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This paper presents some results concerning the qualitative behaviour of possibilistic
networks. The behaviour of singly connected networks is analysed, providing the founda-
tions for qualitative reasoning about changes in possibility values in both predictive and
evidential directions. The problems inherent in handling multiply connected networks
are also discussed, and a possible solution is proposed. The behaviour of qualitative
possibilistic networks is compared to qualitative probabilistic networks, and an example
of the kind of reasoning that is permitted by the use of these networks is provided.
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1. Introduction

The study of qualitative probabilistic reasoning in networks has become well es-
tablished, both in the context of planning!, explanation?, and engineering design?.
This paper extends such work by considering qualitative possibilistic reasoning in
networks, that is how to determine the qualitative changes that take place when
uncertainty values are propagated through directed graphs similar to those studied
by Pearl* and Lauritzen and Spiegelhalter® using possibility theory®7.

When we consider the propagation of probability and possibility values through
a network there are two operations that are of interest. Firstly we want to determine
the prior values of every node in the network from those prior values that are known
and the conditional values that relate the nodes of the network together. Secondly
we are interested in establishing the new values of the nodes when certain pieces
of evidence are discovered. When considering the qualitative behaviour of such
networks we are only interested in the second operation, the way in which the
values of the nodes change when evidence is obtained, since all prior values are
qualitatively equivalent. When an event is observed, the value of the node relating
to that event changes, increasing or decreasing. The change propagates through the
network, causing the value of other nodes to change, and we can thus determine
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the effect of the observed event on the nodes in which we are interested. Thus
the qualitative analogy of updating with new evidence is propagating qualitative
changes in value.

The structure of the paper is as follows. Section 2 discusses the idea of pos-
sibilistic networks, which stems from work by Farreny and Prade® and Fonck and
Straszecka®. Then Section 3 introduces the basic ideas behind qualitative possibilis-
tic networks, and uses them to provide an analysis of the propagation of qualitative
changes in value in singly connected networks of binary valued nodes. This section
includes a discussion of normalisation and compares the behaviour of qualitative
possibilistic networks with that of qualitative probabilistic networks and qualitative
belief networks'®. Section 4 extends the approach to consider multiply connected
networks and variables with multiple values, and Section 5 gives an example of the
kind of reasoning that can be carried out with qualitative probabilistic networks.
Section 6 discusses some of the issues that have been raised, and finally Section 7
concludes.

2. Possibilistic Networks

In possibility theory® the information available about the value of a single-valued
attribute a for a given item w, is represented by a possibility distribution II,,).
This is a mapping from the attribute domain U to [0, 1] which restricts the more or
less possible values of a(z). The possibility value IL,(,)(u) estimates to what extent
it is possible that a(z) = u. The distribution I1,(,) is assumed to be normalised so
that sup,ey a(e)(u) = 1, and this is satisfied as soon as at least one value in U is
considered to be completely possible. The state of total ignorance about the value
of a(w) is represented by Iy(,)(u) =1, Vu € U.

To build a possibilistic network? we take a set of variables V = {X)Y,..., Z}
such that X takes values from U = {A;,...,A,}, Y takes values from V =
{Bi,...,Bn}, and Z takes values from W = {C},...,Cp}, and construct a network
based upon the influences between the variables. The variables are represented by
the nodes of the network, and the influences between the variables are represented
by the links between the nodes. The strength of the influences is represented by
the numerical possibility value assigned to the links. Any node N, representing a
given variable X, is only connected to those nodes that represent variables that
influence X or are influenced by X. Thus the network encodes all the available
information about the dependencies between the variables in V, and the strength
of those dependencies. If two nodes in a network are not explicitly connected, then
the variables that they represent have no direct influence on one another.

Consider a link from a node representing variable X to that representing variable
Y. This link represents the information that “if X is A; then Y is B;” where
Vi,A; C U, B; C V. Now, the strength of this influence is quantified in terms of
possibilities so that!'!:

Vu € U,Yv € V, Ix.y (u,v) = min (HY‘X(v,u),HX(u)) (1)
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A e {a,—a} C € {c,~c}
Fig. 1. A simple network

which gives:
Vv € V,lly (v) = sup min (HY‘X(v,u),HX (u)) (2)
uwelU
Considering only binary valued variables u € {a,—a}, v € {¢, —c}, as in the network
of Fig. 1 we can rewrite these equations as:

II(a,c) = min (H(a | c),H(c)) (3)

II(¢) = sup { min (H(c | a),H(a)),min (H(c | —a), H(ﬁa))} (4)

The uncertainty attached to the link is represented by the possibility distribution
(L(c | a),I(~c | a)) € [0,1]* on the set {c,—c} in the context of a. In this binary
case we have the normalisation condition max(Il(c | a),II(—¢ | a)) = 1. We also
have similar information in the context of —a.

3. Singly Connected Networks

Having established what possibilistic networks are, and how to construct them, we
turn to the problem of predicting how values will propagate through them. To
do this we start with the simplest possible class of network and then extend our
analysis to cover a larger class.

3.1. Propagating qualitative changes

When considering how a change in the value of A affects the value of C, in Fig. 1
we find that there are three basic relationships that can hold between them'2?. The
possibility of C taking value ¢ is said to follow the possibility A taking value a if II(c)
increases when II(a) increases, and decreases when II(a) decreases. The possibility
of C' taking value c is said to vary inversely with the possibility of A taking value
a if II(c) decreases when II(a) increases, and increases when II(a) decreases. The
possibility of C' taking value ¢ is said to be independent of the possibility of variable
A taking value a if II(c) does not change as II(a) increases and decreases.

These relationships may be identified with three possible values of the derivative
that relates the values of II(c) and II(a). It is possible for the derivative dIl(c)/
0Il(a) to be positive, in which case II(c) increases with II(a), negative in which case
II(c) varies inversely with II(a), and zero in which case II(c) is independent of II(a).
This state of affairs is captured by a statement about the qualitative value of the
derivative, which is written as [6II(c)/dII(a)], so that [6II(c)/0Il(a)] = [+] if II(c)
follows II(a). Clearly, if [6II(c)/éII(a)] = [—] then II(c) varies inversely with II(a)
and if [6II(c)/0II(a)] = [0] then II(c) is independent of II(a). As we shall see, in
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Table 1. Qualitative combinator tables

® | [+ [0 [-] [ o 0 ) N O I
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o B I ) B ol IR o I I U o A () [ (U R
K kI kI P O [ [+0 [0,-] [7]

some situations it may not be possible to tell whether or not a relationship holds,
so that, it is only possible to say that II(c) may follow II(a) up, or II(c) may follow
II(a) down. These cases are captured by the statements [0II(c)/0Il(a)] = [1] and
[0I1(c)/o0I1(a)] = [{], respectively.

The reason for representing changes in terms of qualitative derivatives is that
differential calculus may then be used to tell us how to propagate changes in value
through networks, since given dz/0y it is a simple matter to calculate the change
Az from Ay. To determine the change at C' in Fig. 1 we have:

ATI(e) = All(a) ® ng] ® All(-a) [ 8?111(163)} (5)
ATl(=¢) = All(a) ® {a;g;f))] ® All(-a) ® [SEE:Z;] (6)

where & and ® denote qualitative addition and multiplication respectively. These
are defined in Table 1. We can express (5) and (6) as a matrix calculation (after
Farreny and Prade®):

BII(c) BI1(c)
I R i i | R PG G

3.2. Simple directed graphs

Given this background we can start our analysis of possibilistic networks. We will
start by considering trees, that is singly connected graphs in which each node is
connected to at most one other node. All trees may be constructed from subnet-
works of the form of Fig. 1, and so the results of analysing this network will be
sufficient to enable us to predict the behaviour of any tree. Writing the graph in
Fig. 1 as A — C we have:

Theorem 3.1. The relation between II(z) and I(y), for all z € {¢,~c}, y €
{a,—a}, for the link A — C is such that II(z) follows II(y) if min (II(z | y), I(y)) >
min (II(z | =y),1(-y)) and (y) < I(z | y). If min(I(z | y),1(y)) < min(I(z |
—y),1I(=y)) and II(y) < I(z | y) then II(z) may follow II(y) up if II(y) is increasing,
and if min (II(z | y),I(y)) > min(Il(z | -y),I(-y)) and I(y) > I(z | y) then I(z)
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may follow II(y) down if II(y) is decreasing. Otherwise II(z) is independent of II(y).

Proof. Possibility theory gives II(¢c) = sup{min(II(c | a),II(a)), min(7(c | —a),
H(ﬁa)) } This may not be differentiated, but because possibility theory is essen-
tially qualitative'3, this does not matter. Consider how a small change in II(a)
will affect II(c). If II(a) is the value that determines II(c), any change in II(a) will
be reflected in II(c). This must happen when min(II(c | a),1I(a)) > min(II(c |
—a),1I(=a)) and I(a) < I(c | a). If II(a) is increasing and the second condition
does not hold, it may become true at some point, and so the increase may be re-
flected in II(c). Similar reasoning may be applied when II(a) is decreasing and the
first condition is initially false. Thus we can write down the conditions relating II(c)
and II(a), while those relating II(c) and II(—a) as well as those relatinglI(—c¢) and
II(a) and II(—a) may be obtained the same wayO.

Theorem 3.1 allows us to propagate changes from A to C given knowledge of possi-
bilities such as II(c | a). Clearly, if we knew all the possibilities of the form II(a | ¢)
we could also propagate from C to A. However, we often don’t know both sets of
values. In a network we usually have predictive values such as II(c | a)— the values
that allow us to tell the possibility of some symptom given the possibility of some
disease— since these values are easier to establish than the evidential values such as
II(a|c), which tell us the possibility of some disease given the symptom. However,
we usually want to reason evidentially from the observation of some symptom to
the possibility of a disease, and to do this we must apply the possibilistic version of
Bayes’ rule!*. This gives us:

Theorem 3.2. For A — C and for all € {c, ¢}, y € {a,-a}, if II(z) follows II(y)
or II(z) may follow II(y) up, then II(y) may follow II(z) up, and if II(z) may follow
II(y) down, or if II(x) is independent of II(y) then II(y) may follow II(z) down.

Proof. To discover how II(a) varies with II(c) we must, by Theorem 3.1, establish
whether min(II(a | ¢),II(c)) > min(II(a | =¢), (—¢)) and II(c) < H(a | ¢).

Now, if II(c¢) follows II(a) then II(¢) = I(a) and since I(c) follows II(a),
II(a) < II(c | a). The possibilistic version of Bayes’ rule tells us that min((II(a |
¢),1I(c)) > min((II(c | a),I(a)) so (c) < II(a | ¢) and the second condition for
II(a) following II(c) holds. Furthermore, II(c) < II(c | a) < 1, so that II(c) < 1.
Thus normalisation ensures that II(-¢) = 1. Applying possibilistic Bayes’ rule
again gives min((II(a | —¢),II(=¢)) > min((II(-c | a),II(-a)) which means that
I(a | =¢) = min((Il(—c | a),lI(a)) < II(a), and so II(a | =¢) < [(c). Thus the
first condition for II(a) following II(c) does not necessarily hold, and so we can only
determine that II(a) may follow II(c) up.

If TI(c) may follow II(a) up then we know that II(a) < II(c | a) and I(a) <
min(II(c | —a),I(—a)). From the first of these II(a) < 1, so that II(—a) = 1, so
from the second II(a) < II(c | —a). The possibilistic version of Bayes’ rule tells
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us that min(II(c | a),T(a)) = min(II(a | ¢),1I(c)). Since I(a) < II(c | a), we can
say that [I(a) = min(II(a | ¢),II(c)). The possibilistic version of Bayes’ rule also
gives min(Il(c | —a),lI(-a)) = min(II(-a | ¢),(c)). Since II(-a) = 1 we know that
I(a) < (e | =a) = min(II(-a | ¢),1I(c)). Thus min(II(alc),I(c)) > min(II(-a |
¢),II(c)). There are four possible ways in which this inequality may be true; (i)
(e) = M(ale) = T(~a | o), (i) T(c) < T{a | ¢) < (~a | ¢), (i) T(c) > M{alc) >
II(-a | ¢), and (iv) II(-a | ¢) > II(c) > II(a | ¢). In the first case all must be 1,
since max((Il(a | ¢),II(—a | ¢)) = 1, so that II(c) = I(a | ¢) = 1. However, this
is impossible since II(a) # 1, and II(a) = min(II(a | ¢),II(c)). In the second case,
II(c) < I(alc) which satisfies the first condition for II(a) following II(c). Since this
also forces II(—c) = 1, possibilistic Bayes’ rule gives II(a|—c¢) = min(II(—c¢ | a), I(a)).
Thus II(a) > II(a | —¢) and II(c) > I(a) since II(a) = min(II(a | ¢),II(c)). Thus we
can be sure that II(¢) > (a | —¢) so that the second condition on II(a) following II(c)
will only definitely be satisfied if II(c¢) increases. In the third case, II(¢) > II(a | ¢),
so that II(-a | ¢) = 1 by normalisation, but II(¢) > II(—a | ¢), which is impossible.
In the fourth case, once again II(c) > II(alc) so that II(—a | ¢) = 1. This also means
that the second condition on II(a) following II(c) is violated. Furthermore we know
that II(c) < II(—a | ¢) so that II(—¢) = 1. Thus the first condition on II(a) following
II(c) becomes I(a | ¢) > II(a | =¢). Now, the possibilistic version of Bayes’ rule
says that min(Il(a | ¢),I(c)) = min(I(c | a),II(a)). Since I(c) > H(a | ¢) and
II(a) < II(c | a) we have II(a) = II(a | ¢). Possibilistic Bayes’ rule also gives
min(II(a|-c¢), II(=¢)) = min(II(—c | a),II(a)) which means that II(a) > II(a | —¢),
thus II(a | ¢) > II(a | =¢) and I(a) is independent of II(¢). Thus when II(c) may
follow II(a) up, II(a) either may follow II(c) up or is independent of it, which is
equivalent to saying that II(a) may follow II(c) up.

If TI(¢) may follow II(a) down, then II(a) > II(c | a) and II(c | @) > min(II(c |
—a),I(—a)). From this, and the definition of II(c) in terms of II(a), II(—a), II(c|a)
and II(c | —a), it is clear that II(c) = II(c | a), and thus from the possibilistic
version of Bayes’ rule, min(Il(a | ¢),II(c)) = min(II(c | a),II(a)), it is obvious that
II(c) < I(a | ¢). And so the second condition for II(c) following II(a) is violated.
Thus (again using possibilistic Bayes’ rule), II(a | ¢) > min(II(-a | ¢), I(c)). Now,
since II(c|a) < II(a) and max(II(c | a),II(—c | a)) = 1, we have four different possible
relationships between II(a), and II(—c¢ | a) from which we can determine II(a | —c),
(i) O(=c | a) < (e | a) = 1 = II(a), (ii) H(=c | a) = II(c | a) = II(c) = 1, (iii)
1=T1(-c|a) >Ua) > (c| a) and (iv) 1 = I(-c | a) > H(a) =I(c| a). In the
first case, min(Il(—c | a),II(a)) = II(—c | a) = min(Il(a | —¢),II(=c)). Thus II(c |
a) > min(Il(a | =¢),II(=c)) and so II(a) may follow II(c) down. In the second case,
II(cla) = min(II(a | —¢),I(—=¢c)).Thus min(II(a | ¢),(c)) = min(Il(a | —c),(—c))
and II(a) is independent of II(¢). In the third case min(Il(—c | a),I(a)) = I(a),
thus II(—a) = 1 and II(c | @) < min(Il(a | —¢),II(=c)) and II(a) is independent of
II(c). In the fourth case, again min(II(—c | a),II(a)) = I(a), only this time II(c|a) =
min(II(a | =¢),II(—¢)) which does not change the fact that II(a) is independent of
II(c). Thus, overall, when II(c¢) may follow II(a) down, II(a) may follow II(¢) down.
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Finally, if II(a) is independent of II(c), then II(a) > I(c | a) and II(cla) <
min(II(c | —a),I(—a)). In addition, the definition of II(c) tells us that I(c) > II(c |
a). Now, possibilistic Bayes’ rule gives min(Il(c | a),II(a)) = min(II(a | ¢),II(c))
which means that min(Il(a | ¢),II(c)) = (c | a) since II(c | a) is always at least as
small as II(a). Since II(¢) > I(c | a) it follows that II(c) > II(a | ¢) and the first
condition on II(a) following II(c) is false. To verify the second condition, we need
to establish the relative magnitudes of II(a,c) and II(a,—c). If II(alc) = 1 then
II(c) = 1 and I(a,c) > (a,—c) and (a) may follow II(c) down. If II(alc) < 1,
then II(c) < 1, and II(a,c) might be less than II(a,—c) so that II(a) might follow
II(c) down, or be independent of it. Thus, overall, II(a) may follow II(c) down.
Similar arguments for all z € {¢, ¢} and y € {a, —a} complete the proofOd.

Having established these two theorems we have completely analysed the network in
Fig. 1. In this network the change at C' depends only on the change at A, and the
change at A depends only on the change at C'. Now, differential calculus tells us that
% = g—; . % so the behaviours of networks such as that in Fig. 1 may be composed.
Thus we can predict how qualitative changes in possibility are propagated in any
network which is composed of networks of the form of that in Fig. 1 and it is easy
to see that this means we can propagate values in any network in which every node

has at most a single parent.

3.3. Normalisation

In possibility theory normalisation requires that we have max(Il(a),II(-a)) = 1,
ensuring that at least one of II(a) and II(—a) is 1. If II(a) is initially 1 and if it
decreases, then II(—a) must increase to 1 unless, of course, it already is 1. Similarly
if II(—a) is initially 1 then any change in its value must be accompanied by II(a)
becoming 1. Otherwise changes in II(a) and II(—a) are unrestricted. If II(a) is 1
and does not change, II(—a) may increase, decrease or not change, and if II(-a) is
1 and does not change, II(a) may increase, decrease or not change. This may be
summarised by:

M(a) =1 If All(a) =[0] Then AIl(-a)=1[7]
If All(a) =[-] Then AlIl(-a)=[+,0]
O(a) #1 If All(a) =[+] Then AI(-a)=0,-]
If All(a) =[0] Then All(-a)=[0]
If AIl(a) =[] Then All(—a)=[0]
Furthermore, in the network of Fig. 1, for any II(a), [%] can be [+], [1], [{] or

[0] so that II(c) may follow II(a) up, down or both up and down, or be independent
of it, while:

I(c) =1 If Al(c) =[0] Then AIl(-c)=][7]
If Al(c)=[-] Then Al(-c)=[+,0]
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O(c) #1 If All(c) =[+] Then AIl(-c) =10, -]
If All(c) =[0] Then AIl(—c) =][0]
If Al(c) =[-] Then AIll(=c) =][0]

These results summarise the behaviour of a possibilistic network in terms of the
kinds of qualitative change that may be propagated across it. That is, the be-
haviours given are all those that are possible— for a given set of conditional values,
a particular type of propagation will take place.

It is constructive to compare the results with similar results for probabilistic
networks'? and belief networks based upon evidence theory!?. Since probability
theory has the strong normalisation condition p(a) + p(—a) = 1, the relationship
between p(a) and p(—a) is more constrained than that between II(a) and II(—a):

pla)=1 If Ap(a)=[0] Then Ap(-a)=]0]
If Ap(a) =[-] Then Ap(-a)=[+]
pla) #1 If p(a) [+]  Then Ap(-a) =[]
If Ap(a) =[0] Then Ap(-a)=][0]
If Ap(a) =[-] Then Ap(-a)=[+]

For any value of p(a), either [gﬁz))] [+], or [8p(a)] [—] Thus p(c) either follows
p(a) or varies inversely with it, and changes in p(c¢) are bound to those in p(—¢) in

the same way that those in p(a) are bound to those in p(—a):

p(c)=1 If Ap(c)=[0] Then p(—c) = [0]
If Ap(c) =[-] Then Ap(—c)=[+]
pl#1 It Ap(c) =[+] Then Ap(=c) =[]
If Ap(c) =[0] Then Ap(-c)=][0]
If Ap(c)=[-] Then Ap(=c)=][+]

Thus if p(c) follows p(a), p(—c) varies inversely with p(a), and if p(c) varies inversely
with p(a) then p(—c) follows p(a). Normalisation also ensures that if p(c) follows
p(a) it will vary inversely with p(—a) and if p(c) varies inversely with p(a) it will
follow p(—a).

Evidence theory, which only has the very weak normalisation condition that
bel(a) + bel(—a) < 1, has less constrained behaviour than either probability or
possibility theories. Indeed, when using Dempster’s rule'® to combine mass assign-
ments, there are no constraints on the possible relationships between bel(a) and
bel(—a):

bel(a) =1 If Abel(a) =1[0] Then Abel(-a)=]
If Abel(a) =[-] Then Abel(—a) =17

bel(a) #1 If Abel(a) =[+] Then Abel(—-a)= 7]
If Abel(a) =[0] Then Abel(—a)=17]
If Abel(a) =[-] Then Abel(—a) =17

There are also no constraints on the relationship that may hold between bel(a)
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and bel(c) since for any bel(a), [ggzllgz))} can be [+], [0], or [-], and there are no

constraints on the possible relationship between bel(c) and bel(—c):

bel(c) =1 If Abel(c) =1[0] Then Abel(—c)=1[7]

If Abel(c) =[-] Then Abel(—c)=17]
bel(c) #1 If Abel(c) =[+] Then Abel(—c)=1[7]

If Abel(c) =[0] Then Abel(—c)=17]
If Abel(c) =[-] Then Abel(-c)=17]
Thus for a given change in bel(a) it is possible to have any change in bel(c) and
any change in bel(—a) and bel(—c¢). However, using other rules of combination in
evidence theory, such as Smets’ disjunctive rule!® alters the behaviour making it
more restrictive!©-12,

Similar differences in behaviour between formalisms occur when we consider
reversing the link between A and C' in Fig. 1. In probability theory the link behaves
the same'? when values are propagated from C to A as when they are propagated
from A to C. Thus if p(c) follows p(a) then p(a) follows p(c), and if p(c) varies
inversely with p(a) then p(a) varies inversely with p(c). As we have seen above,
possibility theory prevents us from making such clear cut predictions so that we are
only able to say that II(a) may follow II(c) up if II(c) follows II(a), or may follow
II(a) up, and II(a) may follow II(¢) down if II(c) is independent of II(a) or may
follow II(a) down. When reversing the link, evidence theory is more constrained
than either possibility or probability theory'? since bel(a) always follows bel(c).
This seems to be a direct consequence of using the disjunctive rule of combination
in the derivation of the generalisation of Bayes’ rule to evidence theory'S.

While the decision about which quantitative formalism is of most use in a par-
ticular situation should be made on the basis of the semantics of the different
formalisms, this comparison may prove useful when choosing which qualitative for-
malism to use. It makes clear the fact that when using probability theory a change
in the value of one proposition is accompanied by an opposite change in the value
of its negation. It also points out that in probability theory it is easy to have the
simple network of Fig. 1 invert the change it propagates so that an increase in p(a)
becomes a decrease in p(c)— a behaviour that is not easy to capture in possibility
theory. The comparison also reveals that, unlike possibility theory, probability the-
ory cannot block the effect of p(a) on p(c), and this may bear on its effectiveness.
Furthermore, it is clear that evidence theory qualitatively subsumes probability and
possibility theory, as one might expect since it is a generalisation of them both.

3.4. More complex networks

As discussed above, the analysis carried out in Section 3.2 allows us to predict how
qualitative changes in certainty value will be propagated in a simple link between
two nodes, and thus in any network in which every node has at most a single
parent. We now extend these results to enable us to cope with networks in which
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B € {b, b} C € {c,—c}

D € {d,~d}

Fig. 2. A more complex network

nodes may have more than one parent. To do this we consider the qualitative effect
of two converging links such as those in Fig. 2. Since we are only dealing with
singly connected networks, B and C are independent and the overall effect at D is
determined by:

oI1(d) o11(d)
AII(d) _ [an(b)] |:8H(—ub)j| ATI(D)
{Amﬂd)} T[] ] ®[An<ﬁb>]
o11(d) o11(d)
) 30 o

When determining how changes are propagated across this kind of network, we have
a similar result to that for the simple link, namely:

Theorem 3.3. The relation between II(z), II(y) and II(2), for all z € {b,—b},
y € {¢,—c}, z € {d,~d} for the link B&C — D is such that:

(1) II(z) follows II(z) iff II(z,y, z) > sup [H(—-az,y,z),H(m,—-y,z),H(—-az,—'y, )] and
II(z) < min(II (z | z,y),1(y)), or I(z,~y,z) > sup[ll(z,y,=2),I(~z,y,2), (-
—y,2)] and II(z) < mm( (z | z,~y),I(~y)).

(2) I(z) may follow II(z) up iff H(z,y,2z) < sup[H(—w,y,z),H(m,—-y,z),H(—-az,
ﬁy,z)] and II(z) < mm( (z | z,y),1(y)), or II(z, vy, z) < sup[H(a:,y,z),H(—-a:,y,
z), (=@, 7y, 2)] and I(z) < min(I(z | z, 7y), I(-y)).

(3) II(z) may follow II(z) down iff Il(z,y,2) > sup[ll(—a,y, 2),(z, ~y, 2), (-,
-y, 2)] and II(z) > min(Il(z | ,y),(y)), or I(z,~y,z) > sup[Il(z,y, z), (-, y,
z), (=@, 7y, 2)] and I(z) > min(I(z | z, ~y), I(-y)).

(4) Otherwise II(z) is independent of II(x).

Proof. As for Theorem 3.1 we can use the qualitative nature of possibility the-
ory to give the result may be determined directly from careful consideration of
H(d) = Supxe{byﬁb}ny{c,ﬁc} H(ZIZ, Y, Z) and H(ZE, Y, Z) = min (H(Z | €, Z—/), H(ZU), H(y))a
the formulae which determine the possibility of d from that of b, =b, ¢ and —cO.

Theorem 3.1 allows us to predict how changes in possibility can be propagated to
a node from two parents, and it is clear that similar results can be obtained for
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Ae{a,—a}

B € {b,—b} C € {cc}

D € {d,~d}
Fig. 3. A loop with four nodes

any number of parents. The only assumption made in the derivation was that the
possibility values of the parents are conditionally independent. Now, the differential
calculus tells us that changes in value are calculated by Az = Az - % + Ay - g—z,
provided that x is not a function of y. Thus we can clearly use the results of this
section to propagate qualitative changes in possibility and through any network in
which the parents of any node are conditionally independent, that is through any

singly connected network.

4. Multiply Connected Networks and More

Although the results presented so far enable us to predict how changes in possibility
will be propagated through a large class of networks, we are still not equipped to
predict how changes will be propagated in every possible network. This section
addresses some of the outstanding problems.

4.1. From singly to multiply connected networks

The analysis carried out in Section 3.4 made the explicit assumption that B and C
were conditionally independent so that II(b, ¢) = min (II(b),II(c)). This assumption
falls apart for multiply connected networks such as those of Fig. 3 where B and C
are not conditionally independent when A is not known to be true. To handle
this case correctly one should take account of the dependency by writing II(b, ¢) =
sup (II(a, b, ¢), II(=a,b,c)). Now, it is clear that it is possible to take any loop
and perform a qualitative analysis upon it to establish how qualitative changes in
possibility are propagated through it. However, there is no easy way to generalise
such an analysis from that of a four node loop like that in Fig. 3 to loops with
different numbers of nodes. The qualitative analysis is tied to a particular topology.

However, in qualitative probability and evidence theories'? it is possible to han-
dle the network of Fig. 3 as if it were two simple causal links combined with a
multi-parent link, as in Fig. 4, ignoring the dependency between B and C, and pro-
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Ae{a,—a} Ae{a,—a}

B € {b, b} C € {c,~c}

D € {d,~d}

Fig. 4. A naive view of the loop with four nodes

viding a method of handling loops that can easily be extended to different topologies.
Despite the fact that such a naive approach is incorrect according to the underlying
quantitative theory, it does not generate qualitatively incorrect answers. This is
due to the fact that ignoring the dependency often only alters the magnitude of
the change in value at D rather than the direction of the change (a fact that is
ignored by the qualitative analysis), or calculates the change at D to be [?] rather
than, say, [+]. Since saying the change at D is [?] is shorthand for the statement
“The change at D could be [+], [0] or [—]”, this result of the naive approach is
not incompatible with the result of the correct approach, and if the naive approach
generates predictions which are never incompatible with the correct approach we
say that it is safe.

4.2. Multiply connected networks

Since the naive approach is safe in probability and evidence theories, it is worth
investigating whether it is safe in possibility theory. To do this we consider propa-
gating a change in possibility from A to D in the network of Fig. 3, which we will
refer to as the {-network, comparing the results obtained by the correct and naive
approaches. Disappointingly we have the following result:

Theorem 4.1. It is not safe to use the naive approach to propagate qualitative
values in the {$-network using possibility theory.

Proof. For the ¢-network possibility theory gives us II(d) = supyecp —p},cefc,~c}
{min (H(d | b,c),H(b,c))}. Now, in the correct approach when B and C are
known to not be independent, II(b, c) = sup {H(a, b,c),(—a,b, c)} which is equal
to sup { min (II(b | a),I(c | a),II(a)), min (II(b | =a),I(c | =a),II(-a)) }. We can
determine the conditions under which II(d) follows II(a) by inspection, and we learn
that they are, for any ¢ € {¢, ¢}, and b € {b, ~b}; II(a) < min (IL(b | a),II(c | a))
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(1), U(a,b,c) > I(=a,b,c) (2), II(d | b,c) > sup{Il(a,b,c),lI(—a,b,c)}(3), and
II(a,b,c,d) > SUDpe (b, b}, ce{e,c} II(—a,b,c,d)(4). If all conditions hold then II(d)
follows II(a), if (1) and (3) hold but (2) and (4) don’t then II(d) may follow II(a)
up, and if (2) and (4) hold but (1) and (3) don’t then II(d) may follow II(a) down.
Otherwise II(d) is independent of II(a). If we use the naive approach we have the
possibility at D as before,II(d) = sup,cy b} cefec,c} {min (II(d | b,¢),1I(b,¢))},
but II(b,¢) = min (II(b),1I(c)) and II(b) = sup { min (II(b | a),II(a)), min (II(b |
—a),1I(=a)) } so that the conditions on II(d) following II(a) are, for any ¢ € {c, ~c},
and b € {b,~b}; II(a) <II(b | a) (1'), I(a,b) > II(-a,b) (2'), and II(b) < min (II(d |
b,c),I(c)) (3'), as well as II(b,c,d) > SUPpe [, b} ce{e,—c} H(7b,¢,d) (4'). Similar
conditions hold for conditionals involving c. If all conditions hold then II(d) follows
II(a), if (1') and (3') hold but (2') and (4') don’t then II(d) may follow II(a) up,
and if (2') and (4') hold but (1) and (3') don’t then II(d) may follow II(a) down.
If we have II(a) = 0.6, II(—a) = 1, II(b | a) = 0.8, II(b | —a) = 0.8, II(c | a) = 0.5,
II(c | —a) and II(d | b,¢) = 0.9, then (1') and (3') hold while (1), (2) and (2')
don’t. Thus the naive method tells us that II(d) may follow II(a) up, when the
exact method tells us II(d) is independent of II(a) and the naive method is thus
unsafed.

This problem may be related to that reported by Cano et al.!” where propagation
of possibility values around a loop was found to be difficult as a result of the
idempotence of the function used for combination. The upshot of Theorem 4.1 is
that the propagation of qualitative changes around loops in possibility theory must
take into account the dependencies between the parents of the node at the base of
the loop. The theory, however, does offer another approach to handling loops. It is
straightforward to write down the conditions under which II(d) varies with II(a):

Theorem 4.2. In the $-network II(d) follows II(a) when, for any ¢ € {¢, —¢} and
b € {b,-b} (1) II(a) < min (IL(b | a),I(c | a)), (2) I(a,b,c) > II(-a,b,c), (3)
II(d | b,c) > sup {II(a,b,c),II(=a,b,c)}, and (4) I(a,b,c,d) > SUDPpe {b,b},ce{e,~c}
II(—a,b,c,d). If (1) and (3) alone hold then II(d) may follow II(a) up, and if only
(2) and (4) hold then II(d) may follow II(a) down. Under all other conditions II(d)
is independent of II(a).

A~ ~—

Proof. This follows directly from the proof of Theorem 4.10.

Theorem 4.2 makes it possible to reduce the {-network to a simple causal link
A — D in which the behaviour of this simple link is controlled by the conditions:

(a) < M(d]a) 9)
I(d,a) > TII(d|-a) (10)

where (9) is defined to hold if conditions (1) and (3) of Theorem 4.2 hold, and (10)
to hold if (2) and (4) of Theorem 4.2 hold. Setting the conditions thus ensures
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A€ {a,—a}
B € {b,b} C € {c,~c}
D € {d,—d} E € {e,—e}
Pe{p-pl Qe {a,~q}
X € {z,~z} Y ely,—wy}
Z € {z,~z}

Fig. 5. A loop with an arbitrarily large number of nodes

that the link A — D relates A and D in exactly the same way as the {-network
does and is thus a similar reduction to that discussed by Wellman! for qualitative
probabilistic networks.

Reducing the loop to a simple link eliminates the need to consider dependencies
between several parents of a node, since these have been dealt with in the reduction.
Thus qualitative changes can be propagated through networks obtained by reducing
four node loops using methods developed in Section 3 since there are no longer any
loops to cause any problems. This kind of reduction does, however, rule out the
possibility of determining the changes at B and C, the intermediate nodes along the
loop, in the same way that Wellman’s reduction does, meaning that the reduction
must be targetted at a particular node whose change it is desired to know. Clearly, if
the change at an intermediate node is required, this must be determined seperately.

This result can be extended to networks with arbitrarily large numbers of nodes.
For the network in Fig. 5, which we will refer to as the N {-network, it is possible
to determine that:

Theorem 4.3. In the N{$-network II(z) follows II(a) when, for any ¢ € {c,—c},
be {b,-b}, .., z€ {z,~x}, y € {y,~y}, all the following conditions hold: II(a) <
wmin (TL(b | @), T(d | b),..., Tz | p),Ti(c | a),T(e | o),....T(y | @) (1), Tabc,

. 7',1,:7 y) > H(_Ia7 b7 c? et 7:’U7y) (2)7 H(:’E7 y) < H(Z | ;U?y) (3)7 and H(a7 b7 c7 v 7',1,:7
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C € {c,—c}

A e {a,—a} D e {d—-d}

B € {b,~b}

Fig. 6. A new perspective on the four node loop

Y, 2) > SUDpe(p 3. yefy—yt (@D, ¢, oy, y,2) ) (4). Tf (1) and (3) hold but (2)
and (4) don’t, II(2) may follow II(a) up, and if (2) and (4) hold but (1) and (3) don’t,
then II(z) may follow II(a) down. Under all other conditions II(z) is independent
of II(a).

Proof. The theorem follows from the proof of Theorem 4.1 when the equations
relating II(a) and II(d) are generalised to the network of Fig. 50.

Theorem 4.3 permits the reduction of the loop to a single link of the form A — Z
in the same way as was described in the previous section, and by doing so per-
mits propagations through loops without considering the dependencies between the
parents. However, as discussed above, such a reduction will make it impossible to
establish changes in value at intermediate nodes such as P and Q.

4.3. Other loop topologies

So far only the propagation of values from the top of the loop to the bottom have
been considered. In this section a number of different ways in which values may be
propagated through loops are dealt with. In particular, considering the {-network,
it is interesting to try and establish:

(i) the change at B given the change at C;
(ii) the change in D given the change at C;
(iii) the change at D given changes at A and C.

Consider (i) first. In this case the loop in question is that of Fig. 6. where C is
the top node and B is the bottom node. In this case, Theorem 4.2 can give us
the conditions under which II(b) varies with II(c), and it is possible to propagate
changes by reducing the network. Clearly, to apply Theorem 4.2 to this new network
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C €{c,—c}

A€ {a,—a}

B € {b,~b}

D € {d,—d}

Fig. 7. Another new perspective on the four node loop

will require different possibility values from those required by the analysis of the
network of Fig. 3. It may be possible to establish these new values from the old ones
by using the possibilistic version of Bayes’ theorem, or they may need to be obtained
by some form of knowledge aquisition. Case (ii) is similar. Here the network fits
into the mould of the N{-network, albeit somewhat lopsidedly (see Fig. 7). It
is clear that such a network can be reduced to a link C' — D given the relevant
conditionals. Case (iii) is a little different since it involves the combination of the
effects of two different changes. Applying the principle of superposition makes it
possible to take the qualitative effect of the change at A alone on D and at C' alone
on D and sum them to get the total change at D. Clearly, this means reducing the
network to A — D to compute the change at D due to the change at A and then
reducing the network to C' — D to compute the change at D due to the change at
C, before summing the two changes.

Between them cases (i)—(iii), along with the original case, describe all the basic
ways in which changes may be propagated around the four node network. Any other
propagation of changes are variations on or combinations of these basic patterns.
Thus the results given above make it possible for us to predict how any set of
changes will be propagated around a four node loop. Now, similar analyses may
be carried out for the general loop of Fig. 5, making it possible to predict how any
set of changes will be propagated about any loop, and so the results of this section
are sufficient to extend the theory of qualitative possibilistic networks to cover any
network that is a directed acyclic graph, provided that the variables mentioned in
the network are binary valued.

4.4. Networks with non-binary valued variables

All the variables considered so far in this paper have been binary valued. The choice
of such variables has been entirely pragmatic in that they are easier to work with,
lending themselves to simpler proofs and more comprehensible results. However,
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Y € {a,b,...,n} X €{z,y,...,m}

Fig. 8. A network with nodes representing non-binary valued variables

there are many real world situations in which multivalued variables are appropriate,
and this section addresses the use of such variables in qualitative possibilistic net-
works. In particular the propagation of qualitative changes in multivalued variables
is considered across the simplest possible network, such as Y — X of Fig. 8. Here Y
has possible values {a,b,...,n} and X has possible values {x,y,...,m}. Possibility
theory tells us that the possibility of X taking value x is

(z) = sup min(H(m|Y),H(Y)) (11)
Ye{a,b,...,n}

Using this equation, it is possible to establish how changes in possibility at X may
depend upon changes in possibility at Y. For instance, the different ways in which
II(x) varies given changes in II(a) are summarised by:

Theorem 4.3. In the network Y — X, II(z) follows II(a) if II(a) < II(z | a) and
II(x,a) > sup(ll(z,b), ..., II(z,n)), II(z) may follow II(a) up,if II(a) < II(z | a) and
II(z,a) < sup(Il(x,b),...,II(z,n)), II(z) may follow II(a) down if II(a) > II(z | a)
and II(z,a) > sup(Il(x,b), ..., II(z,n)), otherwise II(z) is independent of II(a).

Proof. In a similar way as for Theorems 3.1 and 3.3, the result follows by inspection
from the expression for II(z ) namely II(z) = sup { min (II(z | a),II(a)), min (TII(z |
b),11(b)), ..., min (Il(z | n),1I(n)) } O.

Similar results may be obtained for the way in which II(z) varies with II(b), ..., II(n),
and for the ways in which II(y),...,II(m) vary with II(a),...,II(n). The overall
change at X depends upon the changes at Y and all of the relationships between
the different possible values of X and Y. The overall change is thus determined by:

ATI() ] e - (B ATI(a)
s ||\ [awe] L) L] [ [200)
S [k] (] - [e]]

It is clearly possible to extend the other results in this paper to the case of non-
binary valued variables if such results are required, making it possible to analyse the
qualitative behaviour of any possibilistic network that is a directed acyclic graph.
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5. An Example

In this section we provide an illustration of the kind of reasoning that may be car-
ried out using qualitative possibilistic networks, tackling a version of the dyspnoea
problem originally discussed by Lauritzen and Spiegelhalter®.

5.1. Preamble

The previous sections have described how to analyse possibilistic networks in order
to establish how qualitative changes will be propagated in a network for which the
quantitative values are known. This is the way in which the theory of qualitative
possibilistic networks was intended to be used, as part of a scheme for integrating
uncertainty handling formalisms'?, and is the way in which the use of qualitative
possibilistic networks has previously been discussed!®!°. However, this is not the
only way in which qualitative possibilistic networks may be used. There is an
alternative mode of use, and it is this that will be employed in our example.

The other mode of use of qualitative possibilistic networks is that generally pro-
posed for qualitative probabilistic networks— a mode in which the networks are
defined in terms of the qualitative, rather than the quantitative, relationships be-
tween variables. Thus when considering two binary-valued variables P and () which
are known to influence each other, acquisition centres around establishing whether
II(p) follows II(g) rather than what the value of II(p | ¢) is. When establishing this
qualitative behaviour, the results of the previous sections identify the assumptions
about conditional values that are being made. Having established the qualitative
behaviour of the network that represents a given situation, (7) and (8) may be used
to propagate changes in possibility, so that the result of various observations may
be considered.

It should be noted, however, that whereas in qualitative probabilistic networks
a single qualitative value is sufficient to characterise the influence between two
variables, in qualitative possibilistic networks a single qualitative value is required
for each relevant derivative. Thus the influence between P and () is characterised
by four derivatives, and thus we must seperately acquire the relationships between
p and ¢, between p and —¢q, between —p and g and between —p and —gq.

5.2. The dyspnoea problem

The original formualtion of the dyspnoea problem® was based upon the following
piece of fictitious qualitative medical ‘knowledge’:

Dyspnoea (D), that is shortness-of-breath, may be due to tuberculosis
(T), lung cancer (L), or bronchitis (B), or none of them, or more than one
of them. A recent visit to Asia (A) increases the chances of tuberculosis,
while smoking (S) is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X-ray (X) identifies the presence
of either tuberculosis or lung cancer (E) since it does not distinguish
between them, as does the presence of absence of dyspnoea.
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Ae{a,—a} S e {s,s}

Le{l,~l} B e {b,—b}

T e {t, -t}

X € {z,zx} D € {d,~d}

Fig. 9. The network for the dyspnoea example

The bracketed letters are the names of the binary variables representing the condi-
tions, and each variable is represented by a node in the network of Fig. 9. It should
be clear that Fig. 9 is the network of influences between the conditions. Now, the
situation to which we want to apply this information is, for instance, to establish
how the possibility of a patient having tuberculosis changes when it is known that
the patient is a smoker, or to establish how the possibility of the patient having
bronchitis changes given that a positive x-ray is obtained. That is we want to estab-
lish the qualitative change in the possibility of the patient having bronchitis given
an increase in the possibility of a positive x-ray, and what the qualitative change in
possibility of tuberculosis is given that the possibility of the patient being a smoker
increases.

5.3. Applying qualitative possibilistic networks

To answer these questions we need information about the qualitative influences be-
tween the various values of the variables in the problem, and these can be obtained
from the description of the problem given above. In particular we must establish
the relationship between II(s) and II(e) in order to reduce the loop in which they
both are to a simple link between them, and thus a singly connected network in
which it is safe to propagate qualitative possibility values. From the problem de-
scription we can say that the possibility of lung cancer or tuberculosis will follow
both the possibility of smoking, and the possibility of tuberculosis. Thus, in terms
of qualitative derivatives:

| - m (13)

| - (14)
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It seems reasonable to assume that [811(«;)] = [+] and [ oLl (e) ] = [m(ﬁe)] = [0],

OII(—s) OII(—s) OI1(s)
and [ggg:‘z; ] = [+] and [ ;rlf((fz)] = [8(%;5)] = [0]. Thus, given that knowledge
of the patient smoking means that AIl(s) = [+] and AII(s) = [—] the change in
possibility of lung cancer or tuberculosis may be calculated using (7):
All(e) ] [[H [0]] [H]]
= ® 15
AnC) SIS (19)
- (] a

Now, so far reasoning has been predictive, from causes to effects, but to establish
how the possibility of tuberculosis will change we must reverse this and reason
evidentially from E to T. To do this we apply Theorem 3.2 which tells us that,
given the known relationship between II(¢) and II(e):

Bl (17)

and we may also establish that [3‘9&&2)] = [{], that [Banrg(ﬁtg)] = [}] and [ggg:g] =
[1], so that:

2] - [0 e[
- H;H (19)

So that we can say that while it is not possible to predict for sure how the possibility
that the patient has tuberculosis will change, we can be sure that the possibility
that the patient does not have tuberculosis will not change. Thus knowledge of
the patient’s history of smoking does not have much relevance to a discussion of
whether or not they have tuberculosis.

A similar process could be applied to calculate how a positive X-ray affects the
possibility of bronchitis. Consideration of the description of the problem will yield
the qualitative influence of F on X, and this may be reversed by Theorem 3.2 to
give the change in possibility of E. Then the loop must be reduced by establishing
the qualitative influence of B on E, and this in turn may be reversed allowing the
change in possibility of B to be established.

6. Discussion

Having introduced a number of features of qualitative possibilistic networks and
having demonstrated their application on a small example, this section brings the
paper almost to a close with a discussion of what the theory may be used for, some
related pieces of work, and some directions in which the theory might be extended.
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6.1. Uses for qualitative possibilistic networks

As mentioned above, the original motivation for the development of the theory of
qualitative possibilistic networks was the need to integrate different uncertainty
handling formalisms. It is possible!?:'® to argue that integration may be achieved
by only considering qualitative changes in values expressed in different formalisms,
and so the study of qualitative possibilistic networks, and the results detailed above,
make it possible to integrate possibility theory with other formalisms. The method
is flexible, simple to extend, and unlike other schemes for integration does not
impose a particular semantics upon the formalisms, and these advantages offset
the weak qualitative results that the method provides. These advantages also seem
to make the method applicable in the area of distributed artificial intelligence!®>2°
when existing systems are coupled together.

As argued above, however, it is also possible to use qualitative possibilistic net-
works on their own account as a means of representing and reasoning with uncertain
information in exactly the same way as qualitative probabilistic networks may be
used. In this case exactly the same motivation may be proposed. This is' that
the use of precise numerical information may be inappropriate since, in certain cir-
cumstances, it leads to knowledge bases being applicable only in very narrow areas
because of the interaction between values at a fine level of detail. Since they view
the world at a higher level of abstraction, qualitative methods are immune to such
problems— the small complications such interactions cause simply have no effect
at the coarse level of detail with which qualitative methods are concerned.

This means that a system that was tailored to one environment can be moved
to another and continue to operate reliably since the same qualitative information
applies. Thus, for instance a medical expert system using qualitative possibilistic
reasoning could be moved from one clinic to another with no adverse results since the
information upon which it makes its diagnoses would be the same in both places.
In contrast a system using a numerical formalism would be expected to become
unreliable since the numbers on which it was based would have changed, and in
order to make it reliable a whole new set of numbers would have to be acquired.
In this mode, then, the qualitative formalism provides robust reasoning that still
obeys the fundamental tenets of the underlying quantitative theory with all the
advantages that it entails.

Finally, qualitative possibilistic reasoning can be used as a means of validating
quantitative possibilistic systems. Since the qualitative behaviour of a system is
an abstraction of its quantitative behaviour, it is possible to use the qualitative
analysis to predict how the system will behave quantitatively. This means that it
is possible to carry out a few simple tests to determine if the basic behaviour of a
numerical model is that which is desired by its developers, and to make corrections
if these are necessary?'.
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6.2. Related work

This work is closely related to that of Wellman' and Henrion and Druzdzel®-22.
These authors are interested in the propagation of qualitative probability and base
their notion of dependency between variables on the idea of forward stochastic dom-
inance. As a result, the scheme that they come up with is rather simpler than mine,
which is good from the point of view of clarity. However, their scheme is not built
on quite such fundamental notions. These differences are not surprising given that
the schemes have different intended uses. Mine was intended as a basis for the inte-
gration of different formalisms and it is thus important that it is completely faithful
to the underlying theory. Theirs is intended as an efficient and extensible abstrac-
tion of probability theory so that simplicity is paramount. However, if qualitative
possibilistic networks are to be used in a similar way to that discussed in Section
6, it might well be worth extending the underlying theory to make them as simple
and robust as qualitative probabilistic networks.

Another piece of related work is that of Fonck and Straszecka? who have stud-
ied the propagation of possibility values through acyclic directed graphs and have
discovered a means of carrying out such a propagation in a similar way to that
in which Pearl* propagates probability values in such structures. There are two
differences between their approach and mine. Firstly Fonck and Straszecka handle
quantitative changes in possibility value while I deal with qualitative changes. If
the changes generated by their scheme in a particular scenario are considered in a
qualitative way, so that, for instance, a change from II(a) = 0.1 to II(a) = 0.3 is
seen only as an increase II(a) = [+], then both of our approaches will give the same
result. In any network, in every situation that Fonck and Straszecka’s scheme of
propagation generates a quantitative change in possibility at some node as a result
of a change in possibility at another node, my scheme will generate an equivalent
qualitative change. The second difference is that Fonck and Straszecka are inter-
ested in efficient propagation, a subject which is not considered here. However, it
seems that the propagation of qualitative values is inherently more efficient than
that of numerical values. Druzdzel and Henrion?® have recently shown that the
propagation of qualitative probability values is quadratic in the number of nodes in
the graph, making the process considerably more tractable than the propagation of
quantitative values which is known to be NP-hard?*.

6.3. Future work

There are three obvious ways in which the work reported in this paper may be
extended. The first is to generalise the qualitative quantity space from {[+], [—], [0],
[7],[1], [4]} to allow it to represent more precise information when such information
is available. There are several ways in which this might be done. It could be ad-
dressed by the use of more complex qualitative values'?, semiqualitative values?® or
a combination of numerical and qualitative information?6— all methods which hy-
bridise qualitative and quantitative representations in an attempt to broaden both.
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Alternatively the problem could be handled by some form of order of magnitude
reasoning?” in which the relative magnitude of quantities are explictly manipulated
in order to enable reasoning about which changes are significant, or which are more
important than others.

This kind of development would make the representation more complex. It
would also be possible to make the representation simpler. That is by borrowing
ideas from the theory of qualitative probabilistic networks, it might be possible
to provide a simpler means of representing the changes that take place at a node,
and the way in which changes in value might be propagated along links between
nodes. This kind of simplification might also help to ease the search for an effi-
cient algorithm for propagating values in qualitative possibilistic networks, which
is the third area in which it seems that the theory could be extended. It should
be noted, however, that the lack of a specialised efficient algorithm has not pre-
vented the implementation of the current theory. This implementation'? has been
carried out using the Pulcinella®® system which itself is based upon the efficient
local computation method of Shenoy and Shafer?®.

7. Summary

This paper has introduced the idea of qualitative possibilistic networks, re-
porting results that complement recent work on qualitative probabilistic networks.
Qualitative possibilistic networks were introduced as an abstraction of possibilis-
tic networks, and the conditions for their various types of qualitative behaviour
established. The results given are sufficient to establish the qualitative behaviour
of any possibilistic network which takes the form of a directed acyclic graph, and
permit the way in which changes in possibility will be propagated in both predic-
tive and evidential directions to be predicted. The results may also be viewed in a
different light, as an investigation of the possible behaviours that may be encoded
by a qualitative possibilistic network. Looked at in this way the results form the
basis of a new qualitative means of representing and reasoning with uncertain in-
formation that obeys the basic axioms of possibility theory. This view of the results
was illustrated by means of a medical example, and other applications of qualitative
possibilistic networks were mentioned. The paper closed with a discussion of related
work and some of the directions in which the theory might be expanded.
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