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SOME ELEMENTS OF THE THEORY OFQUALITATIVE POSSIBILISTIC NETWORKSSIMON PARSONSAdvan
ed Computation Laboratory, Imperial Can
er Resear
h Fund,P.O. Box 123, Lin
oln's Inn Fields, London WC2A 3PX.Department of Ele
troni
 Engineering, Queen Mary and West�eld College,Mile End Road, London E1 4NSRe
eived (June 1992)Revised (O
tober 1993)This paper presents some results 
on
erning the qualitative behaviour of possibilisti
networks. The behaviour of singly 
onne
ted networks is analysed, providing the founda-tions for qualitative reasoning about 
hanges in possibility values in both predi
tive andevidential dire
tions. The problems inherent in handling multiply 
onne
ted networksare also dis
ussed, and a possible solution is proposed. The behaviour of qualitativepossibilisti
 networks is 
ompared to qualitative probabilisti
 networks, and an exampleof the kind of reasoning that is permitted by the use of these networks is provided.Keywords: Qualitative behaviour, dire
ted graphs, possibility theory.1. Introdu
tionThe study of qualitative probabilisti
 reasoning in networks has be
ome well es-tablished, both in the 
ontext of planning1, explanation2, and engineering design3.This paper extends su
h work by 
onsidering qualitative possibilisti
 reasoning innetworks, that is how to determine the qualitative 
hanges that take pla
e whenun
ertainty values are propagated through dire
ted graphs similar to those studiedby Pearl4 and Lauritzen and Spiegelhalter5 using possibility theory6;7.When we 
onsider the propagation of probability and possibility values througha network there are two operations that are of interest. Firstly we want to determinethe prior values of every node in the network from those prior values that are knownand the 
onditional values that relate the nodes of the network together. Se
ondlywe are interested in establishing the new values of the nodes when 
ertain pie
esof eviden
e are dis
overed. When 
onsidering the qualitative behaviour of su
hnetworks we are only interested in the se
ond operation, the way in whi
h thevalues of the nodes 
hange when eviden
e is obtained, sin
e all prior values arequalitatively equivalent. When an event is observed, the value of the node relatingto that event 
hanges, in
reasing or de
reasing. The 
hange propagates through thenetwork, 
ausing the value of other nodes to 
hange, and we 
an thus determine1
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 networks 2the e�e
t of the observed event on the nodes in whi
h we are interested. Thusthe qualitative analogy of updating with new eviden
e is propagating qualitative
hanges in value.The stru
ture of the paper is as follows. Se
tion 2 dis
usses the idea of pos-sibilisti
 networks, whi
h stems from work by Farreny and Prade8 and Fon
k andStrasze
ka9. Then Se
tion 3 introdu
es the basi
 ideas behind qualitative possibilis-ti
 networks, and uses them to provide an analysis of the propagation of qualitative
hanges in value in singly 
onne
ted networks of binary valued nodes. This se
tionin
ludes a dis
ussion of normalisation and 
ompares the behaviour of qualitativepossibilisti
 networks with that of qualitative probabilisti
 networks and qualitativebelief networks10. Se
tion 4 extends the approa
h to 
onsider multiply 
onne
tednetworks and variables with multiple values, and Se
tion 5 gives an example of thekind of reasoning that 
an be 
arried out with qualitative probabilisti
 networks.Se
tion 6 dis
usses some of the issues that have been raised, and �nally Se
tion 7
on
ludes.2. Possibilisti
 NetworksIn possibility theory8 the information available about the value of a single-valuedattribute a for a given item x, is represented by a possibility distribution �a(x).This is a mapping from the attribute domain U to [0; 1℄ whi
h restri
ts the more orless possible values of a(x). The possibility value �a(x)(u) estimates to what extentit is possible that a(x) = u. The distribution �a(x) is assumed to be normalised sothat supu2U �a(x)(u) = 1, and this is satis�ed as soon as at least one value in U is
onsidered to be 
ompletely possible. The state of total ignoran
e about the valueof a(x) is represented by �a(x)(u) = 1, 8u 2 U .To build a possibilisti
 network9 we take a set of variables V = fX;Y; : : : ; Zgsu
h that X takes values from U = fA1; : : : ; Ang, Y takes values from V =fB1; : : : ; Bmg, and Z takes values fromW = fC1; : : : ; Cpg, and 
onstru
t a networkbased upon the in
uen
es between the variables. The variables are represented bythe nodes of the network, and the in
uen
es between the variables are representedby the links between the nodes. The strength of the in
uen
es is represented bythe numeri
al possibility value assigned to the links. Any node N , representing agiven variable X , is only 
onne
ted to those nodes that represent variables thatin
uen
e X or are in
uen
ed by X . Thus the network en
odes all the availableinformation about the dependen
ies between the variables in V , and the strengthof those dependen
ies. If two nodes in a network are not expli
itly 
onne
ted, thenthe variables that they represent have no dire
t in
uen
e on one another.Consider a link from a node representing variableX to that representing variableY . This link represents the information that \if X is Ai then Y is Bi" where8i; Ai � U , Bi � V . Now, the strength of this in
uen
e is quanti�ed in terms ofpossibilities so that11:8u 2 U;8v 2 V;�X;Y (u; v) = min ��Y jX(v; u);�X(u)� (1)
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 networks 3���� ����- C 2 f
;:
gA 2 fa;:agFig. 1. A simple networkwhi
h gives: 8v 2 V;�Y (v) = supu2Umin��Y jX(v; u);�X (u)� (2)Considering only binary valued variables u 2 fa;:ag, v 2 f
;:
g, as in the networkof Fig. 1 we 
an rewrite these equations as:�(a; 
) = min��(a j 
);�(
)� (3)�(
) = supnmin��(
 j a);�(a)�;min��(
 j :a);�(:a)�o (4)The un
ertainty atta
hed to the link is represented by the possibility distribution(�(
 j a);�(:
 j a)) 2 [0; 1℄2 on the set f
;:
g in the 
ontext of a. In this binary
ase we have the normalisation 
ondition max(�(
 j a);�(:
 j a)) = 1. We alsohave similar information in the 
ontext of :a.3. Singly Conne
ted NetworksHaving established what possibilisti
 networks are, and how to 
onstru
t them, weturn to the problem of predi
ting how values will propagate through them. Todo this we start with the simplest possible 
lass of network and then extend ouranalysis to 
over a larger 
lass.3.1. Propagating qualitative 
hangesWhen 
onsidering how a 
hange in the value of A a�e
ts the value of C, in Fig. 1we �nd that there are three basi
 relationships that 
an hold between them12. Thepossibility of C taking value 
 is said to follow the possibility A taking value a if �(
)in
reases when �(a) in
reases, and de
reases when �(a) de
reases. The possibilityof C taking value 
 is said to vary inversely with the possibility of A taking valuea if �(
) de
reases when �(a) in
reases, and in
reases when �(a) de
reases. Thepossibility of C taking value 
 is said to be independent of the possibility of variableA taking value a if �(
) does not 
hange as �(a) in
reases and de
reases.These relationships may be identi�ed with three possible values of the derivativethat relates the values of �(
) and �(a). It is possible for the derivative Æ�(
)=Æ�(a) to be positive, in whi
h 
ase �(
) in
reases with �(a), negative in whi
h 
ase�(
) varies inversely with �(a), and zero in whi
h 
ase �(
) is independent of �(a).This state of a�airs is 
aptured by a statement about the qualitative value of thederivative, whi
h is written as [Æ�(
)=Æ�(a)℄, so that [Æ�(
)=Æ�(a)℄ = [+℄ if �(
)follows �(a). Clearly, if [Æ�(
)=Æ�(a)℄ = [�℄ then �(
) varies inversely with �(a)and if [Æ�(
)=Æ�(a)℄ = [0℄ then �(
) is independent of �(a). As we shall see, in
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 networks 4Table 1. Qualitative 
ombinator tables� [+℄ [0℄ [�℄ [?℄[+℄ [+℄ [+℄ [?℄ [?℄[0℄ [+℄ [0℄ [�℄ [?℄[�℄ [?℄ [�℄ [�℄ [?℄[?℄ [?℄ [?℄ [?℄ [?℄ 
 [+℄ [0℄ [�℄ ["℄ [#℄ [?℄[+℄ [+℄ [0℄ [�℄ [+; 0℄ [0℄ [?℄[0℄ [0℄ [0℄ [0℄ [0℄ [0℄ [0℄[�℄ [�℄ [0℄ [+℄ [0℄ [0;�℄ [?℄[?℄ [?℄ [0℄ [?℄ [+; 0℄ [0;�℄ [?℄some situations it may not be possible to tell whether or not a relationship holds,so that, it is only possible to say that �(
) may follow �(a) up, or �(
) may follow�(a) down. These 
ases are 
aptured by the statements [Æ�(
)=Æ�(a)℄ = ["℄ and[Æ�(
)=Æ�(a)℄ = [#℄, respe
tively.The reason for representing 
hanges in terms of qualitative derivatives is thatdi�erential 
al
ulus may then be used to tell us how to propagate 
hanges in valuethrough networks, sin
e given �x=�y it is a simple matter to 
al
ulate the 
hange�x from �y. To determine the 
hange at C in Fig. 1 we have:��(
) = ��(a)
 � ��(
)��(a)����(:a)
 � ��(
)��(:a)� (5)��(:
) = ��(a)
 ���(:
)��(a) ����(:a) 
 � ��(:
)��(:a)� (6)where � and 
 denote qualitative addition and multipli
ation respe
tively. Theseare de�ned in Table 1. We 
an express (5) and (6) as a matrix 
al
ulation (afterFarreny and Prade8):� ��(
)��(:
) � = 24 h ��(
)��(a)i h ��(
)��(:a)ih��(:
)��(a) i h ��(:
)��(:a)i35
 � ��(a)��(:a) � (7)3.2. Simple dire
ted graphsGiven this ba
kground we 
an start our analysis of possibilisti
 networks. We willstart by 
onsidering trees, that is singly 
onne
ted graphs in whi
h ea
h node is
onne
ted to at most one other node. All trees may be 
onstru
ted from subnet-works of the form of Fig. 1, and so the results of analysing this network will besuÆ
ient to enable us to predi
t the behaviour of any tree. Writing the graph inFig. 1 as A! C we have:Theorem 3.1. The relation between �(x) and �(y), for all x 2 f
;:
g, y 2fa;:ag, for the link A! C is su
h that �(x) follows �(y) if min��(x j y);�(y)� >min��(x j :y);�(:y)� and �(y) < �(x j y). If min��(x j y);�(y)� � min��(x j:y);�(:y)� and �(y) < �(x j y) then �(x) may follow �(y) up if �(y) is in
reasing,and if min��(x j y);�(y)� > min��(x j :y);�(:y)� and �(y) � �(x j y) then �(x)
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 networks 5may follow �(y) down if �(y) is de
reasing. Otherwise �(x) is independent of �(y).Proof. Possibility theory gives �(
) = sup�min��(
 j a);�(a)�;min��(
 j :a);�(:a)�	. This may not be di�erentiated, but be
ause possibility theory is essen-tially qualitative13, this does not matter. Consider how a small 
hange in �(a)will a�e
t �(
). If �(a) is the value that determines �(
), any 
hange in �(a) willbe re
e
ted in �(
). This must happen when min��(
 j a);�(a)� > min��(
 j:a);�(:a)� and �(a) < �(
 j a). If �(a) is in
reasing and the se
ond 
onditiondoes not hold, it may be
ome true at some point, and so the in
rease may be re-
e
ted in �(
). Similar reasoning may be applied when �(a) is de
reasing and the�rst 
ondition is initially false. Thus we 
an write down the 
onditions relating �(
)and �(a), while those relating �(
) and �(:a) as well as those relating�(:
) and�(a) and �(:a) may be obtained the same way .Theorem 3.1 allows us to propagate 
hanges from A to C given knowledge of possi-bilities su
h as �(
 j a). Clearly, if we knew all the possibilities of the form �(a j 
)we 
ould also propagate from C to A. However, we often don't know both sets ofvalues. In a network we usually have predi
tive values su
h as �(
 j a)| the valuesthat allow us to tell the possibility of some symptom given the possibility of somedisease| sin
e these values are easier to establish than the evidential values su
h as�(aj
), whi
h tell us the possibility of some disease given the symptom. However,we usually want to reason evidentially from the observation of some symptom tothe possibility of a disease, and to do this we must apply the possibilisti
 version ofBayes' rule14. This gives us:Theorem 3.2. For A! C and for all x 2 f
;:
g, y 2 fa;:ag, if �(x) follows �(y)or �(x) may follow �(y) up, then �(y) may follow �(x) up, and if �(x) may follow�(y) down, or if �(x) is independent of �(y) then �(y) may follow �(x) down.Proof. To dis
over how �(a) varies with �(
) we must, by Theorem 3.1, establishwhether min(�(a j 
);�(
)) > min(�(a j :
); (:
)) and �(
) < �(a j 
).Now, if �(
) follows �(a) then �(
) = �(a) and sin
e �(
) follows �(a),�(a) < �(
 j a). The possibilisti
 version of Bayes' rule tells us that min((�(a j
);�(
)) > min((�(
 j a);�(a)) so �(
) < �(a j 
) and the se
ond 
ondition for�(a) following �(
) holds. Furthermore, �(
) < �(
 j a) � 1, so that �(
) < 1.Thus normalisation ensures that �(:
) = 1. Applying possibilisti
 Bayes' ruleagain gives min((�(a j :
);�(:
)) > min((�(:
 j a);�(:a)) whi
h means that�(a j :
) = min((�(:
 j a);�(a)) � �(a), and so �(a j :
) � �(
). Thus the�rst 
ondition for �(a) following �(
) does not ne
essarily hold, and so we 
an onlydetermine that �(a) may follow �(
) up.If �(
) may follow �(a) up then we know that �(a) < �(
 j a) and �(a) �min(�(
 j :a);�(:a)). From the �rst of these �(a) < 1, so that �(:a) = 1, sofrom the se
ond �(a) � �(
 j :a). The possibilisti
 version of Bayes' rule tells
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 networks 6us that min(�(
 j a);�(a)) = min(�(a j 
);�(
)). Sin
e �(a) < �(
 j a), we 
ansay that �(a) = min(�(a j 
);�(
)). The possibilisti
 version of Bayes' rule alsogives min(�(
 j :a);�(:a)) = min(�(:a j 
);�(
)). Sin
e �(:a) = 1 we know that�(a) � �(
 j :a) = min(�(:a j 
);�(
)). Thus min(�(aj
);�(
)) � min(�(:a j
);�(
)). There are four possible ways in whi
h this inequality may be true; (i)�(
) = �(aj
) = �(:a j 
), (ii) �(
) < �(a j 
) � (:a j 
), (iii) �(
) > �(aj
) ��(:a j 
), and (iv) �(:a j 
) > �(
) > �(a j 
). In the �rst 
ase all must be 1,sin
e max((�(a j 
);�(:a j 
)) = 1, so that �(
) = �(a j 
) = 1. However, thisis impossible sin
e �(a) 6= 1, and �(a) = min(�(a j 
);�(
)). In the se
ond 
ase,�(
) < �(aj
) whi
h satis�es the �rst 
ondition for �(a) following �(
). Sin
e thisalso for
es �(:
) = 1, possibilisti
 Bayes' rule gives �(aj:
) = min(�(:
 j a);�(a)).Thus �(a) � �(a j :
) and �(
) � �(a) sin
e �(a) = min(�(a j 
);�(
)). Thus we
an be sure that �(
) � (a j :
) so that the se
ond 
ondition on �(a) following �(
)will only de�nitely be satis�ed if �(
) in
reases. In the third 
ase, �(
) > �(a j 
),so that �(:a j 
) = 1 by normalisation, but �(
) > �(:a j 
), whi
h is impossible.In the fourth 
ase, on
e again �(
) > �(aj
) so that �(:a j 
) = 1. This also meansthat the se
ond 
ondition on �(a) following �(
) is violated. Furthermore we knowthat �(
) < �(:a j 
) so that �(:
) = 1. Thus the �rst 
ondition on �(a) following�(
) be
omes �(a j 
) > �(a j :
). Now, the possibilisti
 version of Bayes' rulesays that min(�(a j 
);�(
)) = min(�(
 j a);�(a)). Sin
e �(
) > �(a j 
) and�(a) < �(
 j a) we have �(a) = �(a j 
). Possibilisti
 Bayes' rule also givesmin(�(aj:
);�(:
)) = min(�(:
 j a);�(a)) whi
h means that �(a) � �(a j :
),thus �(a j 
) � �(a j :
) and �(a) is independent of �(
). Thus when �(
) mayfollow �(a) up, �(a) either may follow �(
) up or is independent of it, whi
h isequivalent to saying that �(a) may follow �(
) up.If �(
) may follow �(a) down, then �(a) � �(
 j a) and �(
 j a) > min(�(
 j:a);�(:a)). From this, and the de�nition of �(
) in terms of �(a), �(:a), �(
ja)and �(
 j :a), it is 
lear that �(
) = �(
 j a), and thus from the possibilisti
version of Bayes' rule, min(�(a j 
);�(
)) = min(�(
 j a);�(a)), it is obvious that�(
) � �(a j 
). And so the se
ond 
ondition for �(
) following �(a) is violated.Thus (again using possibilisti
 Bayes' rule), �(a j 
) > min(�(:a j 
);�(
)). Now,sin
e �(
ja) � �(a) and max(�(
 j a);�(:
 j a)) = 1, we have four di�erent possiblerelationships between �(a), and �(:
 j a) from whi
h we 
an determine �(a j :
),(i) �(:
 j a) < �(
 j a) = 1 = �(a), (ii) �(:
 j a) = �(
 j a) = �(
) = 1, (iii)1 = �(:
 j a) > �(a) > �(
 j a) and (iv) 1 = �(:
 j a) > �(a) = �(
 j a). In the�rst 
ase, min(�(:
 j a);�(a)) = �(:
 j a) = min(�(a j :
);�(:
)). Thus �(
 ja) > min(�(a j :
);�(:
)) and so �(a) may follow �(
) down. In the se
ond 
ase,�(
ja) = min(�(a j :
);�(:
)).Thus min(�(a j 
);�(
)) = min(�(a j :
);�(:
))and �(a) is independent of �(
). In the third 
ase min(�(:
 j a);�(a)) = �(a),thus �(:a) = 1 and �(
 j a) < min(�(a j :
);�(:
)) and �(a) is independent of�(
). In the fourth 
ase, again min(�(:
 j a);�(a)) = �(a), only this time �(
ja) =min(�(a j :
);�(:
)) whi
h does not 
hange the fa
t that �(a) is independent of�(
). Thus, overall, when �(
) may follow �(a) down, �(a) may follow �(
) down.
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 networks 7Finally, if �(a) is independent of �(
), then �(a) � �(
 j a) and �(
ja) �min(�(
 j :a);�(:a)). In addition, the de�nition of �(
) tells us that �(
) � �(
 ja). Now, possibilisti
 Bayes' rule gives min(�(
 j a);�(a)) = min(�(a j 
);�(
))whi
h means that min(�(a j 
);�(
)) = �(
 j a) sin
e �(
 j a) is always at least assmall as �(a). Sin
e �(
) � �(
 j a) it follows that �(
) � �(a j 
) and the �rst
ondition on �(a) following �(
) is false. To verify the se
ond 
ondition, we needto establish the relative magnitudes of �(a; 
) and �(a;:
). If �(aj
) = 1 then�(
) = 1 and �(a; 
) � �(a;:
) and �(a) may follow �(
) down. If �(aj
) < 1,then �(
) � 1, and �(a; 
) might be less than �(a;:
) so that �(a) might follow�(
) down, or be independent of it. Thus, overall, �(a) may follow �(
) down.Similar arguments for all x 2 f
;:
g and y 2 fa;:ag 
omplete the proof .Having established these two theorems we have 
ompletely analysed the network inFig. 1. In this network the 
hange at C depends only on the 
hange at A, and the
hange at A depends only on the 
hange at C. Now, di�erential 
al
ulus tells us that�z�x = �z�y � �y�x so the behaviours of networks su
h as that in Fig. 1 may be 
omposed.Thus we 
an predi
t how qualitative 
hanges in possibility are propagated in anynetwork whi
h is 
omposed of networks of the form of that in Fig. 1 and it is easyto see that this means we 
an propagate values in any network in whi
h every nodehas at most a single parent.3.3. NormalisationIn possibility theory normalisation requires that we have max(�(a);�(:a)) = 1,ensuring that at least one of �(a) and �(:a) is 1. If �(a) is initially 1 and if itde
reases, then �(:a) must in
rease to 1 unless, of 
ourse, it already is 1. Similarlyif �(:a) is initially 1 then any 
hange in its value must be a

ompanied by �(a)be
oming 1. Otherwise 
hanges in �(a) and �(:a) are unrestri
ted. If �(a) is 1and does not 
hange, �(:a) may in
rease, de
rease or not 
hange, and if �(:a) is1 and does not 
hange, �(a) may in
rease, de
rease or not 
hange. This may besummarised by:�(a) = 1 If ��(a) = [0℄ Then ��(:a) = [?℄If ��(a) = [�℄ Then ��(:a) = [+; 0℄�(a) 6= 1 If ��(a) = [+℄ Then ��(:a) = [0;�℄If ��(a) = [0℄ Then ��(:a) = [0℄If ��(a) = [�℄ Then ��(:a) = [0℄Furthermore, in the network of Fig. 1, for any �(a), h ��(
)��(a)i 
an be [+℄, ["℄, [#℄ or[0℄ so that �(
) may follow �(a) up, down or both up and down, or be independentof it, while:�(
) = 1 If ��(
) = [0℄ Then ��(:
) = [?℄If ��(
) = [�℄ Then ��(:
) = [+; 0℄



Qualitative possibilisti
 networks 8�(
) 6= 1 If ��(
) = [+℄ Then ��(:
) = [0;�℄If ��(
) = [0℄ Then ��(:
) = [0℄If ��(
) = [�℄ Then ��(:
) = [0℄These results summarise the behaviour of a possibilisti
 network in terms of thekinds of qualitative 
hange that may be propagated a
ross it. That is, the be-haviours given are all those that are possible| for a given set of 
onditional values,a parti
ular type of propagation will take pla
e.It is 
onstru
tive to 
ompare the results with similar results for probabilisti
networks12 and belief networks based upon eviden
e theory10. Sin
e probabilitytheory has the strong normalisation 
ondition p(a) + p(:a) = 1, the relationshipbetween p(a) and p(:a) is more 
onstrained than that between �(a) and �(:a):p(a) = 1 If �p(a) = [0℄ Then �p(:a) = [0℄If �p(a) = [�℄ Then �p(:a) = [+℄p(a) 6= 1 If �p(a) = [+℄ Then �p(:a) = [�℄If �p(a) = [0℄ Then �p(:a) = [0℄If �p(a) = [�℄ Then �p(:a) = [+℄For any value of p(a), either h �p(
)�p(a)i = [+℄, or h �p(
)�p(a)i = [�℄ Thus p(
) either followsp(a) or varies inversely with it, and 
hanges in p(
) are bound to those in p(:
) inthe same way that those in p(a) are bound to those in p(:a):p(
) = 1 If �p(
) = [0℄ Then �p(:
) = [0℄If �p(
) = [�℄ Then �p(:
) = [+℄p(
) 6= 1 If �p(
) = [+℄ Then �p(:
) = [�℄If �p(
) = [0℄ Then �p(:
) = [0℄If �p(
) = [�℄ Then �p(:
) = [+℄Thus if p(
) follows p(a), p(:
) varies inversely with p(a), and if p(
) varies inverselywith p(a) then p(:
) follows p(a). Normalisation also ensures that if p(
) followsp(a) it will vary inversely with p(:a) and if p(
) varies inversely with p(a) it willfollow p(:a).Eviden
e theory, whi
h only has the very weak normalisation 
ondition thatbel(a) + bel(:a) � 1, has less 
onstrained behaviour than either probability orpossibility theories. Indeed, when using Dempster's rule15 to 
ombine mass assign-ments, there are no 
onstraints on the possible relationships between bel(a) andbel(:a):bel(a) = 1 If �bel(a) = [0℄ Then �bel(:a) = [?℄If �bel(a) = [�℄ Then �bel(:a) = [?℄bel(a) 6= 1 If �bel(a) = [+℄ Then �bel(:a) = [?℄If �bel(a) = [0℄ Then �bel(:a) = [?℄If �bel(a) = [�℄ Then �bel(:a) = [?℄There are also no 
onstraints on the relationship that may hold between bel(a)
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) sin
e for any bel(a), h �bel(
)�bel(a)i 
an be [+℄, [0℄, or [�℄, and there are no
onstraints on the possible relationship between bel(
) and bel(:
):bel(
) = 1 If �bel(
) = [0℄ Then �bel(:
) = [?℄If �bel(
) = [�℄ Then �bel(:
) = [?℄bel(
) 6= 1 If �bel(
) = [+℄ Then �bel(:
) = [?℄If �bel(
) = [0℄ Then �bel(:
) = [?℄If �bel(
) = [�℄ Then �bel(:
) = [?℄Thus for a given 
hange in bel(a) it is possible to have any 
hange in bel(
) andany 
hange in bel(:a) and bel(:
). However, using other rules of 
ombination ineviden
e theory, su
h as Smets' disjun
tive rule16 alters the behaviour making itmore restri
tive10;12.Similar di�eren
es in behaviour between formalisms o

ur when we 
onsiderreversing the link between A and C in Fig. 1. In probability theory the link behavesthe same12 when values are propagated from C to A as when they are propagatedfrom A to C. Thus if p(
) follows p(a) then p(a) follows p(
), and if p(
) variesinversely with p(a) then p(a) varies inversely with p(
). As we have seen above,possibility theory prevents us from making su
h 
lear 
ut predi
tions so that we areonly able to say that �(a) may follow �(
) up if �(
) follows �(a), or may follow�(a) up, and �(a) may follow �(
) down if �(
) is independent of �(a) or mayfollow �(a) down. When reversing the link, eviden
e theory is more 
onstrainedthan either possibility or probability theory12 sin
e bel(a) always follows bel(
).This seems to be a dire
t 
onsequen
e of using the disjun
tive rule of 
ombinationin the derivation of the generalisation of Bayes' rule to eviden
e theory16.While the de
ision about whi
h quantitative formalism is of most use in a par-ti
ular situation should be made on the basis of the semanti
s of the di�erentformalisms, this 
omparison may prove useful when 
hoosing whi
h qualitative for-malism to use. It makes 
lear the fa
t that when using probability theory a 
hangein the value of one proposition is a

ompanied by an opposite 
hange in the valueof its negation. It also points out that in probability theory it is easy to have thesimple network of Fig. 1 invert the 
hange it propagates so that an in
rease in p(a)be
omes a de
rease in p(
)| a behaviour that is not easy to 
apture in possibilitytheory. The 
omparison also reveals that, unlike possibility theory, probability the-ory 
annot blo
k the e�e
t of p(a) on p(
), and this may bear on its e�e
tiveness.Furthermore, it is 
lear that eviden
e theory qualitatively subsumes probability andpossibility theory, as one might expe
t sin
e it is a generalisation of them both.3.4. More 
omplex networksAs dis
ussed above, the analysis 
arried out in Se
tion 3.2 allows us to predi
t howqualitative 
hanges in 
ertainty value will be propagated in a simple link betweentwo nodes, and thus in any network in whi
h every node has at most a singleparent. We now extend these results to enable us to 
ope with networks in whi
h
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Fig. 2. A more 
omplex networknodes may have more than one parent. To do this we 
onsider the qualitative e�e
tof two 
onverging links su
h as those in Fig. 2. Sin
e we are only dealing withsingly 
onne
ted networks, B and C are independent and the overall e�e
t at D isdetermined by:� ��(d)��(:d) � = 24 h��(d)��(b) i h ��(d)��(:b)ih��(:d)��(b) i h ��(:d)��(:b) i35
 � ��(b)��(:b) ��24 h��(d)��(
) i h ��(d)��(:
)ih��(:d)��(
) i h��(:d)��(:
) i35
 � ��(
)��(:
) � (8)When determining how 
hanges are propagated a
ross this kind of network, we havea similar result to that for the simple link, namely:Theorem 3.3. The relation between �(x), �(y) and �(z), for all x 2 fb;:bg,y 2 f
;:
g, z 2 fd;:dg for the link B&C ! D is su
h that:(1) �(z) follows �(x) i� �(x; y; z) > sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and�(x) < min��(z j x; y);�(y)), or �(x;:y; z) > sup��(x; y; z);�(:x; y; z);�(:x;:y; z)� and �(x) < min��(z j x;:y);�(:y)�.(2) �(z) may follow �(x) up i� �(x; y; z) � sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) < min��(z j x; y);�(y)), or �(x;:y; z) � sup��(x; y; z);�(:x; y;z);�(:x;:y; z)� and �(x) < min��(z j x;:y);�(:y)�.(3) �(z) may follow �(x) down i� �(x; y; z) > sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) � min��(z j x; y);�(y)), or �(x;:y; z) > sup��(x; y; z);�(:x; y;z);�(:x;:y; z)� and �(x) � min��(z j x;:y);�(:y)�.(4) Otherwise �(z) is independent of �(x).Proof. As for Theorem 3.1 we 
an use the qualitative nature of possibility the-ory to give the result may be determined dire
tly from 
areful 
onsideration of�(d) = supx2fb;:bg;y2f
;:
g�(x; y; z) and �(x; y; z) = min ��(z j x; y);�(x);�(y)�,the formulae whi
h determine the possibility of d from that of b, :b, 
 and :
 .Theorem 3.1 allows us to predi
t how 
hanges in possibility 
an be propagated toa node from two parents, and it is 
lear that similar results 
an be obtained for
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���� ��������

����ZZZZZZ~ ������=
������= ZZZZZZ~

D 2 fd;:dg C 2 f
:
gB 2 fb;:bg
A 2 fa;:ag

Fig. 3. A loop with four nodesany number of parents. The only assumption made in the derivation was that thepossibility values of the parents are 
onditionally independent. Now, the di�erential
al
ulus tells us that 
hanges in value are 
al
ulated by �z = �x � �z�x + �y � �z�y ,provided that x is not a fun
tion of y. Thus we 
an 
learly use the results of thisse
tion to propagate qualitative 
hanges in possibility and through any network inwhi
h the parents of any node are 
onditionally independent, that is through anysingly 
onne
ted network.4. Multiply Conne
ted Networks and MoreAlthough the results presented so far enable us to predi
t how 
hanges in possibilitywill be propagated through a large 
lass of networks, we are still not equipped topredi
t how 
hanges will be propagated in every possible network. This se
tionaddresses some of the outstanding problems.4.1. From singly to multiply 
onne
ted networksThe analysis 
arried out in Se
tion 3.4 made the expli
it assumption that B and Cwere 
onditionally independent so that �(b; 
) = min ��(b);�(
)�. This assumptionfalls apart for multiply 
onne
ted networks su
h as those of Fig. 3 where B and Care not 
onditionally independent when A is not known to be true. To handlethis 
ase 
orre
tly one should take a

ount of the dependen
y by writing �(b; 
) =sup ��(a; b; 
);�(:a; b; 
)�. Now, it is 
lear that it is possible to take any loopand perform a qualitative analysis upon it to establish how qualitative 
hanges inpossibility are propagated through it. However, there is no easy way to generalisesu
h an analysis from that of a four node loop like that in Fig. 3 to loops withdi�erent numbers of nodes. The qualitative analysis is tied to a parti
ular topology.However, in qualitative probability and eviden
e theories12 it is possible to han-dle the network of Fig. 3 as if it were two simple 
ausal links 
ombined with amulti-parent link, as in Fig. 4, ignoring the dependen
y between B and C, and pro-
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gB 2 fb;:bg
A 2 fa;:ag A 2 fa;:ag

Fig. 4. A na��ve view of the loop with four nodesviding a method of handling loops that 
an easily be extended to di�erent topologies.Despite the fa
t that su
h a na��ve approa
h is in
orre
t a

ording to the underlyingquantitative theory, it does not generate qualitatively in
orre
t answers. This isdue to the fa
t that ignoring the dependen
y often only alters the magnitude ofthe 
hange in value at D rather than the dire
tion of the 
hange (a fa
t that isignored by the qualitative analysis), or 
al
ulates the 
hange at D to be [?℄ ratherthan, say, [+℄. Sin
e saying the 
hange at D is [?℄ is shorthand for the statement\The 
hange at D 
ould be [+℄, [0℄ or [�℄", this result of the na��ve approa
h isnot in
ompatible with the result of the 
orre
t approa
h, and if the na��ve approa
hgenerates predi
tions whi
h are never in
ompatible with the 
orre
t approa
h wesay that it is safe.4.2. Multiply 
onne
ted networksSin
e the na��ve approa
h is safe in probability and eviden
e theories, it is worthinvestigating whether it is safe in possibility theory. To do this we 
onsider propa-gating a 
hange in possibility from A to D in the network of Fig. 3, whi
h we willrefer to as the }-network, 
omparing the results obtained by the 
orre
t and na��veapproa
hes. Disappointingly we have the following result:Theorem 4.1. It is not safe to use the na��ve approa
h to propagate qualitativevalues in the }-network using possibility theory.Proof. For the }-network possibility theory gives us �(d) = supb2fb;:bg;
2f
;:
g�min ��(d j b; 
);�(b; 
)�	. Now, in the 
orre
t approa
h when B and C areknown to not be independent, �(b; 
) = sup��(a; b; 
);�(:a; b; 
)	 whi
h is equalto sup�min ��(b j a);�(
 j a);�(a)�;min ��(b j :a);�(
 j :a);�(:a)�	. We 
andetermine the 
onditions under whi
h �(d) follows �(a) by inspe
tion, and we learnthat they are, for any 
 2 f
;:
g, and b 2 fb;:bg; �(a) < min ��(b j a);�(
 j a)�
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 networks 13(1), �(a; b; 
) > �(:a; b; 
) (2), �(d j b; 
) > sup��(a; b; 
);�(:a; b; 
)	(3), and�(a; b; 
; d) > supb2fb;:bg;
2f
;:
g�(:a; b; 
; d)(4). If all 
onditions hold then �(d)follows �(a), if (1) and (3) hold but (2) and (4) don't then �(d) may follow �(a)up, and if (2) and (4) hold but (1) and (3) don't then �(d) may follow �(a) down.Otherwise �(d) is independent of �(a). If we use the na��ve approa
h we have thepossibility at D as before,�(d) = supb2fb;:bg;
2f
;:
g �min ��(d j b; 
);�(b; 
)�	,but �(b; 
) = min ��(b);�(
)� and �(b) = sup�min ��(b j a);�(a)�;min ��(b j:a);�(:a)�	 so that the 
onditions on �(d) following �(a) are, for any 
 2 f
;:
g,and b 2 fb;:bg; �(a) < �(b j a) (10), �(a; b) > �(:a; b) (20), and �(b) < min ��(d jb; 
);�(
)� (30), as well as �(b; 
; d) > supb2fb;:bg;
2f
;:
g�(:b; 
; d) (40). Similar
onditions hold for 
onditionals involving 
. If all 
onditions hold then �(d) follows�(a), if (10) and (30) hold but (20) and (40) don't then �(d) may follow �(a) up,and if (20) and (40) hold but (10) and (30) don't then �(d) may follow �(a) down.If we have �(a) = 0:6, �(:a) = 1, �(b j a) = 0:8, �(b j :a) = 0:8, �(
 j a) = 0:5,�(
 j :a) and �(d j b; 
) = 0:9, then (10) and (30) hold while (1), (2) and (20)don't. Thus the na��ve method tells us that �(d) may follow �(a) up, when theexa
t method tells us �(d) is independent of �(a) and the na��ve method is thusunsafe .This problem may be related to that reported by Cano et al.17 where propagationof possibility values around a loop was found to be diÆ
ult as a result of theidempoten
e of the fun
tion used for 
ombination. The upshot of Theorem 4.1 isthat the propagation of qualitative 
hanges around loops in possibility theory musttake into a

ount the dependen
ies between the parents of the node at the base ofthe loop. The theory, however, does o�er another approa
h to handling loops. It isstraightforward to write down the 
onditions under whi
h �(d) varies with �(a):Theorem 4.2. In the }-network �(d) follows �(a) when, for any 
 2 f
;:
g andb 2 fb;:bg (1) �(a) < min ��(b j a);�(
 j a)�, (2) �(a; b; 
) > �(:a; b; 
), (3)�(d j b; 
) > sup��(a; b; 
);�(:a; b; 
)	, and (4) �(a; b; 
; d) > supb2fb;:bg;
2f
;:
g�(:a; b; 
; d). If (1) and (3) alone hold then �(d) may follow �(a) up, and if only(2) and (4) hold then �(d) may follow �(a) down. Under all other 
onditions �(d)is independent of �(a).Proof. This follows dire
tly from the proof of Theorem 4.1 .Theorem 4.2 makes it possible to redu
e the }-network to a simple 
ausal linkA! D in whi
h the behaviour of this simple link is 
ontrolled by the 
onditions:�(a) < �(d j a) (9)�(d; a) > �(d j :a) (10)where (9) is de�ned to hold if 
onditions (1) and (3) of Theorem 4.2 hold, and (10)to hold if (2) and (4) of Theorem 4.2 hold. Setting the 
onditions thus ensures
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A 2 fa;:ag
... ...

B 2 fb;:bg C 2 f
;:
gE 2 fe;:egD 2 fd;:dg Q 2 fq;:qgP 2 fp;:pgX 2 fx;:xg Y 2 fy;:yg
Z 2 fz;:zgFig. 5. A loop with an arbitrarily large number of nodesthat the link A ! D relates A and D in exa
tly the same way as the }-networkdoes and is thus a similar redu
tion to that dis
ussed by Wellman1 for qualitativeprobabilisti
 networks.Redu
ing the loop to a simple link eliminates the need to 
onsider dependen
iesbetween several parents of a node, sin
e these have been dealt with in the redu
tion.Thus qualitative 
hanges 
an be propagated through networks obtained by redu
ingfour node loops using methods developed in Se
tion 3 sin
e there are no longer anyloops to 
ause any problems. This kind of redu
tion does, however, rule out thepossibility of determining the 
hanges at B and C, the intermediate nodes along theloop, in the same way that Wellman's redu
tion does, meaning that the redu
tionmust be targetted at a parti
ular node whose 
hange it is desired to know. Clearly, ifthe 
hange at an intermediate node is required, this must be determined seperately.This result 
an be extended to networks with arbitrarily large numbers of nodes.For the network in Fig. 5, whi
h we will refer to as the N}-network, it is possibleto determine that:Theorem 4.3. In the N}-network �(z) follows �(a) when, for any 
 2 f
;:
g,b 2 fb;:bg,: : :, x 2 fx;:xg, y 2 fy;:yg, all the following 
onditions hold: �(a) <min ��(b j a);�(d j b); : : : ;�(x j p);�(
 j a);�(e j 
); : : : ;�(y j q) (1), �(a; b; 
;: : : ; x; y) > �(:a; b; 
; : : : ; x; y) (2), �(x; y) < �(z j x; y) (3), and �(a; b; 
; : : : ; x;
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B 2 fb;:bg D 2 fd:dgA 2 fa;:ag
C 2 f
;:
g

Fig. 6. A new perspe
tive on the four node loopy; z) > supb2fb;:g;:::;y2fy;:yg ��(a; b; 
; : : : ; x; y; z)	 (4). If (1) and (3) hold but (2)and (4) don't, �(z) may follow �(a) up, and if (2) and (4) hold but (1) and (3) don't,then �(z) may follow �(a) down. Under all other 
onditions �(z) is independentof �(a).Proof. The theorem follows from the proof of Theorem 4.1 when the equationsrelating �(a) and �(d) are generalised to the network of Fig. 5 .Theorem 4.3 permits the redu
tion of the loop to a single link of the form A ! Zin the same way as was des
ribed in the previous se
tion, and by doing so per-mits propagations through loops without 
onsidering the dependen
ies between theparents. However, as dis
ussed above, su
h a redu
tion will make it impossible toestablish 
hanges in value at intermediate nodes su
h as P and Q.4.3. Other loop topologiesSo far only the propagation of values from the top of the loop to the bottom havebeen 
onsidered. In this se
tion a number of di�erent ways in whi
h values may bepropagated through loops are dealt with. In parti
ular, 
onsidering the }-network,it is interesting to try and establish:(i) the 
hange at B given the 
hange at C;(ii) the 
hange in D given the 
hange at C;(iii) the 
hange at D given 
hanges at A and C.Consider (i) �rst. In this 
ase the loop in question is that of Fig. 6. where C isthe top node and B is the bottom node. In this 
ase, Theorem 4.2 
an give usthe 
onditions under whi
h �(b) varies with �(
), and it is possible to propagate
hanges by redu
ing the network. Clearly, to apply Theorem 4.2 to this new network
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Fig. 7. Another new perspe
tive on the four node loopwill require di�erent possibility values from those required by the analysis of thenetwork of Fig. 3. It may be possible to establish these new values from the old onesby using the possibilisti
 version of Bayes' theorem, or they may need to be obtainedby some form of knowledge aquisition. Case (ii) is similar. Here the network �tsinto the mould of the N}-network, albeit somewhat lopsidedly (see Fig. 7). Itis 
lear that su
h a network 
an be redu
ed to a link C ! D given the relevant
onditionals. Case (iii) is a little di�erent sin
e it involves the 
ombination of thee�e
ts of two di�erent 
hanges. Applying the prin
iple of superposition makes itpossible to take the qualitative e�e
t of the 
hange at A alone on D and at C aloneon D and sum them to get the total 
hange at D. Clearly, this means redu
ing thenetwork to A ! D to 
ompute the 
hange at D due to the 
hange at A and thenredu
ing the network to C ! D to 
ompute the 
hange at D due to the 
hange atC, before summing the two 
hanges.Between them 
ases (i){(iii), along with the original 
ase, des
ribe all the basi
ways in whi
h 
hanges may be propagated around the four node network. Any otherpropagation of 
hanges are variations on or 
ombinations of these basi
 patterns.Thus the results given above make it possible for us to predi
t how any set of
hanges will be propagated around a four node loop. Now, similar analyses maybe 
arried out for the general loop of Fig. 5, making it possible to predi
t how anyset of 
hanges will be propagated about any loop, and so the results of this se
tionare suÆ
ient to extend the theory of qualitative possibilisti
 networks to 
over anynetwork that is a dire
ted a
y
li
 graph, provided that the variables mentioned inthe network are binary valued.4.4. Networks with non-binary valued variablesAll the variables 
onsidered so far in this paper have been binary valued. The 
hoi
eof su
h variables has been entirely pragmati
 in that they are easier to work with,lending themselves to simpler proofs and more 
omprehensible results. However,
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 networks 17���� ����- X 2 fx; y; : : : ;mgY 2 fa; b; : : : ; ngFig. 8. A network with nodes representing non-binary valued variablesthere are many real world situations in whi
h multivalued variables are appropriate,and this se
tion addresses the use of su
h variables in qualitative possibilisti
 net-works. In parti
ular the propagation of qualitative 
hanges in multivalued variablesis 
onsidered a
ross the simplest possible network, su
h as Y ! X of Fig. 8. Here Yhas possible values fa; b; : : : ; ng and X has possible values fx; y; : : : ;mg. Possibilitytheory tells us that the possibility of X taking value x is�(x) = supY 2fa;b;:::;ngmin��(x j Y );�(Y )� (11)Using this equation, it is possible to establish how 
hanges in possibility at X maydepend upon 
hanges in possibility at Y . For instan
e, the di�erent ways in whi
h�(x) varies given 
hanges in �(a) are summarised by:Theorem 4.3. In the network Y ! X , �(x) follows �(a) if �(a) < �(x j a) and�(x; a) > sup(�(x; b); :::;�(x; n)), �(x) may follow �(a) up,if �(a) < �(x j a) and�(x; a) < sup(�(x; b); :::;�(x; n)), �(x) may follow �(a) down if �(a) > �(x j a)and �(x; a) > sup(�(x; b); :::;�(x; n)), otherwise �(x) is independent of �(a).Proof. In a similar way as for Theorems 3.1 and 3.3, the result follows by inspe
tionfrom the expression for �(x), namely �(x) = sup�min ��(x j a);�(a)�;min ��(x jb);�(b)�; :::;min ��(x j n);�(n)�	 .Similar results may be obtained for the way in whi
h �(x) varies with �(b); :::;�(n),and for the ways in whi
h �(y); :::;�(m) vary with �(a); :::;�(n). The overall
hange at X depends upon the 
hanges at Y and all of the relationships betweenthe di�erent possible values of X and Y . The overall 
hange is thus determined by:2664 ��(x)��(y)...��(m)3775 = 2666664 h��(x)��(a)i h��(x)��(b) i � � � h ��(x)��(n)ih ��(y)��(a)i h��(y)��(b) i � � � h ��(y)��(n)i... ... ...h��(m)��(a) i h��(m)��(b) i � � � h��(m)��(n) i
3777775
 2664��(a)��(b)...��(n)3775 (12)It is 
learly possible to extend the other results in this paper to the 
ase of non-binary valued variables if su
h results are required, making it possible to analyse thequalitative behaviour of any possibilisti
 network that is a dire
ted a
y
li
 graph.
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 networks 185. An ExampleIn this se
tion we provide an illustration of the kind of reasoning that may be 
ar-ried out using qualitative possibilisti
 networks, ta
kling a version of the dyspnoeaproblem originally dis
ussed by Lauritzen and Spiegelhalter5.5.1. PreambleThe previous se
tions have des
ribed how to analyse possibilisti
 networks in orderto establish how qualitative 
hanges will be propagated in a network for whi
h thequantitative values are known. This is the way in whi
h the theory of qualitativepossibilisti
 networks was intended to be used, as part of a s
heme for integratingun
ertainty handling formalisms12, and is the way in whi
h the use of qualitativepossibilisti
 networks has previously been dis
ussed18;19. However, this is not theonly way in whi
h qualitative possibilisti
 networks may be used. There is analternative mode of use, and it is this that will be employed in our example.The other mode of use of qualitative possibilisti
 networks is that generally pro-posed for qualitative probabilisti
 networks| a mode in whi
h the networks arede�ned in terms of the qualitative, rather than the quantitative, relationships be-tween variables. Thus when 
onsidering two binary-valued variables P and Q whi
hare known to in
uen
e ea
h other, a
quisition 
entres around establishing whether�(p) follows �(q) rather than what the value of �(p j q) is. When establishing thisqualitative behaviour, the results of the previous se
tions identify the assumptionsabout 
onditional values that are being made. Having established the qualitativebehaviour of the network that represents a given situation, (7) and (8) may be usedto propagate 
hanges in possibility, so that the result of various observations maybe 
onsidered.It should be noted, however, that whereas in qualitative probabilisti
 networksa single qualitative value is suÆ
ient to 
hara
terise the in
uen
e between twovariables, in qualitative possibilisti
 networks a single qualitative value is requiredfor ea
h relevant derivative. Thus the in
uen
e between P and Q is 
hara
terisedby four derivatives, and thus we must seperately a
quire the relationships betweenp and q, between p and :q, between :p and q and between :p and :q.5.2. The dyspnoea problemThe original formualtion of the dyspnoea problem5 was based upon the followingpie
e of �
titious qualitative medi
al `knowledge':Dyspnoea (D), that is shortness-of-breath, may be due to tuber
ulosis(T), lung 
an
er (L), or bron
hitis (B), or none of them, or more than oneof them. A re
ent visit to Asia (A) in
reases the 
han
es of tuber
ulosis,while smoking (S) is known to be a risk fa
tor for both lung 
an
er andbron
hitis. The results of a single 
hest X-ray (X) identi�es the presen
eof either tuber
ulosis or lung 
an
er (E) sin
e it does not distinguishbetween them, as does the presen
e of absen
e of dyspnoea.
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T 2 ft;:tg
A 2 fa;:ag
X 2 fx;:xg E 2 fe;:eg L 2 fl;:lg S 2 fs;:sgB 2 fb;:bg

D 2 fd;:dgFig. 9. The network for the dyspnoea exampleThe bra
keted letters are the names of the binary variables representing the 
ondi-tions, and ea
h variable is represented by a node in the network of Fig. 9. It shouldbe 
lear that Fig. 9 is the network of in
uen
es between the 
onditions. Now, thesituation to whi
h we want to apply this information is, for instan
e, to establishhow the possibility of a patient having tuber
ulosis 
hanges when it is known thatthe patient is a smoker, or to establish how the possibility of the patient havingbron
hitis 
hanges given that a positive x-ray is obtained. That is we want to estab-lish the qualitative 
hange in the possibility of the patient having bron
hitis givenan in
rease in the possibility of a positive x-ray, and what the qualitative 
hange inpossibility of tuber
ulosis is given that the possibility of the patient being a smokerin
reases.5.3. Applying qualitative possibilisti
 networksTo answer these questions we need information about the qualitative in
uen
es be-tween the various values of the variables in the problem, and these 
an be obtainedfrom the des
ription of the problem given above. In parti
ular we must establishthe relationship between �(s) and �(e) in order to redu
e the loop in whi
h theyboth are to a simple link between them, and thus a singly 
onne
ted network inwhi
h it is safe to propagate qualitative possibility values. From the problem de-s
ription we 
an say that the possibility of lung 
an
er or tuber
ulosis will followboth the possibility of smoking, and the possibility of tuber
ulosis. Thus, in termsof qualitative derivatives: ���(e)��(s)� = [+℄ (13)���(e)��(t) � = [+℄ (14)
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 networks 20It seems reasonable to assume that h��(:e)��(:s)i = [+℄ and h ��(e)��(:s)i = h��(:e)��(s) i = [0℄,and h��(:e)��(:t) i = [+℄ and h ��(e)��(:t)i = h��(:e)��(t) i = [0℄. Thus, given that knowledgeof the patient smoking means that ��(s) = [+℄ and ��(s) = [�℄ the 
hange inpossibility of lung 
an
er or tuber
ulosis may be 
al
ulated using (7):� ��(e)��(:e) � = � [+℄ [0℄[0℄ [+℄�
 � [+℄[�℄ � (15)= � [+℄[�℄ � (16)Now, so far reasoning has been predi
tive, from 
auses to e�e
ts, but to establishhow the possibility of tuber
ulosis will 
hange we must reverse this and reasonevidentially from E to T . To do this we apply Theorem 3.2 whi
h tells us that,given the known relationship between �(t) and �(e):� ��(t)��(e)� = ["℄ (17)and we may also establish that h ��(t)��(:e)i = [#℄, that h ��(t)��(:e)i = [#℄ and h ��(:t)��(:e)i =["℄, so that: � ��(t)��(:t) � = � ["℄ [#℄[#℄ ["℄ �
 � [+℄[�℄� (18)= � [?℄[0℄� (19)So that we 
an say that while it is not possible to predi
t for sure how the possibilitythat the patient has tuber
ulosis will 
hange, we 
an be sure that the possibilitythat the patient does not have tuber
ulosis will not 
hange. Thus knowledge ofthe patient's history of smoking does not have mu
h relevan
e to a dis
ussion ofwhether or not they have tuber
ulosis.A similar pro
ess 
ould be applied to 
al
ulate how a positive X-ray a�e
ts thepossibility of bron
hitis. Consideration of the des
ription of the problem will yieldthe qualitative in
uen
e of E on X , and this may be reversed by Theorem 3.2 togive the 
hange in possibility of E. Then the loop must be redu
ed by establishingthe qualitative in
uen
e of B on E, and this in turn may be reversed allowing the
hange in possibility of B to be established.6. Dis
ussionHaving introdu
ed a number of features of qualitative possibilisti
 networks andhaving demonstrated their appli
ation on a small example, this se
tion brings thepaper almost to a 
lose with a dis
ussion of what the theory may be used for, somerelated pie
es of work, and some dire
tions in whi
h the theory might be extended.
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 networks 216.1. Uses for qualitative possibilisti
 networksAs mentioned above, the original motivation for the development of the theory ofqualitative possibilisti
 networks was the need to integrate di�erent un
ertaintyhandling formalisms. It is possible12;18 to argue that integration may be a
hievedby only 
onsidering qualitative 
hanges in values expressed in di�erent formalisms,and so the study of qualitative possibilisti
 networks, and the results detailed above,make it possible to integrate possibility theory with other formalisms. The methodis 
exible, simple to extend, and unlike other s
hemes for integration does notimpose a parti
ular semanti
s upon the formalisms, and these advantages o�setthe weak qualitative results that the method provides. These advantages also seemto make the method appli
able in the area of distributed arti�
ial intelligen
e19;20when existing systems are 
oupled together.As argued above, however, it is also possible to use qualitative possibilisti
 net-works on their own a

ount as a means of representing and reasoning with un
ertaininformation in exa
tly the same way as qualitative probabilisti
 networks may beused. In this 
ase exa
tly the same motivation may be proposed. This is1 thatthe use of pre
ise numeri
al information may be inappropriate sin
e, in 
ertain 
ir-
umstan
es, it leads to knowledge bases being appli
able only in very narrow areasbe
ause of the intera
tion between values at a �ne level of detail. Sin
e they viewthe world at a higher level of abstra
tion, qualitative methods are immune to su
hproblems| the small 
ompli
ations su
h intera
tions 
ause simply have no e�e
tat the 
oarse level of detail with whi
h qualitative methods are 
on
erned.This means that a system that was tailored to one environment 
an be movedto another and 
ontinue to operate reliably sin
e the same qualitative informationapplies. Thus, for instan
e a medi
al expert system using qualitative possibilisti
reasoning 
ould be moved from one 
lini
 to another with no adverse results sin
e theinformation upon whi
h it makes its diagnoses would be the same in both pla
es.In 
ontrast a system using a numeri
al formalism would be expe
ted to be
omeunreliable sin
e the numbers on whi
h it was based would have 
hanged, and inorder to make it reliable a whole new set of numbers would have to be a
quired.In this mode, then, the qualitative formalism provides robust reasoning that stillobeys the fundamental tenets of the underlying quantitative theory with all theadvantages that it entails.Finally, qualitative possibilisti
 reasoning 
an be used as a means of validatingquantitative possibilisti
 systems. Sin
e the qualitative behaviour of a system isan abstra
tion of its quantitative behaviour, it is possible to use the qualitativeanalysis to predi
t how the system will behave quantitatively. This means that itis possible to 
arry out a few simple tests to determine if the basi
 behaviour of anumeri
al model is that whi
h is desired by its developers, and to make 
orre
tionsif these are ne
essary21.



Qualitative possibilisti
 networks 226.2. Related workThis work is 
losely related to that of Wellman1 and Henrion and Druzdzel2;22.These authors are interested in the propagation of qualitative probability and basetheir notion of dependen
y between variables on the idea of forward sto
hasti
 dom-inan
e. As a result, the s
heme that they 
ome up with is rather simpler than mine,whi
h is good from the point of view of 
larity. However, their s
heme is not builton quite su
h fundamental notions. These di�eren
es are not surprising given thatthe s
hemes have di�erent intended uses. Mine was intended as a basis for the inte-gration of di�erent formalisms and it is thus important that it is 
ompletely faithfulto the underlying theory. Theirs is intended as an eÆ
ient and extensible abstra
-tion of probability theory so that simpli
ity is paramount. However, if qualitativepossibilisti
 networks are to be used in a similar way to that dis
ussed in Se
tion6, it might well be worth extending the underlying theory to make them as simpleand robust as qualitative probabilisti
 networks.Another pie
e of related work is that of Fon
k and Strasze
ka9 who have stud-ied the propagation of possibility values through a
y
li
 dire
ted graphs and havedis
overed a means of 
arrying out su
h a propagation in a similar way to thatin whi
h Pearl4 propagates probability values in su
h stru
tures. There are twodi�eren
es between their approa
h and mine. Firstly Fon
k and Strasze
ka handlequantitative 
hanges in possibility value while I deal with qualitative 
hanges. Ifthe 
hanges generated by their s
heme in a parti
ular s
enario are 
onsidered in aqualitative way, so that, for instan
e, a 
hange from �(a) = 0:1 to �(a) = 0:3 isseen only as an in
rease �(a) = [+℄, then both of our approa
hes will give the sameresult. In any network, in every situation that Fon
k and Strasze
ka's s
heme ofpropagation generates a quantitative 
hange in possibility at some node as a resultof a 
hange in possibility at another node, my s
heme will generate an equivalentqualitative 
hange. The se
ond di�eren
e is that Fon
k and Strasze
ka are inter-ested in eÆ
ient propagation, a subje
t whi
h is not 
onsidered here. However, itseems that the propagation of qualitative values is inherently more eÆ
ient thanthat of numeri
al values. Druzdzel and Henrion23 have re
ently shown that thepropagation of qualitative probability values is quadrati
 in the number of nodes inthe graph, making the pro
ess 
onsiderably more tra
table than the propagation ofquantitative values whi
h is known to be NP-hard24.6.3. Future workThere are three obvious ways in whi
h the work reported in this paper may beextended. The �rst is to generalise the qualitative quantity spa
e from f[+℄; [�℄; [0℄;[?℄; ["℄; [#℄g to allow it to represent more pre
ise information when su
h informationis available. There are several ways in whi
h this might be done. It 
ould be ad-dressed by the use of more 
omplex qualitative values12, semiqualitative values25 ora 
ombination of numeri
al and qualitative information26| all methods whi
h hy-bridise qualitative and quantitative representations in an attempt to broaden both.
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 networks 23Alternatively the problem 
ould be handled by some form of order of magnitudereasoning27 in whi
h the relative magnitude of quantities are expli
tly manipulatedin order to enable reasoning about whi
h 
hanges are signi�
ant, or whi
h are moreimportant than others.This kind of development would make the representation more 
omplex. Itwould also be possible to make the representation simpler. That is by borrowingideas from the theory of qualitative probabilisti
 networks, it might be possibleto provide a simpler means of representing the 
hanges that take pla
e at a node,and the way in whi
h 
hanges in value might be propagated along links betweennodes. This kind of simpli�
ation might also help to ease the sear
h for an eÆ-
ient algorithm for propagating values in qualitative possibilisti
 networks, whi
his the third area in whi
h it seems that the theory 
ould be extended. It shouldbe noted, however, that the la
k of a spe
ialised eÆ
ient algorithm has not pre-vented the implementation of the 
urrent theory. This implementation12 has been
arried out using the Pul
inella28 system whi
h itself is based upon the eÆ
ientlo
al 
omputation method of Shenoy and Shafer29.7. SummaryThis paper has introdu
ed the idea of qualitative possibilisti
 networks, re-porting results that 
omplement re
ent work on qualitative probabilisti
 networks.Qualitative possibilisti
 networks were introdu
ed as an abstra
tion of possibilis-ti
 networks, and the 
onditions for their various types of qualitative behaviourestablished. The results given are suÆ
ient to establish the qualitative behaviourof any possibilisti
 network whi
h takes the form of a dire
ted a
y
li
 graph, andpermit the way in whi
h 
hanges in possibility will be propagated in both predi
-tive and evidential dire
tions to be predi
ted. The results may also be viewed in adi�erent light, as an investigation of the possible behaviours that may be en
odedby a qualitative possibilisti
 network. Looked at in this way the results form thebasis of a new qualitative means of representing and reasoning with un
ertain in-formation that obeys the basi
 axioms of possibility theory. This view of the resultswas illustrated by means of a medi
al example, and other appli
ations of qualitativepossibilisti
 networks were mentioned. The paper 
losed with a dis
ussion of relatedwork and some of the dire
tions in whi
h the theory might be expanded.A
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