's motivation for d-separation, any reader who wantsmore information about what it is and why it is important is referred to [14℄,pages 7{14). First, however, we need some additional de�nitions:De�nition 15 A sour
e of an argument (p;G; s) is an sw� from G.Thus a sour
e of an argument is one of the simple formula whi
h ground it, andform the head of a 
hain of impli
ations.De�nition 16 The destination of an argument (p;G; s) is p.De�nition 17 Two formulae p and q are d-separated if for all arguments whi
hhave p as a sour
e and q as their destination, there is another formula r su
hthat either:1. p is a 
ause of r, r is a 
ause of q and the probability of r is 1 or 0; or2. p and q are both 
auses of r and there is no argument (r;G0; s0) su
h thatall the sw�s in G0 are e�e
ts of r.With these ideas �xed we 
an establish the idea of an invalid argument as onethat is built without taking a

ount of d-separation:De�nition 18 An argument A = (p;G; s) is invalid if all the sour
es of A ared-separated from p.De�nition 19 An argument A = (p;G; s) is valid if it is not invalid.In other words there are two situations in whi
h an argument is invalid. The�rst is if it involves a 
hain of impli
ations through some formula whi
h is knownto be either true or false. The se
ond is if it involves a 
hain of impli
ationsfrom the 
auses of some formula r to r and then ba
k to further 
auses of rand there is no argument for r from any of its e�e
ts. This is illustrated by thefollowing example.Example 4. Consider the following database:(f1 : a : ") �4(r1 : a! b : +)(r2 : b! 
 : +)(r3 : e! 
 : �)(r4 : 
! f : +)By applying !-E twi
e to f1, r1 and r2 it is possible to build an argument(
; ff1; r1; r2g; ") for an in
rease in the probability of 
. This argument isvalid, but would be invalid if the triple (f2 : b : 1) were also in �4.20



Now, 
onsider extending the argument for an in
rease in probability of 
 byusing !-R on r3 and what was dedu
ed about 
 to build an argument for ade
rease in the probability of e. This se
ond argument (e; ff1; r1; r2; r3g; #) isinvalid, but would be valid if the triple (f3 : f : ") were in the database be
auseit would then be possible to build a valid argument whose destination was 
 andwhose grounds only in
luded the e�e
ts of 
. 2The idea of an invalid argument makes it possible to eliminate the kind ofproblems dis
ussed by Pearl [24℄ in his exhortation for the use of 
ausality indefault reasoning without the need to distinguish between 
ausal and evidentialrules. Furthermore, it gives QPR the same kind of ability as symboli
 
ausalnetworks [5℄ to ensure that 
hanges in belief, expressed as probabilities, are
onsistent with ideas of 
ausality without the need to asso
iate a network witha set of logi
al 
lauses. Of 
ourse, the need to identify invalid arguments andrule them out means that, when used for evidential reasoning, QPR is no longerpurely lo
al in the way in whi
h it is when used for 
ausal reasoning. However,it is pre
isely this non-lo
ality whi
h makes it possible to ensure that adequatea

ount is taken of d-separation without the need to have a graphi
al model aswell as the logi
al 
lauses.In keeping with the style of presentation adopted so far, we 
an think ofapplying the minimality and validity restri
tions on arguments by applying afun
tion 
ate1 to the set of all arguments A for a formula p:
ate1 : A 7! fA 2 A j A is minimal and validgNow, if there are several minimal valid arguments for a given formula, we 
an
ombine these to get a single overall argument using a se
ond 
attening fun
tion
ate2 . Like 
ate2 this maps from a set of arguments A to the supported formulap and some overall measure of validity:
ate2 : A 7! hp; viwhere v is on
e again the result of a suitable 
ombination of the signs of thearguments. In fa
t it turns out that v is 
omputed in exa
tly the same way asfor 
ausal reasoning, so that the fun
tion 
ate2 is exa
tly the same as 
at. Thusthe pro
edure for �nding the sign of a formula p when reasoning both 
ausallyand evidentially is:1. Add a triple (i : q : s) for every formula q whose 
hange in probability isknown.2. Build A, the set of all arguments for p using the C-rules and E-rules.3. Flatten this set to Flate(A) where Flate(A) = 
at(
ate1(A)).With this pro
edure in mind, we 
an prove the following.Theorem 20 The 
onstru
tion and 
attening of arguments in QPR using theC-rules and E-rules of `QP is sound with respe
t to probability theory.21



Proof: The proof pro
eeds by showing �rst that the individual proof rules arelo
ally sound, in that given parti
ular premises they generate the appropriate
on
lusions, and then showing that the 
attening pro
edure rules ensures thesoundness of whole arguments. The �rst stage is parti
ularly easy sin
e thesoundness of the C-rules was proved in Theorem 11. We therefore need only to
onsider impli
ation reversal.(Impli
ation reversal): The soundness of Table 5 
an be proved as follows.Any impli
ation (i : a ! 
 : +) indi
ates a 
onstraint Pr(
ja; x) � Pr(
j:a; x).This 
onstraint implies that Pr(aj
; y) � Pr(aj:
; y) as proved by Wellman [30℄.This 
an be 
onsidered as meaning that a 
onsequen
e of the �rst impli
ation isthat there is another impli
ation (i : 
! a : +) (though this will not be 
ausallydire
ted). This se
ond impli
ation 
an then be 
ombined with information aboutthe 
hange in probability of 
 to obtain the relevant 
olumn in the table justas for impli
ation elimination in the proof of Theorem 11. Similar reasoningtakes 
are of the 
ases for whi
h the sign of the impli
ation is �, 0 and ?. A
ategori
al impli
ation (i : a ! 
 : ++) or (i : a ! 
 : �+) is just a moreextreme version of (i : a ! 
 : +), and while it won't ne
essarily reverse togive a 
ategori
al impli
ation, it will reverse just like (i : a ! 
 : +). Similarlya 
ategori
al impli
ation (i : a ! 
 : ��) or (i : a ! 
 : +�) is just a moreextreme version of (i : a! 
 : �), and while it won't ne
essarily reverse to givea 
ategori
al impli
ation, it will reverse just like (i : a! 
 : �). This 
ompletesthe proof of the soundness of impli
ation reversal.Now, this lo
al pro
edure will sometimes be unsound, but only in the 
ourseof building an invalid argument (sin
e the only unsound arguments whi
h maybe built are invalid), and su
h an argument will be reje
ted by the 
atteningfun
tion. In fa
t, stri
tly speaking, we don't a
tually need to worry about d-separation at all. The worst that 
ould happen if we ignored it is that someformula whose probability 
annot 
hange, be
ause it is d-separated from the onlyformula whose probability is known to 
hange, has its 
hange in probability
omputed as " or # (it 
annot be * or + be
ause 
ategori
al 
hanges 
annotresult from the appli
ation of !-R). Sin
e " and # indi
ate either a 
hange orno 
hange this is not in
orre
t, but it is possibly misleading.(Flattening): There are two aspe
ts to the soundness of 
attening. The �rstis the soundness of minimal valid arguments, and the se
ond is the soundness ofthe way in whi
h su
h arguments are 
ombined. Both follow from the 
lose 
or-responden
e between impli
ations and ar
s in qualitative probabilisti
 networks.The �rst is proven as follows. Minimal valid arguments 
orrespond to minimala
tive trails in QPNs [7℄ and the soundness of the 
hanges in probability thatthey identify follows from the soundness of the individual 
ombinations provenabove and the fa
t that non-valid, non-minimal arguments (where the 
al
u-lation of 
hanges is not sound) are removed. The se
ond aspe
t of soundnessmay then be shown. The validity of 
ombining di�erent arguments also followsfrom the 
orresponden
e with evidential trails and the fa
t that Table 7 is anextension of the qualitative addition fun
tion � used to 
ombine the results ofsu
h trails [7℄. The di�eren
es between 
at and � re
e
t the fa
t that 
ate-gori
al 
hanges in probability 
annot be altered by non-
ategori
al 
hanges and22



the spa
es in the table follow from the fa
t that the probability of any variable
annot both in
rease to 1 and de
rease to 0 simultaneously [19℄. Thus 
atteningis sound.Sin
e both building and 
attening arguments is sound, QPR itself is sound. 2Given that evidential reasoning is sound, the next question is to what extent isit 
omplete. We are interested in the following notion of 
ompleteness:De�nition 21 The 
onstru
tion and and 
attening of arguments is said to beevidentially 
omplete in some system of qualitative probability with respe
t tosome formula p if it is possible to use that system to 
ompute the signs of all thee�e
ts of p, all the 
auses of p and all the 
auses and e�e
ts of all the 
ausesand e�e
ts of p.With this de�nition it is possible to prove the following:Theorem 22 The 
onstru
tion and 
attening of arguments in QPR is 
ausallyand evidentially 
omplete with respe
t to any formula.Proof: Given information about the 
hange in probability of any well-formedformula, by Theorem 13 it is possible to 
al
ulate the 
hange in probability ofany e�e
t of that formula. Now, a pro
edure whi
h is identi
al to that des
ribedin Theorem 13 but using !-R as well as !-E may be applied to establish the
hange in probability of any e�e
t of any well-formed formula. Applying bothpro
edures re
ursively as ne
essary suÆ
es to ensure evidential 
ompleteness.2Finally, we have an example of evidential reasoning in QPR.Example 5. As an example of the kind of reasoning possible in QPR 
onsiderthe extension of the example of 
ausal reasoning:(r1 : HeOx Temp! HeOx Temp Probe : +) �5(r2 : HeOx Temp! High Ox Temp : +)(r3 : HeOx Temp! Ox Tank Leak : +)(r4 : High Ox Temp! Ox Tank Leak : +)When we have eviden
e that Pr(HeOx Temp Probe) is in
reasing, so that thetriple (f1 : HeOx Temp Probe : ") is added to the database, it is possible tobuild two minimal, valid arguments 
on
erning Pr(Ox Tank Leak):�5 `QP (Ox Tank Leak; ff1; r1; r3g; ")�5 `QP (Ox Tank Leak; ff1; r1; r2; r4g; ")The �rst is built by 
ombining f1 and r1 using !-R and then 
ombining theresult of this with r3 using !-E. The se
ond is built by 
ombining f1 andr1 using !-R and then 
haining the result of this with r2 and r4 using !-E twi
e. These 
ombine to give the pair hOx Tank Leak; "i indi
ating that23



overall it is possible to infer that knowledge about the in
reasing probability ofHeOx Temp Probe, whi
h is the kind of thing that 
an be observed, makes itpossible to infer that the probability of Ox Tank Leak may in
rease, whi
h isthe kind of thing that would be useful to know in the 
ontext of this example.2Using the C and E-rules, QPR 
aptures Wellman's version of QPNs [30℄ upto the handling of additive synergy. The next se
tion dis
usses how to extendQPR so that it handles inter
ausal reasoning. Doing so permitsQPR to 
aptureDruzdzel's [6℄ version of QPNs whi
h don't deal with additive synergy but doemploy inter
ausal reasoning.4.3 Inter
ausal reasoningIn 
omparison to the extension to evidential reasoning, the extension of QPRto enable it to allow inter
ausal reasoning is relatively straightforward. Be
auseof the way the synergy elimination rules ;-E1 and ;-E2 are de�ned, it is onlyever possible to apply them validly. Thus, all that we have to do is to addthe I-rules to the proof pro
edure and we 
an immediately obtain a sound and
omplete system. No new 
attening fun
tion is required sin
e the I-rules do notintrodu
e new forms of invalid argument.As ever, before showing soundness we need to state the 
omplete proof pro-
edure, and we do this in the familiar ba
kward 
haining way|the pro
edurefor �nding the sign of a formula p when reasoning 
ausally, evidentially andinter
asually is:1. Add a triple (i : q : s) for every formula q whose 
hange in probability isknown.2. Build A, the set of all arguments for p using the C-rules, E-rules andI-rules.3. Flatten this set to Flate(A) where Flate(A) = 
at(
ate1(A)).Theorem 23 The 
onstru
tion and 
attening of arguments in QPR using theC-rules, E-rules and I-rules of `QP is sound with respe
t to probability theory.Proof: We already have Theorem 20 whi
h shows that `QP 
ombined withFlate(�) is sound when using the C-rules and the E-rules. Thus all we need toshow is that synergy elimination is sound with respe
t to probability theory.Fortunately the soundness of synergy elimination follows dire
tly from the de�-nition of synelim and Druzdzel's results on inter
ausal reasoning, and so the useof QPR with the C-rules, E-rules and I-rules is sound. 2So proving soundness is relatively easy. Proving 
ompleteness, as ever, is depen-dent upon de�ning a notion of 
ompleteness, and to do this we need to 
apturethe fa
t that one formula 
an be related inter
ausally with another. In fa
t we24



need to express the idea that two formulae 
an be dire
tly related by an inter-
ausal link (when they share a 
ommon e�e
t and so are the two ante
edentsof a synergisti
 w� ) and may also be indire
tly related (when they are relatedvia a number of intermediate formulae some of whi
h are synergisti
 w� s). The�rst idea is 
aptured by the notion of inter
ausal 
onne
tion, the se
ond by thenotion of inter
ausal relation:De�nition 24 A well-formed formula p is said to be inter
ausally 
onne
tedto a well-formed formula q if and only if there is a yw� p ℄ q ; r for someformula r.De�nition 25 A well-formed formula p is said to be inter
ausally related to awell-formed formula q if and only if it is possible to identify an ordered set ofyw�s fx1 ℄ y1 ; z1; : : : xn ℄ yn ; zng, where there is an argument (zi : Gi : 1)for ea
h zi, and p is either a 
ause or e�e
t of x1, ea
h yi is a 
ause or an e�e
tof ea
h xi+1 and q is a 
ause or e�e
t of yn.In other words, two formulae are inter
ausally related if it is possible to buildan argument whi
h has one as its sour
e and the other as its destination, andthey are joined by a 
hain of impli
ations and synergy relations. We then have:De�nition 26 The 
onstru
tion and and 
attening of arguments is said tobe inter
ausally 
omplete in some system of qualitative probability with respe
tto some well-formed formula p if in addition to being evidentially 
omplete, itis possible to 
al
ulate all the 
hanges in probability of all formulae that p isinter
ausally related to.With this de�nition it is possible to prove the following:Theorem 27 The 
onstru
tion and 
attening of arguments in QPR is inter-
ausally 
omplete with respe
t to any formula.Proof: Again the proof follows almost immediately from the 
orrespondingresult for evidential reasoning. Starting from a known 
hange in a proposition p,evidential 
ompleteness guarantees that we 
an �nd the 
hanges in probability ofall 
auses and e�e
ts of p and the 
auses and e�e
ts of those 
auses and e�e
ts.Synergy elimination then makes it possible to soundly establish any 
hangesin probability of any formulae that are inter
ausally 
onne
ted to any of the
auses and e�e
ts of p. On
e again the 
al
ulation of 
hanges in probabilityof the 
auses and e�e
ts of the inter
ausally 
onne
ted formulae is guaranteedby evidential 
ompleteness, and the re
ursive appli
ation of synergy eliminationensures inter
ausal 
ompleteness. 2This kind of 
ompleteness is the same as is possible in a probabilisti
 network.In a probabilisti
 network it is possible to 
al
ulate the probability of any nodewhi
h is 
onne
ted, via a set of nodes, to nodes about whi
h eviden
e is obtained.InQPR, it is possible to 
ompute the 
hange in probability of any formula whi
his \
onne
ted", in the sense of being a 
ause of or an e�e
t of or inter
ausallyrelated to, any formula for whi
h the 
hange in probability is known.25



Finally, we give an example of inter
ausal reasoning in QPR.Example 6. As an example of the kind of reasoning possible in the full versionof QPR 
onsider this �nal extension of the running example:(r1 : HeOx Temp! HeOx Temp Probe : +) �6(r2 : HeOx Temp! High Ox Temp : +)(r3 : HeOx Temp! Ox Tank Leak : +)(r4 : High Ox Temp! Ox Tank Leak : +)(r5 : Ox Tank Leak ! Ox Pressure Low : �)(r6 : HeOx V alve Problem! Ox Pressure Low : �)(r7 : Ox Tank Leak ℄HeOx V alve Problem; Ox Pressure Low : �)When we have eviden
e that Pr(HeOx Temp Probe) is in
reasing and oxygenpressure is known to be low so that the formulae (f1 : HeOx Temp Probe : ")and (f2 : Ox Pressure Low : 1) are added to the database, as before it ispossible to build two minimal, valid arguments 
on
erning Pr(Ox Tank Leak):�6 `QP (Ox Tank Leak; ff1; r1; r3g; ")�6 `QP (Ox Tank Leak; ff1; r1; r2; r4g; ")Both of these may then be used along with f2, r7, and;-E1 to build arguments
on
erning Pr(HeOx V alve Problem):�6 `QP (HeOx V alve Problem; ff1; f2; r1; r4; r7g; #)�6 `QP (HeOx V alve Problem; ff1; f2; r1; r2; r3; r7g; #)whi
h 
atten to tell us that the probability of HeOx V alve Problem may de-
rease. Thus the overall impa
t of the eviden
e is to suggest that it has be
omemore likely that there is a leak in the oxygen tank and less likely that there isa problem with the helium/oxygen tank valve. 2With these results, QPR gives us a sound proof-theoreti
 means of 
omput-ing 
hanges in probability propagated in both 
ausal and evidential dire
tionsas well as a
ross inter
ausal links. Thus QPR 
aptures Druzdzel's version ofQPNs. What this means is that if we en
ode our probabilisti
 knowledge ofthe world by writing down any set of sw� s, iw� s and yw� s we 
an then buildarguments for and against formulae using `QP and use these to identify the
hanges in probability of those formulae warranted by probability theory. If, af-ter building arguments and 
attening we have an pair (St; Sg) where St is anyw� then Sg indi
ates the 
hange in probability of St, indi
ating it in
reases to 1if Sg = *, de
reases if Sg = # and so on. If, on the other hand we have (St; Sg)where St is an iw� St0 ! St00 then Sg indi
ates the 
onstraint between Pr(St0)and Pr(St00), and if St is a yw� then Sg indi
ates the 
onstraint between thethree 
onstituent formulae. The full denotation of any pair (St; Sg) is given byTables 8, 9 and 10. Sin
e QPR is sound and 
omplete any sign 
omputed inthis way will be 
orre
t, and if there is enough information to 
ompute the sign,then it will be 
omputed. 26



If and and thenSt = w Sg = 1 Pr(w)final = 1St = w Sg = * Pr(w)final = 1St = w Sg = " Pr(w)initial = p p � Pr(w)final � 1St = w Sg = $ Pr(w)initial = p Pr(w)final = pSt = w Sg = # Pr(w)initial = p p � Pr(w)final = 0St = w Sg = + Pr(w)final = 0St = w Sg = 0 Pr(w)final = 0St = w Sg = l Pr(w)initial = p 0 � Pr(w)final � 1St = w Sg = o 0 � Pr(w)final � 1Table 8: What a derived formula means (part 1).If and thenSt = v ! w Sg = ++ Pr(wjv; x) = 1St = v ! w Sg = +� Pr(wj:v; x) = 0St = v ! w Sg = + Pr(wjv; x) � Pr(wj:v; x)St = v ! w Sg = 0 Pr(wjv; x) = Pr(wj:v; x)St = v ! w Sg = � Pr(wjv; x) � Pr(wj:v; x)St = v ! w Sg = �+ Pr(wj:v; x) = 1St = v ! w Sg = �� Pr(wjv; x) = 0St = v ! w Sg = ? The relationship between Pr(wjv; x)and Pr(wj:v; x) is unknown.Table 9: What a derived formula means (part 2).5 Dis
ussionThe �rst question that arises when 
onsideringQPR is why QPR is better thanthe QPN formalism, and so worth developing. There are a 
ouple of reasons whyI think that this is so. Firstly, the system has the potential to be 
onsiderablymore expressive than QPNs. As it stands, QPR 
an reason about 
onjun
tionswhi
h QPNs 
an't, so it is more expressive (though it is arguable how usefulthe 
onjun
tions are) and it is possible to extend QPR to handle disjun
tionand thus material impli
ation [21℄ whi
h makes it possible to 
ombine logi
aldedu
tion with the kind of probabilisti
 propagation dis
ussed in this paper.Se
ondly, QPR has the potential to be a �rst order system and so 
ould beused as a means of building spe
i�
 QPNs from more general knowledge|a formof model-based knowledge 
onstru
tion. Thirdly, QPR seems to o�er a morenatural means of representing the kind of qualitative probabilisti
 informationdis
ussed here than QPNs do. The key to both QPNs and QPR is that thein
uen
es that they deal with are de�ned to hold irrespe
tive of what otherin
uen
es also hold. In other words the information 
ontained in an iw� or anar
 in a QPN is essentially modular and una�e
ted by whatever other in
uen
es27



If and thenSt = u ℄ v ; w Sg = + Pr(wju; v;X):Pr(wj:u;:v;X))� Pr(wju;:v;X):Pr(wj:u; v;X)St = u ℄ v ; w Sg = 0 Pr(wju; v;X):Pr(wj:u;:v;X))= Pr(wju;:v;X):Pr(wj:u; v;X)St = u ℄ v ; w Sg = � Pr(wju; v;X):Pr(wj:u;:v;X))� Pr(wju;:v;X):Pr(wj:u; v;X)Table 10: What a derived formula means (part 3).exist in a parti
ular model. This is re
e
ted more dire
tly in QPR than inQPNs sin
e QPR only takes the stru
ture of the in
uen
es into a

ount whenne
essary (whi
h is when d-separation 
omes into play).Another question that might be posed is how QPR relates to Neufeld'sprobabilisti
 default reasoner [17, 18℄. The answer seems to be that be
ause the\rules" in QPR make stronger assertions than those in Neufeld's system, it ispossible to get 
ompleteness results in QPR whi
h are not possible in Neufeld'swork. As an example, 
onsider the way in whi
h both systems represent thefa
t that 
 is positively in
uen
ed by both a and b. Both 
an 
on
lude that 
be
omes more probable if a be
omes more probable and that 
 be
omes moreprobable if b be
omes more probable. In QPR it is also possible to 
on
ludethat 
 be
omes more probable if both a and b be
ome more probable be
ausethe e�e
ts of a and b are de�ned to o

ur whatever other in
uen
es bear on 
.However, in Neufeld's system if both a and b be
ome more probable, nothing 
anbe said about the 
hange in probability of 
. The relationship between Neufeld'ssystem and the kind of proof theoreti
 reasoning provided by QPR is dis
ussedfurther in [20, 21℄. Of 
ourse, the 
ipside of this 
ompleteness is the need tomake stronger assertions when writing down rules, and this will lead to morein
uen
es being given the sign ? be
ause it is not possible to state that theyhold whatever other information is true. Thus one 
an think of QPR as beinglimited to expressing pre
ise assertions about less of the world than Neufeld'ssystem but as a result being able to be more 
omplete in the inferen
es it makesabout the portion of the world it represents.6 SummaryThis paper has dis
ussed a means of building a proof theoreti
 system whi
h is
apable of reasoning about 
hanges in probability. It is thus in some senses anextension of previous work on systems of argumentation and of systems of qual-itative probability. With a solid basis in probability theory, the system 
an beused to 
ombine the advantages of a sound means of handling un
ertainty withthe 
exibility of a logi
al method of knowledge representation [1℄, a 
exibilitythat 
an be in
reased by extending it to a full �rst order system and in
lud-ing disjun
tion and material impli
ation. Be
ause of its qualitative nature, the28



system may be used when probabilisti
 knowledge of a domain is in
omplete,making it appli
able to a wider range of situations than systems that dependon 
omplete probabilisti
 information, while the fa
t that it is soundly based onprobability theory make it a useful basis for a qualitative de
ision theory [11, 12℄.The system des
ribed in this paper 
learly has similarities with other systemsdes
ribed in the literature. Some of these similarities have been des
ribed inthe paper. Others are explored elsewhere [20, 21℄. Yet others, in
luding thosewith the systems des
ribed in [3, 28, 29℄, are the subje
t of on-going work.A
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