
International Journal of Uncertainty, Fuzziness and Knowledge-Based SystemsVol. 3, No. 1 (1995) 000|000fc World Scienti�c Publishing CompanyFURTHER RESULTS IN QUALITATIVE UNCERTAINTYSIMON PARSONSAdvanced Computation Laboratory, Imperial Cancer Research Fund,P.O. Box 123, Lincoln's Inn Fields, London WC2A 3PX.Received (June 1994)Revised (March 1995)This paper extends previous work on propagating qualitative uncertainty in networksin which a general approach to qualitative propagation was discussed. The work pre-sented here includes results that make it possible to perform evidential and intercausalreasoning, in addition to the predictive reasoning already covered, in networks quanti�edwith probability, possibility and Dempster-Shafer belief values. The use of these formsof reasoning, which include the phenomenon of \explaining away", is illustrated with theuse of a medical example.Keywords: Qualitative behaviour, evidential reasoning, intercausal reasoning, explainingaway, probability theory, possibility theory, Dempster-Shafer theory.1. IntroductionIn the past few years there has been considerable interest in qualitative approachesto reasoning under uncertainty|approaches which do not make use of precise nu-merical values of the type used by conventional probability theory. These ap-proaches range from systems of argumentation1;2;3 to systems for nonmonotonicreasoning4 and abstractions of precise quantitative systems5;6. Qualitative abstrac-tions of probabilistic networks, in particular, have proved popular, �nding use inareas in which the full numerical formalism is either unnecessary or inappropri-ate. Applications have been reported in planning6, explanation7, diagnosis8 andengineering design9.In qualitative probabilistic networks, the focus is rather di�erent from that ofordinary probabilistic systems. Whereas in probabilistic networks10 the main goal isto establish the probabilities of hypotheses when particular observations are made,in qualitative systems the main aim is to establish how values change. Thus, giveninformation that a patient has a fever, and given that we are interested in whetherthe patient has measles, the aim in a qualitative probabilistic system is to establishhow the probability of measles changes rather than what the probability of measlesis. Since the approach is qualitative, the size of the change is not required. Theonly consideration is whether the probability increases, in which case the change ispositive, written as [+], decreases in which case the change is negative [�], or does1



Further results in qualitative uncertainty 2not change in which case the change is zero [0]. In some cases it is not possible toresolve the change with any precision so that its value remains unknown, and it iswritten as [?]. Clearly this information is rather weak, but as the applications showit is su�cient for some tasks. Furthermore, reasoning with qualitative probabilitiesis much more e�cient than reasoning with precise probabilities, since computationis quadratic in the size of the network5 rather than NP-hard11.The popularity of qualitative probabilistic networks prompted work on abstrac-tions of other uncertainty handling formalisms12;13;14, providing what is essentiallya generalisation of the approach provided by qualitative probabilistic networks15.This approach uses techniques from qualitative reasoning16 to determine the be-haviour of the formalisms. Given two hypotheses H and G whose probabilities areinteresting, the approach relates p(H) to p(G) by establishing the qualitative valueof dp(H)=dp(G). Initial results12 demonstrated how this approach could be usedto propagate qualitative probability, possibility17;18 and Dempster-Shafer belief19values in singly connected networks in a predictive direction|the direction in whichthe conditional values were elicited|and suggested how this propagation might beused to integrate information expressed in the di�erent formalisms. This paperextends the work in a number of ways.After a brief statement of some basic ideas in Section 2, Section 3 gives resultsthat make use of Bayes' rule and its extensions to other formalisms to enable ev-idential reasoning. Another new reasoning pattern, intercausal reasoning20;21, isintroduced in Section 4 allowing the propagation of values between the ancestorsof a node which represents a variable that is known to be true. To my knowledgethis is the �rst time that this style of reasoning has been explored in possibilityand evidence theories. The use of the results is shown on a medical example inSection 5, and the solution of the example necessitates a discussion of a means ofintegrating the di�erent formalisms.2. Basic notionsThis work is set in the framework of singly connected networks in which the nodesrepresent variables, and the edges represent explicit dependencies between the vari-ables. When the edges of such graphs are quanti�ed with probability values theyare those studied by Pearl10, when possibility values are used the graphs are thoseof Fonck and Straszecka22 and when belief values are used the graphs are thosestudied by Shafer et al.23 and Smets24. Since we deal with values that may beprobabilities, possibilities or beliefs we need a general way of referring to them, andso we de�ne a certainty value:De�nition 1 The certainty value of a variable X taking value x, val(x), is eitherthe probability of x, p(x), the possibility of x, �(x), or the belief in x, bel(x).Later on we will also need to distinguish between upper certainty values, writtenval�(�) which like possibility measure the upper bound on the degree to which a



Further results in qualitative uncertainty 3hypothesis might occur, and lower certainty values, written val�(�) like belief whichmeasure the lower bound on the degree to which a hypothesis must occur. Thisdistinction is necessary in order to relate the di�erent formalisms discussed in thispaper, since for these the upper certainty value of a hypothesis may be establishedfrom the lower certainty value of the complementary hypothesis25:val�(x) = 1� val�(:x) (1)Thus a belief value may be related to a plausibility value19, and a possibility valuemay be related to a necessity value17. In the case of probability theory, of course,the upper certainty value and the lower certainty value coincide.Each node in a graph represents a binary valued variable. We use the conventionthat the name of the node is a capital letter, often related to the name of the variableit represents, and that the possible values taken by the variable are indicated bylower case letters, usually the lower case letters appropriate to the name of thenode. Thus a node X represents some variable, say \Xerxes is alive" whose possiblevalues are x and :x with the usual implication that x stands for the value \Xerxesis alive is true" while :x stands for the value \Xerxes is alive is false". The set ofvalues fx;:xg is sometimes written as X. The probability values associated withX are written as p(x) and p(:x), and the possibility values associated with X as�(x) and �(:x). Belief values may be assigned to any subset of the values of X, soit is possible to have up to three beliefs associated with X|bel(fxg), bel(f:xg) andbel(fx;:xg). For simplicity these will be written as bel(x), bel(:x) and bel(x[:x),and we will abuse even this rather lapse notation later on by using expressions suchas X 2 fx; x[ :xg, xi 2 X to mean that xi can take the values x or :x. The useof binary values is purely a matter of convenience since it makes the results simplerto understand and easier to obtain. It is possible to generalise the results14.Given two nodes in the network, A and C, which are connected we are interestedin the way in which a change in val(a), say, inuences val(c) and val(:c). We canmodel the impact of evidence that a�ects the value of A in terms of the change incertainty value of a and :a, relative to their value before the evidence was known,and use knowledge about the way that a change in val(a) a�ects val(c) and val(:c)to propagate the e�ect of the evidence. We de�ne the following relationships thatdescribe how the value of a variable X changes when the value of a variable Y isaltered by new evidence:De�nition 2 The certainty value of a variable X taking value x is said to followthe certainty value of variable Y taking value y if val(x) increases when val(y)increases, and val(x) decreases when val(y) decreases.De�nition 3 The certainty value of a variable X taking value x is said to varyinversely with the certainty value of variable Y taking value y if val(x) decreaseswhen val(y) increases, and val(x) increases when val(y) decreases.



Further results in qualitative uncertainty 4De�nition 4 The certainty value of a variable X taking value x is said to be inde-pendent of the certainty value of variable Y taking value y if val(x) does not changeas val(y) increases and decreases.If it is not possible to determine which of these relationships between val(x) andval(y) hold, then the relationship between val(x) and val(y) is said to be indeter-minate. These relationships are distinguished because of the way that they relate tothe keystone of our method which is the use of qualitative derivatives. The relation-ship between val(x) and val(y) is charaterised by the derivative dval(x)=dval(y).When the value of the derivative is known, the change in val(x) can be establishedfrom the value of the change in val(y)y:�val(x) = dval(x)dval(y) �val(y) (2)Now, we are only interested here in the direction of the change, so we are onlyinterested in the qualitative values16 of the above terms:[�val(x)] = �dval(x)dval(y) � 
 [�val(y)] (3)where [x] is [+] if x is positive, [�] if x is negative, [0] if x is zero, and [?] if it is notpossible to determine whether x is any of the above. The symbol \
" denotes qual-itative multiplication6;16. Clearly val(x) follows val(y) when [dval(x)=dval(y)] =[+], val(x) varies inversely with val(y) when [dval(x)=dval(y)] = [�] and is inde-pendent of val(y) when [dval(x)=dval(y)] = [0]. If the relationship between val(x)and val(y) is indeterminate then the derivative can take any value and we write[dval(x)=dval(y)] = [?]. It is also possible to relate val(x) and val(y) using partialderivatives:[�val(x)] = �@val(x)@val(y) �
 [�val(y)] � � @val(x)@val(:y) �
 [�val(:y)] (4)where \�" is qualitative addition6;16. The di�erence between the partial derivativesand the (total) derivatives used above is that the latter take account of changes inval(:y).Despite the appeal of the relationship between the terms de�ned in De�nitions2{4 and the qualitative value of the derivatives, these terms are not su�cient todescribe every relationship we come across. We also require the following:De�nition 5 The certainty value of a variable X taking value x is said to followthe certainty value of variable Y taking value y up if val(x) increases when val(y)increases, and val(x) does not change when val(y) decreases.yOf course, this is only generally true for in�nitesimal changes in val(y). However, it turns out14that the second derivatives, d2val(x)=dval(y)2, of all relations relating certainty values are zero sothat the �rst derivative (which is what we are using) is constant and (2) holds for any change inval(y).



Further results in qualitative uncertainty 5De�nition 6 The certainty value of a variable X taking value x is said to followthe certainty value of variable Y taking value y down if val(x) does not change whenval(y) increases, and val(x) decreases when val(y) decreases.Clearly the relationships between val(x) and val(y) described by these two termsare related to those introduced previously since val(x) follows val(y) if and only ifit both follows val(y) up and follows it down. We can also introduce the idea thatthe relationship between val(x) and val(y) is not known exactly, so that it maybe the case that val(x) changes when val(y) does but it may also be the case thatval(x) does not change when val(y) does. For this we need four new de�nitions,the �rst two amend the de�nitions of \follows" and \vary inversely with":De�nition 7 The certainty value of a variable X taking value x is said to be relatedto the certainty value of variable Y taking value y such that val(x) may follow val(y)if val(x) either follows val(y) or is independent of it.De�nition 8 The certainty value of a variable X taking value x is said to be re-lated to the certainty value of variable Y taking value y such that val(x) may varyinversely with val(y) if val(x) either varies inversely with val(y) or is independentof it.The next two de�ntions amend the de�nitions of \follow up" and \follow down".De�nition 9 The certainty value of a variable X taking value x is said to be relatedto the certainty value of variable Y taking value y such that val(x) may follow val(y)up if val(x) either follows val(y) up or is independent of it.De�nition 10 The certainty value of a variable X taking value x is said to berelated to the certainty value of variable Y taking value y such that val(x) mayfollow val(y) down if val(x) either follows val(y) down or is independent of it.We could also introduce further relationships relating to the sub-parts of the \variesinversely" relation and their \maybe" counterparts, but these have not been foundnecessary to date.If val(x) follows val(y) up then we write [dval(x)=dval(y)] = ["], and if val(x)follows val(y) down then we write [dval(x)=dval(y)] = [#]. When we say that val(x)may follow val(y) up then we are saying that [dval(x)=dval(y)] is ["] or [0] and wewrite this as [dval(x)=dval(y)] = ["; 0]. Similarly, if val(x) may follow val(y) downthen we are saying that [dval(x)=dval(y)] = [#; 0]. Such derivatives naturally leadto changes which are represented by combinations of [+] and [�] with [0] since theyare possible increases and decreases.



Further results in qualitative uncertainty 6To handle the new values ["] and [#] it is necessary to extend the qualitativemultiplication operator to get:
 [+] [0] [�] [?] ["] [#][+] [+] [0] [�] [?] [+] [0][0] [0] [0] [0] [0] [0] [0][�] [�] [0] [+] [?] [0] [�][?] [?] [0] [?] [?] [+] [�]The results are trivial to establish, as they were in the original papers in whichthey were introduced6;16. The product of an increase in value (left column), and apositive derivative (top row) is an increase in value, while the product of an increasein value and a derivative that indicates the relationship in question is \follows down"is no change. The e�ect of \may follow" and similar derivatives may be establishedby considering the two e�ects that they represent. Thus the e�ect of combining[0; "] with [+] is [0]
 [+] or ["]
 [+]. This comes to [0] or [+], which we may writeas [0;+]. Note that because qualitative addition only ever combines two changes invalue, and because changes never have the value ["] or [#], we can use the originaloperator: � [+] [0] [�] [?][+] [+] [+] [?] [?][0] [+] [0] [�] [?][�] [?] [�] [�] [?][?] [?] [?] [?] [?]Given this background, it is clear that to determine the change at node C given thechange at node A we may use either total or partial derivatives:� [�val(c)][�val(:c)]� = 24 h dval(c)dval(a) ihdval(:c)dval(a) i35
 [�val(a)] (5)� [�val(c)][�val(:c)]� = 24 h @val(c)@val(a)i h @val(c)@val(:a)ih@val(:c)@val(a) i h @val(:c)@val(:a)i35
 � [�val(a)][�val(:a)]� (6)When the value at a node is inuenced by changes at several other nodes, wemay calculate the overall change by using the principle of superposition26 whichallows us to obtain the compound change by simply summing the changes thatwould be induced by each inuencing node on its own. Thus if there is a node Dwhich is a�ected by changes at C and another node B, the overall change at D isgiven by the sum of the change at D due to the change at C and the change at Ddue to the change at B. This sum may be established by the use of either total or



Further results in qualitative uncertainty 7partial derivatives:� [�val(d)][�val(:d)]� = 24 hdval(d)dval(b) ih@val(:d)@val(b) i35
 [�val(b)]� 24 hdval(d)dval(c) ih@val(:d)@val(c) i35
 [�val(c)] (7)� [�val(d)][�val(:d)]� = 24 h@val(d)@val(b) i h @val(d)@val(:b)ih@val(:d)@val(b) i h@val(:d)@val(:b) i35
 � [�val(b)][�val(:b)]�� 24 h@val(d)@val(c) i h @val(d)@val(:c)ih@val(:d)@val(c) i h@val(:d)@val(:c) i35
 � [�val(c)][�val(:c)] � (8)In this paper we use total derivatives to manipulate probability and belief valuesand, because of the di�culty of determining how �(x) a�ects �(:x)14, we usepartial derivatives to manipulate possibility values. In fact, strictly speaking, itis not possible to establish any kind of derivative in possibility theory since themaximum and minimumcombinators used by the theory may not be di�erentiated.However, it is possible to establish the sign of �val(x)=�val(y) (the way in whicha small change in value rather than an in�nitesimal change in value is propagated)and this is what will be manipulated in the case of possibility theory. I trust thatthe reader will excuse the slight abuse of notation that allows @val(x)=@val(y) tostand for ��(x)=��(y) since it makes the partial nature of the relationship clear.3. Bayes' rule and its variantsWe can use the above approach to analyse the propagation of values in networksquanti�ed using probability, possibility and belief values, obtaining results12 whichallow propagation in the direction implied by the conditional values with which theinuences between nodes are quanti�ed. Thus for a direct link between nodes Aand C, where the conditional value table that controls propagation over the link iswritten in terms of values such as val(c ja), qualitative propagation may be carriedout from A to C. Now, such tables are usually elicited in terms of causal inuencessince if A causes C it is easier to establish val(c ja) than val(a jc). However, whenperforming many types of reasoning, it is often necessary to reason evidentially frome�ects (which may be observed) to causes (which one wishes to establish). Thus itis desirable to establish a means of obtaining the qualitative behaviour of evidentialpropagation from the known qualitative behaviour of the causal propagation.3.1. Evidential reasoning in probability theoryIn probability theory we can make use of Bayes' rule to establish values such asp(a jc) from values such as p(c ja) and thus to establish how qualitative probabilities



Further results in qualitative uncertainty 8may be propagated in an evidential direction. If we write the link connecting A andC as A! C we have:Theorem 1 For A ! C and for all x 2 fc;:cg, y 2 fa;:ag, p(y) follows p(x) i�p(x) follows p(y), p(y) varies inversely with p(x) i� p(x) varies inversely with p(y),and p(y) is independent of p(x) i� p(x) is independent of p(y).Proof:27 The qualitative value of dp(c)=dp(a) is determined by p(c ja)�p(c j:a)12and so that of dp(a)=dp(c) is determined by p(a jc)�p(a j:c). Applying Bayes' rulegives us p(a jc) � p(a j:c) = p(c ja)p(a)=p(c) � p(:c ja)p(a)=p(:c). Writing p(c) asp(c ja)p(a)+ p(c j:a)p(:a), p(:c) as p(:c ja)p(a)+ p(:c j:a)p(:a) and simplifyingwe get p(a j c) � p(a j :c) = p(a)p(:a)p(c)p(:c) hp(c j a)p(:c j :a) � p(:c j a)p(c j :a)i. Now,because p(c j a) = 1 � p(:c j a), if p(c j a) > p(c j :a) then p(:c j :a) > p(:c j a),and so the qualitative value of p(a jc)� p(a j:c) is equal to the qualitative value ofp(c ja)� p(c j:a). From this and similar results for the variation of p(a) with p(:c)and p(:a) with p(c) and p(:c) the result follows.2Thus a probabilistic inuence propagates in the reverse direction exactly as it doesin the forward direction, a result which agrees with that of Wellman6 as well asintuition.3.2. Evidential reasoning in possibility theoryFor inuences quanti�ed using possibility values, it is possible to perform evidentialpropagation using a possibilistic version of Bayes' rule provided by Dubois andPrade28. This states that the joint possibility distribution over A and C is thesame whichever end of the link joining A and C the calculation of the joint valuestarts from: min��(c ja);�(a)� = min��(a jc);�(c)� (9)min��(:c ja);�(a)� = min��(a j:c);�(:c)� (10)This result enables us to obtain:Theorem 2 For A! C and for all x 2 fc;:cg and y 2 fa;:ag, �(y) may follow�(x) up i� �(x) follows �(y) or �(x) may follow �(y) up, and �(y) may follow�(x) down i� �(x) may follow �(y) down or �(x) is independent of �(y).Proof: The lengthy proof of this theorem may be found in a previous paper13.2Thus reversing a possibilistic link is similar to reversing a probabilistic link, butgives less precise results. When a link that propagates forward so that its conse-quent follows its antecedent is reversed, it is only possible to say that its antecedentmay follow its consequent. Similarly, when a link that blocks propagation, so that



Further results in qualitative uncertainty 9the consequent is una�ected by changes in the antecedent, is reversed, the an-tecedent may follow the consequent. Just as in the probabilistic case the resultagrees with intuition|the evidential propagation is roughly the same as the pre-dictive propagation|but is complicated by the use that possibility theory makes ofmax and min. As a result it is always possible that a change in value at one end ofa link will not be propagated because the change in value was not su�cient to passthe threshold at which the value at the other end alters. Similarly, just because achange in the predictive direction is blocked by a link, a change in the evidentialdirection need not be.3.3. Evidential reasoning in evidence theoryTo enable evidential reasoning across inuences that are quanti�ed with belief func-tions, Smets' has provided a generalisation of Bayes' theorem24;29 which makes itpossible to calculate conditional beliefs such as bel(a j c) from conditional beliefssuch as bel(c ja). For A! C we have, for any a � A, c � C:bel(a jc) = Yy2~a bel(~c jy) � Yy2A bel(~c jy) (11)where ~x is the set-theoretic complement of x with respect to X, namely X � x.Using this rule gives:Theorem 3 For A ! C and for all x 2 fc;:cg, y 2 fa;:ag, bel(y) may followbel(x).Proof: There are two possible ways of combining belief values when propagatingfrom C to A. If the disjunctive rule of combination24 is used then bel(a) followsbel(c) whatever the conditionals12. If Dempster's rule19 is used then the qualitativevalue of dbel(a)=dbel(c) is [bel(a j c)� bel(a j c [ :c)]12. From the generalisation ofBayes' theorem, bel(a jc) = bel(:c j:a)� bel(:c ja)bel(:c j:a) and bel(a jc [ :c) =bel(; j :a) � bel(; j a)bel(; j :a) = 0. Since both bel(:c j a) and bel(:c j :a) arebetween 0 and 1 by de�nition it is clear that bel(a j c) � bel(a j c [ :c) and thederivative has value [+; 0] meaning that bel(a) may follow bel(c). From these andsimilar results for the variation of bel(a) with bel(:c) and bel(:a) with bel(:c) andbel(:a) the theorem follows.2Thus reversing evidential links with Smets' version of Bayes' rule has the e�ect ofmaking the relationship between the antecedent of the original link and its conse-quent such that the belief in the antecedent may follow changes in the belief in theconsequent. This seems sensible when the forward propagation is carried out usingthe disjunctive rule since using this rule means that the consequent always followsthe antecedent12 making it sensible that the antecedent may follow consequent onreversal. However, when Dempster's rule is used the behaviour of this belief func-tion version of Bayes' theorem seems less satisfactory. Using Dempster's rule, it



Further results in qualitative uncertainty 10���� ��������ZZZZZZ~ ������=LJ 2 flj;:ljg I 2 fi;:igIQD 2 fiqd;:iqdgFigure 1: A network describing Jack's beliefsis possible for bel(c) to vary inversely with bel(a) when reasoning predictively. Insuch a case it would seem odd that bel(a) may follow bel(c) when the link is re-versed. Thus the result suggests that further investigation of Smets' generalisedBayes' theorem would be fruitful, and it is possible that other forms of Bayes' rulethat conform to evidence theory and yet have di�erent e�ects may be proposed.3.4. Examples of evidential reasoningLate last year, Cody Pomeroy wrote a long letter to his friend Jack Dulouzin which he mentioned that he had just taken a job �xing tyres at the local tyreshack. In the letter he complained about the manager of the tyre shack, a mostunscrupulous sort, who immediately sacks any employee if they become ill, or ifhe �nds out that they do not have the relevant certi�cate of competance in �xingtyres. This made Jack worry about Cody's prospects, since he was well aware bothof Cody's fragile health and the fact that Cody had no certi�cate, and he went tothe lengths of drawing up the directed graph in Figure 1 in order to analyse theproblem. In the graph node I represents the variable \Ill", IQD represents thevariable \Invented quali�cation discovered", and LJ represents the variable \LoseJob".Some time later, earlier this year in fact, in a telephone call to Evelyn, Cody'swife, Jack learnt that Cody had indeed lost his job. This made him re-analyse thesituation using his direct graph model, to see what it told him about the reasonsfor Cody's dismissal.Since Jack has no numerical information about the behaviour of Cody's em-ployer, he is forced to use qualitative methods to carry out his reasoning. As a re-sult he builds his model on the basis that an adequate description of the manager'sbehaviour is that the certainty value of the proposition \Lose job" must follow thecertainty values of the propositions \Ill" and \Invented quali�cation discovered".This knowledge is su�cient, along with the results obtained above, to permit Jackto update his model with the knowledge that Cody has lost his job. If Jack reasonsusing probability theory, he can use Theorem 1 to discover that the probabilities ofboth \Ill" and \Invented quali�cation discovered" follow that of \Lose job", so thatthey increase with the new knowledge. Alternatively, if Jack uses belief functionsto quantify his model, he can use Theorem 3 to discover that the belief in both



Further results in qualitative uncertainty 11���� ��������ZZZZZZ~ ������=D 2 fd;:dg C 2 fc;:cgB 2 fb;:bgFigure 2: A network for intercausal reasoning\Ill" and \Invented quali�cation discovered" may follow that in \Lose job", so thatbelief in both propositions may increase with the new knowledge|that is it eitherincreases or does not change. Finally, Jack might use possibility theory in his model.In this case, the fact that the possibility of \Lose job" follows the possibilities of\Ill" and \Invented quali�cation discovered", means that applying Theorem 2 tellsJack that the possibilities of both \Ill" and \Invented quali�cation discovered" mayfollow that of \Lose job" up. Thus knowledge of Cody's dismissal leads to the factthat the possibilities of \Ill" and \Invented quali�cation discovered" may increase.4. Intercausal reasoningThe results in Section 3 along with those presented previously12 make it possible toperform both causal and evidential reasoning using qualitative probability, possi-bility and belief values in singly connected networks. These modes of reasoning aresu�cient to deal with many problems, but it is worth considering another importantstyle of reasoning|intercausal reasoning. This is a pattern of reasoning betweencauses that are dependent on an observed common e�ect. In this section the ap-proach introduced above is applied to analyse intercausal reasoning in probability,possibility and evidence theories.The basic network in which intercausal reasoning takes place is that of Figure 2which we will refer to this network as B&C ! D. Here B and C are conditionallyindependent when the value of D is not known, and both are causes of D. WhenD is observed to take the value d, it is often the case that as evidence is obtainedfor b the degree of support for c is altered since val(c) and val(b) are no longerindependent. Thus, to take the classic10 example, b could be the hypothesis \Thesprinkler was on", c could be the hypothesis \It rained last night" and d could bethe hypothesis \The grass is wet". If the grass is known to be wet one morning,then observing something that makes it more likely that the sprinkler was on, sayby tripping over the hose on the lawn, makes it less likely that it rained. In thiscase the relationship between b and c is a negative one, and evidence for b is said toexplain away c. However, it is also possible that evidence for b might make c morecertain or fail to inuence it.



Further results in qualitative uncertainty 124.1. Intercausal reasoning in probability theoryTo analyse the behaviour of the network we can write down an expression for p(d) interms of p(b) and p(c) and use this to relate p(b) to p(c) when D has been observedto take the value d, so that p(d) = 1. With this approach we obtain:Theorem 4 In the network B&C ! D, and for all x 2 fb;:bg and y 2 fc;:cg,when p(d) = 1:(1) p(x) varies inversely with p(y) i� p(d) follows both p(x) and p(y), or p(d) variesinversely with both p(x) and p(y);(2) p(x) follows p(y) i� p(d) follows p(x) and varies inversely with p(y), or p(d)varies inversely with p(x) and follows p(y);(3) p(x) is independent of p(y) i� p(d) is independent of p(y) and is not independentof p(x);(4) Under all other conditions, the relationship between p(x) and p(y) is indetermi-nate.Proof: p(d) = p(d j b)p(b) + p(d j :b)p(:b). Since p(d) = 1, p(b) = (1 � p(d j:b)p(:b))=(p(d j b)) and since B and C are independent, p(d j b) = p(d j b; c)p(c) +p(d j :b;:c)p(:c). Thus we can write an expression for p(b) in terms of p(c) anddi�erentiate it using the product and quotient rules. This gives dp(b)=dp(c) =�p(d j b)��2�hp(d jb) ddp(c)�1�p(d j:b)p(:b)���1�p(d j:b)p(:b)�(dp(d j b)=dp(c))i.Writing K for p(d j b)�1, we then have dp(b)=dp(c) = �K2 � �p(d j b)�p(:b)(dp(d j:b)=dp(c)) + p(d j :b)�dp(:b)=dp(c)�� + �1 � p(d j :b)p(:b)��dp(d j b)=dp(c)��.Since dp(b)=dp(c) = �dp(:b)=dp(c), �dp(b)=dp(c)� � p(d j b) � hp(d j b)� p(d j:b)i =K2 ��p(d jb)p(:b)�p(d j:b;:c)�p(d j:b; c)�+�1�p(d j:b)p(:b)��p(d jb;:c)�p(d jb; c)��. Now, 1� p(d j:b)p(:b) = 1� p(d) + p(d jb)p(b). Therefore, �dp(b)=dp(c)� �p(d j b) � hp(d j b) � p(d j :b)i = K2 � �p(d j b)p(:b)�p(d j :b;:c) � p(d j :b; c)� +�1 � p(d)p(:b)��p(d j b;:c)� p(d j b; c)�+ �p(d j b)p(b)��p(d j b;:c)� p(d j b; c)��.Noting that p(d) = 1, and combining the two remaining terms on the right handside, we get �dp(b)=dp(c)� � p(d j b) � hp(d j b) � p(d j :b)i = K2 � �p(d j b)�p(d j:b;:c)p(:b)� p(d j :b; c)p(:b) + p(d j b;:c)p(b) � p(d j b; c)p(b)��, which gives us�dp(b)=dp(c)� � hp(d jb)� p(d j:b)i = K2 � hp(d j:c)� p(d jc)i. Thus the qualitativevalue of dp(b)=dp(c) depends upon the value of the two expressions p(d jb)�p(d j:b)and p(d j c)� p(d j :c), being negative when both have the same qualitative value,being positive when they have opposite qualitative values, and being zero whenp(d j c) � p(d j :c) is zero and p(d j b) � p(d j :b) is not. But these expressions areexactly those which determine how p(d) varies with p(b) and p(c)12, so the theoremis true for x � b and y � c. Similar results for p(b) varying with p(c) and p(:b)



Further results in qualitative uncertainty 13varying with p(c) and p(:c) complete the proof. 2Thus the qualitative relation between the probabilities of B and C is determinedby the qualitative relation between the probabilities of B and D and the qualitativerelation between the probabilities of C and D. Clearly the case in which explainingaway occurs is that in which p(b) varies inversely with p(c), and it is worth notingthat the relationship between B and C is symmetrical so that if, for instance, p(b)is explained away by p(c), then p(c) is explained away by p(b). The conditionsseem entirely reasonable, and may be justi�ed by the following argument. If theprobability of d tends to follow that of p(c), and p(c) increases, then the jointprobability of b, c and d increases as p(c) increases and when p(d) is not �xed,this will cause it to increase. If, however, the probability of d is �xed, there mustbe some change in p(b) to o�set the change in the joint value, and if p(d) followsp(b) this means that p(b) must decrease. Similarly, if p(d) follows p(c) and variesinversely with p(b), p(b) must increase as p(c) increases in order to o�set the changethat would otherwise occur in the joint probability.Whilst this explanation seems an adequate justi�cation of the kind of intercausalrelationship implied by Theorem 4, the fact that the conditions are on the relation-ship between the probability of D and its causes, rather than simply on the productof the conditional values of D given its causes, makes it clear that the notion of\explaining away" that is captured here is rather di�erent to that of other authorssuch as Druzdzel, Henrion and Wellman20;21.As an aside, it should be pointed out that our explanation of the way in whichthe probabilities alter is similar to that used in the argument put forward by Tzeng30in his re-establishment of Henrion and Wellman's21 result. He examines Pearl's10method for probability propagation, and considers the ow of probability betweenthe nodes. His result, and its proof are reconstructed below using our approach toqualitative uncertainty:Theorem 5 In the network B&C ! D, and for all x 2 fb;:bg and y 2 fc;:cg,p(x) varies inversely with p(y) if p(d jx; y)p(d j:x:y) < p(d j:x; y)p(d jx;:y) Theconditions under which p(x) follows p(y) and is independent of p(y) may be obtainedanalagously.Proof: WhenD is known to be true, the evidential ow of probability into node B issuch that the ratio of the change in p(b) to that in p(:b) is given by the ratio of p(d jb)to p(d j :b). Now, since B and C are independent, p(d) = PB2fb;:bg;C2fc;:cg p(d jB;C)p(B)p(C) and p(d jb) = p(d jb; c)p(c)+ p(d jb;:c)p(:c) = p(c)hp(d jb; c)� p(d jb;:c)i+p(d jb;:c) and a similar expression may be written for p(d j:b). Now, we areinterested in the way in which this ratio alters as p(c) changes. If the ratio increases,p(b) increases as p(c) increases, and if the ratio decreases, p(c) explains p(b) away.ddp(c)�p(d jb)=p(d j:b)�= ddp(c)�p(c)hp(d jb; c)�p(d jb;:c)i+p(d jb;:c)�=�p(c)hp(d j



Further results in qualitative uncertainty 14:b; c)�p(d j:b;:c)i+p(d j:b;:c)�= Khp(d jb; c)p(d j:b;:c)�p(d j:b; c)p(d jb;:c)iwhere K = p(d j b)�2. This latter can be ignored since it is always positive, so thesign of the derivative, and hence the behaviour of p(b) depends upon p(d j b; c)p(d j:b;:c)� p(d j :b; c)p(d j b;:c) alone. From similar results for the variation of p(b)with p(:c) and p(:b) with p(c) and p(:c) the result follows.24.2. Intercausal reasoning in possibility theoryWhen the network is quanti�ed with possibility values, the observation that Dtakes value d is modelled by setting the value of �(:d) to 0. Since the valuesare normalised, max(�(d);�(:d)) = 1 and so the e�ect of the observation on thepossibility of d is to make �(d) = 1. This yields the following result:Theorem 6 In the network B&C ! D, and for all x 2 fb;:bg and y 2 fc;:cg,when �(d) = 1, �(x) varies inversely with �(y) when �(d) follows �(y), �(d j:b;:c) < �(d j b;:c) = 1, and initially �(:b) = 1, �(c) = 1, and �(b) < 1.Otherwise �(x) is independent of �(y).Proof: The relationship between �(d), �(b) and �(c) may be determined from�(d) = supB2fb;:bg;C2fc;:cg �(d;B;C) where �(d;B;C) = min��(d j B;C)�(B)�(C)�. The only time that a change in �(c) can require a change in �(b) is when�(c) changes from a value that determines �(d), meaning that �(d) must follow�(c) so that initially �(c) = 1 and either (1) �(b) = �(d jb; c) = 1 or (2) �(:b) =�(d j:b; c) = 1, or both. If (1) is the case, then �(b) cannot be forced to change andso we have the requirement that �(b) < 1 for there to be any intercausal reasoning.In case (2) we also require �(d j :b;:c) < 1 to ensure that changes in �(c) haveany e�ect. Then, if �(c) falls, provided that �(d j b;:c) = 1 the fact that �(d) isheld to 1 will mean that �(b) increases to 1. From similar results for the variationof �(b) with �(:c) and �(:b) with �(c) and �(:c) the result may be obtained.2Thus we can have a form of explaining away in possibility theory, although it isa rather limited one. The inverse relationship between �(b) and �(c) can only beexpressed in such a way that �(b) increases as �(c) falls. Thus it is the case thatevidence for C not taking value c explains B taking value b rather than evidencefor C taking value c explaining away B taking value b. In addition there cannot bea positive relationship between B and C so that �(b) can never follow �(c). Forthis form of intercausal reasoning between B and C to occur in possibility theory,the conditional possibilities must be such that it is less possible for B and C torespectively take values :b and :c than to take values b and :c suggesting somekind of exclusivity between the values. It is also necessary that �(d) would bea�ected by a change in value of �(c) were it not �xed, and as discussed above thisseems an entirely reasonable restriction.It is worth noting that, unlike the case in probability theory, prediction of ex-plaining away in possibility theory requires explicit knowledge of the quantitiative



Further results in qualitative uncertainty 15possibility values as well as some information about qualitative relations.4.3. Intercausal reasoning in evidence theoryWhen modelling the situation depicted in Figure 2 using evidence theory, there area number of possible ways of combining the inuences of B and C on D12;24. Onemay either use conditional values of the form bel(d j b) or conditional values of theform bel(d j b; c) and one may combine conditionals using either Dempster's rule ofcombination19 which involves the use of conditionals such as bel(d j b; c [ :c), orSmets' disjunctive rule24 which does not need such values, replacing bel(d jb; c[:c)with bel(d jb; c)bel(d jb;:c). Firstly, for Dempster's rule we have:Theorem 7 In the network B&C ! D, and for all x 2 fb;:bg and y 2 fc;:cg,when bel(d) = 1:(1) bel(x) varies inversely with bel(y) i� bel(d) follows both bel(x) and bel(y), orbel(d) varies inversely with both bel(x) and bel(y);(2) bel(x) follows bel(y) i� bel(d) follows bel(x) and varies inversely with bel(y), orbel(d) varies inversely with bel(x) and follows bel(y);(3) bel(x) is independent of bel(y) i� bel(d) is independent of bel(y) and is notindependent of bel(x);(4) Under all other conditions, the relationship between bel(x) and bel(y) is inde-terminate.Proof: There are two cases. In the �rst, we have conditionals such as bel(d j b; c).Since B and C are conditionally independent, bel(d) = PB�fb;:bg bel(d jB)m(B),and bel(d jB) = PC�fc;:cg bel(d jB;C)m(C). Given that bel(d) is known to be 1,we have 1 =PC�fc;:cg bel(d jb; C)m(C)m(b)+PC�fc;:cg bel(d j:b; C)m(C)m(:b)+PC�fc;:cg;B2f:b;b[:bg bel(d jB;C)m(C)m(B). Since bel(b) = m(b) this gives us:bel(b) = 1�PC�fc;:cg;B2f:b;b[:bg bel(d jB;C)m(C)m(B)PC�fc;:cg bel(d jb; C)m(C)Taking the derivative of this with respect to bel(c), and writing �PC�fc;:cg bel(d jb; C)m(C)��1 = bel(d j b)�1 as K we have dbel(b)=dbel(c) = K2 � ��PC�fc;:cgbel(d j b; C)m(C)� ddbel(c) �1 �PC�fc;:cg;B2f:b;b[:bg bel(d j B;C)m(C)m(B)� ��1 � PC�fc;:cg; B2f:b;b[:bgbel(d j B;C)m(C)m(B)� ddbel(c) �PC�fc;:cg bel(d jb; C)m(C)��. Now, ddbel(c) �PC�fc;:cg bel(d j b; C)m(C)� = �bel(d j b; c) � bel(d jb; c [ :c)�, while ddbel(c) �1 � PC�fc;:cg;B2f:b;b[:bg bel(d j B;C)m(C)m(B)� =�PB2f:b;b[:bg bel(d j B; c)m(B) + PB2f:b;b[:bg bel(d j B; c [ :c)m(B) +�dbel(b)=dbel(c)�PC�fc;:cg bel(d j b [ :b; C)m(C). Thus �dbel(b)=dbel(c)��bel(d jb)�bel(d jb[:b)� = K2���bel(d jb)�PB2f:b;b[:bg bel(d jB; c)m(B)+PB2f:b;b[:bg



Further results in qualitative uncertainty 16bel(d jB; c[:c)m(B)���1�PC�fc;:cg;B2f:b;b[:bg bel(d jB;C)m(C)m(B)��bel(d jb; c)�bel(d jb; c[:c)��. Now, it is clearly possible to write 1�PC�fc;:cg;B2f:b;b[:bgbel(d jB;C)m(C)m(B) as 1�bel(d)+bel(d jb)m(b), which, since bel(d) = 1 becomessimply bel(d j b)m(b). This allows us to write �dbel(b)=dbel(c)��bel(d j b) � bel(d jb[:b)� = K2 ���bel(d jb)�bel(d jc)�bel(d jb; c)bel(d jb)m(b)+bel(d jc[:c)�bel(d jb; c[:c)bel(d jb)m(b)�� bel(d jb)m(b)[bel(d jb; c)� bel(d jb; c[:c)��, which neatlyreduces to �dbel(b)=dbel(c)��bel(d jb)�bel(d jb[:b)�= ��bel(d jc)�bel(d jc[:c)�.Thus the value of the derivative is controlled by the qualitative value of two ex-pressions: (1) bel(d j b) � bel(d j b [ :b) and (2) bel(d j c) � bel(d j c [ :c). Thederivative is positive when one expression is positive and one negative, negativewhen both expressions are positive, or both are negative, and zero when (2) is zeroand (1) is not. However, (1) and (2) are exactly the expressions that determine therelationship between bel(d) and bel(b) and bel(c)12, such that bel(d) follows bel(b)when (1) is positive, varies inversely with bel(b) when (1) is negative, follows bel(c)when (2) is positive and varies inversely with bel(c) when (2) is negative12. Thusthe result follows for x � b and y � c and since similar results may be obtainedfor the variation of bel(b) with bel(:c) and bel(:b) with bel(c) and bel(:c), we haveproved the result for the �rst case.In the second case, we have conditionals such as bel(d jb), and bel(d) =PB�fb;:bg;C�fc;:cgbel(d jB)bel(d jC)m(B)m(C). Thus:bel(b) = 1�PB2fb;:bg;C�fc;:cg bel(d jB)bel(d jC)m(B)m(C)bel(d jb)PC�fc;:cg bel(d jC)m(C)Taking the derivative of this with respect to bel(c), and writing �bel(d jb)PC�fc;:cgbel(d j C)m(C)��1 as K we have dbel(b)=dbel(c) = K2 � ��bel(d j b)PC�fc;:cgbel(d jC)m(C)� ddbel(c)�1�PB2fb;:bg;C�fc;:cg bel(d jB)bel(d jC)m(B)m(C)� ��1�PB2fb;:bg;C�fc;:cgbel(d jB)bel(d jC)m(B)m(C)� ddbel(c)�bel(d j b)PC�fc;:cg bel(d jC)m(C)��. Now, ddbel(c)�bel(d jb)PC�fc;:cg bel(d jC)m(C)� = bel(d jb)�bel(d jc)�bel(d jc[:c)�, while ddbel(c)�1�PB2fb;:bg;C�fc;:cg bel(d jB)bel(d jC)m(B)m(C)) =�PB2f:b;b[:bgbel(d jB)bel(d jc)m(B) +PB2f:b;b[:bg bel(d jB)bel(c [ :c)m(B) +�dbel(b)=dbel(c)�PC�fc;:cg bel(d jb[:b)bel(C)m(C). Thus, sincePC�fc;:cg bel(d jc)m(c) = 1, which it must be to allow bel(d) = 1, �dbel(b)=dbel(c)��bel(d j b) �bel(d j b [ :b)� = K2 � � � bel(d j b)�PB2f:b;b[:bg bel(d j B)bel(d j c)m(B) +PB2f:b;b[:bg bel(d j B)bel(d j c [ :c)m(B)� � �1 �PC�fc;:cg;B2f:b;b[:bg bel(d jB)bel(d jC)m(C)m(B)��bel(d j b)bel(d j c) � bel(d j b)bel(d j c [ :c)��. As above, we



Further results in qualitative uncertainty 17can write 1 �PC�fc;:cg;B2f:b;b[:bg bel(d jB)bel(d jC)m(C)m(B) as 1 � bel(d) +bel(d j b)m(b), which, since bel(d) = 1 becomes simply bel(d j b)m(b). This al-lows us to write �dbel(b)=dbel(c)��bel(d j b) � bel(d j b [ :b)� = K2 � � � bel(d jb)�bel(d j c) � bel(d j c)bel(d j b)m(b) + bel(d j c [ :c) � bel(d j c [ :c)bel(d jb; c[ :c)m(b)�� bel(d jb)2m(b)[bel(d jc)� bel(d jc[ :c)��, which neatly reduces to�dbel(b)=dbel(c)��bel(d jb)� bel(d jb[ :b)� = ���bel(d jc)� bel(d jc[:c)�, exactlyas for the �rst case. Thus in both cases the relationship between bel(b) and bel(c)is subject to the same conditions, and the theorem is proved.2Thus for explaining away to take place in evidence theory, the conditions that mustbe met are analagous to those for probability theory, and suggest that the samekind of mechanism is at work. If bel(d) follows bel(c) and bel(b) when it is not�xed, then when it is �xed the inow of belief into the joint distribution over D, Band C from increasing bel(c) must be matched by a decrease in bel(b). Similarly, ifbel(d) follows bel(c) and varies inversely with bel(b), then when bel(d) is �xed, theincreased belief over all three variables in question that results from an increase inbel(c) must be o�set by a decrease in bel(b).As mentioned above, it is also possible to combine the e�ects of B and C onD using Smets' disjunctive rule24. The idea behind this rule is that it shouldestablish the belief in the disjunction of two events for which the belief in theiroccurence is known in the same way that Dempster's rule19 establishes the beliefin the conjunction of the events. When the disjunctive rule is used we indicate itsadoption by referring to the network of Figure 2 as B _ C ! D, and �nd:Theorem 8 For the network B_C ! D, for all x 2 fb;:bg and y 2 fc;:cg, whenbel(d) = 1, bel(x) may varies inversely with bel(y).Proof: Again we have two cases. In the �rst we have conditionals such as bel(d jb; c)and bel(d) =PB�fb;:bg;C�fc;:cgm(B)m(C)Qbi2B;cj2C bel(d jbi; cj). Thus:bel(b) = 1�PB2fb;:bg;C�fc;:cgm(B)m(C)Qbi2B;cj2C bel(d jbi; cj)PC�fc;:cgm(C)Qcj2C bel(d jb; cj)which with K = hPC�fc;:cgm(C)Qcj2C bel(d jb; cj)i�1 gives us the derivativedbel(b)=dbel(c) = K2 � �PC�fc;:cgm(C)Qcj2C bel(d j b; cj) ddbel(c)�1 �PB2fb;:bg;C�fc;:cgm(B)m(C)Qbi2B;cj2C bel(d jbi; cj)���1�PB2fb;:bg;C�fc;:cgm(B)m(C)Qbi2B;cj2C bel(d j bi; cj)� ddbel(c)�PC�fc;:cgm(C)Qcj2C bel(d j b; cj)��. Now, wehave ddbel(c) �PC�fc;:cgm(C)Qcj2C bel(d j b; cj)� = m(b)bel(d j b; c)�m(b)Qcj2Cbel(d jb; cj). Since the product will contain the term bel(d jb; c), and all belief valuesare not greater than 1, this derivative can never be negative. We also have ddbel(c)�1�



Further results in qualitative uncertainty 18PB2fb;:bg;C�fc;:cgm(B)m(C)Qbi2B;cj2C bel(d j bi; cj)� = �PB2fb;b[:bgm(B)Qbi2B bel(d jbi; c)+PB2fb;b[:bgm(B)Qbi2B;cj2fc;:cg bel(d jbi; cj)�dbel(b)=dbel(c)�PC�fc;:cgQbi2fb;:bg;cj2C bel(d j bi; cj)�. Once again, the second term is a prod-uct of terms including the �rst, and in this case the limitations on the possible valuesof beliefs mean that the sum of the �rst two terms cannot be positive. As a result,we can say that �dbel(b)=dbel(c)��K�Pc�fc;:cgQbi2fb;:bg;cj2C bel(d jbi; cj)� � 0.Having done this we can recall the value represented by K and observe yet againthat we have the di�erence of two terms where the second cannot be larger thanthe �rst, so that dbel(b)=dbel(c) is either negative or zero, and this, along with theobvious symmetric results for the variation of bel(b) with bel(:c) and bel(:b) withbel(c) and bel(:c) gives us the necessary result for this �rst case.In the second case we have conditionals such as bel(d j b) and bel(d j b; c) andbel(d) = PB�fb;:bg;C�fc;:cgm(B)m(C)Qbi2B;cj2C bel(d j bi)bel(d j cj). This is thesame as the expression for bel(b) obtained above, but with bel(d j bi; cj) replacedby the product of two conditional beliefs. This substitution will not change thequalitative value of the derivative which is thus never positive. From similar resultsfor the variation of bel(b) with bel(:c) and bel(:b) with bel(c) and bel(:c) the resultmay be obtained. 2Thus if there is any intercausal reasoning when the disjunctive rule is used, it isin the form of explaining away. Given the behaviour reported in Theorem 7 forcombination using Dempster's rule, and the fact that under the disjunctive rulebel(d) will always follow bel(b) and bel(c)12, this result is not surprising. It does,however, have some consequences for the expressiveness of the networks that onemay build using belief functions and the disjunctive rule. Indeed, the practicalresult of Theorem 8 is that it is not possible to construct a network of the formB_C ! D where B, C and D are binary valued, in which evidence for the values ofC causes belief in the values of B to increase. This is something of a restriction, andmay have important consequences for Xu and Smets' evidential networks31 whichuse the disjunctive rule in a similar way to that analysed here.4.4. Examples of intercausal reasoningFollowing his initial thoughts about Cody's dismissal, Jack telephones him todiscuss the matter. During the conversation, in which Cody talks of his desireto become a brakeman on the railroad, Jack learns that, although he is not sureof the matter, Cody reckons that the manager did not �nd out about his lack ofquali�cation. Armed with this new information, Jack sits down to reason onceagain about the situation using the same model as before (for convenience repeatedin Figure 3).Given his initial probabilistic model, in which \Lose job" follows both \Ill"and \Invented quali�cation discovered", Jack can apply Theorem 4 to determinethat, given he knows \Lose job" is true, evidence against \Invented quali�cation



Further results in qualitative uncertainty 19���� ��������ZZZZZZ~ ������=LJ 2 flj;:ljg I 2 fi;:igIQD 2 fiqd;:iqdgFigure 3: Jack's network revisiteddiscovered" is evidence for \Ill" since the probability of the latter varies inverselywith that of the former. Thus, since on Cody's evidence the probability of \Inventedquali�cation discovered" may fall, the probability that Cody was ill may increase.He get similar results with his evidence theory model. The fact that in the modelhis belief in \Lose job" follows his belief in both \Ill" and \Invented quali�cationdiscovered" means that whether he combines his beliefs with Dempster's rule orSmets' disjunctive rule, Theorems 7 and 8 tell him that his belief in \Ill" may varyinversely with his belief in \Invented quali�cation dicovered" giving the same resultas in the probabilistic case.Things are a little di�erent if Jack chooses to use a possibilistic model. In thiscase, he cannot get away without using some numerical values since these valuesthemselves are needed to use Theorem 6. After some thought, he settles on thepossibility values in Table 1 which �t with his feelings about Cody's employer as wellas the health and educational status of the tyre shack employees while ensuring thatthe possibility of \Lose job", �(lj), follows both those of \Ill", �(i), and \Inventedquali�ciation discovered", �(iqd), in accordance with his initial information. Now,Table 1: Possibilities for the example�(lj j i; iqd) = 1 p(i) = 0.1�(lj j:i; iqd) = 1 p(iqd) = 0.1�(lj j i;:iqd) = 1�(lj j:i;:iqd) = 0.05the conditional values obey the conditions imposed by Theorem 6 for some form ofintercausal relationship to hold between �(i) and �(iqd), but the prior possibilitiesof the events themselves rule out any such relation. Thus, using his possibilisticmodel, Jack is forced to conclude that the change in the possibility of \Inventedquali�cation discovered" has no e�ect upon the change in possibility of \Ill".
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�JJJĴSSSSwT D SK A VLPFigure 4: A network representing medical knowledge5. Integrating formalisms in evidential and intercausal reasoningOne of the applications of predictive reasoning using qualitative uncertainty is theintegration of di�erent formalisms12;14;32. In this section we demonstrate the use ofthe results obtained in previous sections in the integration of di�erent formalismsin evidential and intercausal reasoning. To do this we use the following medical ex-ample. The network of Figure 4 encodes the medical information that joint trauma(T ) leads to loose knee bodies (K), and that these and arthritis (A) cause pain (P ).The incidence of arthritis is inuenced by dislocation (D) of the joint in questionand by the patient su�ering from Sjorgen's syndrome (S) . Sjorgen's syndromea�ects the incidence of vasculitis (V ), and vasculitis leads to vasculitic lesions (L).Consider further a scenario12;14;32 in which the inuences between the nodes arequanti�ed using a mixture of probability, possibility and belief values for exactlythe same reasons that a mixture of formalisms are used in MILORD33;34|the onlyquantitative information that is available is expressed in di�erent formalisms. Thusthe relationship between T and K, S and V and D;S and A is expressed usingprobability, that between V and L using possibility theory, and that between K, Aand P using evidence theory. Now, we are told that, by applying previous resultsfor the propagation of qualitative uncertainty in a predictive direction12 one can tellthat p(k) follows p(t), p(a) follows p(s), bel(p) follows bel(a) and bel(k), p(v) variesinversely with p(s) and �(l) may follow �(v) down. Given that a particular patientis in pain, how will an observation that suggests that the patient does not havevasculitic lesions a�ect the probability that they are su�ering from joint trauma?To answer this question we must propagate the e�ect of the change in the valueof �(l) to �nd the e�ect on p(k) and to do this we need to combine changes invalues expressed in di�erent formalisms. Previously we have suggested that thismay be achieved by means of the so-called monotonicity assumption, a heuristicwhich states that:If the value of a hypothesis in one formalism increases, the value of thesame hypothesis in any other formalism does not decrease.



Further results in qualitative uncertainty 21However, Prade35 has pointed out that as it stands this assumption is awed, and toovercome the aw, we have to restate it in terms that capture the di�erence betweenupper and lower certainty values36. In particular we need to relate the change in anupper certainty value of a hypothesis to the lower certainty value of the complementof that hypothesis and vice-versa. That is �val�(x) must be related to �val�(:x)and �val�(x) must be related to �val�(:x). Taking this need into account, a morecorrect version of the monotonicity assumption may be obtained:If the lower certainty value of a hypothesis in one formalism increases,the lower certainty value of the same hypothesis in any other formalismdoes not decrease, and the upper certainty value of the complement ofthe hypothesis in any formalism does not increase.Similarly, if the upper certainty value of a hypothesis in one formal-ism increases, the upper certainty value of the same hypothesis in anyother formalism does not decrease, and the lower certainty value of thecomplement of the hypothesis in any formalism does not increase.A similar pair of statements may be made for decreases in value. What this assump-tion means for the probabilty, possibility and belief measures that we are dealingwith is that given some hypothesis h, if p(h) is known to increase then bel(h) willnot decrease, and �(:h) will not increase. Similarly, if �(h) increases, then p(:h)will not decrease and neither will bel(:h). Again, this assumption may fail to holdin some cases|it is, after all, a heuristic. However, it does allow us to make usefuldeductions in those situations in which we are happy to employ it. The use ofthe assumption clearly raises questions of semantic coherence and necessitates theadoption of a suitable semantic model such as that of \degrading"14 which is basedupon the idea that, at heart, all numerical methods for handling uncertainty aretrying to measure the extent to which it is reasonable to predict that a variable willtake a given value.Now, in our example, the observation suggests the patient does not have vas-culitic lesions, so ��(l) = [�]. From Theorem 2, �(v) may follow �(l) down, so��(v) = [0;�]. In other words, �(v) may decrease. Applying the new mono-tonicity assumption gives �p(:v) = [0;+] which since p(v) + p(:v) = 1 meansthat �p(v) = [0;�] z. Now, Theorem 1 tells us p(s) varies inversely with p(v),and as a result �p(s) = [+; 0]. Since p(s) may increase, p(a) may increase, andso the monotonicity assumption gives bel(a) = [+; 0]. Now, because bel(p) wouldfollow bel(a) and bel(k) if it were not �xed by the knowledge that the patient is inpain, Theorems 7 and 8 tell us that irrespective of whether Dempster's rule or thedisjunctive rule is used, �bel(k) = [0;�], and using the monotonicity assumptionthis means �p(k) = [0;�]. From Theorem 1 we know that p(t) follows p(k) andso �p(t) = [0;�]. Thus we can answer the original question|when the patient iszWhich, incidentally, is exactly the same result as would have been given by the originalmonotonic-ity assumption. This fact is a consequence of probabilistic normalisation|the two assumptionsgive di�erent results when not translating into or out of probability theory.



Further results in qualitative uncertainty 22known to be in pain, evidence against vasculitic lesions may mean that she is lesslikely to be su�ering from joint trauma.6. ConclusionsThe above results generalise the kind of qualitative propagation of values that maybe carried out using a mixture of probability, possibility and belief values, makingit possible to propagate in an evidential direction and between the causes of an ob-served e�ect. The work is useful for two reasons. Firstly this work has provided ananalysis of the patterns of intercausal reasoning, such as \explaining away", in pos-sibility and evidence theories| something that has not been previously attempted.This analysis has shown that explaining away occurs under speci�c, but very sim-ilar, circumstances in probability and evidence theories when the latter employesDempster's rule of combination, and may always occur in evidence theory if Smets'disjunctive rule is employed along with binary variables. This semi-obligatoryx na-ture of explaining away when the disjunctive rule is used rules out other forms ofintercausal reasoning that are possible in probability theory and when Dempster'srule is used. Intercausal reasoning is also observed in possibility theory, albeit in alimited way such that \explaining away" does not occur, and again this only occursunder speci�c circumstances. Comparing the results with those of work in qualita-tive probabilistic networks it seems that the approach discussed here, whilst broadlybeing a generalisation of the work of Wellman6 and Druzdzel and Henrion20 cap-tures a slightly di�erent notion of intercausal reasoning. Secondly, this work extendsthe range of situations in which it is possible to integrate information expressed indi�erent formalisms from cases of predictive reasoning12;13 to any situation in whichthe dependency between variables can be expressed using a singly connected net-work. This means that the approach now has a much wider scope, and can beapplied to a much wider range of problems.AcknowledgementsThis work was partially supported by Ann Radda when I lost my job due to illness,and has bene�ted from the comments of many people including Didier Dubois,Marek Druzdzel, Pascale Fonck, Frank Klawonn, Rudolph Kruse, Henri Prade,Alessandro Sa�otti, David Spiegelhalter, and Mike Wellman, as well as a numberof anonymous referees. Many thanks to all of them.References1. Benferhat, S., Dubois, D. and Prade, H. \Argumentative inference in uncertain andinconsistent knowledge bases", Proceedings of the 9th Conference on Uncertainty inArti�cial Intelligence, Washington, 1993, pp 411{419.2. Darwiche, A. \Argument calculus and networks", Proceedings of the 9th Conferenceon Uncertainty in Arti�cial Intelligence, Washington, 1993, pp 420{427.xSemi-obligatory because it is only obligatory that one cause may vary inversely with the other,rather than one cause having to vary inversely with the other.
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