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This paper extends previous work on propagating qualitative uncertainty in networks
in which a general approach to qualitative propagation was discussed. The work pre-
sented here includes results that make it possible to perform evidential and intercausal
reasoning, in addition to the predictive reasoning already covered, in networks quantified
with probability, possibility and Dempster-Shafer belief values. The use of these forms
of reasoning, which include the phenomenon of “explaining away”, is illustrated with the
use of a medical example.
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1. Introduction

In the past few years there has been considerable interest in qualitative approaches
to reasoning under uncertainty—approaches which do not make use of precise nu-
merical values of the type used by conventional probability theory. These ap-
proaches range from systems of argumentation?3 to systems for nonmonotonic
reasoning* and abstractions of precise quantitative systems®®. Qualitative abstrac-
tions of probabilistic networks, in particular, have proved popular, finding use in
areas in which the full numerical formalism is either unnecessary or inappropri-
ate. Applications have been reported in planning®, explanation?, diagnosis® and
engineering design®.

In qualitative probabilistic networks, the focus is rather different from that of
ordinary probabilistic systems. Whereas in probabilistic networks'® the main goal is
to establish the probabilities of hypotheses when particular observations are made,
in qualitative systems the main aim is to establish how values change. Thus, given
information that a patient has a fever, and given that we are interested in whether
the patient has measles, the aim in a qualitative probabilistic system is to establish
how the probability of measles changes rather than what the probability of measles
is. Since the approach is qualitative, the size of the change is not required. The
only consideration is whether the probability increases, in which case the change is
positive, written as [+], decreases in which case the change is negative [—], or does
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not change in which case the change is zero [0]. In some cases it is not possible to
resolve the change with any precision so that its value remains unknown, and it is
written as [?]. Clearly this information is rather weak, but as the applications show
it is sufficient for some tasks. Furthermore, reasoning with qualitative probabilities
is much more efficient than reasoning with precise probabilities, since computation
is quadratic in the size of the network® rather than NP-hard!!.

The popularity of qualitative probabilistic networks prompted work on abstrac-

12,1314 providing what is essentially

tions of other uncertainty handling formalisms
a generalisation of the approach provided by qualitative probabilistic networks'®.
This approach uses techniques from qualitative reasoning'® to determine the be-
haviour of the formalisms. Given two hypotheses H and G whose probabilities are
interesting, the approach relates p(H) to p(G) by establishing the qualitative value
of dp(H)/dp(G). Initial results'? demonstrated how this approach could be used

17,18 and Dempster-Shafer belief'®

to propagate qualitative probability, possibility
values in singly connected networks in a predictive direction—the direction in which
the conditional values were elicited—and suggested how this propagation might be
used to integrate information expressed in the different formalisms. This paper
extends the work in a number of ways.

After a brief statement of some basic ideas in Section 2, Section 3 gives results
that make use of Bayes’ rule and its extensions to other formalisms to enable ev-
idential reasoning. Another new reasoning pattern, intercausal reasoning?®?!, is
introduced in Section 4 allowing the propagation of values between the ancestors
of a node which represents a variable that is known to be true. To my knowledge
this is the first time that this style of reasoning has been explored in possibility
and evidence theories. The use of the results is shown on a medical example in
Section 5, and the solution of the example necessitates a discussion of a means of

integrating the different formalisms.

2. Basic notions

This work is set in the framework of singly connected networks in which the nodes
represent variables, and the edges represent explicit dependencies between the vari-
ables. When the edges of such graphs are quantified with probability values they
are those studied by Pearl'®, when possibility values are used the graphs are those
of Fonck and Straszecka?? and when belief values are used the graphs are those
studied by Shafer et al.?® and Smets?*. Since we deal with values that may be
probabilities, possibilities or beliefs we need a general way of referring to them, and
so we define a certainty value:

Definition 1 The certainty value of a variable X taking value x, val(x), is either
the probability of x, p(x), the possibility of x, TI(x), or the belief in x, bel(x).

Later on we will also need to distinguish between upper certainty values, written
val*(-) which like possibility measure the upper bound on the degree to which a
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hypothesis might occur, and lower certainty values, written val, (-) like belief which
measure the lower bound on the degree to which a hypothesis must occur. This
distinction is necessary in order to relate the different formalisms discussed in this
paper, since for these the upper certainty value of a hypothesis may be established

from the lower certainty value of the complementary hypothesis?®:

val*(z) = 1 — val, (—x) (1)

Thus a belief value may be related to a plausibility value!®, and a possibility value
may be related to a necessity value'”. In the case of probability theory, of course,
the upper certainty value and the lower certainty value coincide.

Each node in a graph represents a binary valued variable. We use the convention
that the name of the node is a capital letter, often related to the name of the variable
it represents, and that the possible values taken by the variable are indicated by
lower case letters, usually the lower case letters appropriate to the name of the
node. Thus a node X represents some variable, say “Xerxes is alive” whose possible
values are ¥ and —x with the usual implication that x stands for the value “Xerxes
is alive is true” while —z stands for the value “Xerxes is alive is false”. The set of
values {x, —a} is sometimes written as X. The probability values associated with
X are written as p(z) and p(—x), and the possibility values associated with X as
TI(x) and TI(—x). Belief values may be assigned to any subset of the values of X, so
it is possible to have up to three beliefs associated with X—bel({z}), bel({—z}) and
bel({x, —x}). For simplicity these will be written as bel(x), bel(—z) and bel(x U —z),
and we will abuse even this rather lapse notation later on by using expressions such
as X € {z,zU—-a}, ; € X to mean that z; can take the values # or —x. The use
of binary values is purely a matter of convenience since it makes the results simpler
to understand and easier to obtain. It is possible to generalise the results'?.

Given two nodes in the network, A and C', which are connected we are interested
in the way in which a change in val(a), say, influences val(c) and val(—¢). We can
model the impact of evidence that affects the value of A in terms of the change in
certainty value of a and —a, relative to their value before the evidence was known,
and use knowledge about the way that a change in val(a) affects val(e) and val(—¢)
to propagate the effect of the evidence. We define the following relationships that
describe how the value of a variable X changes when the value of a variable Y is
altered by new evidence:

Definition 2 The certainty value of a variable X taking value x is said to follow
the certainty value of variable Y taking value y if val(x) increases when val(y)
increases, and val(z) decreases when val(y) decreases.

Definition 3 The certainty value of a variable X taking value x is said to vary
inversely with the certainty value of variable Y taking value y if val(x) decreases
when val(y) increases, and val(x) increases when val(y) decreases.
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Definition 4 The certainty value of a variable X taking value x is said to be inde-
pendent of the certainty value of variable Y taking value y if val(x) does not change
as val(y) increases and decreases.

If it is not possible to determine which of these relationships between val(z) and
val(y) hold, then the relationship between val(#) and val(y) is said to be indeter-
minate. These relationships are distinguished because of the way that they relate to
the keystone of our method which is the use of qualitative derivatives. The relation-
ship between val(x) and val(y) is charaterised by the derivative dval(z)/dval(y).
When the value of the derivative is known, the change in val(x) can be established
from the value of the change in val(y):

_ dval(x)
 dval(y)

Now, we are only interested here in the direction of the change, so we are only

Aval(z)

Aval(y) (2)

interested in the qualitative values'® of the above terms:

[Aval(z)] = [jz;lég))] ® [Aval(y)] (3)

where [z] is [+] if « is positive, [—] if  is negative, [0] if # is zero, and [?] if it is not
possible to determine whether x is any of the above. The symbol “®” denotes qual-
itative multiplication®'®. Clearly val(z) follows val(y) when [dval(z)/dval(y)] =
[+], val(z) varies inversely with val(y) when [dval(z)/dval(y)] = [—] and is inde-
pendent of val(y) when [dval(z)/dval(y)] = [0]. If the relationship between val(x)
and val(y) is indeterminate then the derivative can take any value and we write
[dval(x)/dval(y)] = [?]. Tt is also possible to relate val(z) and val(y) using partial
derivatives:

where “@” is qualitative addition®'6. The difference between the partial derivatives

] olAval(~y)]  (4)

and the (total) derivatives used above is that the latter take account of changes in
val(—y).

Despite the appeal of the relationship between the terms defined in Definitions
2-4 and the qualitative value of the derivatives, these terms are not sufficient to
describe every relationship we come across. We also require the following;:

Definition 5 The certainty value of a variable X taking value x is said to follow
the certainty value of variable Y taking value y up if val(z) increases when val(y)
increases, and val(x) does not change when val(y) decreases.

tOf course, this is only generally true for infinitesimal changes in val(y). However, it turns out!*
that the second derivatives, d?val(x)/dval(y)?, of all relations relating certainty values are zero so
that the first derivative (which is what we are using) is constant and (2) holds for any change in

val(y).
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Definition 6 The certainty value of a variable X taking value x is said to follow
the certainty value of variable Y taking value y down if val(z) does not change when
val(y) increases, and val(x) decreases when val(y) decreases.

Clearly the relationships between val(x) and val(y) described by these two terms
are related to those introduced previously since val(z) follows val(y) if and only if
it both follows val(y) up and follows it down. We can also introduce the idea that
the relationship between val(z) and val(y) is not known exactly, so that it may
be the case that val(x) changes when val(y) does but it may also be the case that
val(z) does not change when val(y) does. For this we need four new definitions,
the first two amend the definitions of “follows” and “vary inversely with”:

Definition 7 The certainty value of a variable X taking value x is said to be related
to the certainty value of variable Y taking value y such that val(x) may follow val(y)
if val(x) either follows val(y) or is independent of it.

Definition 8 The certainty value of a variable X taking value x is said to be re-
lated to the certainty value of variable Y taking value y such that val(z) may vary
inversely with val(y) if val(x) either varies inversely with val(y) or is independent
of it.

The next two defintions amend the definitions of “follow up” and “follow down”.

Definition 9 The certainty value of a variable X taking value x is said to be related
to the certainty value of variable Y taking value y such that val(x) may follow val(y)
up if val(z) either follows val(y) up or is independent of it.

Definition 10 The certainty value of a variable X taking value x is said to be
related to the certainty value of variable Y taking value y such that val(x) may
follow val(y) down if val(z) either follows val(y) down or is independent of it.

We could also introduce further relationships relating to the sub-parts of the “varies
inversely” relation and their “maybe” counterparts, but these have not been found
necessary to date.

If val(xz) follows val(y) up then we write [dval(x)/dval(y)] = [1], and if val(x)
follows val(y) down then we write [dval(z)/dval(y)] = [}]. When we say that val(x)
may follow val(y) up then we are saying that [dval(z)/dval(y)] is [1] or [0] and we
write this as [dval(x)/dval(y)] = [1,0]. Similarly, if val(z) may follow val(y) down
then we are saying that [dval(x)/dval(y)] = [{,0]. Such derivatives naturally lead
to changes which are represented by combinations of [+] and [—] with [0] since they
are possible increases and decreases.
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To handle the new values [1] and [}] it is necessary to extend the qualitative
multiplication operator to get:

© |+ o] =] 7 [ [
O] =) 7 [+ (0]
[0] [ [0] [0] [o] f[o] f[o] [0]
ot et T o Y R (V1 B
G 0 1 O Y O I

The results are trivial to establish, as they were in the original papers in which
they were introduced®!®. The product of an increase in value (left column), and a
positive derivative (top row) is an increase in value, while the product of an increase
in value and a derivative that indicates the relationship in question is “follows down”
is no change. The effect of “may follow” and similar derivatives may be established
by considering the two effects that they represent. Thus the effect of combining
[0,1] with [+] is [0] ® [+] or [1] ® [+]. This comes to [0] or [+], which we may write
as [0, +]. Note that because qualitative addition only ever combines two changes in
value, and because changes never have the value [1] or []], we can use the original
operator:
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Given this background, it is clear that to determine the change at node C' given the
change at node A we may use either total or partial derivatives:

dval(c)
| fel] = {[(Ez)}} © [Aval(a)] 6
mea(e] 1 | g [ [Aval(a)]
[[Aval(—'c)]] - _{a;a;j((ﬂac))} {gzgéz(:gi} ®[[Aual(—|a)]] (6)

When the value at a node is influenced by changes at several other nodes, we
may calculate the overall change by using the principle of superposition?® which
allows us to obtain the compound change by simply summing the changes that
would be induced by each influencing node on its own. Thus if there is a node D
which is affected by changes at C' and another node B, the overall change at D is
given by the sum of the change at D due to the change at C' and the change at D
due to the change at B. This sum may be established by the use of either total or
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partial derivatives:

{dval(d)}

[Aval(d)] o dval(b)
[[Aval(—'d)] T | [aeea] @ [Aval (b))

dval( )
dval(d)
dval c
v ijl © [Aval(c)] (7)
(’h/al

[(’Mal d) { dval(d

dval(b)

[ihity] =

Bual( < } 5 [ [Aval (b)] ]
[t ] [2% 1| LAval(=8)

dval(d) dual(
[5172 ii)]] {Zzza:zﬁ] ] o

v { Bual(c)

dval(-c)

In this paper we use total derivatives to manipulate probability and belief values
and, because of the difficulty of determining how II(x) affects II(—z)%, we use
partial derivatives to manipulate possibility values. In fact, strictly speaking, it
is not possible to establish any kind of derivative in possibility theory since the
maximum and minimum combinators used by the theory may not be differentiated.
However, it is possible to establish the sign of dval(x)/dval(y) (the way in which
a small change in value rather than an infinitesimal change in value is propagated)
and this is what will be manipulated in the case of possibility theory. I trust that
the reader will excuse the slight abuse of notation that allows dval(z)/dval(y) to
stand for oTI(x)/0TI(y) since it makes the partial nature of the relationship clear.

3. Bayes’ rule and its variants

We can use the above approach to analyse the propagation of values in networks
quantified using probability, possibility and belief values, obtaining results'? which
allow propagation in the direction implied by the conditional values with which the
influences between nodes are quantified. Thus for a direct link between nodes A
and C'; where the conditional value table that controls propagation over the link is
written in terms of values such as val(c|a), qualitative propagation may be carried
out from A to C. Now, such tables are usually elicited in terms of causal influences
since if A causes C' it is easier to establish val(c|a) than val(a|c). However, when
performing many types of reasoning, it is often necessary to reason evidentially from
effects (which may be observed) to causes (which one wishes to establish). Thus it
is desirable to establish a means of obtaining the qualitative behaviour of evidential
propagation from the known qualitative behaviour of the causal propagation.

3.1. Evidential reasoning in probability theory

In probability theory we can make use of Bayes’ rule to establish values such as
p(a|c) from values such as p(c|a) and thus to establish how qualitative probabilities
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may be propagated in an evidential direction. If we write the link connecting A and
C as A — C we have:

Theorem 1 For A — C and for all x € {¢,—¢c}, y € {a,—a}, p(y) follows p(x) iff
p(x) follows p(y), p(y) varies inversely with p(x) iff p(x) varies inversely with p(y),
and p(y) is independent of p(x) iff p(x) is independent of p(y).

Proof:?” The qualitative value of dp(c)/dp(a) is determined by p(c|a) — p(c|—a)'?
and so that of dp(a)/dp(c) is determined by p(a|c) — p(a|—c). Applying Bayes’ rule
gives us p(a|c) — p(a|-c) = p(c|a)p(a)/p(c) — p(—c|a)p(a)/p(—c). Writing p(c) as
p(c|a)p(a) + p(c|—a)p(—a), p(—c) as p(—c|a)p(a) + p(—c|—a)p(—a) and simplifying
we get p(a|c) — pla|-ec) = % [p(c | a)p(—c | —a) — p(—e|a)p(c] ﬂa)}. Now,
because p(c|a) = 1 — p(—c|a), if p(e|a) > p(c|—a) then p(—c|-a) > p(-c|a),
and so the qualitative value of p(a|c¢) — p(a|—c¢) is equal to the qualitative value of
p(c|a) — p(e]—a). From this and similar results for the variation of p(a) with p(—c¢)
and p(—a) with p(c) and p(—c) the result follows.D

Thus a probabilistic influence propagates in the reverse direction exactly as it does

6

in the forward direction, a result which agrees with that of Wellman® as well as

intuition.

3.2. Evidential reasoning in possibility theory

For influences quantified using possibility values, it is possible to perform evidential
propagation using a possibilistic version of Bayes’ rule provided by Dubois and
Prade?®. This states that the joint possibility distribution over A and C is the
same whichever end of the link joining A and C the calculation of the joint value
starts from:

min(H(c|a),H(a)) = min(H(a|c),H(c)) 9)
min(H(—'c|a),H(a)) - min(H(a|—|c),H(—|c)) (10)

This result enables us to obtain:

Theorem 2 For A — C and for all € {¢,—¢} and y € {a,—a}, T(y) may follow
T(x) up iff T(x) follows M (y) or I(x) may follow TI(y) up, and I(y) may follow
M(x) down iff TI(z) may follow T(y) down or II(x) is independent of TI(y).

Proof: The lengthy proof of this theorem may be found in a previous paper!'®.0

Thus reversing a possibilistic link is similar to reversing a probabilistic link, but
gives less precise results. When a link that propagates forward so that its conse-
quent follows its antecedent is reversed, it is only possible to say that its antecedent
may follow its consequent. Similarly, when a link that blocks propagation, so that
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the consequent is unaffected by changes in the antecedent, is reversed, the an-
tecedent may follow the consequent. Just as in the probabilistic case the result
agrees with intuition—the evidential propagation is roughly the same as the pre-
dictive propagation—but is complicated by the use that possibility theory makes of
max and min. As a result it is always possible that a change in value at one end of
a link will not be propagated because the change in value was not sufficient to pass
the threshold at which the value at the other end alters. Similarly, just because a
change in the predictive direction is blocked by a link, a change in the evidential
direction need not be.

3.3. Evidential reasoning in evidence theory

To enable evidential reasoning across influences that are quantified with belief func-

2429 which makes it

tions, Smets’ has provided a generalisation of Bayes’ theorem
possible to calculate conditional beliefs such as bel(a | ¢) from conditional beliefs

such as bel(c|a). For A — C we have, for any a C A, ¢ C C:

bel(ale) = [ bel(ély) — ] bel(ély) (11)

y€a yEA

where Z is the set-theoretic complement of x with respect to X, namely X — x.
Using this rule gives:

Theorem 3 For A — C and for all # € {c,—c}, y € {a,a}, bel(y) may follow
bel(x).

Proof: There are two possible ways of combining belief values when propagating
from C' to A. If the disjunctive rule of combination?* is used then bel(a) follows
bel(c) whatever the conditionals!?. If Dempster’s rule!? is used then the qualitative
value of dbel(a)/dbel(c) is [bel(a|c) — bel(a|c U —c)]'2. From the generalisation of
Bayes’ theorem, bel(a|c) = bel(—c|—a) — bel(—c|a)bel(—c|—a) and bel(a|cU—c) =
bel (B | —a) — bel(Bh | a)bel(P | ma) = 0. Since both bel(—c | a) and bel(—c | —a) are
between 0 and 1 by definition it is clear that bel(a | ¢) > bel(a | ¢ U —¢) and the
derivative has value [+, 0] meaning that bel(a) may follow bel(c). From these and
similar results for the variation of bel(a) with bel(—c¢) and bel(—a) with bel(—c¢) and
bel(—a) the theorem follows.D

Thus reversing evidential links with Smets’ version of Bayes’ rule has the effect of
making the relationship between the antecedent of the original link and its conse-
quent such that the belief in the antecedent may follow changes in the belief in the
consequent. This seems sensible when the forward propagation is carried out using
the disjunctive rule since using this rule means that the consequent always follows
the antecedent'? making it sensible that the antecedent may follow consequent on
reversal. However, when Dempster’s rule is used the behaviour of this belief func-
tion version of Bayes’ theorem seems less satisfactory. Using Dempster’s rule, it
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IQD € {igd, —igd} I€e{i,—i

LJ € {1j,1j}

Figure 1: A network describing Jack’s beliefs

is possible for bel(c) to vary inversely with bel(a) when reasoning predictively. In
such a case it would seem odd that bel(a) may follow bel(c) when the link is re-
versed. Thus the result suggests that further investigation of Smets’ generalised
Bayes’ theorem would be fruitful, and it is possible that other forms of Bayes’ rule
that conform to evidence theory and yet have different effects may be proposed.

3.4. Ezamples of evidential reasoning

Late last year, Cody Pomeroy wrote a long letter to his friend Jack Dulouz
in which he mentioned that he had just taken a job fixing tyres at the local tyre
shack. In the letter he complained about the manager of the tyre shack, a most
unscrupulous sort, who immediately sacks any employee if they become ill, or if
he finds out that they do not have the relevant certificate of competance in fixing
tyres. This made Jack worry about Cody’s prospects, since he was well aware both
of Cody’s fragile health and the fact that Cody had no certificate, and he went to
the lengths of drawing up the directed graph in Figure 1 in order to analyse the
problem. In the graph node I represents the variable “Il”, IQ)D represents the
variable “Invented qualification discovered”, and LJ represents the variable “Lose
Job”.

Some time later, earlier this year in fact, in a telephone call to Evelyn, Cody’s
wife, Jack learnt that Cody had indeed lost his job. This made him re-analyse the
situation using his direct graph model, to see what it told him about the reasons
for Cody’s dismissal.

Since Jack has no numerical information about the behaviour of Cody’s em-
ployer, he is forced to use qualitative methods to carry out his reasoning. As a re-
sult he builds his model on the basis that an adequate description of the manager’s
behaviour is that the certainty value of the proposition “Lose job” must follow the
certainty values of the propositions “IlI” and “Invented qualification discovered”.
This knowledge is sufficient, along with the results obtained above, to permit Jack
to update his model with the knowledge that Cody has lost his job. If Jack reasons
using probability theory, he can use Theorem 1 to discover that the probabilities of
both “IlI” and “Invented qualification discovered” follow that of “Lose job”, so that
they increase with the new knowledge. Alternatively, if Jack uses belief functions
to quantify his model, he can use Theorem 3 to discover that the belief in both



Further results in qualitative uncertainty 11

B € {b,~b} C € {c,~c}

D e {d,~d}

Figure 2: A network for intercausal reasoning

“Il1” and “Invented qualification discovered” may follow that in “Lose job”, so that
belief in both propositions may increase with the new knowledge—that is it either
increases or does not change. Finally, Jack might use possibility theory in his model.
In this case, the fact that the possibility of “Lose job” follows the possibilities of
“I11” and “Invented qualification discovered”, means that applying Theorem 2 tells
Jack that the possibilities of both “Ill” and “Invented qualification discovered” may
follow that of “Lose job” up. Thus knowledge of Cody’s dismissal leads to the fact
that the possibilities of “Ill” and “Invented qualification discovered” may increase.

4. Intercausal reasoning

The results in Section 3 along with those presented previously'? make it possible to
perform both causal and evidential reasoning using qualitative probability, possi-
bility and belief values in singly connected networks. These modes of reasoning are
sufficient to deal with many problems, but it is worth considering another important
style of reasoning—intercausal reasoning. This is a pattern of reasoning between
causes that are dependent on an observed common effect. In this section the ap-
proach introduced above is applied to analyse intercausal reasoning in probability,
possibility and evidence theories.

The basic network in which intercausal reasoning takes place is that of Figure 2
which we will refer to this network as B&C — D. Here B and C are conditionally
independent when the value of D is not known, and both are causes of D. When
D is observed to take the value d, it is often the case that as evidence is obtained
for b the degree of support for ¢ is altered since val(c¢) and val(b) are no longer
independent. Thus, to take the classic!® example, b could be the hypothesis “The
sprinkler was on”, ¢ could be the hypothesis “It rained last night” and d could be
the hypothesis “The grass is wet”. If the grass is known to be wet one morning,
then observing something that makes it more likely that the sprinkler was on, say
by tripping over the hose on the lawn, makes it less likely that it rained. In this
case the relationship between b and ¢ is a negative one, and evidence for b is said to
explain away c. However, it is also possible that evidence for b might make ¢ more
certain or fail to influence it.
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4.1. Intercausal reasoning in probability theory

To analyse the behaviour of the network we can write down an expression for p(d) in
terms of p(b) and p(c) and use this to relate p(b) to p(c) when D has been observed
to take the value d, so that p(d) = 1. With this approach we obtain:

Theorem 4 In the network B&C — D, and for all x € {b,—b} and y € {c, —c},
when p(d) = 1:

(1) p(x) varies inversely with p(y) iff p(d) follows both p(x) and p(y), or p(d) varies
inversely with both p(x) and p(y);

(2) p(x) follows p(y) iff p(d) follows p(x) and varies inversely with p(y), or p(d)
varies inversely with p(x) and follows p(y);

(3) p(x) is independent of p(y) iff p(d) is independent of p(y) and is not independent
of p(x);

(4) Under all other conditions, the relationship between p(x) and p(y) is indetermi-
nate.

Proof: p(d) = p(d | b)p(b) + p(d | =b)p(=b). Since p(d) = 1, p(b) = (1 — p(d
=b)p(—b))/(p(d | b)) and since B and C' are independent, p(d | b) = p(d| b, ¢)p(c)

p(d | —b,—=¢)p(—¢). Thus we can write an expression for p(b) in terms of p(c) a

|
_|_
nd

@)
>/dp<>=—ff2-(<d|b>( (=b)(dp(d |
1 — p(d| =b)p )(dpd|b/dp ))
Jdp(c)) <d|b> [p(d]6) - dhb]z

differentiate it using the product and quotient rules. This gives dp(b)/dp(c)
(pld | 8) " [ 8 gy (1-p(d | =b)p(=) )~ (1—p(d | ~b)p(=b) ) (dp(d | )
Writing K for p(d | b)~!, we then have dp
=b)/dp(c)) + p(d | =b) (dp(=b) /dp(c) ) ) +
Since dp(b)/dp(c) = —dp(~b) /dp(c), (dp(b
12+ (p(d [B)p(=b) (p(d | =b, =) = pld | b, ) ) + (1= p(d | ~b)p(=8) ) (p(d |, =) — p(d
b,c))). Now, 1= p(d|~b)p(~b) = 1 — p(d) + p(d|b)p(b). Therefore, (dp( /dp ()
<d|b>- [ (d]8) = p(d | =b)] = K2 - (p(d ] b)p(=b) (p(d | b, ~c) = pld | ~b,¢)) +
(1= pl)p(=0)) (ple 15, =) = p(d1:6)) + (ple1D)p(b)) (plel b, =) = p(d] b)) ).

Notmg that p(d) = 1, and combining the two remaining terms on the right hand
side, we get. (dp(b)/dp(c)) - p(d | B) - [p(d | b) = p(d | b)| = K*- (p(d | b)(p(d |
—b, ~¢)p(=b) — p(d | ~b, &)p(=b) + p(d | b, —¢)p(b) — p(d | b, c)p(b))), which gives us

(dp(b)/dp(c)) . {p(d |6) — p(d | ﬁb)} =K?*. {p(d | =¢) — p(d | c)} Thus the qualitative
value of dp(b)/dp(c) depends upon the value of the two expressions p(d|b) —p(d|—b)

A

TN

~—

+v

and p(d|¢) — p(d]—e¢), being negative when both have the same qualitative value,
being positive when they have opposite qualitative values, and being zero when
p(d|¢) — p(d]—e) is zero and p(d|b) — p(d|—b) is not. But these expressions are
exactly those which determine how p(d) varies with p(b) and p(c)'2, so the theorem
is true for # = b and y = c. Similar results for p(b) varying with p(c) and p(—b)
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varying with p(c) and p(—¢) complete the proof. O

Thus the qualitative relation between the probabilities of B and C' is determined
by the qualitative relation between the probabilities of B and D and the qualitative
relation between the probabilities of C' and D. Clearly the case in which explaining
away occurs is that in which p(b) varies inversely with p(c), and it is worth noting
that the relationship between B and C' is symmetrical so that if, for instance, p(b)
is explained away by p(c), then p(c) is explained away by p(b). The conditions
seem entirely reasonable, and may be justified by the following argument. If the
probability of d tends to follow that of p(c), and p(c) increases, then the joint
probability of b, ¢ and d increases as p(c) increases and when p(d) is not fixed,
this will cause it to increase. If, however, the probability of d is fixed, there must
be some change in p(b) to offset the change in the joint value, and if p(d) follows
p(b) this means that p(b) must decrease. Similarly, if p(d) follows p(c) and varies
inversely with p(b), p(b) must increase as p(c) increases in order to offset the change
that would otherwise occur in the joint probability.

Whilst this explanation seems an adequate justification of the kind of intercausal
relationship implied by Theorem 4, the fact that the conditions are on the relation-
ship between the probability of D and its causes, rather than simply on the product
of the conditional values of D given its causes, makes it clear that the notion of
“explaining away” that is captured here is rather different to that of other authors
such as Druzdzel, Henrion and Wellman?®:21,

As an aside, it should be pointed out that our explanation of the way in which
the probabilities alter is similar to that used in the argument put forward by Tzeng3°
in his re-establishment of Henrion and Wellman’s?! result. He examines Pearl’s'®
method for probability propagation, and considers the flow of probability between
the nodes. His result, and its proof are reconstructed below using our approach to

qualitative uncertainty:

Theorem 5 In the network B&C — D, and for all x € {b,—b} and y € {c, —c},
p(x) varies inversely with p(y) if p(d|z, y)p(d|—x—y) < p(d| -z, y)p(d|x, ~y) The
conditions under which p(x) follows p(y) and is independent of p(y) may be obtained
analagously.

Proof: When D is known to be true, the evidential flow of probability into node B is
such that the ratio of the change in p(b) to that in p(—=b) is given by the ratio of p(d | b)
to p(d|—b). Now, since B and C are independent, p(d) = 236{67_‘6}706{67_‘6} p(d |

B, C)p(B)p(C) and p(d[b) = p(d[b, ¢)p(c) + p(d[b, =¢)p(=¢) = p(c) [p(d |6, ¢) = p(d]
b, ﬁc)} +p(d|b, —¢) and a similar expression may be written for p(d|—b). Now, we are

interested in the way in which this ratio alters as p(c) changes. If the ratio increases,
p(b) increases as p(c) increases, and if the ratio decreases, p(c) explains p(b) away.

ot (P(10)/p(d1=8)) = 5 (p(e) [pld b, )= pld | b,=¢) | +p(d |, ~¢) )/ (ple) [pld]
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b, ¢)=p(d | ~b, =) |+p(d | ~b, =) ) = K [p(d|b, e)p(d | b, =) —p(d | b, c}p(d | b, ~c)
where K = p(d|b)~2. This latter can be ignored since it is always positive, so the
sign of the derivative, and hence the behaviour of p(b) depends upon p(d|b,c)p(d|
=b,—¢) — p(d | —b, ¢)p(d| b, —¢) alone. From similar results for the variation of p(b)
with p(—¢) and p(—b) with p(e) and p(—c¢) the result follows.O

4.2, Intercausal reasoning in possibility theory

When the network is quantified with possibility values, the observation that D
takes value d is modelled by setting the value of TI(—d) to 0. Since the values
are normalised, max(TI(d),TI(—d)) = 1 and so the effect of the observation on the
possibility of d is to make TI(d) = 1. This yields the following result:

Theorem 6 In the network B&C — D, and for all x € {b,—b} and y € {c, —c},
when TI(d) = 1, TI(x) varies inversely with TI(y) when TI(d) follows TI(y), TI(d |
=b,—e) < (d | by,—¢) = 1, and initially T1(=b) = 1, II(c) = 1, and TI(b) < 1.
Otherwise T(x) is independent of TI(y).

Proof: The relationship between TI(d), TI(b) and TI(¢) may be determined from
I(d) = supgep,-b},cefe,mey (dy B, C) where II(d, B,C) = min (H(d | B, CHII(B)
II(C)). The only time that a change in II(c) can require a change in II(b) is when
II(c) changes from a value that determines II(d), meaning that TI(d) must follow
TI(c) so that initially II(¢) = 1 and either (1) TI(b) = TI(d|b,c) = 1 or (2) TI(—b) =
TI(d|=b,c) = 1, or both. If (1) is the case, then TI() cannot be forced to change and
so we have the requirement that TI(b) < 1 for there to be any intercausal reasoning.
In case (2) we also require TI(d | =b,—¢) < 1 to ensure that changes in II(c¢) have
any effect. Then, if TI(c) falls, provided that TI(d | b, ~¢) = 1 the fact that TI(d) is
held to 1 will mean that TI(6) increases to 1. From similar results for the variation
of TI(b) with TI(—¢) and TI(—=b) with TI(c¢) and TI(—¢) the result may be obtained.O

Thus we can have a form of explaining away in possibility theory, although it is
a rather limited one. The inverse relationship between TI(5) and II(¢) can only be
expressed in such a way that TI(b) increases as II(¢) falls. Thus it is the case that
evidence for C' not taking value ¢ explains B taking value b rather than evidence
for C' taking value ¢ explaining away B taking value b. In addition there cannot be
a positive relationship between B and C' so that TI(b) can never follow II(¢). For
this form of intercausal reasoning between B and C' to occur in possibility theory,
the conditional possibilities must be such that it is less possible for B and C to
respectively take values —b and —c¢ than to take values b and —c suggesting some
kind of exclusivity between the values. Tt is also necessary that II(d) would be
affected by a change in value of TI(¢) were it not fixed, and as discussed above this
seems an entirely reasonable restriction.

It is worth noting that, unlike the case in probability theory, prediction of ex-
plaining away in possibility theory requires explicit knowledge of the quantitiative
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possibility values as well as some information about qualitative relations.

4.3. Intercausal reasoning in evidence theory

When modelling the situation depicted in Figure 2 using evidence theory, there are
a number of possible ways of combining the influences of B and C' on D'?2*, One
may either use conditional values of the form bel(d|b) or conditional values of the
form bel(d|b,c) and one may combine conditionals using either Dempster’s rule of
combination!® which involves the use of conditionals such as bel(d | b,c U —c¢), or
Smets’ disjunctive rule?* which does not need such values, replacing bel(d | b, ¢ U—c)
with bel(d|b,c)bel(d]|b,—c). Firstly, for Dempster’s rule we have:

Theorem 7 In the network B&C — D, and for all x € {b,—b} and y € {c, —c},
when bel(d) = 1:

(1) bel(z) varies inversely with bel(y) iff bel(d) follows both bel(x) and bel(y), or
bel(d) varies inversely with both bel(x) and bel(y);

(2) bel(x) follows bel(y) iff bel(d) follows bel(x) and varies inversely with bel(y), or
bel(d) varies inversely with bel(x) and follows bel(y);

(3) bel(x) is independent of bel(y) iff bel(d) is independent of bel(y) and is not
independent of bel(x);

(4) Under all other conditions, the relationship between bel(x) and bel(y) is inde-
terminate.

Proof: There are two cases. In the first, we have conditionals such as bel(d|b, c).
Since B and C' are conditionally independent, bel(d) = ZBC{b,—'b} bel(d | B)m(B),
and bel(d|B) = ch{q_‘c} bel(d| B, C)m(C). Given that bel(d) is known to be 1,
we have 1 =3 0.y bel(d[b, C)m(C)m(b) + 3oy oy bel(d|=b, C)m(C)m(—b)
+ZCC{C,—|C},B€{:b,bU—|b} bel(d| B, CYm(C)m(B). Since bel(b) = m(b) this gives us:

1= ch{c,ﬂc},Be{ﬂb,buﬂb} bel(d| B, C)m(C)m(B)
ch{cﬁc} bel(d|b, CYym(C)

bel(b) =

Taking the derivative of this with respect to bel(c), and writing (ch{c,—‘c} bel(d |

b, C)m(C)) " bel(d | ) as K we have dbel(b)/dbel(c) = K - ((Secqen
bel(d | b, C)m(C)) s (1= Socomep pefanuums) belld | B, C)m(C)m(B))
(1= Sy, Betanmmnbelld | B,OmMCm(B)) i (Do belld |
b, (J)m((J))). Now, g (ch{mc} bel(d | b, (J)m((J)) = [bel(d | b,c) — bel(d |
be U =e)], while 7 (1= Cecforme).meosumsy bel(d | B,C)m(Cym(B)) =

_ZBE{—'b,bU—'b} bel(d | B,e)m(B) + ZBG{—'b,bU—'b} bel(d | B,c U —~c)m(B) +
(dbel(b)/dbel(c)) Y ¢ fermey bel(d [ b U=b, C)m(C). Thus (dbel(b)/dbel(c)) [bel(d |

b)—bel(d | bU—b)] = K2 (—bel(d|b) (ZBe{ﬂb,buﬂb} bel(d| B, c)m(B)+ Y pe (b0}
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bel(d] B, cUme)m(B)) = (1= Eoc o), pe oums) belld] B, Cym(Chm(B)) [bel(d]

)
b, c)—bel(d|b,cU=c)] ). Now, it is clearly possible to write 1= cc{e,mc}, Be{~bbuab)
bel(d| B, Cym(CYym(B) as 1 —bel(d)+bel(d|b)m(b), which, since bel(d) = 1 becomes
simply bel(d | b)m(b). This allows us to write (dbel(b) /dbel(c)) [bel(d | b) — bel(d |
bU—b)] = K?2- (—bel(d|b) (bel(d|c) —bel(d | b, )bel (d | b)m(b) +bel(d ] cU—e) —bel(d |
b, ¢ U —c)bel(d] b)m(b)) — bel(d | bym(b)[bel (d| b, ¢) — bel(d | b, c U ﬁc)]) , which neatly
reduces to (dbel(b) /dbel(c)) [bel(d | b) — bel(d|bU—b)] = —[bel(d |c) — bel(d | c U—c)].
Thus the value of the derivative is controlled by the qualitative value of two ex-
pressions: (1) bel(d | b) — bel(d | b U —b) and (2) bel(d | ¢) — bel(d | ¢ U —¢). The

derivative is positive when one expression is positive and one negative, negative

vv

to

when both expressions are positive, or both are negative, and zero when (2) is zero
and (1) is not. However, (1) and (2) are exactly the expressions that determine the
relationship between bel(d) and bel(b) and bel(c)'?, such that bel(d) follows bel(b)
when (1) is positive, varies inversely with bel(b) when (1) is negative, follows bel(c)
when (2) is positive and varies inversely with bel(c) when (2) is negative!?. Thus
the result follows for x = b and y = ¢ and since similar results may be obtained
for the variation of bel(b) with bel(—¢) and bel(—b) with bel(c) and bel(—c), we have
proved the result for the first case.

In the second case, we have conditionals such as bel(d|b), and bel(d) = ZBg{b b1,
cCle,eybel(d] B)bel(d |C)m(B)m(C). Thus:

- ZBe{b,ﬂb},cg{c,ﬂc} bel(d | B)bel(d|C)m(B)m(C)
bel(d|b) ch{cﬁc} bel(d|C)ym(C)

bel(b) =

Taking the derivative of this with respect to bel(c), and writing (bel(d|b) S e,

bel(d | C)m((]))_l as K we have dbel(b)/dbel(c) = K? - ((bel(d 10 Y e ey

bel(d] C)m(C)) g5k (1= Zpepmsp,coc o bel(d | Bbel(d | Cym(Bym(C) ) —(1-

zBe{b,ﬂb},cgc,ﬂc}beud | B)bel(d | C)m(B)m(C)) gty (bel(d [5) S ey bell(d

C)m(C))). Now, dbe,()(bez(dw) Yooy bel(d]CYm(C )) = bel(d | b) [bel(d | c) —

bel(d | cUe)], while 4 (1= 3 ey Lup ¢ ermey belld | BYbel(d | Chm(B)m(C)) =
)

—ZBe{ﬂb,buﬂb}bel(ﬂB)bel(d| )m(B) + X pe{-b,pu-p} bel(d] B)bel(c U=c)m(B) +
(dbel(b) /dbel(c)) e ermey bEL(d[BU=D)bel (C)m(C). Thus, since Yo, .y bel(d]

¢)m(c) = 1, which it must be to allow bel(d) = 1, (dbel( ) /dbel(c)) [bel(d | b) —
bel(d | bU —b)] = K? - ( — bel(d | b)(ZBe{ﬂMUﬂb} bel(d | B)bel(d | ¢)m(B) +
Y. Be{-bpu-by bel(d | B)bel(d | ¢ U _‘C)m(B)) - (1 — 220C e}, Bef-bbu-by bel(d |
B)bel(d| C)m(C)m(B)) [bel(d | b)bel(d|c) — bel(d|b)bel(d | c U ﬁc)]). As above, we
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can write 1 — > ccye e}, Befabbuas) bel(d ] B)bel(d | C)m(C)m(B) as 1 — bel(d) +
bel(d | b)ym(b), which, since bel(d) = 1 becomes simply bel(d | b)m(b). This al-
lows us to write (dbel(b) /dbel(c)) [bel(d | b) — bel(d | bU —b)] = K2 - (— bel(d |
b)(bel(d | ¢) — bel(d | c)bel(d | bym(b) + bel(d | ¢ U =c) — bel(d | ¢ U —e)bel(d |
b, cU—c)m(b)) — bel(d|b)>m(b)[bel(d|c) — bel(d|cU ﬂc)]), which neatly reduces to

(dbel(b) /dbel(c)) [bel(d|b) — bel(d|bU —b)] = —[(bel(d |c) — bel(d|c U—c)], exactly
as for the first case. Thus in both cases the relationship between bel(b) and bel(c)
is subject to the same conditions, and the theorem is proved.O

Thus for explaining away to take place in evidence theory, the conditions that must
be met are analagous to those for probability theory, and suggest that the same
kind of mechanism is at work. If bel(d) follows bel(c) and bel(b) when it is not
fixed, then when it is fixed the inflow of belief into the joint distribution over D, B
and C from increasing bel(c) must be matched by a decrease in bel(b). Similarly, if
bel(d) follows bel(c) and varies inversely with bel(b), then when bel(d) is fixed, the
increased belief over all three variables in question that results from an increase in
bel(c) must be offset by a decrease in bel(b).

As mentioned above, it is also possible to combine the effects of B and C on
D using Smets’ disjunctive rule?*. The idea behind this rule is that it should
establish the belief in the disjunction of two events for which the belief in their
occurence is known in the same way that Dempster’s rule!® establishes the belief
in the conjunction of the events. When the disjunctive rule is used we indicate its
adoption by referring to the network of Figure 2 as BV C — D, and find:

Theorem 8 For the network BV C — D, for all x € {b,—b} and y € {¢, ~c}, when
bel(d) = 1, bel(x) may varies inversely with bel(y).

Proof: Again we have two cases. In the first we have conditionals such as bel(d | b, ¢)

and bel(d) = 3 pc b0} ,ccqe,me) MB)M(CO) [y e, ec bel(d]bi, cj). Thus:

1- ZBe{b,ﬂb},cg{c,ﬂc} m(B)m(C) Hb,eB,Cjec bel(d|bi, c;)

bel(b) =
‘ ( ) ch{c,—'c} m(C) HC]'EC bel(d“)a cj)

which with K = {ch{c,—‘c} m(C) cheC bel(d|b, cj)} gives us the derivative
dbel(b) /dbel(c) = K - (chmc} m(C)T1,, ec bel(d b, cj)#,(c)(l — Y bt
Cg{cmc}m(B)m(C) Hb,eB,Cjec bel(d | b;, Cj)) - (1 - ZBe{b,ﬂb},cg{c,ﬂc} m(B)m(C)
[hemesec bel(d | i,¢3)) iy ( Secome M) [Ty ec belld [ b,c5)) ). Now, we

have —dbecll(c) (ch{q_‘c} m(C) cheC bel(d|b, cj)) = m(b)bel(d|b,c) — m(b) cheC
bel(d|b,c;). Since the product will contain the term bel(d|b, ¢), and all belief values

are not greater than 1, this derivative can never be negative. We also have #l(c) (1—
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ZBe{b,ﬂb},cg{c,ﬂc} m(B)m(C) Hb,eB,Cjec bel(d | biacj)) = _ZBe{b,bU—'b} m(B)
[1s,ep bel(d]bi, )+ pe gy pu-py ™(B) Hb,eB,cjve{c,ﬂc} bel(d|bi, cj) —dbel(b) /dbel(c)

(ch{q_‘c} [Lo.eq6,-0},c,ec bel(d ] bs, cj)). Once again, the second term is a prod-
uct of terms including the first, and in this case the limitations on the possible values
of beliefs mean that the sum of the first two terms cannot be positive. As a result,
we can say that (dbel(b)/dbel(c)) (I(—ch{q_‘c} Lo, eq,-61,c,ec bel(d]bi, cj)) < 0.
Having done this we can recall the value represented by K and observe yet again
that we have the difference of two terms where the second cannot be larger than
the first, so that dbel(b)/dbel(c) is either negative or zero, and this, along with the
obvious symmetric results for the variation of bel(b) with bel(—¢) and bel(—b) with
bel(c) and bel(—c) gives us the necessary result for this first case.

In the second case we have conditionals such as bel(d | b) and bel(d | b,¢) and
bel(d) = ZBg{b,—'b},Cg{c,—'c} m(B)m(C) Hb,eB,cjeC bel(d | b;)bel(d | c;). This is the
same as the expression for bel(b) obtained above, but with bel(d | b;, ¢;) replaced
by the product of two conditional beliefs. This substitution will not change the
qualitative value of the derivative which is thus never positive. From similar results
for the variation of bel(b) with bel(—c) and bel(—b) with bel(c) and bel(—c¢) the result
may be obtained. O

Thus if there is any intercausal reasoning when the disjunctive rule is used, it is
in the form of explaining away. Given the behaviour reported in Theorem 7 for
combination using Dempster’s rule, and the fact that under the disjunctive rule
bel(d) will always follow bel(b) and bel(c)'?, this result is not surprising. It does,
however, have some consequences for the expressiveness of the networks that one
may build using belief functions and the disjunctive rule. Indeed, the practical
result of Theorem 8 is that it is not possible to construct a network of the form
BVC — D where B, C'and D are binary valued, in which evidence for the values of
C causes belief in the values of B to increase. This is something of a restriction, and
may have important consequences for Xu and Smets’ evidential networks3! which
use the digjunctive rule in a similar way to that analysed here.

4.4, Ezamples of intercausal reasoning

Following his initial thoughts about Cody’s dismissal, Jack telephones him to
discuss the matter. During the conversation, in which Cody talks of his desire
to become a brakeman on the railroad, Jack learns that, although he is not sure
of the matter, Cody reckons that the manager did not find out about his lack of
qualification. Armed with this new information, Jack sits down to reason once
again about the situation using the same model as before (for convenience repeated
in Figure 3).

Given his initial probabilistic model, in which “Lose job” follows both “Ill”
and “Invented qualification discovered”, Jack can apply Theorem 4 to determine
that, given he knows “Lose job” is true, evidence against “Invented qualification
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IQD € {igd, —igd} I€e{i,—i

LJ € {1j,1j}

Figure 3: Jack’s network revisited

discovered” is evidence for “IlI” since the probability of the latter varies inversely
with that of the former. Thus, since on Cody’s evidence the probability of “Invented
qualification discovered” may fall, the probability that Cody was ill may increase.
He get similar results with his evidence theory model. The fact that in the model
his belief in “Lose job” follows his belief in both “IlI” and “Invented qualification
discovered” means that whether he combines his beliefs with Dempster’s rule or
Smets’ disjunctive rule, Theorems 7 and 8 tell him that his belief in “Ill” may vary
inversely with his belief in “Invented qualification dicovered” giving the same result
as in the probabilistic case.

Things are a little different if Jack chooses to use a possibilistic model. In this
case, he cannot get away without using some numerical values since these values
themselves are needed to use Theorem 6. After some thought, he settles on the
possibility values in Table 1 which fit with his feelings about Cody’s employer as well
as the health and educational status of the tyre shack employees while ensuring that
the possibility of “Lose job”, TI(!j), follows both those of “IlI”, TI(¢), and “Invented
qualificiation discovered”, TI(igd), in accordance with his initial information. Now,

Table 1: Possibilities for the example

11(1j |4, iqd) = 1 p(i) = 0.1
(lj|~i,igd) = 1 pligd) = 0.1
(L |i,—igd) = 1

(lj|~i,—igd) = 0.05

the conditional values obey the conditions imposed by Theorem 6 for some form of
intercausal relationship to hold between TI(¢) and TI(igd), but the prior possibilities
of the events themselves rule out any such relation. Thus, using his possibilistic
model, Jack is forced to conclude that the change in the possibility of “Invented
qualification discovered” has no effect upon the change in possibility of “Ill”.
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Figure 4: A network representing medical knowledge

5. Integrating formalisms in evidential and intercausal reasoning

One of the applications of predictive reasoning using qualitative uncertainty is the
integration of different formalisms'#1%32, In this section we demonstrate the use of
the results obtained in previous sections in the integration of different formalisms
in evidential and intercausal reasoning. To do this we use the following medical ex-
ample. The network of Figure 4 encodes the medical information that joint trauma
(T) leads to loose knee bodies (K), and that these and arthritis (A4) cause pain (P).
The incidence of arthritis is influenced by dislocation (D) of the joint in question
and by the patient suffering from Sjorgen’s syndrome (S) . Sjorgen’s syndrome
affects the incidence of vasculitis (V'), and vasculitis leads to vasculitic lesions (L).

12,14,32 in which the influences between the nodes are

Consider further a scenario
quantified using a mixture of probability, possibility and belief values for exactly
the same reasons that a mixture of formalisms are used in MILORD33:3*—the only
quantitative information that is available is expressed in different formalisms. Thus
the relationship between T and K, S and V and D, S and A is expressed using
probability, that between V and L using possibility theory, and that between K, A
and P using evidence theory. Now, we are told that, by applying previous results
for the propagation of qualitative uncertainty in a predictive direction'? one can tell
that p(k) follows p(t), p(a) follows p(s), bel(p) follows bel(a) and bel(k), p(v) varies
inversely with p(s) and TI(!) may follow II(v) down. Given that a particular patient
is in pain, how will an observation that suggests that the patient does not have
vasculitic lesions affect the probability that they are suffering from joint trauma?

To answer this question we must propagate the effect of the change in the value
of TI(!) to find the effect on p(k) and to do this we need to combine changes in
values expressed in different formalisms. Previously we have suggested that this
may be achieved by means of the so-called monotonicity assumption, a heuristic
which states that:

If the value of a hypothesis in one formalism increases, the value of the
same hypothesis in any other formalism does not decrease.
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However, Prade3® has pointed out that as it stands this assumption is flawed, and to
overcome the flaw, we have to restate it in terms that capture the difference between
upper and lower certainty values®®. In particular we need to relate the change in an
upper certainty value of a hypothesis to the lower certainty value of the complement
of that hypothesis and vice-versa. That is Aval*(x) must be related to Aval, (—x)
and Aval, (x) must be related to Aval*(—z). Taking this need into account, a more
correct version of the monotonicity assumption may be obtained:

If the lower certainty value of a hypothesis in one formalism increases,
the lower certainty value of the same hypothesis in any other formalism
does not decrease, and the upper certainty value of the complement of
the hypothesis in any formalism does not increase.

Similarly, if the upper certainty value of a hypothesis in one formal-
ism increases, the upper certainty value of the same hypothesis in any
other formalism does not decrease, and the lower certainty value of the
complement of the hypothesis in any formalism does not increase.

A similar pair of statements may be made for decreases in value. What this assump-
tion means for the probabilty, possibility and belief measures that we are dealing
with is that given some hypothesis h, if p(h) is known to increase then bel(h) will
not decrease, and TI(—h) will not increase. Similarly, if TI(%) increases, then p(—h)
will not decrease and neither will bel(—h). Again, this assumption may fail to hold
in some cases—it is, after all, a heuristic. However, it does allow us to make useful
deductions in those situations in which we are happy to employ it. The use of
the assumption clearly raises questions of semantic coherence and necessitates the
adoption of a suitable semantic model such as that of “degrading”'* which is based
upon the idea that, at heart, all numerical methods for handling uncertainty are
trying to measure the extent to which it is reasonable to predict that a variable will
take a given value.

Now, in our example, the observation suggests the patient does not have vas-
culitic lesions, so AII(/) = [-]. From Theorem 2, TI(v) may follow II(!) down, so
ATl(v) = [0,—]. In other words, TI(v) may decrease. Applying the new mono-
tonicity assumption gives Ap(—w) = [0, +] which since p(v) + p(—v) = 1 means
that Ap(v) = [0,—]*. Now, Theorem 1 tells us p(s) varies inversely with p(v),
and as a result Ap(s) = [+,0]. Since p(s) may increase, p(a) may increase, and
so the monotonicity assumption gives bel(a) = [+, 0]. Now, because bel(p) would
follow bel(a) and bel(k) if it were not fixed by the knowledge that the patient is in
pain, Theorems 7 and 8 tell us that irrespective of whether Dempster’s rule or the
disjunctive rule is used, Abel(k) = [0,—], and using the monotonicity assumption
this means Ap(k) = [0, —]. From Theorem 1 we know that p(¢) follows p(k) and
so Ap(t) = [0,—]. Thus we can answer the original question—when the patient is

{Which, incidentally, is exactly the same result as would have been given by the original monotonic-
ity assumption. This fact is a consequence of probabilistic normalisation—the two assumptions
give different results when not translating into or out of probability theory.
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known to be in pain, evidence against vasculitic lesions may mean that she is less
likely to be suffering from joint trauma.

6. Conclusions

The above results generalise the kind of qualitative propagation of values that may
be carried out using a mixture of probability, possibility and belief values, making
it possible to propagate in an evidential direction and between the causes of an ob-
served effect. The work is useful for two reasons. Firstly this work has provided an
analysis of the patterns of intercausal reasoning, such as “explaining away”, in pos-
sibility and evidence theories— something that has not been previously attempted.
This analysis has shown that explaining away occurs under specific, but very sim-
ilar, circumstances in probability and evidence theories when the latter employes
Dempster’s rule of combination, and may always occur in evidence theory if Smets’
disjunctive rule is employed along with binary variables. This semi-obligatory® na-
ture of explaining away when the disjunctive rule is used rules out other forms of
intercausal reasoning that are possible in probability theory and when Dempster’s
rule is used. Intercausal reasoning is also observed in possibility theory, albeit in a
limited way such that “explaining away” does not occur, and again this only occurs
under specific circumstances. Comparing the results with those of work in qualita-
tive probabilistic networks it seems that the approach discussed here, whilst broadly
being a generalisation of the work of Wellman® and Druzdzel and Henrion?® cap-
tures a slightly different notion of intercausal reasoning. Secondly, this work extends
the range of situations in which it is possible to integrate information expressed in
different formalisms from cases of predictive reasoning'?'3 to any situation in which
the dependency between variables can be expressed using a singly connected net-
work. This means that the approach now has a much wider scope, and can be
applied to a much wider range of problems.
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