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SOME ELEMENTS OF THE THEORY OFQUALITATIVE POSSIBILISTIC NETWORKSSIMON PARSONSAdvaned Computation Laboratory, Imperial Caner Researh Fund,P.O. Box 123, Linoln's Inn Fields, London WC2A 3PX.Department of Eletroni Engineering, Queen Mary and West�eld College,Mile End Road, London E1 4NSReeived (June 1992)Revised (Otober 1993)This paper presents some results onerning the qualitative behaviour of possibilistinetworks. The behaviour of singly onneted networks is analysed, providing the founda-tions for qualitative reasoning about hanges in possibility values in both preditive andevidential diretions. The problems inherent in handling multiply onneted networksare also disussed, and a possible solution is proposed. The behaviour of qualitativepossibilisti networks is ompared to qualitative probabilisti networks, and an exampleof the kind of reasoning that is permitted by the use of these networks is provided.Keywords: Qualitative behaviour, direted graphs, possibility theory.1. IntrodutionThe study of qualitative probabilisti reasoning in networks has beome well es-tablished, both in the ontext of planning1, explanation2, and engineering design3.This paper extends suh work by onsidering qualitative possibilisti reasoning innetworks, that is how to determine the qualitative hanges that take plae whenunertainty values are propagated through direted graphs similar to those studiedby Pearl4 and Lauritzen and Spiegelhalter5 using possibility theory6;7.When we onsider the propagation of probability and possibility values througha network there are two operations that are of interest. Firstly we want to determinethe prior values of every node in the network from those prior values that are knownand the onditional values that relate the nodes of the network together. Seondlywe are interested in establishing the new values of the nodes when ertain pieesof evidene are disovered. When onsidering the qualitative behaviour of suhnetworks we are only interested in the seond operation, the way in whih thevalues of the nodes hange when evidene is obtained, sine all prior values arequalitatively equivalent. When an event is observed, the value of the node relatingto that event hanges, inreasing or dereasing. The hange propagates through thenetwork, ausing the value of other nodes to hange, and we an thus determine1



Qualitative possibilisti networks 2the e�et of the observed event on the nodes in whih we are interested. Thusthe qualitative analogy of updating with new evidene is propagating qualitativehanges in value.The struture of the paper is as follows. Setion 2 disusses the idea of pos-sibilisti networks, whih stems from work by Farreny and Prade8 and Fonk andStraszeka9. Then Setion 3 introdues the basi ideas behind qualitative possibilis-ti networks, and uses them to provide an analysis of the propagation of qualitativehanges in value in singly onneted networks of binary valued nodes. This setioninludes a disussion of normalisation and ompares the behaviour of qualitativepossibilisti networks with that of qualitative probabilisti networks and qualitativebelief networks10. Setion 4 extends the approah to onsider multiply onnetednetworks and variables with multiple values, and Setion 5 gives an example of thekind of reasoning that an be arried out with qualitative probabilisti networks.Setion 6 disusses some of the issues that have been raised, and �nally Setion 7onludes.2. Possibilisti NetworksIn possibility theory8 the information available about the value of a single-valuedattribute a for a given item x, is represented by a possibility distribution �a(x).This is a mapping from the attribute domain U to [0; 1℄ whih restrits the more orless possible values of a(x). The possibility value �a(x)(u) estimates to what extentit is possible that a(x) = u. The distribution �a(x) is assumed to be normalised sothat supu2U �a(x)(u) = 1, and this is satis�ed as soon as at least one value in U isonsidered to be ompletely possible. The state of total ignorane about the valueof a(x) is represented by �a(x)(u) = 1, 8u 2 U .To build a possibilisti network9 we take a set of variables V = fX;Y; : : : ; Zgsuh that X takes values from U = fA1; : : : ; Ang, Y takes values from V =fB1; : : : ; Bmg, and Z takes values fromW = fC1; : : : ; Cpg, and onstrut a networkbased upon the inuenes between the variables. The variables are represented bythe nodes of the network, and the inuenes between the variables are representedby the links between the nodes. The strength of the inuenes is represented bythe numerial possibility value assigned to the links. Any node N , representing agiven variable X , is only onneted to those nodes that represent variables thatinuene X or are inuened by X . Thus the network enodes all the availableinformation about the dependenies between the variables in V , and the strengthof those dependenies. If two nodes in a network are not expliitly onneted, thenthe variables that they represent have no diret inuene on one another.Consider a link from a node representing variableX to that representing variableY . This link represents the information that \if X is Ai then Y is Bi" where8i; Ai � U , Bi � V . Now, the strength of this inuene is quanti�ed in terms ofpossibilities so that11:8u 2 U;8v 2 V;�X;Y (u; v) = min ��Y jX(v; u);�X(u)� (1)



Qualitative possibilisti networks 3���� ����- C 2 f;:gA 2 fa;:agFig. 1. A simple networkwhih gives: 8v 2 V;�Y (v) = supu2Umin��Y jX(v; u);�X (u)� (2)Considering only binary valued variables u 2 fa;:ag, v 2 f;:g, as in the networkof Fig. 1 we an rewrite these equations as:�(a; ) = min��(a j );�()� (3)�() = supnmin��( j a);�(a)�;min��( j :a);�(:a)�o (4)The unertainty attahed to the link is represented by the possibility distribution(�( j a);�(: j a)) 2 [0; 1℄2 on the set f;:g in the ontext of a. In this binaryase we have the normalisation ondition max(�( j a);�(: j a)) = 1. We alsohave similar information in the ontext of :a.3. Singly Conneted NetworksHaving established what possibilisti networks are, and how to onstrut them, weturn to the problem of prediting how values will propagate through them. Todo this we start with the simplest possible lass of network and then extend ouranalysis to over a larger lass.3.1. Propagating qualitative hangesWhen onsidering how a hange in the value of A a�ets the value of C, in Fig. 1we �nd that there are three basi relationships that an hold between them12. Thepossibility of C taking value  is said to follow the possibility A taking value a if �()inreases when �(a) inreases, and dereases when �(a) dereases. The possibilityof C taking value  is said to vary inversely with the possibility of A taking valuea if �() dereases when �(a) inreases, and inreases when �(a) dereases. Thepossibility of C taking value  is said to be independent of the possibility of variableA taking value a if �() does not hange as �(a) inreases and dereases.These relationships may be identi�ed with three possible values of the derivativethat relates the values of �() and �(a). It is possible for the derivative Æ�()=Æ�(a) to be positive, in whih ase �() inreases with �(a), negative in whih ase�() varies inversely with �(a), and zero in whih ase �() is independent of �(a).This state of a�airs is aptured by a statement about the qualitative value of thederivative, whih is written as [Æ�()=Æ�(a)℄, so that [Æ�()=Æ�(a)℄ = [+℄ if �()follows �(a). Clearly, if [Æ�()=Æ�(a)℄ = [�℄ then �() varies inversely with �(a)and if [Æ�()=Æ�(a)℄ = [0℄ then �() is independent of �(a). As we shall see, in



Qualitative possibilisti networks 4Table 1. Qualitative ombinator tables� [+℄ [0℄ [�℄ [?℄[+℄ [+℄ [+℄ [?℄ [?℄[0℄ [+℄ [0℄ [�℄ [?℄[�℄ [?℄ [�℄ [�℄ [?℄[?℄ [?℄ [?℄ [?℄ [?℄ 
 [+℄ [0℄ [�℄ ["℄ [#℄ [?℄[+℄ [+℄ [0℄ [�℄ [+; 0℄ [0℄ [?℄[0℄ [0℄ [0℄ [0℄ [0℄ [0℄ [0℄[�℄ [�℄ [0℄ [+℄ [0℄ [0;�℄ [?℄[?℄ [?℄ [0℄ [?℄ [+; 0℄ [0;�℄ [?℄some situations it may not be possible to tell whether or not a relationship holds,so that, it is only possible to say that �() may follow �(a) up, or �() may follow�(a) down. These ases are aptured by the statements [Æ�()=Æ�(a)℄ = ["℄ and[Æ�()=Æ�(a)℄ = [#℄, respetively.The reason for representing hanges in terms of qualitative derivatives is thatdi�erential alulus may then be used to tell us how to propagate hanges in valuethrough networks, sine given �x=�y it is a simple matter to alulate the hange�x from �y. To determine the hange at C in Fig. 1 we have:��() = ��(a)
 � ��()��(a)����(:a)
 � ��()��(:a)� (5)��(:) = ��(a)
 ���(:)��(a) ����(:a) 
 � ��(:)��(:a)� (6)where � and 
 denote qualitative addition and multipliation respetively. Theseare de�ned in Table 1. We an express (5) and (6) as a matrix alulation (afterFarreny and Prade8):� ��()��(:) � = 24 h ��()��(a)i h ��()��(:a)ih��(:)��(a) i h ��(:)��(:a)i35
 � ��(a)��(:a) � (7)3.2. Simple direted graphsGiven this bakground we an start our analysis of possibilisti networks. We willstart by onsidering trees, that is singly onneted graphs in whih eah node isonneted to at most one other node. All trees may be onstruted from subnet-works of the form of Fig. 1, and so the results of analysing this network will besuÆient to enable us to predit the behaviour of any tree. Writing the graph inFig. 1 as A! C we have:Theorem 3.1. The relation between �(x) and �(y), for all x 2 f;:g, y 2fa;:ag, for the link A! C is suh that �(x) follows �(y) if min��(x j y);�(y)� >min��(x j :y);�(:y)� and �(y) < �(x j y). If min��(x j y);�(y)� � min��(x j:y);�(:y)� and �(y) < �(x j y) then �(x) may follow �(y) up if �(y) is inreasing,and if min��(x j y);�(y)� > min��(x j :y);�(:y)� and �(y) � �(x j y) then �(x)



Qualitative possibilisti networks 5may follow �(y) down if �(y) is dereasing. Otherwise �(x) is independent of �(y).Proof. Possibility theory gives �() = sup�min��( j a);�(a)�;min��( j :a);�(:a)�	. This may not be di�erentiated, but beause possibility theory is essen-tially qualitative13, this does not matter. Consider how a small hange in �(a)will a�et �(). If �(a) is the value that determines �(), any hange in �(a) willbe reeted in �(). This must happen when min��( j a);�(a)� > min��( j:a);�(:a)� and �(a) < �( j a). If �(a) is inreasing and the seond onditiondoes not hold, it may beome true at some point, and so the inrease may be re-eted in �(). Similar reasoning may be applied when �(a) is dereasing and the�rst ondition is initially false. Thus we an write down the onditions relating �()and �(a), while those relating �() and �(:a) as well as those relating�(:) and�(a) and �(:a) may be obtained the same way .Theorem 3.1 allows us to propagate hanges from A to C given knowledge of possi-bilities suh as �( j a). Clearly, if we knew all the possibilities of the form �(a j )we ould also propagate from C to A. However, we often don't know both sets ofvalues. In a network we usually have preditive values suh as �( j a)| the valuesthat allow us to tell the possibility of some symptom given the possibility of somedisease| sine these values are easier to establish than the evidential values suh as�(aj), whih tell us the possibility of some disease given the symptom. However,we usually want to reason evidentially from the observation of some symptom tothe possibility of a disease, and to do this we must apply the possibilisti version ofBayes' rule14. This gives us:Theorem 3.2. For A! C and for all x 2 f;:g, y 2 fa;:ag, if �(x) follows �(y)or �(x) may follow �(y) up, then �(y) may follow �(x) up, and if �(x) may follow�(y) down, or if �(x) is independent of �(y) then �(y) may follow �(x) down.Proof. To disover how �(a) varies with �() we must, by Theorem 3.1, establishwhether min(�(a j );�()) > min(�(a j :); (:)) and �() < �(a j ).Now, if �() follows �(a) then �() = �(a) and sine �() follows �(a),�(a) < �( j a). The possibilisti version of Bayes' rule tells us that min((�(a j);�()) > min((�( j a);�(a)) so �() < �(a j ) and the seond ondition for�(a) following �() holds. Furthermore, �() < �( j a) � 1, so that �() < 1.Thus normalisation ensures that �(:) = 1. Applying possibilisti Bayes' ruleagain gives min((�(a j :);�(:)) > min((�(: j a);�(:a)) whih means that�(a j :) = min((�(: j a);�(a)) � �(a), and so �(a j :) � �(). Thus the�rst ondition for �(a) following �() does not neessarily hold, and so we an onlydetermine that �(a) may follow �() up.If �() may follow �(a) up then we know that �(a) < �( j a) and �(a) �min(�( j :a);�(:a)). From the �rst of these �(a) < 1, so that �(:a) = 1, sofrom the seond �(a) � �( j :a). The possibilisti version of Bayes' rule tells



Qualitative possibilisti networks 6us that min(�( j a);�(a)) = min(�(a j );�()). Sine �(a) < �( j a), we ansay that �(a) = min(�(a j );�()). The possibilisti version of Bayes' rule alsogives min(�( j :a);�(:a)) = min(�(:a j );�()). Sine �(:a) = 1 we know that�(a) � �( j :a) = min(�(:a j );�()). Thus min(�(aj);�()) � min(�(:a j);�()). There are four possible ways in whih this inequality may be true; (i)�() = �(aj) = �(:a j ), (ii) �() < �(a j ) � (:a j ), (iii) �() > �(aj) ��(:a j ), and (iv) �(:a j ) > �() > �(a j ). In the �rst ase all must be 1,sine max((�(a j );�(:a j )) = 1, so that �() = �(a j ) = 1. However, thisis impossible sine �(a) 6= 1, and �(a) = min(�(a j );�()). In the seond ase,�() < �(aj) whih satis�es the �rst ondition for �(a) following �(). Sine thisalso fores �(:) = 1, possibilisti Bayes' rule gives �(aj:) = min(�(: j a);�(a)).Thus �(a) � �(a j :) and �() � �(a) sine �(a) = min(�(a j );�()). Thus wean be sure that �() � (a j :) so that the seond ondition on �(a) following �()will only de�nitely be satis�ed if �() inreases. In the third ase, �() > �(a j ),so that �(:a j ) = 1 by normalisation, but �() > �(:a j ), whih is impossible.In the fourth ase, one again �() > �(aj) so that �(:a j ) = 1. This also meansthat the seond ondition on �(a) following �() is violated. Furthermore we knowthat �() < �(:a j ) so that �(:) = 1. Thus the �rst ondition on �(a) following�() beomes �(a j ) > �(a j :). Now, the possibilisti version of Bayes' rulesays that min(�(a j );�()) = min(�( j a);�(a)). Sine �() > �(a j ) and�(a) < �( j a) we have �(a) = �(a j ). Possibilisti Bayes' rule also givesmin(�(aj:);�(:)) = min(�(: j a);�(a)) whih means that �(a) � �(a j :),thus �(a j ) � �(a j :) and �(a) is independent of �(). Thus when �() mayfollow �(a) up, �(a) either may follow �() up or is independent of it, whih isequivalent to saying that �(a) may follow �() up.If �() may follow �(a) down, then �(a) � �( j a) and �( j a) > min(�( j:a);�(:a)). From this, and the de�nition of �() in terms of �(a), �(:a), �(ja)and �( j :a), it is lear that �() = �( j a), and thus from the possibilistiversion of Bayes' rule, min(�(a j );�()) = min(�( j a);�(a)), it is obvious that�() � �(a j ). And so the seond ondition for �() following �(a) is violated.Thus (again using possibilisti Bayes' rule), �(a j ) > min(�(:a j );�()). Now,sine �(ja) � �(a) and max(�( j a);�(: j a)) = 1, we have four di�erent possiblerelationships between �(a), and �(: j a) from whih we an determine �(a j :),(i) �(: j a) < �( j a) = 1 = �(a), (ii) �(: j a) = �( j a) = �() = 1, (iii)1 = �(: j a) > �(a) > �( j a) and (iv) 1 = �(: j a) > �(a) = �( j a). In the�rst ase, min(�(: j a);�(a)) = �(: j a) = min(�(a j :);�(:)). Thus �( ja) > min(�(a j :);�(:)) and so �(a) may follow �() down. In the seond ase,�(ja) = min(�(a j :);�(:)).Thus min(�(a j );�()) = min(�(a j :);�(:))and �(a) is independent of �(). In the third ase min(�(: j a);�(a)) = �(a),thus �(:a) = 1 and �( j a) < min(�(a j :);�(:)) and �(a) is independent of�(). In the fourth ase, again min(�(: j a);�(a)) = �(a), only this time �(ja) =min(�(a j :);�(:)) whih does not hange the fat that �(a) is independent of�(). Thus, overall, when �() may follow �(a) down, �(a) may follow �() down.



Qualitative possibilisti networks 7Finally, if �(a) is independent of �(), then �(a) � �( j a) and �(ja) �min(�( j :a);�(:a)). In addition, the de�nition of �() tells us that �() � �( ja). Now, possibilisti Bayes' rule gives min(�( j a);�(a)) = min(�(a j );�())whih means that min(�(a j );�()) = �( j a) sine �( j a) is always at least assmall as �(a). Sine �() � �( j a) it follows that �() � �(a j ) and the �rstondition on �(a) following �() is false. To verify the seond ondition, we needto establish the relative magnitudes of �(a; ) and �(a;:). If �(aj) = 1 then�() = 1 and �(a; ) � �(a;:) and �(a) may follow �() down. If �(aj) < 1,then �() � 1, and �(a; ) might be less than �(a;:) so that �(a) might follow�() down, or be independent of it. Thus, overall, �(a) may follow �() down.Similar arguments for all x 2 f;:g and y 2 fa;:ag omplete the proof .Having established these two theorems we have ompletely analysed the network inFig. 1. In this network the hange at C depends only on the hange at A, and thehange at A depends only on the hange at C. Now, di�erential alulus tells us that�z�x = �z�y � �y�x so the behaviours of networks suh as that in Fig. 1 may be omposed.Thus we an predit how qualitative hanges in possibility are propagated in anynetwork whih is omposed of networks of the form of that in Fig. 1 and it is easyto see that this means we an propagate values in any network in whih every nodehas at most a single parent.3.3. NormalisationIn possibility theory normalisation requires that we have max(�(a);�(:a)) = 1,ensuring that at least one of �(a) and �(:a) is 1. If �(a) is initially 1 and if itdereases, then �(:a) must inrease to 1 unless, of ourse, it already is 1. Similarlyif �(:a) is initially 1 then any hange in its value must be aompanied by �(a)beoming 1. Otherwise hanges in �(a) and �(:a) are unrestrited. If �(a) is 1and does not hange, �(:a) may inrease, derease or not hange, and if �(:a) is1 and does not hange, �(a) may inrease, derease or not hange. This may besummarised by:�(a) = 1 If ��(a) = [0℄ Then ��(:a) = [?℄If ��(a) = [�℄ Then ��(:a) = [+; 0℄�(a) 6= 1 If ��(a) = [+℄ Then ��(:a) = [0;�℄If ��(a) = [0℄ Then ��(:a) = [0℄If ��(a) = [�℄ Then ��(:a) = [0℄Furthermore, in the network of Fig. 1, for any �(a), h ��()��(a)i an be [+℄, ["℄, [#℄ or[0℄ so that �() may follow �(a) up, down or both up and down, or be independentof it, while:�() = 1 If ��() = [0℄ Then ��(:) = [?℄If ��() = [�℄ Then ��(:) = [+; 0℄



Qualitative possibilisti networks 8�() 6= 1 If ��() = [+℄ Then ��(:) = [0;�℄If ��() = [0℄ Then ��(:) = [0℄If ��() = [�℄ Then ��(:) = [0℄These results summarise the behaviour of a possibilisti network in terms of thekinds of qualitative hange that may be propagated aross it. That is, the be-haviours given are all those that are possible| for a given set of onditional values,a partiular type of propagation will take plae.It is onstrutive to ompare the results with similar results for probabilistinetworks12 and belief networks based upon evidene theory10. Sine probabilitytheory has the strong normalisation ondition p(a) + p(:a) = 1, the relationshipbetween p(a) and p(:a) is more onstrained than that between �(a) and �(:a):p(a) = 1 If �p(a) = [0℄ Then �p(:a) = [0℄If �p(a) = [�℄ Then �p(:a) = [+℄p(a) 6= 1 If �p(a) = [+℄ Then �p(:a) = [�℄If �p(a) = [0℄ Then �p(:a) = [0℄If �p(a) = [�℄ Then �p(:a) = [+℄For any value of p(a), either h �p()�p(a)i = [+℄, or h �p()�p(a)i = [�℄ Thus p() either followsp(a) or varies inversely with it, and hanges in p() are bound to those in p(:) inthe same way that those in p(a) are bound to those in p(:a):p() = 1 If �p() = [0℄ Then �p(:) = [0℄If �p() = [�℄ Then �p(:) = [+℄p() 6= 1 If �p() = [+℄ Then �p(:) = [�℄If �p() = [0℄ Then �p(:) = [0℄If �p() = [�℄ Then �p(:) = [+℄Thus if p() follows p(a), p(:) varies inversely with p(a), and if p() varies inverselywith p(a) then p(:) follows p(a). Normalisation also ensures that if p() followsp(a) it will vary inversely with p(:a) and if p() varies inversely with p(a) it willfollow p(:a).Evidene theory, whih only has the very weak normalisation ondition thatbel(a) + bel(:a) � 1, has less onstrained behaviour than either probability orpossibility theories. Indeed, when using Dempster's rule15 to ombine mass assign-ments, there are no onstraints on the possible relationships between bel(a) andbel(:a):bel(a) = 1 If �bel(a) = [0℄ Then �bel(:a) = [?℄If �bel(a) = [�℄ Then �bel(:a) = [?℄bel(a) 6= 1 If �bel(a) = [+℄ Then �bel(:a) = [?℄If �bel(a) = [0℄ Then �bel(:a) = [?℄If �bel(a) = [�℄ Then �bel(:a) = [?℄There are also no onstraints on the relationship that may hold between bel(a)



Qualitative possibilisti networks 9and bel() sine for any bel(a), h �bel()�bel(a)i an be [+℄, [0℄, or [�℄, and there are noonstraints on the possible relationship between bel() and bel(:):bel() = 1 If �bel() = [0℄ Then �bel(:) = [?℄If �bel() = [�℄ Then �bel(:) = [?℄bel() 6= 1 If �bel() = [+℄ Then �bel(:) = [?℄If �bel() = [0℄ Then �bel(:) = [?℄If �bel() = [�℄ Then �bel(:) = [?℄Thus for a given hange in bel(a) it is possible to have any hange in bel() andany hange in bel(:a) and bel(:). However, using other rules of ombination inevidene theory, suh as Smets' disjuntive rule16 alters the behaviour making itmore restritive10;12.Similar di�erenes in behaviour between formalisms our when we onsiderreversing the link between A and C in Fig. 1. In probability theory the link behavesthe same12 when values are propagated from C to A as when they are propagatedfrom A to C. Thus if p() follows p(a) then p(a) follows p(), and if p() variesinversely with p(a) then p(a) varies inversely with p(). As we have seen above,possibility theory prevents us from making suh lear ut preditions so that we areonly able to say that �(a) may follow �() up if �() follows �(a), or may follow�(a) up, and �(a) may follow �() down if �() is independent of �(a) or mayfollow �(a) down. When reversing the link, evidene theory is more onstrainedthan either possibility or probability theory12 sine bel(a) always follows bel().This seems to be a diret onsequene of using the disjuntive rule of ombinationin the derivation of the generalisation of Bayes' rule to evidene theory16.While the deision about whih quantitative formalism is of most use in a par-tiular situation should be made on the basis of the semantis of the di�erentformalisms, this omparison may prove useful when hoosing whih qualitative for-malism to use. It makes lear the fat that when using probability theory a hangein the value of one proposition is aompanied by an opposite hange in the valueof its negation. It also points out that in probability theory it is easy to have thesimple network of Fig. 1 invert the hange it propagates so that an inrease in p(a)beomes a derease in p()| a behaviour that is not easy to apture in possibilitytheory. The omparison also reveals that, unlike possibility theory, probability the-ory annot blok the e�et of p(a) on p(), and this may bear on its e�etiveness.Furthermore, it is lear that evidene theory qualitatively subsumes probability andpossibility theory, as one might expet sine it is a generalisation of them both.3.4. More omplex networksAs disussed above, the analysis arried out in Setion 3.2 allows us to predit howqualitative hanges in ertainty value will be propagated in a simple link betweentwo nodes, and thus in any network in whih every node has at most a singleparent. We now extend these results to enable us to ope with networks in whih



Qualitative possibilisti networks 10���� ��������ZZZZZZ~ ������=D 2 fd;:dg C 2 f;:gB 2 fb;:bg
Fig. 2. A more omplex networknodes may have more than one parent. To do this we onsider the qualitative e�etof two onverging links suh as those in Fig. 2. Sine we are only dealing withsingly onneted networks, B and C are independent and the overall e�et at D isdetermined by:� ��(d)��(:d) � = 24 h��(d)��(b) i h ��(d)��(:b)ih��(:d)��(b) i h ��(:d)��(:b) i35
 � ��(b)��(:b) ��24 h��(d)��() i h ��(d)��(:)ih��(:d)��() i h��(:d)��(:) i35
 � ��()��(:) � (8)When determining how hanges are propagated aross this kind of network, we havea similar result to that for the simple link, namely:Theorem 3.3. The relation between �(x), �(y) and �(z), for all x 2 fb;:bg,y 2 f;:g, z 2 fd;:dg for the link B&C ! D is suh that:(1) �(z) follows �(x) i� �(x; y; z) > sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and�(x) < min��(z j x; y);�(y)), or �(x;:y; z) > sup��(x; y; z);�(:x; y; z);�(:x;:y; z)� and �(x) < min��(z j x;:y);�(:y)�.(2) �(z) may follow �(x) up i� �(x; y; z) � sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) < min��(z j x; y);�(y)), or �(x;:y; z) � sup��(x; y; z);�(:x; y;z);�(:x;:y; z)� and �(x) < min��(z j x;:y);�(:y)�.(3) �(z) may follow �(x) down i� �(x; y; z) > sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) � min��(z j x; y);�(y)), or �(x;:y; z) > sup��(x; y; z);�(:x; y;z);�(:x;:y; z)� and �(x) � min��(z j x;:y);�(:y)�.(4) Otherwise �(z) is independent of �(x).Proof. As for Theorem 3.1 we an use the qualitative nature of possibility the-ory to give the result may be determined diretly from areful onsideration of�(d) = supx2fb;:bg;y2f;:g�(x; y; z) and �(x; y; z) = min ��(z j x; y);�(x);�(y)�,the formulae whih determine the possibility of d from that of b, :b,  and : .Theorem 3.1 allows us to predit how hanges in possibility an be propagated toa node from two parents, and it is lear that similar results an be obtained for



Qualitative possibilisti networks 11
���� ��������

����ZZZZZZ~ ������=
������= ZZZZZZ~

D 2 fd;:dg C 2 f:gB 2 fb;:bg
A 2 fa;:ag

Fig. 3. A loop with four nodesany number of parents. The only assumption made in the derivation was that thepossibility values of the parents are onditionally independent. Now, the di�erentialalulus tells us that hanges in value are alulated by �z = �x � �z�x + �y � �z�y ,provided that x is not a funtion of y. Thus we an learly use the results of thissetion to propagate qualitative hanges in possibility and through any network inwhih the parents of any node are onditionally independent, that is through anysingly onneted network.4. Multiply Conneted Networks and MoreAlthough the results presented so far enable us to predit how hanges in possibilitywill be propagated through a large lass of networks, we are still not equipped topredit how hanges will be propagated in every possible network. This setionaddresses some of the outstanding problems.4.1. From singly to multiply onneted networksThe analysis arried out in Setion 3.4 made the expliit assumption that B and Cwere onditionally independent so that �(b; ) = min ��(b);�()�. This assumptionfalls apart for multiply onneted networks suh as those of Fig. 3 where B and Care not onditionally independent when A is not known to be true. To handlethis ase orretly one should take aount of the dependeny by writing �(b; ) =sup ��(a; b; );�(:a; b; )�. Now, it is lear that it is possible to take any loopand perform a qualitative analysis upon it to establish how qualitative hanges inpossibility are propagated through it. However, there is no easy way to generalisesuh an analysis from that of a four node loop like that in Fig. 3 to loops withdi�erent numbers of nodes. The qualitative analysis is tied to a partiular topology.However, in qualitative probability and evidene theories12 it is possible to han-dle the network of Fig. 3 as if it were two simple ausal links ombined with amulti-parent link, as in Fig. 4, ignoring the dependeny between B and C, and pro-
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D 2 fd;:dg C 2 f;:gB 2 fb;:bg
A 2 fa;:ag A 2 fa;:ag

Fig. 4. A na��ve view of the loop with four nodesviding a method of handling loops that an easily be extended to di�erent topologies.Despite the fat that suh a na��ve approah is inorret aording to the underlyingquantitative theory, it does not generate qualitatively inorret answers. This isdue to the fat that ignoring the dependeny often only alters the magnitude ofthe hange in value at D rather than the diretion of the hange (a fat that isignored by the qualitative analysis), or alulates the hange at D to be [?℄ ratherthan, say, [+℄. Sine saying the hange at D is [?℄ is shorthand for the statement\The hange at D ould be [+℄, [0℄ or [�℄", this result of the na��ve approah isnot inompatible with the result of the orret approah, and if the na��ve approahgenerates preditions whih are never inompatible with the orret approah wesay that it is safe.4.2. Multiply onneted networksSine the na��ve approah is safe in probability and evidene theories, it is worthinvestigating whether it is safe in possibility theory. To do this we onsider propa-gating a hange in possibility from A to D in the network of Fig. 3, whih we willrefer to as the }-network, omparing the results obtained by the orret and na��veapproahes. Disappointingly we have the following result:Theorem 4.1. It is not safe to use the na��ve approah to propagate qualitativevalues in the }-network using possibility theory.Proof. For the }-network possibility theory gives us �(d) = supb2fb;:bg;2f;:g�min ��(d j b; );�(b; )�	. Now, in the orret approah when B and C areknown to not be independent, �(b; ) = sup��(a; b; );�(:a; b; )	 whih is equalto sup�min ��(b j a);�( j a);�(a)�;min ��(b j :a);�( j :a);�(:a)�	. We andetermine the onditions under whih �(d) follows �(a) by inspetion, and we learnthat they are, for any  2 f;:g, and b 2 fb;:bg; �(a) < min ��(b j a);�( j a)�



Qualitative possibilisti networks 13(1), �(a; b; ) > �(:a; b; ) (2), �(d j b; ) > sup��(a; b; );�(:a; b; )	(3), and�(a; b; ; d) > supb2fb;:bg;2f;:g�(:a; b; ; d)(4). If all onditions hold then �(d)follows �(a), if (1) and (3) hold but (2) and (4) don't then �(d) may follow �(a)up, and if (2) and (4) hold but (1) and (3) don't then �(d) may follow �(a) down.Otherwise �(d) is independent of �(a). If we use the na��ve approah we have thepossibility at D as before,�(d) = supb2fb;:bg;2f;:g �min ��(d j b; );�(b; )�	,but �(b; ) = min ��(b);�()� and �(b) = sup�min ��(b j a);�(a)�;min ��(b j:a);�(:a)�	 so that the onditions on �(d) following �(a) are, for any  2 f;:g,and b 2 fb;:bg; �(a) < �(b j a) (10), �(a; b) > �(:a; b) (20), and �(b) < min ��(d jb; );�()� (30), as well as �(b; ; d) > supb2fb;:bg;2f;:g�(:b; ; d) (40). Similaronditions hold for onditionals involving . If all onditions hold then �(d) follows�(a), if (10) and (30) hold but (20) and (40) don't then �(d) may follow �(a) up,and if (20) and (40) hold but (10) and (30) don't then �(d) may follow �(a) down.If we have �(a) = 0:6, �(:a) = 1, �(b j a) = 0:8, �(b j :a) = 0:8, �( j a) = 0:5,�( j :a) and �(d j b; ) = 0:9, then (10) and (30) hold while (1), (2) and (20)don't. Thus the na��ve method tells us that �(d) may follow �(a) up, when theexat method tells us �(d) is independent of �(a) and the na��ve method is thusunsafe .This problem may be related to that reported by Cano et al.17 where propagationof possibility values around a loop was found to be diÆult as a result of theidempotene of the funtion used for ombination. The upshot of Theorem 4.1 isthat the propagation of qualitative hanges around loops in possibility theory musttake into aount the dependenies between the parents of the node at the base ofthe loop. The theory, however, does o�er another approah to handling loops. It isstraightforward to write down the onditions under whih �(d) varies with �(a):Theorem 4.2. In the }-network �(d) follows �(a) when, for any  2 f;:g andb 2 fb;:bg (1) �(a) < min ��(b j a);�( j a)�, (2) �(a; b; ) > �(:a; b; ), (3)�(d j b; ) > sup��(a; b; );�(:a; b; )	, and (4) �(a; b; ; d) > supb2fb;:bg;2f;:g�(:a; b; ; d). If (1) and (3) alone hold then �(d) may follow �(a) up, and if only(2) and (4) hold then �(d) may follow �(a) down. Under all other onditions �(d)is independent of �(a).Proof. This follows diretly from the proof of Theorem 4.1 .Theorem 4.2 makes it possible to redue the }-network to a simple ausal linkA! D in whih the behaviour of this simple link is ontrolled by the onditions:�(a) < �(d j a) (9)�(d; a) > �(d j :a) (10)where (9) is de�ned to hold if onditions (1) and (3) of Theorem 4.2 hold, and (10)to hold if (2) and (4) of Theorem 4.2 hold. Setting the onditions thus ensures
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A 2 fa;:ag
... ...

B 2 fb;:bg C 2 f;:gE 2 fe;:egD 2 fd;:dg Q 2 fq;:qgP 2 fp;:pgX 2 fx;:xg Y 2 fy;:yg
Z 2 fz;:zgFig. 5. A loop with an arbitrarily large number of nodesthat the link A ! D relates A and D in exatly the same way as the }-networkdoes and is thus a similar redution to that disussed by Wellman1 for qualitativeprobabilisti networks.Reduing the loop to a simple link eliminates the need to onsider dependeniesbetween several parents of a node, sine these have been dealt with in the redution.Thus qualitative hanges an be propagated through networks obtained by reduingfour node loops using methods developed in Setion 3 sine there are no longer anyloops to ause any problems. This kind of redution does, however, rule out thepossibility of determining the hanges at B and C, the intermediate nodes along theloop, in the same way that Wellman's redution does, meaning that the redutionmust be targetted at a partiular node whose hange it is desired to know. Clearly, ifthe hange at an intermediate node is required, this must be determined seperately.This result an be extended to networks with arbitrarily large numbers of nodes.For the network in Fig. 5, whih we will refer to as the N}-network, it is possibleto determine that:Theorem 4.3. In the N}-network �(z) follows �(a) when, for any  2 f;:g,b 2 fb;:bg,: : :, x 2 fx;:xg, y 2 fy;:yg, all the following onditions hold: �(a) <min ��(b j a);�(d j b); : : : ;�(x j p);�( j a);�(e j ); : : : ;�(y j q) (1), �(a; b; ;: : : ; x; y) > �(:a; b; ; : : : ; x; y) (2), �(x; y) < �(z j x; y) (3), and �(a; b; ; : : : ; x;
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B 2 fb;:bg D 2 fd:dgA 2 fa;:ag
C 2 f;:g

Fig. 6. A new perspetive on the four node loopy; z) > supb2fb;:g;:::;y2fy;:yg ��(a; b; ; : : : ; x; y; z)	 (4). If (1) and (3) hold but (2)and (4) don't, �(z) may follow �(a) up, and if (2) and (4) hold but (1) and (3) don't,then �(z) may follow �(a) down. Under all other onditions �(z) is independentof �(a).Proof. The theorem follows from the proof of Theorem 4.1 when the equationsrelating �(a) and �(d) are generalised to the network of Fig. 5 .Theorem 4.3 permits the redution of the loop to a single link of the form A ! Zin the same way as was desribed in the previous setion, and by doing so per-mits propagations through loops without onsidering the dependenies between theparents. However, as disussed above, suh a redution will make it impossible toestablish hanges in value at intermediate nodes suh as P and Q.4.3. Other loop topologiesSo far only the propagation of values from the top of the loop to the bottom havebeen onsidered. In this setion a number of di�erent ways in whih values may bepropagated through loops are dealt with. In partiular, onsidering the }-network,it is interesting to try and establish:(i) the hange at B given the hange at C;(ii) the hange in D given the hange at C;(iii) the hange at D given hanges at A and C.Consider (i) �rst. In this ase the loop in question is that of Fig. 6. where C isthe top node and B is the bottom node. In this ase, Theorem 4.2 an give usthe onditions under whih �(b) varies with �(), and it is possible to propagatehanges by reduing the network. Clearly, to apply Theorem 4.2 to this new network
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Fig. 7. Another new perspetive on the four node loopwill require di�erent possibility values from those required by the analysis of thenetwork of Fig. 3. It may be possible to establish these new values from the old onesby using the possibilisti version of Bayes' theorem, or they may need to be obtainedby some form of knowledge aquisition. Case (ii) is similar. Here the network �tsinto the mould of the N}-network, albeit somewhat lopsidedly (see Fig. 7). Itis lear that suh a network an be redued to a link C ! D given the relevantonditionals. Case (iii) is a little di�erent sine it involves the ombination of thee�ets of two di�erent hanges. Applying the priniple of superposition makes itpossible to take the qualitative e�et of the hange at A alone on D and at C aloneon D and sum them to get the total hange at D. Clearly, this means reduing thenetwork to A ! D to ompute the hange at D due to the hange at A and thenreduing the network to C ! D to ompute the hange at D due to the hange atC, before summing the two hanges.Between them ases (i){(iii), along with the original ase, desribe all the basiways in whih hanges may be propagated around the four node network. Any otherpropagation of hanges are variations on or ombinations of these basi patterns.Thus the results given above make it possible for us to predit how any set ofhanges will be propagated around a four node loop. Now, similar analyses maybe arried out for the general loop of Fig. 5, making it possible to predit how anyset of hanges will be propagated about any loop, and so the results of this setionare suÆient to extend the theory of qualitative possibilisti networks to over anynetwork that is a direted ayli graph, provided that the variables mentioned inthe network are binary valued.4.4. Networks with non-binary valued variablesAll the variables onsidered so far in this paper have been binary valued. The hoieof suh variables has been entirely pragmati in that they are easier to work with,lending themselves to simpler proofs and more omprehensible results. However,



Qualitative possibilisti networks 17���� ����- X 2 fx; y; : : : ;mgY 2 fa; b; : : : ; ngFig. 8. A network with nodes representing non-binary valued variablesthere are many real world situations in whih multivalued variables are appropriate,and this setion addresses the use of suh variables in qualitative possibilisti net-works. In partiular the propagation of qualitative hanges in multivalued variablesis onsidered aross the simplest possible network, suh as Y ! X of Fig. 8. Here Yhas possible values fa; b; : : : ; ng and X has possible values fx; y; : : : ;mg. Possibilitytheory tells us that the possibility of X taking value x is�(x) = supY 2fa;b;:::;ngmin��(x j Y );�(Y )� (11)Using this equation, it is possible to establish how hanges in possibility at X maydepend upon hanges in possibility at Y . For instane, the di�erent ways in whih�(x) varies given hanges in �(a) are summarised by:Theorem 4.3. In the network Y ! X , �(x) follows �(a) if �(a) < �(x j a) and�(x; a) > sup(�(x; b); :::;�(x; n)), �(x) may follow �(a) up,if �(a) < �(x j a) and�(x; a) < sup(�(x; b); :::;�(x; n)), �(x) may follow �(a) down if �(a) > �(x j a)and �(x; a) > sup(�(x; b); :::;�(x; n)), otherwise �(x) is independent of �(a).Proof. In a similar way as for Theorems 3.1 and 3.3, the result follows by inspetionfrom the expression for �(x), namely �(x) = sup�min ��(x j a);�(a)�;min ��(x jb);�(b)�; :::;min ��(x j n);�(n)�	 .Similar results may be obtained for the way in whih �(x) varies with �(b); :::;�(n),and for the ways in whih �(y); :::;�(m) vary with �(a); :::;�(n). The overallhange at X depends upon the hanges at Y and all of the relationships betweenthe di�erent possible values of X and Y . The overall hange is thus determined by:2664 ��(x)��(y)...��(m)3775 = 2666664 h��(x)��(a)i h��(x)��(b) i � � � h ��(x)��(n)ih ��(y)��(a)i h��(y)��(b) i � � � h ��(y)��(n)i... ... ...h��(m)��(a) i h��(m)��(b) i � � � h��(m)��(n) i
3777775
 2664��(a)��(b)...��(n)3775 (12)It is learly possible to extend the other results in this paper to the ase of non-binary valued variables if suh results are required, making it possible to analyse thequalitative behaviour of any possibilisti network that is a direted ayli graph.



Qualitative possibilisti networks 185. An ExampleIn this setion we provide an illustration of the kind of reasoning that may be ar-ried out using qualitative possibilisti networks, takling a version of the dyspnoeaproblem originally disussed by Lauritzen and Spiegelhalter5.5.1. PreambleThe previous setions have desribed how to analyse possibilisti networks in orderto establish how qualitative hanges will be propagated in a network for whih thequantitative values are known. This is the way in whih the theory of qualitativepossibilisti networks was intended to be used, as part of a sheme for integratingunertainty handling formalisms12, and is the way in whih the use of qualitativepossibilisti networks has previously been disussed18;19. However, this is not theonly way in whih qualitative possibilisti networks may be used. There is analternative mode of use, and it is this that will be employed in our example.The other mode of use of qualitative possibilisti networks is that generally pro-posed for qualitative probabilisti networks| a mode in whih the networks arede�ned in terms of the qualitative, rather than the quantitative, relationships be-tween variables. Thus when onsidering two binary-valued variables P and Q whihare known to inuene eah other, aquisition entres around establishing whether�(p) follows �(q) rather than what the value of �(p j q) is. When establishing thisqualitative behaviour, the results of the previous setions identify the assumptionsabout onditional values that are being made. Having established the qualitativebehaviour of the network that represents a given situation, (7) and (8) may be usedto propagate hanges in possibility, so that the result of various observations maybe onsidered.It should be noted, however, that whereas in qualitative probabilisti networksa single qualitative value is suÆient to haraterise the inuene between twovariables, in qualitative possibilisti networks a single qualitative value is requiredfor eah relevant derivative. Thus the inuene between P and Q is haraterisedby four derivatives, and thus we must seperately aquire the relationships betweenp and q, between p and :q, between :p and q and between :p and :q.5.2. The dyspnoea problemThe original formualtion of the dyspnoea problem5 was based upon the followingpiee of �titious qualitative medial `knowledge':Dyspnoea (D), that is shortness-of-breath, may be due to tuberulosis(T), lung aner (L), or bronhitis (B), or none of them, or more than oneof them. A reent visit to Asia (A) inreases the hanes of tuberulosis,while smoking (S) is known to be a risk fator for both lung aner andbronhitis. The results of a single hest X-ray (X) identi�es the preseneof either tuberulosis or lung aner (E) sine it does not distinguishbetween them, as does the presene of absene of dyspnoea.
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T 2 ft;:tg
A 2 fa;:ag
X 2 fx;:xg E 2 fe;:eg L 2 fl;:lg S 2 fs;:sgB 2 fb;:bg

D 2 fd;:dgFig. 9. The network for the dyspnoea exampleThe braketed letters are the names of the binary variables representing the ondi-tions, and eah variable is represented by a node in the network of Fig. 9. It shouldbe lear that Fig. 9 is the network of inuenes between the onditions. Now, thesituation to whih we want to apply this information is, for instane, to establishhow the possibility of a patient having tuberulosis hanges when it is known thatthe patient is a smoker, or to establish how the possibility of the patient havingbronhitis hanges given that a positive x-ray is obtained. That is we want to estab-lish the qualitative hange in the possibility of the patient having bronhitis givenan inrease in the possibility of a positive x-ray, and what the qualitative hange inpossibility of tuberulosis is given that the possibility of the patient being a smokerinreases.5.3. Applying qualitative possibilisti networksTo answer these questions we need information about the qualitative inuenes be-tween the various values of the variables in the problem, and these an be obtainedfrom the desription of the problem given above. In partiular we must establishthe relationship between �(s) and �(e) in order to redue the loop in whih theyboth are to a simple link between them, and thus a singly onneted network inwhih it is safe to propagate qualitative possibility values. From the problem de-sription we an say that the possibility of lung aner or tuberulosis will followboth the possibility of smoking, and the possibility of tuberulosis. Thus, in termsof qualitative derivatives: ���(e)��(s)� = [+℄ (13)���(e)��(t) � = [+℄ (14)



Qualitative possibilisti networks 20It seems reasonable to assume that h��(:e)��(:s)i = [+℄ and h ��(e)��(:s)i = h��(:e)��(s) i = [0℄,and h��(:e)��(:t) i = [+℄ and h ��(e)��(:t)i = h��(:e)��(t) i = [0℄. Thus, given that knowledgeof the patient smoking means that ��(s) = [+℄ and ��(s) = [�℄ the hange inpossibility of lung aner or tuberulosis may be alulated using (7):� ��(e)��(:e) � = � [+℄ [0℄[0℄ [+℄�
 � [+℄[�℄ � (15)= � [+℄[�℄ � (16)Now, so far reasoning has been preditive, from auses to e�ets, but to establishhow the possibility of tuberulosis will hange we must reverse this and reasonevidentially from E to T . To do this we apply Theorem 3.2 whih tells us that,given the known relationship between �(t) and �(e):� ��(t)��(e)� = ["℄ (17)and we may also establish that h ��(t)��(:e)i = [#℄, that h ��(t)��(:e)i = [#℄ and h ��(:t)��(:e)i =["℄, so that: � ��(t)��(:t) � = � ["℄ [#℄[#℄ ["℄ �
 � [+℄[�℄� (18)= � [?℄[0℄� (19)So that we an say that while it is not possible to predit for sure how the possibilitythat the patient has tuberulosis will hange, we an be sure that the possibilitythat the patient does not have tuberulosis will not hange. Thus knowledge ofthe patient's history of smoking does not have muh relevane to a disussion ofwhether or not they have tuberulosis.A similar proess ould be applied to alulate how a positive X-ray a�ets thepossibility of bronhitis. Consideration of the desription of the problem will yieldthe qualitative inuene of E on X , and this may be reversed by Theorem 3.2 togive the hange in possibility of E. Then the loop must be redued by establishingthe qualitative inuene of B on E, and this in turn may be reversed allowing thehange in possibility of B to be established.6. DisussionHaving introdued a number of features of qualitative possibilisti networks andhaving demonstrated their appliation on a small example, this setion brings thepaper almost to a lose with a disussion of what the theory may be used for, somerelated piees of work, and some diretions in whih the theory might be extended.



Qualitative possibilisti networks 216.1. Uses for qualitative possibilisti networksAs mentioned above, the original motivation for the development of the theory ofqualitative possibilisti networks was the need to integrate di�erent unertaintyhandling formalisms. It is possible12;18 to argue that integration may be ahievedby only onsidering qualitative hanges in values expressed in di�erent formalisms,and so the study of qualitative possibilisti networks, and the results detailed above,make it possible to integrate possibility theory with other formalisms. The methodis exible, simple to extend, and unlike other shemes for integration does notimpose a partiular semantis upon the formalisms, and these advantages o�setthe weak qualitative results that the method provides. These advantages also seemto make the method appliable in the area of distributed arti�ial intelligene19;20when existing systems are oupled together.As argued above, however, it is also possible to use qualitative possibilisti net-works on their own aount as a means of representing and reasoning with unertaininformation in exatly the same way as qualitative probabilisti networks may beused. In this ase exatly the same motivation may be proposed. This is1 thatthe use of preise numerial information may be inappropriate sine, in ertain ir-umstanes, it leads to knowledge bases being appliable only in very narrow areasbeause of the interation between values at a �ne level of detail. Sine they viewthe world at a higher level of abstration, qualitative methods are immune to suhproblems| the small ompliations suh interations ause simply have no e�etat the oarse level of detail with whih qualitative methods are onerned.This means that a system that was tailored to one environment an be movedto another and ontinue to operate reliably sine the same qualitative informationapplies. Thus, for instane a medial expert system using qualitative possibilistireasoning ould be moved from one lini to another with no adverse results sine theinformation upon whih it makes its diagnoses would be the same in both plaes.In ontrast a system using a numerial formalism would be expeted to beomeunreliable sine the numbers on whih it was based would have hanged, and inorder to make it reliable a whole new set of numbers would have to be aquired.In this mode, then, the qualitative formalism provides robust reasoning that stillobeys the fundamental tenets of the underlying quantitative theory with all theadvantages that it entails.Finally, qualitative possibilisti reasoning an be used as a means of validatingquantitative possibilisti systems. Sine the qualitative behaviour of a system isan abstration of its quantitative behaviour, it is possible to use the qualitativeanalysis to predit how the system will behave quantitatively. This means that itis possible to arry out a few simple tests to determine if the basi behaviour of anumerial model is that whih is desired by its developers, and to make orretionsif these are neessary21.



Qualitative possibilisti networks 226.2. Related workThis work is losely related to that of Wellman1 and Henrion and Druzdzel2;22.These authors are interested in the propagation of qualitative probability and basetheir notion of dependeny between variables on the idea of forward stohasti dom-inane. As a result, the sheme that they ome up with is rather simpler than mine,whih is good from the point of view of larity. However, their sheme is not builton quite suh fundamental notions. These di�erenes are not surprising given thatthe shemes have di�erent intended uses. Mine was intended as a basis for the inte-gration of di�erent formalisms and it is thus important that it is ompletely faithfulto the underlying theory. Theirs is intended as an eÆient and extensible abstra-tion of probability theory so that simpliity is paramount. However, if qualitativepossibilisti networks are to be used in a similar way to that disussed in Setion6, it might well be worth extending the underlying theory to make them as simpleand robust as qualitative probabilisti networks.Another piee of related work is that of Fonk and Straszeka9 who have stud-ied the propagation of possibility values through ayli direted graphs and havedisovered a means of arrying out suh a propagation in a similar way to thatin whih Pearl4 propagates probability values in suh strutures. There are twodi�erenes between their approah and mine. Firstly Fonk and Straszeka handlequantitative hanges in possibility value while I deal with qualitative hanges. Ifthe hanges generated by their sheme in a partiular senario are onsidered in aqualitative way, so that, for instane, a hange from �(a) = 0:1 to �(a) = 0:3 isseen only as an inrease �(a) = [+℄, then both of our approahes will give the sameresult. In any network, in every situation that Fonk and Straszeka's sheme ofpropagation generates a quantitative hange in possibility at some node as a resultof a hange in possibility at another node, my sheme will generate an equivalentqualitative hange. The seond di�erene is that Fonk and Straszeka are inter-ested in eÆient propagation, a subjet whih is not onsidered here. However, itseems that the propagation of qualitative values is inherently more eÆient thanthat of numerial values. Druzdzel and Henrion23 have reently shown that thepropagation of qualitative probability values is quadrati in the number of nodes inthe graph, making the proess onsiderably more tratable than the propagation ofquantitative values whih is known to be NP-hard24.6.3. Future workThere are three obvious ways in whih the work reported in this paper may beextended. The �rst is to generalise the qualitative quantity spae from f[+℄; [�℄; [0℄;[?℄; ["℄; [#℄g to allow it to represent more preise information when suh informationis available. There are several ways in whih this might be done. It ould be ad-dressed by the use of more omplex qualitative values12, semiqualitative values25 ora ombination of numerial and qualitative information26| all methods whih hy-bridise qualitative and quantitative representations in an attempt to broaden both.



Qualitative possibilisti networks 23Alternatively the problem ould be handled by some form of order of magnitudereasoning27 in whih the relative magnitude of quantities are explitly manipulatedin order to enable reasoning about whih hanges are signi�ant, or whih are moreimportant than others.This kind of development would make the representation more omplex. Itwould also be possible to make the representation simpler. That is by borrowingideas from the theory of qualitative probabilisti networks, it might be possibleto provide a simpler means of representing the hanges that take plae at a node,and the way in whih hanges in value might be propagated along links betweennodes. This kind of simpli�ation might also help to ease the searh for an eÆ-ient algorithm for propagating values in qualitative possibilisti networks, whihis the third area in whih it seems that the theory ould be extended. It shouldbe noted, however, that the lak of a speialised eÆient algorithm has not pre-vented the implementation of the urrent theory. This implementation12 has beenarried out using the Pulinella28 system whih itself is based upon the eÆientloal omputation method of Shenoy and Shafer29.7. SummaryThis paper has introdued the idea of qualitative possibilisti networks, re-porting results that omplement reent work on qualitative probabilisti networks.Qualitative possibilisti networks were introdued as an abstration of possibilis-ti networks, and the onditions for their various types of qualitative behaviourestablished. The results given are suÆient to establish the qualitative behaviourof any possibilisti network whih takes the form of a direted ayli graph, andpermit the way in whih hanges in possibility will be propagated in both predi-tive and evidential diretions to be predited. The results may also be viewed in adi�erent light, as an investigation of the possible behaviours that may be enodedby a qualitative possibilisti network. Looked at in this way the results form thebasis of a new qualitative means of representing and reasoning with unertain in-formation that obeys the basi axioms of possibility theory. This view of the resultswas illustrated by means of a medial example, and other appliations of qualitativepossibilisti networks were mentioned. The paper losed with a disussion of relatedwork and some of the diretions in whih the theory might be expanded.AknowledgementsThis work was partly supported by a grant from ESPRIT Basi Researh A-tion 3085 DRUMS (Defeasible Reasoning and Unertainty Management Systems).Thanks to all my olleagues on the DRUMS projet for help and enouragement, es-peially Mirko Dohnal, Didier Dubois, John Fox, Paul Krause Rudolph Kruse, andHenri Prade. I am also very grateful to Marek Druzdzel for a preview of his reentwork, to Pasale Fonk for pointing out some errors, and to Alessandro SaÆotti formaking me try harder.
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