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Abstract

In a recent paper I proposed a system for qualitative probabilistic rea-

soning, based on argumentation, and proved its correctness with respect

to probability theory. This system was flawed. In particular, it failed

to take proper account of d -separation, and so can give erroneous results

in certain cases. This paper identifies some of the problems caused by

this flaw, examines their extent, and then fixes the flaw. While the main

thrust of the paper is to overcome this flaw, the discussion of the problems

caused by the flaw exposes some general issues in qualitative probabilistic

reasoning.

1 Introduction

In the last few years there have been a number of attempts to build systems for
reasoning under uncertainty that are of a qualitative nature—that is they use
qualitative rather than numerical values, dealing with concepts such as increases
in belief and the relative magnitude of values. Between them, these systems
address the problem of reasoning in situations in which knowledge is uncertain,
but in which there is a limited amount of numerical information quantifying the
degree of uncertainty. One class of these systems are systems of abstraction.
In systems of abstraction, the focus is mainly on modelling how the probability
of a hypothesis changes when evidence is obtained and there is no need to
commit to exact probability values. They thus provide an abstract version of
probability theory, known as qualitative probabilistic networks (QPNs), which
ignores the actual values of individual probabilities but which is nevertheless
sufficient for planning [18], explanation [2] and prediction [11] tasks. Another
class are systems of argumentation. Systems of argumentation are based on the
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idea of constructing logical arguments for and against formulae, establishing the
overall validity of such formulae by assessing the persuasiveness of the individual
arguments. Systems of argumentation have been applied to problems such as
diagnosis, protocol management and risk assessment [5], as well as handling
inconsistent information [1], and providing a framework for default reasoning
[4, 8, 14].

In a recent paper [10] I described a hybridisation of the argumentation and
abstraction approaches by introducing a logical system for reasoning about how
probabilities change, called the qualitative probabilistic reasoner (QPR). The
input to this system is a set of logical formulae describing probabilistic relation-
ships between variables, and information about how the probabilities of partic-
ular formulae change. In [10] I showed that the system can establish exactly
those changes in probability in other formulae that are sanctioned by probabil-
ity theory. However, there is a flaw in QPR as originally defined. The main
contribution of this paper is to identify the flaw, discuss its consequences, fix
it. Since the effects of the flaw hinge on the interaction between different kinds
of qualitative probabilistic information, this paper also makes a more general
contribution to the study of qualitative probabilistic inference in identifying this
interaction.

The structure of the paper is as follows. The next two sections, Sections 2
and 3 introduce a cut down version of QPR, termed QPRC , which is sufficient to
illustrate the flaw. Section 4 then identifies the flaw QPR/QPRC and elaborates
on its consequences, before Section 5 shows how it may be solved.

2 The logical language

The system introduced here is basically QPR from [10] without synergies, and
with no proof rules for evidential or intercausal reasoning. Thus QPRC is a
version of QPR which is only capable of reasoning in a causal direction (hence
the name).

2.1 Basic concepts

We start with a set of atomic propositions L. We also have a set of connectives
{¬,∧,→}, and the following set of rules for building the well-formed formulae
(wff s) of the language.

1. If l ∈ L then l is a simple well-formed formula (swff ).

2. If l is an swff, then ¬l is an swff.

3. If l and m are swff s, then l ∧ m is an swff.

4. If l and m are swff s then l → m is an implicational well-formed formula
(iwff ).

5. The set of all wff s is the union of the set of swff s and the set of iwff s.
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There is an important point that should be noted about the connectives which
go to make up these formulae—that → does not represent material implication.
Instead it represents a constraint on the conditional probabilities relating the
formulae it connects. Such constraints have exactly the form of the constraints
embodied in the qualitative influences of QPNs, albeit for variables with binary
values, and their precise semantics is given below.

The set of all wff s that may be defined using L, may then be used to build
up a database ∆ where every item d ∈ ∆ is a triple (i : l : s) in which i is a
token uniquely identifying the database item (for convenience we will use the
letter ‘i’ as an anonymous identifier), l is a wff, and s gives information about
the probability of l. In particular we take triples (i : l : ↑) to denote the fact
that Pr(l) increases, and similar triples (i : l : ↓), to denote the fact that Pr(l)
decreases. Triples (i : l : ↔), denote the fact that Pr(l) is known to neither
increase nor decrease. It should be noted that the triple (i : l : ↑) indicates
that Pr(l) either goes up, or does not change—this inclusive interpretation of
the notion of “increase” is taken from QPNs—and of course a similar proviso
applies to (i : l : ↓). Since we want to reason about changes in belief which
equate to the usual logical notion of proof, we also consider increases in belief
to 1 and decreases in belief to 0, indicating these by the use of the symbols
⇑ and ⇓, and the values 1 and 0. The meaning of a triple (i : l : ⇑) is that
the probability of l becomes 1 if it is not 1 already, (i : l : ⇓) means that
the probability of l becomes 0 if it is not already. (i : l : 1) means that the
probability of l is 1 and (i : l : 0) means that the probability of l is 0. We also
have triples (i : l : l) which indicate that the change in Pr(l) is unknown. In
addition, for reasons which will become clear later, we need a symbol to denote
a probability whose value is not known (as distinct from a change in probability
whose value is not known). This symbol will be ≀, so the triple (i : l : ≀) means
that the value of Pr(l) is unknown, but is known not to change. While this
profusion of symbols might seem baroque, it is unfortunately necessary in order
to distinguish the different aspects of qualitative probabilistic reasoning.1

2.2 Non-material implication

As mentioned above, → does not represent material implication but a connection
between the probabilities of antecedent and consequent. This is the key to
understanding the system. We take iwff s, which we will also call “implications”,

1Dealing with categorical influences is the root cause of this profusion of symbols (compare
the set of signs used here with those in [13] for example). Broadly speaking, the signs used in
QPNs (↑, ↓, l and ↔ in the notation used here) represent first derivatives of probability values
with respect to evidence (a point expanded on at length in [11]). While the only implications
we have are non-categorical, we are only dealing with derivatives and these are the only
values we need to consider. Once we introduce catagorical influences, we also introduce 1
and 0, landmark values in the terminology of qualitative reasoning [7], which are probabilities
that have not been differentiated. The remaining signs arise from a need to have a set of
values that is closed under the operations carried out on them during inference. Of course,
there is some interconnection between the two sets of values (which is not there in regular
qualitative reasoning) since knowing that a probability is 1, 0 or ≀ tells us that there it has a
zero derivative, and so it has value ↔.
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to denote that the antecedent of the iwff has a probabilistic influence on the
consequent. Thus we are not concerned with the probability of the iwff, but
what the wff says about the probabilities of its antecedent and consequent. More
precisely we take the triple (i : a → c : +) to denote the fact that:

Pr(c|a, X) ≥ Pr(c|¬a, X)

for all X for which there is a triple (i : X → c : s) (where s is any sign). The
effect of the X in this inequality is to ensure that the restriction holds whatever
is known about formulae other than c and a—whatever the probabilities of a

and c, the constraint on the conditional probabilities holds. Similarly the triple
(i : a → c : −) denotes the fact that:

Pr(c|a, X) ≤ Pr(c|¬a, X)

again for all X for which there is a triple (i : X → c : s). It is possible to think
of an implication (i : a → c : +) as meaning that there is a constraint on the
probability distribution over the formulae c and a such that an increase in the
probability of a entails an increase in the probability of c, and an implication
(i : a → c : −) means that there is a constraint on the probability distribution
over the formulae c and a such that an increase in the probability of a entails a
decrease in the probability of c. We do not make much use of triples such as (i :
c → a : 0)2 since they have no useful effect but include them for completeness—
(i : c → a : 0) indicates that:

Pr(c|a, X) = Pr(c|¬a, X)

for all X for which there is a triple (i : X → c : s), and so denotes the fact that
Pr(c) does not change when Pr(a) changes. We also have implications such as
(i : a → c : ?) which denotes the fact that the relationship between Pr(c|a, X)
and Pr(c|¬a, X) is not known, so that if the probability of a increases it is not
possible to say how the probability of c will change.

With this interpretation, implications correspond to qualitative influences in
QPNs. Just as in QPNs, we often take implications to be causally directed, by
which we mean that the antecedent is a cause of the consequent, and enforce
the condition that chains of these directed links do not form a cycle. Thus we
can consider every set of implications to have an associated QPN, where each
arc in the QPN maps to an implication.

This simple picture is complicated because we have categorical implications
which allow formulae to be proved true or false. In particular, an implication
(i : a → c : ++) indicates that when a is known to be true, then so is c. Thus
it denotes a constraint on the probability distribution across a and c such that
if Pr(a) becomes 1, then so does Pr(c). This requires that:

Pr(c|a, X) = 1

2As a result we will not worry about the possibility of confusing (i : l → m : 0) with
(i : l : 0) where l and m are swff s.
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for all X for which there is a triple (i : X → c : s) [9]. Note that this type of
implication also conforms to the conditions for implications labelled with + (and
so may be considered as a more precise specialisation of an implication labelled
with a +), and that if Pr(c|¬a, X) = 1 as well, then Pr(c) is always equal to
Pr(a). Similarly, a probabilistic interpretation of an implication (i : a → c : −−)
which denotes the fact that if a is true then c is false, requires that:

Pr(c|a, X) = 0

for all X for which there is a triple (i : X → c : s). The conditions imposed on
the conditional values by these implications suggest the existence of a further
pair of types of categorical implication which are symmetric to those already
introduced. We have an implication (i : a → c : −+) which denotes the con-
straint:

Pr(c|¬a, X) = 1

for all X for which there is a triple (i : X → c : s), and an implication (i : a →
c : +−) which denotes the constraint:

Pr(c|¬a, X) = 0

for all X for which there is a triple (i : X → c : s).
As mentioned above, the full system QPR allows for the representation of

probabilistic synergies, in particular product synergies [2, 19]. It is also possible
to include additive synergies [2, 18] and utilities [13] into this kind of system.

3 The proof theory

For the language introduced in the previous section to be useful we need to give
a mechanism for taking sentences in that language and using them to derive new
sentences. In particular we need to be able to take sentences describing changes
in probability in particular formulae and use these to establish changes in prob-
ability in other formulae. This is done using the consequence relation ⊢QP , part
of which is defined in Figure 1. The definition is in terms of Gentzen-style proof
rules where the antecedents are written above the line and the consequent is
written below. The consequence relation operates on a database of the kind of
triples introduced in the previous section and derives arguments about formulae
from them. The concept of an argument is formally defined as follows:

Definition 1 An argument for a well-formed formula p from a database ∆ is

a triple (p, G, s) such that ∆ ⊢QP (p, G, s)

The sign s of the argument denotes something about the probability of p while
the grounds G identify the elements of the database used in the derivation of p.

To see how the idea of an argument fits in with the proof rules in Figure 1,
consider the following example.
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C-rules

Ax
∆ ⊢QP (St, {i}, Sg)

(i : St : Sg) ∈ ∆

∧-E1
∆ ⊢QP (St ∧ St′, G, Sg)

∆ ⊢QP (St, G, conjelim(Sg))

∧-E2
∆ ⊢QP (St ∧ St′, G, Sg)

∆ ⊢QP (St′, G, conjelim(Sg))

∧-I
∆ ⊢QP (St, G, Sg) ∆ ⊢QP (St′, G′, Sg′)

∆ ⊢QP (St ∧ St′, G ∪ G′, conjintro(Sg, Sg′))

¬-E
∆ ⊢QP (¬St, G, Sg)

∆ ⊢QP (St, G, neg(Sg))

¬-I
∆ ⊢QP (St, G, Sg)

∆ ⊢QP (¬St, G, neg(Sg))

→-E
∆ ⊢QP (St, G, Sg) ∆ ⊢QP (St → St′, G′, Sg′)

∆ ⊢QP (St′, G ∪ G′, impelim(Sg, Sg′))

Figure 1: The causal part of the consequence relation ⊢QP

Example 1. We have a database which denotes the fact that the proposition
“premise” has a probability which increases to 1, and that there is a relation
between the proposition premise and the proposition “conclusion” such that
if the probability of premise becomes 1, so does the probability of conclusion .
This database is denoted:

(f1 : premise : ⇑) ∆1

(r1 : premise → conclusion : ++)

From the database, by application of Ax it is possible to establish two simple
arguments:

∆1 ⊢QP (premise , {f1}, ⇑)

denoting that on the basis of f1 we can infer that the probability of premise

either increases to, or remains at, 1, and

∆1 ⊢QP (premise → conclusion , {r1}, ++)

denoting that on the basis of r1 we can infer that there is a connection between
premise and conclusion such that if the probability of the former increases to
(or is) 1, then the probability of the latter increases to (or is) 1. Now, taking
these two and applying →-E, it is possible to build the argument:

∆1 ⊢QP (conclusion , {r1, f1}, ⇑)
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++ +− + 0 − −+ −− ?

1 1 ≀ ≀ ≀ ≀ ≀ 0 ≀
⇑ ⇑ ↑ ↑ ↔ ↓ ↓ ⇓ l
↑ ↑ ↑ ↑ ↔ ↓ ↓ ↓ l
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
↓ ↓ ↓ ↓ ↔ ↑ l ↑ l
⇓ ↓ ⇓ ↓ ↔ ↑ ⇑ ↑ l
0 ≀ 0 ≀ ≀ ≀ 1 ≀ ≀
l l l l ↔ l l l l
≀ ≀ ≀ ≀ ≀ ≀ ≀ ≀ ≀

Table 1: Implication elimination impelim

since applying impelim to ⇑ and ++ yields ⇑ (as we will see in a little while).
Thus from the database it is possible to build an argument for the probability
of conclusion becoming (or being) 1. 2

In order to apply the proof rules to build arguments, it is necessary to supply
the functions used in Figure 1 to combine signs. A full definition of QPRC thus
requires the functions conjelim, conjintro, neg, and impelim. However, since all are
given in [10], and only impelim is used in this paper, this is the only function
which will be given here.

The function impelim is used to establish the sign of formulae generated by
the rule of inference →-E. This means that impelim is used to combine the change
in probability of a formula a, say, with the constraint that the probability of
a imposes upon the probability of another formula c. Since this constraint is
expressed in exactly the same way as qualitative influences are in QPNs, impelim

performs the same function as ⊗ [18], and is merely an extension of it.

Definition 2 The function impelim : Sg ∈ {1,⇑, ↑,↔, ↓,⇓, 0, l, ≀}× Sg′ ∈ {++,

+−, +, 0,−,−+,−−, ?} 7→ Sg′′ ∈ {1,⇑, ↑,↔, ↓,⇓, 0, l, ≀} is specified by Table 1.

It is worth noting that Table 1 not only deals with the combination of changes
in probability, such as ↑, with probabilistic constraints, but also gives the results
of combining constraints and actual values like 1 and 0. Most of the time these
combinations give a value of ≀, which denotes a probability that does not change
and whose unchanging value is unknown.

4 The unbearable incorrectness of inference

As introduced in [10], QPR had three distinct sets of proof rules. One set,
reproduced here, permitted reasoning in a causal direction, that is in the di-
rection of the implications. Another set permitted reasoning in an evidential
direction, that is in the opposite direction to the implications, and the third set
permitted reasoning with synergies capturing intercausal reasoning [19]. The
soundness and completeness proofs for QPR were given by considering first the
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causal rules, then the causal and evidential rules, and finally all three sets of
rules together. Here we examine the causal rules, because it is here that the
flaw we are primarily interested in resides.

4.1 The flaw and its consequences

Now, once we have applied the proof rules we find we have several arguments
for a given proposition p. Thus we have an argument set for the proposition:

Definition 3 The argument set A∆
p for a proposition p from a database ∆ is

the set of all arguments for p which may be constructed from ∆:

A∆

p = {(p, Gi, Sgi) | ∆ ⊢QP (p, Gi, Sgi)}

Each of these arguments has a sign that summarises how the probability of
p changes according to the information in that argument. Typically we are
interested in the effect of the information in all the arguments. To establish this,
we introduce a flattening function flat which combines arguments by mapping
from a set of arguments A∆

p to the supported formula p and some overall change
in probability:

flat : A∆

p 7→ 〈p, v〉

where v is the result of a suitable combination of the signs of the arguments.
Now, because the effect of each implication is defined to occur whatever other
arguments are formed (this is a result of the constraint imposed on the condi-
tional probabilities by the implications), all combinations are completely local,
and the structure of the arguments may be disregarded when flattening. As a
result, v is simply calculated as:

v =
⊕

i

si

for all (p, Gi, si) ∈ A∆
p where ⊕ is an extended version of the qualitative addition

function used by QPNs, defined as follows:

Definition 4 The function ⊕ : Sg ∈ {1,⇑, ↑,↔, ↓,⇓, 0, l, ≀} × Sg′ ∈ {1,⇑, ↑,
↔, ↓,⇓, l, ≀} 7→ Sg′′ ∈ {⇑, ↑,↔, ↓,⇓, l, ≀} is specified by Table 2. Blank spaces

represent impossible combinations.

The blank spaces in Table 2 are an important feature which deserve some
explanation. They arise as the result of the combination of a ⇑ and a ⇓—
an increase to a probability of 1 and a decrease to a probability of 0—or the
combination of ⇑ or ⇓ with 0 or 1 respectively. These are simply incompatible
in the sense that it isn’t possible to define a probability distribution which will
allow this behaviour (something that is proved in Theorem 11 below).

With flat and ⊕ established we can give the overall procedure for determining
the change in probability of a formula p in which we are interested. This is:

1. Add a triple (i : q : s) for every formula q whose change in probability is
known.
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1 ⇑ ↑ ↔ ↓ ⇓ 0 l ≀
1 1 1 1 1 1 1 1

⇑ 1 ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
↑ 1 ⇑ ↑ ↑ l ⇓ 0 l ↑
↔ 1 ⇑ ↑ ↔ ↓ ⇓ 0 l ↔
↓ 1 ⇑ l ↓ ↓ ⇓ 0 l ↓
⇓ ⇓ ⇓ ⇓ ⇓ 0 ⇓ ⇓
0 0 0 0 0 0 0 0

l 1 ⇑ l l l ⇓ 0 l l
≀ 1 ⇑ ↑ ↔ ↓ ⇓ 0 l ≀

Table 2: Flattening flat

2. Build A∆
p using the C-rules.

3. Flatten this set to Flatc(A
∆
p ) where Flatc(A

∆
p ) = flat(A∆

p ).

Flattening is described in this way to allow for different flattening mechanisms
to be used for different kinds of reasoning while still using flat (see [10] for
details).

We can now see how problems arise and establish what the flaw in QPR/QPRC

is. This can be done through some examples. Consider the following:

Example 2. The following clauses represent the fact that a has a positive
influence on b, and b has a positive influence on c.

(r1 : a → b : +) ∆2

(r2 : b → c : +)

Now, consider we have evidence that a is suddenly observed to be true, so that
the triple (f1 : a : ⇑) is added to the database, it is possible to build the
following argument concerning Pr(c) using QPRC:

∆2 ⊢QP (c, {f1, r1, r2}, ↑)

This is built by combining f1 and r1 using →-E, and then using the result of
this inference with r2 using →-E again. This argument may then be flattened
to give the pair 〈c, ↑〉. 2

This is entirely correct as one would hope from such a simple example. However,
consider what happens in the following small variation on the example:

Example 3. Here b is known to be true:

(r1 : a → b : +) ∆3

(r2 : b → c : +)
(f2 : b : 1)
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Now, with the same additional information as before, we get two arguments
about Pr(c) using QPRC :

∆3 ⊢QP (c, {f1, r1, r2}, ↑)

∆3 ⊢QP (c, {f2, r2}, ≀)

and again the two arguments may then be flattened to give the pair 〈c, ↑〉. 2

This second example is not entirely correct in that it does not make as precise
a prediction as is possible using probability theory.

The problem is this. QPRC predicts that the probability of c will either
increase or remain the same—this is the inclusive reading of ↑ that is standard in
the QPN literature and which stems from the inequality in the denotation of the
“→” symbol. However, since b is known to be true, any subsequent probabilistic
propagation from a to c is blocked. In the terminology of Bayesian networks, c

is d -separated ([6], pages 7–14) from a. As a result, probability theory tells us
that irrespective of changes in the probability of a, the probability of c will not
change, and this is not respected in QPRC . QPRC allows for the fact that the
probability of c may not increase, since it hedges its bets somewhat with the
prediction of ↑, and so makes a sound prediction. However, there is definitely a
flaw here that results from QPRC not handling d -separation in causal reasoning.

In fact, the situation is worse than this first analysis suggests. It is possible
for QPRC to actually give incorrect results. Consider this variation on the last
example.

Example 4. Here b is known to be true:

(r1 : a → b : ++) ∆4

(r2 : b → c : ++)
(r3 : a → d : +)
(r3 : d → c : −)
(f2 : b : 1)

Now, with the additional information that (f1 : a : ⇑), we get three arguments
about Pr(c) using QPRC :

∆3 ⊢QP (c, {f1, r1, r2}, ⇑)

∆3 ⊢QP (c, {f2, r2}, ≀)

∆3 ⊢QP (c, {f1, r3, r4}, ↓)

and again the two arguments may then be flattened to give the pair 〈c, ⇑
〉, whereas the correct answer, were d -separation taken into account,would be
〈c, ↓〉. 2

This is the error alluded to in the title of this section.
Now, this particular error can only occur if the chain of inferences that should

be blocked by d -separation is all categorical (otherwise the worst that could
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1 Probability of 1
0 Probability of 0
≀ Unknown probability, value known not to change
↔ No change in probability
⇑ Probability increases to, or remains at, 1
⇓ Probability increases to, or remains at, 0
↑ Increase in probability, or no change
↓ Decrease in probability, or no change
l Increase, decrease, or no change in probability

Table 3: The full set of predictions possible in QPRC .

happen is the first argument has sign ↑ and flattening produces l rather than
↓, which is imprecise but not wrong), and if there is “old evidence” (evidence
that is already in the system) in order to generate a need for d -separation to
be taken into account in the first place. Since all systems that stem from QPNs
are basically intended to only cope with single pieces of evidence (certainly
that seems to be the case for Wellman’s original formulation [18]) whenever we
deal with more than one piece of evidence we are pushing the limits of what
is possible [16]. As a result, this error is not surprising. However, it is worth
fixing it.

4.2 The extent of the problems

Before attempting to fix the flaw, it is worth examining the extent of its consequences—
identifying when it causes incorrect inferences to be drawn. In the lst example
above, we can see the existence of such an incorrect inference, but can we obtain
some results that formally circumscribe this kind of problem?

Following [11], it is possible to define the following concepts which allow us
to get an idea of the extent of the problem.

Definition 5 If applying ⊢QP to a database ∆ generates an argument (p, G, π),
then π is a prediction about the change in probability of p.

Now, as we have seen in Section 2, there is a whole menagerie of different
predictions, replicated in Table 3. The top set of predictions are essentially
predictions that the probability of the given proposition will not change. The
next set of values are predictions that either there will be a change in one
direction, increase or decrease, or no change. The final value is a prediction
that there will be an increase, decrease, or no change—it is less a prediction
than an admission that it is impossible to tell how the value will change.

Now, the important point here is that the higher values in the table make
more precise predictions about changes, in the sense that knowing the value
will not change is more precise than knowing that it might increase (will either
increase or not change). Thus there is an order over the possible predictions in
terms of their precision:
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Definition 6 The set of predictions Π0 = {1, 0, ≀,↔} is the set of no change
predictions, the set Π1 = {⇑,⇓, ↑, ↓} is the set of change predictions, and Π2 =
{l} is the set of vacuous predictions.

Definition 7 Given two predictions π and π′, from sets Πi and Πj respectively,

π is more precise than π′ if i < j, π is less precise than π′ if i > j, and π is as
precise as π′ if i = j.

Since the set of predictions in Π1 play a crucial role in what is to follow, it is
worth explaining exactly why they have this degree of precision. Essentially it is
because the form of qualitative probabilistic inference on which QPR/QPRC is
based is relativistic—it computes changes without taking account of the previous
value. Thus when we obtain a prediction of ⇑ it is given with no guarantee that
the probability, before whatever change led to this prediction, was not already 1.
So it is not possible to guarantee that a change will actually occur. Something
similar is true of ↑, though here, even if the initial value was known, there would
still be imprecision in the prediction because of the ≥ (or ≤) in the definition
of the probabilistic constraints which give rise to such predictions.3

In addition to defining the relative precision of two predictions, we can define
what it means if they agree. Intuitively, two predictions agree if they predict
changes that can be reconciled. This if one prediction is that the probability of
p is 0, and another prediction is that the probability of p will increase to 1, then
the two disagree. Alternatively, a prediction of ↑ and another of ⇑ agree since
both predict changes in the same direction and the latter is just more precise
about the state that results from the prediction.

To formally define what agreement is, we need to distinguish between pre-
dictions of increases and predictions of decreases:

Definition 8 The set of change predictions Π1 is the union of Π↑
1

= {⇑, ↑}, the

increasing predictions, and Π ↓
1

= {⇓, ↓}, the decreasing predictions.

Note that Π↑
1
∩ Π ↓

1
= ∅. We also have:

Definition 9 The set of categorical predictions Πcat is the union of Πcat
0 =

{1, 0}, the categorical value predictions, and Πcat
1 = {⇑,⇓}, the categorical

change predictions.

We call the categorical value predictions the limit predictions, and thus 1 is
known as the upper limit prediction, and 0 as the emphlower limit prediction.

Definition 10 The set of non-categorical predictions Πnon−cat is the union

of Πnon−cat
0

= {≀}, the non-categorial value prediction, Πnon−cat
1

= {↑, ↓}, the

non-categorial change predictions, and the set of vacuous predictions Π2 = {l}.

3Although it is possible to define systems which do give precise predictions about changes
in value, systems that produce precise predictions are more awkward to work with than those
that don’t [11].
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Note that Πcatc ∩ Πnon−cat = ∅.
At this point we should recall the discussion about the flattening function

following Definition 4. The existence of the blank spaces in Table 2 can be
explained in terms of the following theorem which shows that it is not possible
to have categorical predictions for a proposition which conflict:

Theorem 11 It is impossible to have:

1. an increasing and decreasing categorical prediction; or

2. an increasing categorical prediction and a lower limit prediction; or

3. a decreasing categorical prediction and an upper limit prediction; or

4. an upper and lower limit prediction

for the same proposition.

Proof: We prove this by contradiction. Assume we have two arguments
for p, one with an increasing categorical prediction and one with a decreasing
categorical prediction. For this to be the case, there must be one of the following
pairs of categorical implications (since only categorial implications can generate
categorical predictions): 〈(i : q → p : ++), (j : r → p : −−)〉, 〈(i : q →
p : ++), (i : r → p : +−)〉, 〈(i : q → p : −−), (i : r → p : −+)〉, 〈(i : q → p :
+−), (i : r → p : −+)〉, or symmetrical variations. Now, consider the constraints
on the joint probability distribution over p, q and r imposed by the first pair.
By definition, these imply that Pr(p|q, X) = 1 and Pr(p|r, Y ) = 0 for all X and
Y , which would require Pr(p|q, r) to be both 1 and 0. Thus the first pair of
implications cannot occur together. Similarly the constraints embodied by the
second pair would require Pr(p|q,¬r) to be 1 and 0, the third pair would also
require Pr(p|q,¬r) to be 1 and 0 and the fourth pair would require Pr(p|¬q,¬r)
to be 1 and 0. Since these are impossible, increasing and decreasing categorical
predictions cannot occur together. The remaining parts of the result are proved
similarly. 2

This theorem gives us our first taste of dealing with several predictions for the
same formula. Since a single prediction is related to a single argument, and we
typically have several arguments for a given formula, we often need to deal with
several predictions at a time. In fact, given some proposition p, what we are
interested in is the overall prediction after flattening all the arguments in the
argument set for p. Thus we have:

Definition 12 The overall prediction of the argument set A∆
p is πO where

flat(A∆
p ) = 〈p, πO〉.

If all the arguments in an argument set A∆
p make non-categorical predictions,

then the argument set is said to be non-categorical. Otherwise it is said to be
categorical. The reason for this distinction is because of the nature of the overall
predictions made by these sets:
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Theorem 13 The overall prediction of an argument set A∆
p is non-categorical

if and only if A∆
p is non-categorical. The overall prediction of an argument set

A∆
p is categorical if and only if A∆

p is categorical.

Proof: The “if” part of the theorem is as follows: If A∆
p is non-categorical,

then, by definition, all predictions made by arguments in A∆
p are non-categorical.

From the definition of ⊕, flattening these predictions will give a non-categorical
prediction. Conversely, if A∆

p is categorical then there is at least one argument

in A∆
p which makes a categorical prediction. From Theorem 11 we know that

we can’t have conflicting categorical predictions for any proposition, and from
the definition of ⊕ we know that combining a categorical and non-categorical
prediction will give a categorical prediction. Thus, it follows that from the defi-
nition of ⊕ flattening a mixed set of categorical and non-categorical predictions
will give a categorical prediction.

The “only if” part is as follows. If the overall prediction is non-categorical
then, from the definition of ⊕, the argument set cannot contain any categorical
predictions. Thus the argument set is non-categorical. If the overall prediction
is categorical then, again from the definition of ⊕, there must be at least one
categorical prediction in the argument set and so the argument set is categori-
cal. 2

There are a couple of important corollaries of this result:

Corollary 14 Adding a categorical argument to a non-categorical argument set

gives a categorical argument set.

Corollary 15 Adding a non-categorical argument to a categorical argument set

gives a categorical argument set.

Now, the intuitive notion of agreement between predictions introduced above
is partly based on precision. A no change prediction agrees with an increasing
prediction (since an increasing prediction is a prediction of “either an increase,
or no change”) or a decreasing prediction, and for similar reasons, an increasing
or decreasing prediction will agree with a vacuous prediction.

In fact, any two-non-categorical predictions will agree, since it is always
possible to find some probability, or change in probability, that reconciles the two
predictions. Even predictions of ↑ and ↓ can be reconciled if the actual change
being predicted is 0. Thus at least one of two predictions that disagree has to
be categorical, and a little thought shows that the particular categorical values
of such predictions that cannot be reconciled are those which Theorem 11 rules
impossible. In addition an increasing prediction will disagree with a categorical
decrease (but not a lower limit prediction since the probability might start at 0
and not change).

Thus we have: Thus we have:

Definition 16 Two predictions π and π′ disagree iff:
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1. one is an increasing prediction and the other is a decreasing categorical

prediction; or

2. one is an decreasing prediction and the other is a increasing categorical

prediction; or

3. one is an increasing categorical prediction and the other is a lower limit

prediction; or

4. one is a decreasing categorical prediction and the other is an upper limit

prediction; or

5. one is an upper limit prediction and the other is a lower limit prediction

Two predictions are said to agree if they do not disagree.
This makes the idea of disagreement rather weak, but it is the only sensible

notion—given the tentative notion of an increase that we are dealing with, this
notion of disagreement is the only one that can be related to unsoundness with
respect to probability theory. That is, if two predictions disagree according
to Definition 16 and one is sound with respect to probability theory (in other
words it is not possible to rule out an increase in probability), then the other is
incorrect. If the second prediction comes from either Π0 or Π2 then it will not be
unsound with respect to probability theory since there is a change in probability,
consistent with all that is known, which can satisfy both predictions.

Now, the reason for this long digression from the solution of the problem of
not dealing with d -separation, is to be able to prove the following results:

Lemma 17 Given two non-categorical argument sets A∆
p and A∆

′

p about a

proposition p, with overall predictions πO and π′
O, such that A∆

p ⊂ A∆
′

p , π′
O

will agree with πO.

Proof: The only time that πO and π′
O can disagree is if one is increasing

and the other is decreasing. Consider πO to be increasing. Adding additional
non-categorical predictions to πO using ⊕ will give an overall prediction which
is either increasing or vacuous. Thus the new overall prediction will not dis-
agree with πO, though it may be less precise. If πO is decreasing, the same
argument can be applied. Thus the two predictions cannot disagree, and the
result follows. 2

When argument sets are non-categorical, the predictions of individual argu-
ments are closely related to the signs propagated along trails in a QPN [2],
and the overall prediction of the argument set A∆

p which contains all the ar-
guments for p which can be built from a database is closely related to the sign
which is produced by the sign-propagation algorithm for QPNs [3]. As a result,
Lemma 17 can be taken as a form of robustness result for inference in QPNs.

It is worth noting that although it might be tempting to read it that way,
Lemma 17 does not mean that qualitative probabilistic inference is somehow
immune to unsoundness (and therefore inherently uninteresting). What the
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lemma says is that provided there is at least one non-categorical prediction which
agrees with probability theory, adding in further non-categorical predictions
will not make the overall prediction disagree with the original. (All that will
happen is that as both increasing and decreasing predictions are added the
overall prediction will become vacuous.) This behaviour is therefore a reflection
of the robustness of the flattening procedure more than anything else.

We can also consider the case where we have categorical arguments:

Lemma 18 Given two categorical argument sets A∆
p and A∆

′

p about a proposi-

tion p, with overall predictions πO and π′
O, such that A∆

p ⊂ A∆
′

p , π′
O will agree

with πO.

Proof: From Theorem 13 both πO and π′
O will be categorical, and from

Theorem 11 they cannot disagree, so they must agree. 2

In addition to these two cases, there is one in which the first argument set
is non-categorical and the second is categorical:

Lemma 19 Given a non-categorical argument set A∆
p and a categorical argu-

ment set A∆
′

p about a proposition p, with overall predictions πO and π′
O, such

that A∆
p ⊂ A∆

′

p , π′
O may disagree with πO.

Proof: Here all we need to show is that it is possible for πO and π′
O to disagree,

and we can do that by example. From Theorem 13 πO will be non-categorical
while by Corollary 14 π′

O will be categorical. Consider that πO is increasing and
π′

O is decreasing (because π′
O is the result of adding an argument with sign ⇓

to A∆
p ), then π′

O will disagree with πO. If the argument that is added has sign
⇑, then the two predictions will agree. 2

The final case that one might imagine, where A∆
p is categorical and A∆

′

p is non-
categorical, is ruled out by Corollary 15 since adding arguments to a categorical
argument set will give a categorical argument set. Taking all these results to-
gether, we can conclude that adding a non-categorical argument to an argument
set will never cause the new overall prediction to disagree with the old overall
prediction.

Now we can finally identify when, in general, the predictions of two argument
sets can disagree, thus homing in on when the problem with causal inference in
QPR/QPRC , as currently defined, will be significant. This is when a categorical
argument is added to an argument set.

Theorem 20 Given two argument sets A∆
p and A∆

′

p about a proposition p,

with overall predictions πO and π′
O, such that A∆

p ⊂ A∆
′

p , π′
O will only disagree

with πO when:

1. A∆
p is non-categorical and A∆

′

p is categorical; and

2. either πO is increasing and and π′
O is decreasing or a lower limit, or πO

is decreasing and π′
O is increasing or an upper limit
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Proof: For the first part, consider A∆
′

p to be formed by adding arguments to

A∆
p . Since, by Corollary 15, adding arguments to a categorical argument set

will give a categorical argument set, there are only three possibilities for the
two sets: (i) they are both categorical, in which case by Lemma 18 it is the
case that πO and π′

O agree; (ii) they are both non-categorical, in which case by

Lemma 17 it is the case that πO and π′
O agree, or (ii) A∆

′

p is non-categorical

and A∆
′

p is categorical when, by Lemma 19 and the proof thereof, it is the case
that πO and π′

O will disagree if one is increasing and the other is decreasing.
The second part follows directly from the definition of disagreement. 2

This result concerns general argument sets. The specific case that we are in-
terested in is when the extra arguments in A∆

′

p , over and above those in A∆
p ,

should be ruled out by d -separation. In the next section we formally define ar-
guments that should be ruled out by d -separation and denote them as invalid.
Borrowing that terminology without proper definition for now, we can state the
case we are interested in, that for which there is a problem, as being that when
A∆

p contains all valid arguments for p (all those that are not invalid), and A∆
′

p

contains all the valid arguments and some invalid ones as well.
In such a case we can see from Theorem 20 that the problem will arise only

when the invalid arguments added to A∆
p include at least one categorical argu-

ment and where either the overall prediction of A∆
p is increasing and the overall

prediction of A∆
′

p is decreasing or the overall prediction of A∆
p is decreasing and

the overall prediction of A∆
′

p is increasing. Since by Lemmas 17–19 only adding
a categorical prediction can cause disagreement, the problem arises when one of
the invalid arguments is categorical and in the opposite direction to the overall
prediction of the valid ones.

As an aside, it should be noted that since categorical arguments are rather
rare (since they require every implication chained together as part of the argu-
ment to be not only categorical but also categorical in the right direction)4 it
seems unlikely that ignoring d -separation will cause major problems. However,
the problem does need to be fixed, and this is the subject of the next section.

5 Correct causal inference

The discussion so far has identified where the flaw in QPR/QPRC lies. It
occurs because additional arguments, over and above those which should be
flattened, are combined in the flattening process—ones that should be excluded
by d -separation—and these overturn the prediction that should be made.

4Bearing in mind that combining some categorical implications with some categorical pre-
dictions does not yield a categorical prediction, see Table 1.
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5.1 Bringing in d-separation

How should we take d -separation into account when flattening causal argu-
ments?5 One way is to use the same technique that QPR, as described in [10],
used when dealing with combined causal and evidential reasoning and combined
causal, evidential and intercausal reasoning. This technique needs the following
definitions:

Definition 21 In the triple (i : l : s), the wff l is said to be indexed by the

symbol i.

Definition 22 A source of an argument (p, G, s) is an swff indexed by an ele-

ment of G.

Thus a source of an argument is one of the simple formula which ground it, and
form the head of a chain of implications.

Definition 23 The destination of an argument (p, G, s) is p.

Thus the destination of an argument is the formula being argued for.

Definition 24 Two formulae p and q are d -separated if p or q has probability 1

or 0, or if for all arguments which have p as a source and q as their destination,

there is another formula r such that either:

1. p is a cause of r, r is a cause of q, and the probability of r is 1 or 0; or

2. r is a cause of p, r is a cause of q and the probability of r is 1 or 0; or

3. p and q are both causes of r and there is no argument (r, G′, s′) such that

all the swffs indexed by elements of G′ are effects of r, and the probability

of r is not 1 or 0.

The first item defines the form of d -separation missing from QPRC. The second
item is required in evidential reasoning, and the third is required in intercausal
reasoning. Despite the fact that we are only concerned with causal reasoning in
QPRC , we include all these forms of d -separation in order to have a definition
that will work in every situation. An invalid argument is now one that is built
without taking account of d -separation:

Definition 25 An argument A = (p, G, s) is invalid if any source of A is d-

separated from p.

5One might argue that a better solution is to take account of d-separation when construct-
ing arguments, but since identifying some forms of d-separation requires all arguments to be
constructed, as is clear from the definition of d-separation given below, it seems conceptu-
ally simpler to simply build all arguments and rule out the ones which don’t take account of
d-separation.
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This notion of invalidity differs from that introduced in [10] only because the
notion of d -separation which underpins invalidity has been expanded. Thus this
new notion of invalidity rules out more arguments from flattening and hence
from having an effect on the overall prediction of an argument set.

Now, we have:

Definition 26 An argument A = (p, G, s) is valid if it is not invalid.

Now that we can identify which arguments are valid, and hence can be helpfully
flattened, all that is necessary is to redefine the procedure for determining the
change in probability of some formula p. The new procedure is:

1. Add a triple (i : q : s) for every formula q whose change in probability is
known.

2. Build A∆
p using the C-rules.

3. Flatten this set to Flat′
c
(A∆

p ) where Flat′
c
(A∆

p ) = flat(flatc(A
∆
p )).

where:
flatc : A 7→ {A ∈ A | A is valid}

With this change to the flattening function, QPR/QPRC will not generate
spurious results by ignoring d -separation and so will be sound.

5.2 Back to QPR

What we have found, therefore, is that in order to correct the inference carried
out in QPRC , we have to check arguments before flattening, and only flatten
those arguments which are valid in the sense defined above. These are arguments
which have been built using the set of C-rules and are not ruled out by d-
separation. The question we are interested in here is how, then, can we take
this result and use it to modify the original system QPR in order to make that
correct as well. To do this we need to recall how the original system was defined.

As discussed above, QPR was defined in much the same way as QPRC is
here, but rather than having just one set of proof rules it has three. QPR has the
same set of C-rules as were presented here plus a set of E-rules which permit
evidential reasoning, and a set of I-rules which permit intercausal reasoning.
Separate proof procedures were given for reasoning with the C-rules alone (it is
this “mode of inference” of the overall system6 we have been discussing here),
with the C-rules and the E-rules, and with the C-rules, E-rules and I-rules. As
initially defined, the procedure for using the C-rules was just that given earlier
in the paper—build arguments and then flatten them with flat; the procedure
for the C-rules and E-rules in combination was to build arguments, rule out
those made ineligible by d -separation or by using the same implication more

6The scare quotes are used since these different forms of inference were really an artifact of
the fact that I chose to construct the soundness and completeness proofs incrementally rather
than because I expected QPR to be used in three distinct ways.

19



than once (which rules out cyclic arguments) and flatten those; when using all
three sets of proof rules in conjunction we use the same procedure as for the
C-rules and E-rules.

With this description and the discussion in Section 5.1, it is clear how to
patch QPR. When just using the C-rules, we apply flatc to the set of valid
arguments; when using the C-rules and E-rules we remove invalid arguments and
non-minimal arguments (the name given in [10] for cyclic arguments), and we
adopt the same procedure when using all three sets of rules. This neatly glosses
over another problem with [10], which is that the definition of d -separation
given there is itself flawed—it is missing the second clause in Definition 24—
which would lead to the same kind of problems when using the C-rules and
E-rules together as we have investigated here for the C-rules. Of course, using
the revised version of QPR described here will correct both problems. This
revised version of QPR is described in full in [12], a modified version of [10].

5.3 The issue of many pieces of evidence

One interesting fact follows from the new flattening function. In [10] it was
claimed that when used for causal reasoning, the construction of arguments
was entirely local, that is once an argument was built, the change it predicted
could not be ruled out by further inference. Clearly this is not true of the
revised version of QPR since flattening will now rule out arguments whose
sources are d -separated from their destinations. Now, to some extent this lack
of locality is an implementation issue. After all, in our example it is possible to
identify that a and c are d -separated while the argument is being constructed.
However, the issue is more complex—consider what would happen in ∆2 or ∆3

if instead of knowing that b was true, we knew that d was true when we also
had (i : d → b : ++) in our database. In that case the probability of b would
still be 1, but in order to know this, it would first be necessary to construct
all arguments for b and flatten them. Thus the order in which arguments are
constructed becomes important, and that opens up a whole new set of issues.

To illustrate these issues, consider the following example:

Example 5. The following clauses represent the fact that a has a positive
influence on b, and b has a positive influence on c while d has a negative influence
on b.

(r1 : a → b : +) ∆5

(r2 : b → c : +)
(r3 : d → b : −)

Now, consider we have evidence that Pr(a) and Pr(d) are observed to be true,
so that the triples (f1 : a : ⇑) and (f1 : d : ⇑) are added to the database, it is
possible to build two arguments concerning Pr(c) using QPRC :

∆5 ⊢QP (c, {f1, r1, r2}, ↑)

∆5 ⊢QP (c, {f2, r3, r2}, ↓)
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The first is built by combining f1 and r1 using →-E, and then using the result
of this inference with r2 using →-E again. The second is built by combining f1
and r2 using →-E and then chaining the result of this with r3 using →-E again.
These two arguments may then be flattened to give the pair 〈c, l〉. 2

This is entirely correct. Because we have no information about the strength
of the influences, there is no way to resolve the tradeoff between the positive
influence on a on c and the negative influence on d on c (though see [9, 15, 17]
for approaches to resolving such tradeoffs). Now consider a small variation on
this new example.

Example 6. Here d has a categorical influence on b:

(r1 : a → b : +) ∆6

(r2 : b → c : +)
(r3 : d → b : −−)

Again consider we have evidence that Pr(a) and Pr(d) are observed to be true,
so that the triples (f1 : a : ⇑) and (f1 : d : ⇑) are added to the database. We
get the same two arguments about Pr(c) using QPRC :

∆6 ⊢QP (c, {f1, r1, r2}, ↑)

∆6 ⊢QP (c, {f2, r3, r2}, ↓)

As ever, they may then be flattened to give the pair 〈c, l〉. 2

This third example is again not entirely correct, and here the problem is quite
subtle, and points to issues at the heart of qualitative probabilistic reasoning.

The nut of the problem is this. Qualitative probabilistic reasoning as cap-
tured in QPNs and QPR/QPRC is concerned with changes in probability in
response to evidence. As such the results of qualitative probabilistic inference
make perfect sense when a single piece of evidence is presented. All the changes
calculated are those that result from that single piece of evidence. Under this
“single evidence assumption” algorithms for propagation in QPNs and associ-
ated models [2, 3, 11], including QPR/QPRC, are sound. The problem arises
when there are several pieces of evidence, and this matter is further explored, in
the context of qualitative probabilistic networks, in [16]. To some extent, this
problem of multiple pieces of evidence is at the heart of the flaws in QPR/QPRC

that we have been concerned with here—as pointed out above, QPR works fine
so long as there is no old evidence. Future work will further investigate this
problem.

6 Summary

This paper has identified a problem with the system of qualitative probabilistic
argumentation introduced in [10]. The paper precisely defined the problem
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and then proceeded to explore its effects and then establish a solution. The
problem with the original system was the fact that it failed to take d -separation
into account in causal reasoning, a failing that is easy to correct by ruling out
arguments which do not respect d -separation (exactly the solution provided
here).
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