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This paper investigates how the rules of System P might be used in order to construct
proofs for default consequences which take into account the bounds on the probabilities
of the consequents of the defaults. Using a knowledge base of default rules which are
considered to be constraints on a probability distribution, the result of applying the
rules of P gives us new constraints that were implicit in the knowledge base and their
associated lower bounds. The paper defines a proof system for such constraints, shows
that it is sound, and then discusses at length the completeness of the system and the
kind of proofs that it can generate.
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1. Introduction

Default reasoning has been widely studied in artificial intelligence, and a number
of formalisms have been proposed as a means of capturing such reasoning!, most
prominent among which are default logic? and circumscription®. Many of these sys-
tems, including default logic and circumscription, have proposed particular mech-
anisms for default reasoning, and might therefore be considered quite specialised.
However, there has also been work on more general approaches which attempt to
analyse in broader terms what default reasoning involves. An early attempt to do
this was Shoham’s* proposal that all non-monotonic systems could be characterised
in terms of the preference order over their models. A more proof-theoretic strand
of this research has investigated the formalisation of the underlying requirements
for any non-monotonic consequence relation. Perhaps the most influential piece of
work within this area is that of Kraus et al.’.

Kraus et al. investigated the properties of different sets of Gentzen-style proof
rules for non-monotonic consequence relations, and related these sets of rules to the
model-theoretic properties of the associated logics. Their major result was that a
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particular set of proof rules had the same model-theoretic properties that Shoham
had identified for logics in which there is a preference order over models. This
system of proof rules was termed System P by Kraus et al., the P standing for
“preferential”. System P has been the subject of much research, and is now widely
accepted as the weakest interesting non-monotonic system; it sanctions the smallest
acceptable set of conclusions from a set of default statements.

The reason that we are interested in the rules of System P is that, in addition to
a semantics in terms of a preference order over models, they also have a probabilistic
semantics. In particular, Pearl®, following work by Adams”, showed that a semantics
based on infinitesimal probabilities satisfies the rules of System P. While the use of
infinitesimal probabilities is theoretically interesting, it lacks something in practical
terms. If we are to use System P to reason about the real world we will have
to write defaults which summarise our knowledge about it, and we may well be
unhappy making statements whose validity depends upon infinitesimal values. To
overcome this difficulty, we suggest using real probabilities along with the rules of
System P, giving each default statement a lower bounded probability, and showing
that proofs in the System P can be used to propagate these bounds to find out
something concrete about the probability of the derived results.

This paper is organised as follows. Section 2 sets the background to the paper
by discussing the notion of entailment in System P. Then, Section 3 brings up the
problem of using real e-values, and shows how they affect the conclusions drawn by
System P. At this point, in Section 4, we introduce our system SP, which captures
one possible proof theory for System P, we show that it is sound and complete, and
in Section 5 detail the kinds of conclusions which can be drawn by SP. Section 6
then gives some examples of the use of SP, Section 7 discusses related work, and
Section 8 concludes.

2. Entailment in System P

The rules of inference for the System P (see Figure 1) may be applied to a
knowledge base made up of conditional assertions of the form « |~ 5. In this context
a and f are well-formed formulae of classical propositional logic, and |~ is a binary
relation between pairs of formulae. The connectives A, V, — and < have their
usual meanings. The inference rules are written in the usual Gentzen style, with
antecedents above the line and consequents below it. Thus the rule And says that
if it is possible to derive a |~ 8 and it is possible to derive « |~ y, then it is possible
to derive @ |~ S A~y. The inference rules can thus be viewed as a means of obtaining
new conclusions from current knowledge; from an initial set of conditional assertions,
further conditional assertions may be obtained by applying the rules.

Two things should be noted about the set of rules in Figure 1. Firstly, they only
tell us how to derive new conditional assertions. If we wish to know whether we
are justified in inferring a new fact, say -y, given that we currently know some other
fact, say «, and this is all we know, it is necessary to determine whether a |~ is
derivable from our knowledge base of conditional assertions. Secondly, the proof
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Fig. 1. Rules of System P

rules in Figure 1 form a minimal set sufficient to characterise System P. Other rules
may be derived from them in much the same way that new conditional assertions are
derived. Two such rules are given in Figure 2—Cut which allows the elimination
of a conjunct from the antecedent side, and S which allows the derivation of a
material implication. Both of these (as we shall see later in the paper) may be
derived directly by the application of the basic rules.

The semantics for System P introduced by Adams makes the assumption that the
propositional variables are the basis of an unspecified joint probability distribution
which is constrained by the conditional assertions. These conditionals are taken
to represent conditional probabilities of the consequent given the antecedent being
greater than or equal to 1 — € for any € > 0, that is:

Definition 1 The conditional assertion « |~ 8 denotes the fact that Pr(8la) > 1—e¢
for all e > 0.

Given this interpretation, we can define the notion of the probabilistic consistency
of a set of these conditional assertions”:

Definition 2 A set of conditional assertions A is p-consistent if there is at least
one probability distribution which satisfies the constraints imposed by the conditional
assertions in A.

Probabilistic entailment of a further conditional is then defined as probabilistic
inconsistency of its counterpart, that is:

Definition 3 « |~ is p-entailed by A iff AU {a |~} is not p-consistent.
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Fig. 2. Two derived rules of System P

This implies that all probability distributions that satisfy A also satisfy a |~ f.
However this result may only be achieved by using infinitesimal analysis so that the
derived conditional will be constrained to be greater than 1 — § for any 6 > 0 if
the € of the original conditionals is made small enough. This can be paraphrased
as saying that System P allows us to make our conclusions as close to certainty
as we like, provided the conditional probabilities associated with the conditional
assertions are sufficiently close to certainty. In the literature this is used to justify
the conclusions drawn using System P; if we are sure of the conditional assertions,
and so are willing to give them high conditional probabilities, then the conditional
assertions derived from them will also have high probabilities.

However, using this interpretation of the rules means assuming that we are able
to give the conditional assertions arbitrarily high conditional probabilities. This is
fine in the case that the assertions are pieces of default knowledge which are felt
to hold almost all of the time. However, with less reliable information, for which
€ is not infinitesimal, it seems less justifiable to accept the infinitesimal analysis.
In particular, if a set of conditional assertions are used to derive new assertions
and these new assertions are themselves used as the basis for new deductions, then
it seems likely that some € values will be far from infinitesimal. Because of this
concern, the next section investigates the impact of non-infinitesimal € values by
considering what happens to values of € and § when the rules of P are applied.
The result is twofold. First it is possible to track the effect of non-infinitesimal
values, and second it becomes possible to identify bounds on the actual conditional
probability of derived assertions.

3. Using real e-values

We associate with each conditional assertion an e-value which represents, for
a |~ /3, an upper bound on the conditional probability Pr(—=f|a). We demonstrate
how using these values for each original conditional, we can generate § values for the
output conclusions. This enables us to calculate the lower bound on the probability
of a conclusion based on the proof steps used to derive it. We consider first the six
basic rules of System P, and then use the results obtained for those rules to obtain
results for S and Cut.

Reflexivity: A reflexive conditional assertion may be introduced at any stage in
a proof, and, since Pr(aja) = 1 for all formulae «, any such conditional will have
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an e-value of zero.

Left Logical Equivalence: This rule means that we may take any conditional
assertion and replace its antecedent with a logically equivalent expression. Clearly,
the derived conditional will have the same e-value as the original one.

Right Weakening: Right Weakening involves replacing the consequent of a
conditional with any expression classically derivable from it. Now, § — - means
the models of § are a subset of the models of v and hence:

Pr(y,a) > Pr(f, )

Now, since:
Profa) = Tpes)
Pr(jle) = Tpes
it follows that:
Pr(3la) > Pr(Bla) )

and therefore the e-value of a rule obtained by Right Weakening will not be larger
than the e-value of the rule from which it was obtained. Since we are dealing with
lower bounds, we may use the same value for the derived rule.

We now turn to the three basic rules of P which generate new conditionals from two
known ones. Given we know the e-values for the two known rules we obtain simple
expressions which are functions of these for the derived conditional.

Cautious Monotonicity: The rule is as follows:

alpfa by
alhB oy

hence we are interested in the value of Pr(vy|a, 5). Now:
Pr(yle) = Pr(v|a, B) Pr(B|a) + Pr(v|a, =8) Pr(=f]a) (2)
Substituting 1 — Pr(8|«) for Pr(=f|a) and rearranging, we obtain:

Pr(yla) — (1 — Pr(B|a)) Pr(y|a, =5)
Pr(8|a)

We are required to minimize this expression subject to the constraints:

Pr(v]a, 8) =

1—-¢ < Pr(f|a) < 1
l—e < Pr(vy|a) < 1
0 S Pr(7|a7 _'B) S 1



On proofs in System P 6

Equation (3) is linear in Pr(y|a) and Pr(y|a, —f) and will therefore attain its min-
imum when Pr(vy|a) is minimum and Pr(vy|a, —8) is maximum. This gives us:

(1—e)—(1—Pr(sla)

Pr(yla,B) > Pr(f|a)
€1
A )

which will be minimum when Pr(f|a) is minimum. This gives us an e-value for the
derived rule a A § |~y of:

€2
1-— €1
And: This time the rule is:
appBapy
ap Ay
So we are interested in Pr(f,v|a). Consider:
Pr(e, 5,7)
P ek Sl Lot 04
r(B,7la) Pr(a)

Pr(a, 8,7) Pr(e, B)
Pr(a, 8) Pr(a)

= Pr(yla, ) Pr(Bla) (4)

We are required to minimize this expression subject to the constraints:

l—-eg < Pr(Bla) < 1
l—ea < Pr(yla) < 1

and in the previous case we saw that these constraints imply that:

EA
2 <
1—-¢ -

Pr(yla,8) < 1

Equation (4) will be minimum when both factors in the product on the right-hand
side are, so that

R O L

].—61

= 1—(a+e) (5)

which, as we would expect, is symmetrical in €; and e;. This gives us an e-value for
the derived rule a |~ 3 Ay of €1 + €s.

Or: Here the rule is:

apy, By
aV By
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0 < Pr(a) < 1
0 < P(f) < 1
Pria)(1 —¢) < Pr(a A7) < Pr(a)
Pr(B)1-e) < PrBAy) < Pr()
max{0,Pr(a) + Pr(8) -1} < Pr(a A p)
min{Pr(a),Pr(8)} > Pr(a A p)
max{0,Pr(a Ay) + Pr(BAY) —=Pr(aAB)} < Pr(aABA7y)
min{Pr(a Av),Pr(BAv),Pr(a AB)} > Pr(aABA7®)

Fig. 3. The constraints for Or.

and we are interested in the value of Pr(y|aV ). Let Pr(—y|a) = € and Pr(—v|3) =
€2 and consider the following:

Pr(a A—y) + Pr(B A —y) = Pr(a A BA—)
Pr(a) + Pr(8) — Pr(a A B)
Pr(a) Pr(-la) + Pr(8) Pr(-18) — Pr(a A B A =)
Pr(a) + Pr(8) — Pr(a A B)
€1 Pr(a) + e2 Pr(B) — Pr(a A B A —y)

= Pr(a) + Pr(3) — Pr(a A f) (©)

Pr(-ylaVvp) =

To find the maximum value of this expression, we note that Pr(a), Pr(8) < Pr(aVp)
and we ignore the last term of the numerator since it is negative and could be zero.
Maximizing this subject to the constraints in Figure 3 gives us

Pr(—y|laV B) < e +e€
as an upper bound. This gives us an e-value for the derived assertion of €; + €5.

For completeness sake, we examine the derived rules Cut and S since they are the
most useful rules when proving things. To make the presentation clearer, we write
a conditional with e-value of €; as |~,.

S: For S we need to derive a pve,., f — 7 and the value of €,y from a A 8 |~ v
just using the basic rules. This can be done as follows. First apply Right Weakening

to a A B e, v to get:
a/\B|N61'77':7_)(ﬁ_>7) (7)
aAB e B

We then apply Reflexivity followed by Right Weakening (twice) to a A =5 to get:

aA=B poaA=B,E-B—=(8—7)
aN=fofB =y

Then we combine (7) and (8) using Or and apply Left Logical Equivalence to get:

(8)

aAB e By, aNaB B =y
0(|N616—)’)/
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Fig. 4. The extended rules of System P.

The consequent of this last derivation is the consequent of S, and comparing this
with the antecedent, we can see that applying S has no effect on the e-value; the
value for the derived conditional assertion is the same as for the original assertion.

Cut: For Cut, we need to discover how « |, v may be derived from aAf |~ v
and a v, B. This turns out to be easy given the result for S. S tells us that the
e-value of a |~ 3 — v is the same as that of a A |~7, so we have a |~, f — v and

applying And to a ¢, § — 7 and « |~, 3, followed by Right Weakening gives:
e, B=7,a b B

@ |~€1+€2 Y

Cut is thus proved, and the e-value for its consequent established. We will refer
to this set of rules, the basic rules of System P plus Cut and S, augmented with
details of how the e-values of the conditional assertions are propagated, as the
extended rules of System P. The extended rules are summarised in Figure 4. From
the previous discussion we can state the following theorem:

Theorem 1 The extended rules of System P are sound with respect to probability
theory.

In obtaining these results, we have shown that using each of the rules of P, and hence
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any derived rules, we can obtain lower bounds on the conditional probability of the
conclusion given those of the antecedents. Figure 4 shows the basic rules plus S
and Cut annotated with lower probability bounds on antecedents and consequents.
It is clear that these lower bounds never improve. Using rules And and Or, or
rules derived from these, means adding the e-values so that after only a few proof
steps our conclusions may attain high e-values. A high e-value means that the lower
bound on the associated conditional probability is low and if this becomes too low
then we don’t have much information about the probability since the upper bound
is always 1. Clearly, therefore, our input values must either be extremely small,
or our proofs short, in order to obtain useful results. However, as our example in
Section 7 shows, these conditions can be met without too much imagination.

Another point worth noting at this juncture is the fact that the following two
rules are not included, although they might be expected to follow for systems with
a probabilistic semantics:

@ |Ne B
« |~€, _‘B

(07 |~€/8

X |Ne” —IB

and

The antecedent first of these implies:
Pr(f|a)>1—c¢

which is only sufficient to set an upper bound on the conditional probability of the
consequent:
Pr(+8]a) <e

so no useful value for € can be determined—the value we can determine cannot be
used in further inferences because it is a upper, not an lower, bound. A similar
thing occurs with the second rule. To find € it is necessary to find the value of:

Pr(-a|-8) = 1-Pr(a|-p)
Pr(—=f | a) Pr(«)
Pr(=p)

which, while it can be related to Pr(8 | @), and hence to €, does not have a useful
lower bound.

While the work described so far has solved the problem of determining the
impact of the non-infinitesimal values, it falls short of providing a practical reasoning
system. The problem is that although in System P we can tell whether or not a |~
follows from the initial set of defaults, the procedures for determining this do not
permit the propagation of the e-values. Thus we can tell if a |~ 3 follows, and so we
can find out if a proof exists, but we can’t determine the associated e-value. What
we need is a proof theory which allows the e-values to be propagated through the
proof so that every inferred default has its e-value determined, and providing such
a proof theory is the subject of the remainder of this paper.
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4. A proof theory for System P

Normally in generating a proof theory for some logical system the procedure®
is to establish two rules for each connective in the underlying language. One rule
relates to introducing the connective into a formula, and one relates to eliminating
the connective from a formula. The set of rules then define all the legal transforma-
tions between formulae, and thus define what may be proved from some initial set of
formulae. The process of defining a proof theory thus proceeds from the underlying
language to the proof rules.

The situation here is a little different. System P already has a set of proof
rules defined. However, these rules do not include introduction and elimination
rules for all the connectives in the underlying language, and so do not support a
conventional proof theory. However, it is possible to use the existing rules to define
a proof theory for a significant part of the underlying language of System P, and
this is the approach we adopt.

We start with a set of propositions S, a set of connectives, {—,A,V, =, >, =},
and the following rules for building well-formed formulae in this language:

1. If « € S, then « is a basic well-formed formula (bwff).

2. If a and S are bwffs then o, a A B, aV B, a = B, a & [ are bwffs.

3. If v and ¢ are bwffs, then v =, ¢ is a default well-formed formula (dwff).
4. Nothing else is a bwffor a dwff.

Together all these formulae constitute a language Ls. The denotation of basic
well-formed formulae is as in propositional logic, while the meaning of dwffs is the
following;:

Definition 4 The default v = 0 denotes the fact that Pr(6 | v) > 1 —e.

Comparing Definitions 1 and 4 it is clear that the defaults of Ls are exactly the
conditional assertions of System P for a particular finite e. Two things follow from
this. The first is that this change from the general to the particular both allows us to
have some notion of strength of the defaults in terms of the conditional probability
associated with them and forces us to propagate the values every time we apply one
of the rules of inference. The second thing which follows is that there is a duality
between assertions and defaults. We formalise this as follows:

Definition 5 The default a =, (3 is the default dual of the conditional assertion
a |~ B and the conditional assertion a |~ 8 is the assertion dual of a =, .

Similarly, by extension of this notion of duality, any set of conditional assertions
A = J;{a; |~ Bi} will have a corresponding set of dwffs A" = J,{e; =, Bi}. More
formally:
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a=.pe€A Ax
A,O{ l’VP (676)
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Fig. 5. The consequence relation |~p.

Definition 6 Given a set of defaults A and a set of conditional assertions A', A
is the default dual of A’ if the default dual of every assertion in A’ is in A and
there are no additional defaults in A.

Definition 7 Given a set of defaults A and a set of conditional assertions A', A
is the assertion dual of A if A is the default dual of A'.

The reason for writing the defaults in this way is to distinguish between the condi-
tional assertions themselves, and the consequence relation which defines what may
be inferred from them—a distinction which is not always clear in work on System
P. Assuming that we have a knowledge base A which consists of a set of dwffs, we
can then define the valid set of conclusions which may be drawn from A as those
sanctioned by the consequence relation |~p defined in Figure 5. Note that this in-
cludes the two rules Cut and S which can be derived from the basic set of rules®.
These rules are included as useful “macros” which are equivalent to applications of
several other rules and help to shorten proofs as a result. We could equally well
formulate SP in terms of the basic rules of System P, and exactly the same results
would follow, though less concisely.
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The proof rules that define |~p may need a little explanation. The rule Ax is a
form of “bootstrap” rule which says that if some default a = § is in A, then were
a added to A, it would be possible to infer 8 with probability not less than 1 — e.
The rule And says that if adding a to A makes it possible to infer 5 with probability
no less than 1 — ¢; and 7 with probability no less than 1 — ey, then adding a to A
makes it possible to infer 8 Ay with probability no less than 1 — (e; + €3). Thus the
denotation of the consequence:

A,a e (fy€)

is that on the basis of what is given in A, we can infer Pr(3 | @) > 1 — €. Another
way of viewing this is that if we add « to A, then we can infer § with a probability
greater than 1 —e.

The rules RW and LLE are a little unusual in that both have antecedents which
involve F, which stands for the consequence relation of standard propositional cal-
culus. Thus RW says that you can replace any inference made by fvp with any
logical consequence, and LLE says that you can replace anything on the left-hand
side of |~p with something that is logically equivalent to it.

This proof system we will call SP. As with any proof system we are interested
in the soundness and completeness of the conclusions which may be drawn using
SP. We define:

Definition 8 A default base is a set of default well-formed formulae.

Definition 9 A basic well-formed formula 5 is a p-consequence of a default base
A, conditional on «, iff:

A,Oé l’VP (676)

By analogy with the strength of a default, the value e associated with a p-con-
sequence is known as the strength of the consequence. With these definitions, suit-
able soundness results are easy to obtain. The first relates what can be inferred
using |~p to System P:

Theorem 2 For every p-consequence (3, conditional on «, of a default base A,
a |~ B is p-entailed by the set of assertions A’ which is the assertion dual of A.

Proof: SP has a set of proof rules which mirror those of System P, and anything
that may be proved using these rules is a p-consequence. Since Kraus et al. °
have shown that anything proved using the rules of System P from a given set of
conditional assertions A’ is p-entailed by that set, it follows that any p-consequence
of A, the default dual of A’, is p-entailed by A’. O

Thus SP allows us to infer exactly the same things as System P. We also need to
show the soundness of the mechanism for propagating the strength of the conse-
quences. This is given by the following;:
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Theorem 3 The strengths of the p-consequences of a default base are those justified
by probability theory.

Proof: The soundness of the propagation of e-values with respect to probability
theory follows from Theorem 1. O

Together these two results guarantee that SP is sound—it will generate conclusions
sanctioned by System P with probabilistically correct strengths. Since Kraus et
al. show that the rules of System P are sufficient to infer all the consequences of
System P, the following completeness result is immediate:

Theorem 4 For every a |~ 8 which is p-entailed by a set of conditional assertions
A, B is a p-consequence of the default dual of A conditional on «.

What this theorem guarantees is any conditional assertion which is p-entailed by a
given set of defaults will, when those defaults are translated into the language of
SP, be a consequence of the corresponding set of dwffs. However, this result gives
no clue as to the kinds of conclusions we can draw from a given set of dwffs. It
does not tell us if a particular p-consequence will be found, it just says that it will
be found if its assertion dual is p-entailed.

What we would also like are results which say exactly what kind of conclusions
we can infer from some initial set of defaults, and that is what we consider in the
remainder of the paper.

5. Defining the scope of SP

Our approach is to start by analysing what can be inferred from a set of the
simplest kind of defaults, and then extend our scope to look at more complex
defaults.
5.1. Simple defaults

We start by considering that we have a set of simple defaults of the form a =, ~;
which all have the same antecedent. These form a simple default base:

Definition 10 A simple default base for a language Ls is a default base:

A= U {a e '7i}

i=1,...,n
where a and the ~y; are bwifs in Ls.

We can think of the consequents of this set of defaults forming a set G. In general,
we have:

Definition 11 The consequent set of a simple default base A is the set G such
that:
G = {vil{a = 7} € A}
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As we shall see, we need a way of referring to the conjunction of all the propositions
in the consequent set, and we do this by means of the associated conjunction:

Definition 12 The associated conjunction I' of a set of propositions G is defined

by
1":/\% forall s € G
i

The set G is called the associated set of I.

Now, applying Ax and CM to a =, 71 and a =>¢, 72, we obtain:

A,aAm pp <72; 1? > (9)

€1

Using the same rules on a =, 71 and a =, 73 gives:

€
A7a/\r)/1 l\/P <'73;1_3 >

€1

and combining the latter with (9) using CM will give:

€3
A, a ANy A —_—
;AL A2 fop <73, — _62>
If we imagine repeating this process it is clear that given A we can recursively apply
CM to obtain:

A,Oz AB’ l’VP (’)/1,6)

for any v; € G, and for any B’ which is the associated conjunction of a set B’ such
that B’ C G where € is a function of the e-values of the defaults to which CM has
been applied. In fact we have:

Lemma 1 Given a simple default base A with antecedent a and consequent set G
the consequence relation |~p will generate all consequences:

€
A,Oz/\B’ |~p ’)/1,71
1-— Zj Ej

where v; € G, B’ has an associated set B', for every «y; in B' there is a default
« =; v; with strength €; in A, and B' C G.

Proof: This follows more or less directly from the previous discussion. Since it is
possible to use CM to get A, a A B’ |~p (71, €) for any 7; in the consequent set and
any B’ which is a conjunction of propositions from the consequent set, then it is
possible to use it to obtain all such p-consequences. The relevant value of e follows
by simple arithmetic on the strengths of the relevant defaults. O

In other words, CM allows us to obtain as a p-consequence any proposition in the
consequent set of A conditional on « conjoined with any other propositions in the
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consequent set. The e-value that results is that of the p-consequence conditional on
« alone, divided by 1 minus the sum of the e-values of each of the propositions in
the conjunction conditional on a alone.

Since the rule And makes it possible to build up conjunctions on the consequent
side, similar reasoning makes it obvious that recursively applying the rule to the
same initial set of defaults will give:

Aya pp (T €)

for some €, where I'" is the associated conjunction of a set G’ and G’ C G. This
time, we have:

Lemma 2 Given a simple default base A with antecedent o and consequent set G
the consequence relation |~p will generate all consequences:

A: « |NP (F’7 Z 6’“)
k
where I has an associated set G', for every vy in G' there is a default o =,
with strength €, in A, and G' C G.

Proof: As with the discussion of CM, consider applying the rules Ax and And to
a =¢, 71 and a =, y2. This gives:

Aya pvp (71 A2, €1 + €2) (10)
Using the same rules on o =, 73 and a =, 74 gives:
A,a vp (73 Aya, €3 + €4)
and combining the latter with (10) using the rule And will give:
Napbr | N w D e
i=1,04  i=1,...,4

Now, it is clearly possible to use And in this way to get A,a fp (I';,€) for any
conjunction I'; whose constituent propositions 7; are in the consequent set. Thus
it is possible to use it to obtain all such p-consequences and the result follows. O

Thus the And rule makes it possible to obtain as a p-consequence any conjunction
of propositions from the consequence set of A, conditional on «. The e-value which
results is the sum of the e-values of those propositions alone conditional on «.
Clearly, then, if we use both rules together, we can derive conclusions of the form:

A,a AB pop (T, €)

where B’ and IV have associated sets B’ and G’ such that B' C G and G’ C G.
Note it is possible that B'N G’ # (). To prove this formally, we first need to extend
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the notion of duality between different representations of defaults introduced above.
There we had the notion of the assertion a |~ § being the dual of a default o =, .
We extend this by noting that any such default, after the application of the proof
rule Ax generates a p-consequence A, a ~p (8,¢;). We thus define:

Definition 13 The default o =, 8 which is part of A, is the default dual of the
p-consequence A, a |~p (B,€;) and the p-consequence A, a |~p (B,€;) is the conse-
quence dual of a =, .

This overloads the term “default dual”, but its meaning will always be clear from the
context. As before we extend this definition to sets of defaults and p-consequences:

Definition 14 Given a set of defaults A and a set of p-consequences A', A is the
default dual of A’ if the default dual of every p-consequence in A’ is in A and there
are no additional defaults in A.

Definition 15 Given a set of defaults A and a set of p-consequences A', A is the
consequence dual of A if A is the default dual of A’.

With these definitions we can combine Lemmas 1 and 2 to obtain the following:

Theorem 5 Given a simple default base with antecedent o and consequent set G,
the consequence relation |~p will generate all consequences:

A,aAB' ~p F',@
|’V ( ].—Zjej

where B and I" have associated sets B' and G', for every v; in B' there is o default
«a =, v; with strength €; in A, for every v in G’ there is a default o =, vy with
strength €, in A, and B, G' C G.

Proof: First apply Lemma 1 to obtain a series of p-consequences:

€k
A,a/\B’ |~p Yk, T —
1-— Zj €j

for each 7, which is one of the conjuncts in I''. Then apply Lemma 2 to the default
dual of this set. The result follows. O

We refer to the set of consequences defined by Theorem 5 as the simple consequences
of A.

5.2. More complex defaults

The results in the previous section characterise the kind of consequences we can
prove using the rules And and CM on a set of simple defaults. It is possible to
generalise these results to wider sets of defaults. Consider that instead of a set of
simple defaults, we have, instead, a general set of conjunctive consequent defaults of
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the form a =, I'; where «, as before, is a single proposition and I'; is conjunction
of propositions, known as the conjunctive consequent. This set of defaults is a
conjunctive consequent default base:

Definition 16 A conjunctive consequent default base for a language Ls is a default
base:

A= |J {e=>.Ti}

i=1,...,n
where a is a bwif in Ls, and ['; is a conjunction of such bwfifs.

For such defaults we expand the notion of the consequent set to include all propo-
sitions which occur in a conjunctive consequent:

Definition 17 The consequent set of a conjunctive consequent default base A is
the set G such that:

G={vil{a=enNA...AvNA... Ay} €A}

Since a conjunctive consequent default base A can contain simple defaults, it is
helpful to distinguish the simple subset, which is the set of all simple default rules in
A. We denote this by As. Now, applying the rule Ax to any conjunctive consequent
default in A will give:

A, « l~p (Fz, ei)

RW allows us to replace any p-consequence with any of its logical consequences.
This makes it possible to obtain:

A: Q@ |~P (7]7 Ei)
for any 7; which is one of the conjuncts in I';. This immediately gives us:

Lemma 3 Given a conjunctive consequent default base A, with consequent set G,
then |~p will generate all consequences:

Ao bp (7€)
where A contains a default @ =, [';, G; is the associated set of T'; and 7' € G;

Since this set of p-consequences is the consequence dual of the set of simple defaults
a =, 7', Lemma 3 suggests that any conjunctive consequent default base has a
corresponding simple default base such that both default bases have a common set
of p-consequences—the consequence dual of the simple default base! We call this

1t should be noted that while the p-consequences of these two default bases are the same, the
e-values of these p-consequences will, in general, differ, with the e-values of the p-consequences
derived from the simple default base being higher. As an example, consider the default base
{a =¢ B A ~v}, which has simple equivalent {& = B,a = v}. The formula 8 A v is a p-
consequence of both default bases, but has strength ¢ when derived from the first and 2¢ when
derived from the second.
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simple default base the simple equivalent of the conjunctive consequence default
base.

Definition 18 Given a conjunctive consequent default base A, with consequent set
G, then its simple equivalent is the set of defaults:

{Oéﬁei 7j|{a:>q 71A.../\7j/\.../\7n}€A}

Thus to transform a conjunctive consequent default base into its simple equivalent
we replace every conjunctive consequent default with a set of simple defaults, each
with the same strength as the original default and a consequent which is one of the
conjuncts in the consequent of the original default. Given Definition 18 we have:

Theorem 6 Given a conjunctive consequent default base A, the consequence re-
lation ~p will generate all the simple consequences of the simple equivalent of A.

Proof: Call the consequence dual of the simple subset Ay of A by the name P;.
Take the set A — Ay, and apply Lemma 3 to it to obtain a set of p-consequences of
the form:

A, a bop (Yk, €5)

which includes one such p-consequence for each v, which appears in the consequent
set of A — Ay. Call this set of p-consequences P». The set P U P is then exactly
the consequence dual of the simple equivalent of A. Thus anything which can be
derived from the simple equivalent of A can also be derived from A itself. O

The reason that this result is important is that it allows us to apply Theorem 5
to conjunctive consequent default bases, by first turning the default base into its
simple equivalent. This in turn means that we can immediately write down a
subset of the p-consequences of any conjunctive consequent default base A—the
simple consequences of its simple equivalent. We call these the simple equivalent
consequences of A.

Now let’s consider generalising the set of defaults A to what we will call a set of
general conjunctive defaults of the form aAB; =, I'; where «, as before, is a single
proposition and B; and I'; are conjunctions of propositions. This set of defaults is
a general conjunctive default base:

Definition 19 A general conjunctive default base for a language Ls is a default
base:
A= U {a/\Bi =6 Fl}

i=1,...,n
where « is a bwif in Ls, and the B; and T'; are conjunctions of such bwifs.
Thus a general conjunctive default base is just a set of conjunctive consequence

defaults which have a conjunctive antecedent B; conjoined to their base antecedent .
Such a default base has a simple subset A as before, and a conjunctive consequent
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subset A, which includes defaults of the form a =, I';. From such a default base we
can clearly generate all p-consequences which are simple equivalent consequences
of Ay UA,. These are all the p-consequences of A which can be obtained by
applying CM, And, and RW alone. However, there are further p-consequences of
a set of general conjunctive defaults. Applying the rules Ax and S to a default
aABi=,iin A—-(A; UA,) will give:

A a vp (B = T, 6)

Now, if we can obtain:
A, (8% |Np (Bi, Ej)
Applying And will give us
A,a l’VP (Bi A (Bi — Fi),(-ii + (-Zj)
and then RW will allow us to obtain:
A,Oé l~p (B1 A Fi, € + Ej)

and hence:

A,O{ l'vp ((pijaei + 6])
for any ¢;; € B; U G; where B; and G; are the associated sets of B; and I';. One

way that:
A: @ |~P (Bi7 €J)

can be obtained at the crucial point is if this is a simple equivalent consequent of
A UA.. This gives us:

Lemma 4 Given a general conjunctive default base A with base antecedent a,
whose simple subset is Ag; and whose conjunctive consequent subset is A., then
Fp will generate all the consequences of the form:

Ao e (76 +¢€j)
where A contains a default o A B; =, T, G; is the associated set of Ty, v' € Gy,
and
A: a |~P (Bi7 €J)
is one of the simple equivalent consequences of Ag U A..

Proof: This follows immediately from the previous discussion. O

As with Lemma 3, this is a “reduction” result, which allows us to use a complex
set of defaults to obtain a set of p-consequences which we could obtain from a
much simpler set of defaults. Following this analogy, in the same way as we defined
the simple equivalent of a set of conjunctive antecedent defaults, we can define a
set of simple defaults which, when we apply Ax to them, give us the same set of
consequences as applying Lemma 4 to a general conjunctive default base. This set
is defined as follows:
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Definition 20 Given a general conjunctive default base A with simple subset A
and conjunctive consequent subset A., its reduced equivalent is the union of Ay,
the simple equivalent of A., and the set of defaults:

{a=g v [ {aABIAABn = A AV A AW EAN B, ..., Bm € G}
where G is the consequent set of Ay U A..

With this notion of a reduced equivalent set, it is easy to identify one set of conse-
quences of a general conjunctive default base.

Theorem 7 Given a general conjunctive default base A, ~p will generate all simple
consequences of the reduced equivalent of A.

Proof: Immediate by applying Lemma 4. O

We call these the conservative consequences of A, so named because they are only
a subset of the full set of consequences. However, in establishing this set of conse-
quences, we have characterised a significant portion of the consequences of general
conjunctive default bases in a way which makes it easy to determine if a particular
consequence is one of the number. For a given formula ~ and general conjunctive
default base A, we can answer the question “is v a conservative consequence of A?”
by inspection.

We can view the results we have obtained as forming a sequence of consonant
sets of consequences. Consider a general conjunctive default base A. Theorem 5
identifies all the consequences of the simple subset of A which can be obtained
using the rules And and CM, the two rules which allow arbitrary conjunctions to
be established on either side of the turnstile. These are the simple consequences
of A. Theorem 6 makes it possible to draw conclusions from a larger subset of
A, namely the union of the simple subset and the set of conjunctive consequent
defaults, again using the rules And and CM, along with RW. This set of conse-
quences, the simple equivalent consequences, includes all the simple consequences.
Finally, Theorem 7 makes it possible to use every default in A, obtaining the set of
conservative consequences, which includes all the simple equivalent consequences.

Theorems 5, 6 and 7 complement Theorem 4. The latter says that anything
provable will eventually be proved. It therefore defines what is provable from above,
placing a limit on the set of consequences which can be proved without giving an
indication of what they are. The former are a first step towards defining what is
provable from below. Given a default base these results tell us what can be proved.
However, they do not identify every possible consequence, since other consequences
can be determined by the application of other proof rules. For example we have:

Theorem 8 Given a general conjunctive default base A = J,{a A B; = I'i} with
base antecedent c, the consequence relation |~p will generate all p-consequences:

A,a l'vP (‘I),E)
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where ® = \; ¢;,
NGB VT F g
i

and

EZEEZ'
i

Proof: For every a AB; =, I'; we can apply Ax, S and RW to get A, a |~p (—B; V
[i,e). Applying And to all of these gives

Aapop (/\(_‘Bi v IY), Zei)

i i

and since applying RW to this latter does not change the value of €, the result
follows. O

The value of € here is clearly an upper bound, giving a lower bound on the value
of the conditional probability of the resulting p-consequences. A tighter bound
could be obtained by “And”ing only those defaults which are actually used in the
derivation of the ;. This raises the issue of what we should conclude if we obtain
several p-consequences of the form:

A, (0% l~p (@, ei)
with different strengths €;. What these mean, of course is that:
Pr(®|a)>1—¢

for various €;. These results are entirely consistent, and we are justified in picking
whichever €; we wish. Typically we will choose the smallest, since this gives us the
highest value of Pr(® | ).

It should also be noted that Theorem 8 identifies a much larger set of potential
consequences than the conservative consequences. However, to establish these it is
necessary to invoke a standard propositional theorem prover.

5.3. More than one default base

All the results presented so far hold for sets of defaults with a single proposition
« on the antecedent side. Clearly we can replace o with an arbitrary conjunction of
propositions, recovering analogous results after the necessary changes in definition
of terms such as “simple default”—in the interests of space we will not consider
this extension in detail. Instead, taking the idea of having a conjunction as an
antecedent somewhat further, one might imagine that there are more consequences
that might be inferred from defaults with antecedents with several propositions in
common, for instance:

alpf = v
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and
aNd =, '

However, if « is a single proposition, we have already analysed the situation since
these two defaults are part of a general conjunctive default base with base antecedent
a. If a is a conjunction, then this case is part of the simple extension already
discussed. Thus there are no particularly interesting results that may be obtained
here.

Another case that seems worth investigating is when we have more than one
default base. Such a situation arises when we can partition a set of defaults into
two or more subsets where every default in each subset has at least one antecedent
proposition in common (the base antecedent of that subset), but there are no com-
mon antecedent propositions between defaults in different subsets. An example of
such a situation is when we have:

A= U {a/\Bi =6 Fi}

i=1,...,n

and
A'= |J {BABj=4 T}

j=1,....n

where B; and B; are the associated sets of B; and Bj respectively, and
U B;n U Bj =0
g J

However, this is a situation when the very conservative nature of System P works
against us. The only rule of SP which makes it possible to combine two p-
consequences with such antecedents is Or. Or only applies to two defaults which
have the same formula on the right of the turnstile. In other words, it only applies
directly if I'; and I'; are identical. However, thanks to RW, we can convert any-
thing on the right hand side to any of its logical consequences, so we can apply Or
indirectly provided that either I'; — I'; or I'; — I';. Thus, given:

a=e B
Y =e, 0

provided that:
BES

we can apply Ax to both defaults and then RW to the first to obtain:

Ao bop (8,61)
A7 b (9, €2)

and then use Or to infer:
A,aVypp (6,6 +€2)
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However, Or on its own does not modify the right hand side of the turnstile, and
so does not make it possible to establish any new p-consequences—in this example

we could already obtain:
Ao p (6,€)

using just the first default. What Or does is to make it possible to alter the states
that existing p-consequences are conditional on, and since this is somewhat outside
our interest we will say no more about it here.

In fact, the only way to draw substantial conclusions from several default bases
is to turn them into a single default base. This is possible using a combination of
the rules S and LLE. Given any default

a = Y
we can use Ax and LLE to obtain:
A,aAT pp(7,6)
which is not much use on its own, but allows us to apply S to get:
AT bp(a— v, €e)

Applying this transformation to several defaults from different default bases gives
us a new default base with base antecedent T. Clearly we can then establish similar
results to those obtained above for defaults with base antecedent «, but writing T
in place of o on the left of the turnstile, and a A B; in place of B; on the right. We
can summarise everything which can be inferred using this particular combination
of proof rules in the same way as is possible in Theorem 8:

Theorem 9 Given a general conjunctive default base A = J,{a A B; =, I'i} with
base antecedent «, the consequence relation |~p will generate all p-consequences:

AT op (D,€)

where ® = A\ ¢;,
/\("OJ VvV aB; Vv Fi) = ©j
i

and

(-Z:E €;
i

Proof: For every a A B; =, Iy we can apply Ax, LLE, S and RW to get
A, T pop (A(a ABj) VT, 6). Applying And to all of these gives

Ayabp (\(~(@nB) V)Y e)

i i
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i) AP linda |~p (steve, 0.1) Az, 4
ii) AP linda p (great, 0.01) Ax,2
jii) APV linda A steve p (great, 0.011) CM, (i), (ii)

AP linda A steve p (—noisy, 0.05) Az,5
v) APV linda A steve p (great A —noisy, 0.061) And, (iii), (v)

~
<
~

e
~

Fig. 6. The proof of a conservative consequence about Linda

and since applying RW to this latter does not change the e-value, the result follows.
O

All of the results obtained in this section can be considered to be completeness
results for SP in the sense that they identify all the possible consequences which
fall into the particular classes given. In combination with the soundness result of
Theorem 2 and 3 they give the usual guarantees for a particular set of consequences.

5.4. Future work

One way of looking at the results presented in this section is as a set of partial
classifications of the kinds of consequences which can be derived from a set of
defaults. Another way of considering them is as a set of results for transforming a
set of defaults in a way which does not change their p-consequences. In this sense, we
can consider Definition 18 as a way of transforming a conjunctive consequent default
base into its simple equivalent without changing the set of simple consequences
which can be derived from it (though, as mentioned above, the e-values will in
general be different).

The fact that this kind of transformation is possible suggests that it may be pos-
sible to identify additional transformations which are distinguished in some way (the
transformation to a simple equivalent being distinguished by the fact that it is made
up entirely of simple defaults). Two such distinguished transformations spring to
mind. One is that which guarantees the lowest e-values for all the p-consequences—
this would clearly be useful since it would guarantee the strongest consequences
(equally clearly it won’t be the transformation which gives the simple equivalent).
The second is that which gives the shortest proofs (in the sense of requiring the
fewest applications of the proof rules of SP) for the set of p-consequences. One
interesting direction for future work in this area is the identification of such distin-
guished transformations.

6. An example

We now illustrate the use of SP on the following, inspired by examples given by
Kraus et al.’.

Brian and Linda are two happy-go-lucky people who are normally the
life and soul of any party (so if either go to a party it will normally be
great). Until recently Brian and Linda were married, but then Linda



On proofs in System P 25

ran off with a mime artist, Steve. As a result, if both Brian and Linda
go to the same party they will probably have a screaming row and ruin
it (so it will not be great and it will be noisy).

If Linda goes to a party she will probably take her new boyfriend Steve
and get him to entertain the guests with his marvellous miming. Thus
if Linda goes to a party, Steve will probably go to the same party and
if Linda and Steve go to a party together it will normally not be noisy
because everyone will be watching his miming. Normally parties that
are great are noisy, and those that are not noisy are not great.

We represent this by the following default base AP . It should be understood
that we are trying to ascertain the likelihood of any given party having various
attributes (brian is present, it is noisy, and so on).

brian =901 great

linda =¢.01 great

brian A linda =¢.15 —great A noisy

linda =o.1 steve

linda N steve =g g5 —noisy

great =¢.1 noisy

N oA e

Noisy =o.1 —great

As an example of the generation of a conservative consequence, consider the proof
of Figure 6. As this proof demonstrates, we can conclude that if both Linda and
Steve go to the party, then the probability that it will be both great and not noisy
is greater than 0.939 (1 minus the strength of the p-consequence linda A steve).

If we combine defaults from the different conjunctive default bases in A, we can
obtain additional conclusions. For example, consider Figure 7 which gives a proof
for the p-consequence linda conditional on T. This tells us that the probability
of Linda going to any particular party is at most 0.26. This last example neatly
illustrates two points.

The first is a property of System P. We have shown that the probability of Linda
going to any particular party is quite low. It certainly isn’t likely enough to be a
default conclusion. However, if we know that Linda does go to a party—a fact which
makes the party somewhat abnormal—then we can draw conclusions which are very
likely for such abnormal parties (they are very likely to be great, for instance). The
second point is to do with the form of the proof. As stated above, the proof of
the p-consequence —linda involves the use of defaults from different conjunctive
default bases (in particular that with base antecedent linda and the single default
with base antecedent —noisy). This is possible through the use of LLE and S to
obtain p-consequences conditional on T which may then be combined using And.
As mentioned above, this is an important mechanism for combining defaults from
different default bases.
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(7) AP linda A steve pop (—noisy, 0.05) Az, 4

(ii) AP linda |~p (steve, 0.1) Az,

(iii) APV linda |~p (—noisy, 0.15) Cut, (i), (i)

(iv) AP linda |~p (great, 0.01) Ax,2

(v) AP linda op (great A —noisy, 0.16) And, (ii1), (iv)

(vi) APV T Alinda ~p (great A —noisy, 0.16) LLE, (v)

(vii) APV T |p (wlinda V (great A —noisy), 0.16) S, (vi)

(viii) AP —noisy p (—great, 0.1) Az, 7

(iz) AP T A =noisy |~p (mgreat, 0.1) LLE(viii)

(x) AP T |op (=great V noisy, 0.1) S, (ix)

(wi) AP T |vp ((mgreat V noisy) And, (vii), (x)
A (mlinda V (great A —noisy)), 0.26)

(zii) AP T |op (nlinda, 0.26) RW, (zi)

Fig. 7. The proof of a non-conservative consequence concerning Linda

The above treatment of the example is an illustration of applying the proof rules
of SP directly. We can also consider the example from the perspective of the sets
of simple, simple equivalent, and reduced equivalent consequences of AP*%. To
do this, we first identify the fact that the database contains four separate simple
default bases. These are:

linda =¢.01 great
linda =o.1 steve
ARSI great =1 noisy AP —noisy =01 ~great

party . party . ;
Asl Y. AS2 Y. brian =901 great

Of these only Agla”y has any interesting p-consequences beyond its consequent dual.
Building the simple consequences of this set of defaults, and ignoring the conse-
quence duals of the original defaults, and those p-consequences which have the
same proposition on both sides of the turnstile, we get, by Theorem 5:

AP linda op (steve A great,0.11)

AP Tinda A steve |~p (great,0.011)

AP linda A great p~p (steve, 0.101)
We can also explore the consequences of more complex defaults in AP?"%_ There
are no conjunctive consequence defaults, so we will look at the general conjunctive
default bases in AP% . Of these, again the most interesting is that with base
antecedent linda. This is:

linda =>.01 great

linda =-o.1 steve

linda N steve =g g5 —noisy

which has the reduced equivalent:
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linda =9.01 great
linda =.1 steve

linda =¢.05 —noisy

Once again we can easily generate a set of simple consequences from this, part of the
set of conservative consequences of AP Ignoring, once again, consequence duals
and p-consequences in which the same proposition appears on both sides of the
turnstile, along with the simple consequences of A?{" | we can obtain the following

conservative consequences:

AP linda |~p (steve A great A —noisy,0.16)
AP linda p (steve A ~noisy,0.15)

AP linda pop (great A —moisy, 0.16)

AP Tinda A steve |~p (great A —noisy,0.06)
AP linda A great pp (steve A —moisy,0.152)

As with the simple consequences of A”#" we can simply write these down without
the need to use SP directly.

7. Related work

There are four main areas of closely related work. The first is the large body
of work on System P as a mechanism for default reasoning. Most of this work
has involved extending System P in various ways. The problem that all this work
addresses is the fact that System P is too weak. The consequences it sanctions are
correct, and are widely accepted as the minimum that any interesting nonmono-
tonic reasoning system should generate, but they are too conservative since they
are guaranteed not to be false in the light of any subsequent information. Thus
System P doesn’t really provide nonmonotonic reasoning—it doesn’t draw conclu-
sions which are later withdrawn. In probability terms, what System P does is to
look at all the constraints, embodied in the default assertions, on the probabilities
of all the propositions in the database it is invoked on, and then identify the family
of probability distributions which satisfy the constraints. It then sanctions any in-
ference which represents an additional constraint that holds in every distribution.
The various approaches to extending System P have looked for ways to choose a
preferred distribution—they then sanction any assertion which satisfies that dis-
tribution. System Z°, and equivalently rational closure!?, do this in a way which
corresponds to adding the following proof rule, the rule of rational monotonicity, to
System P:

ale, alfl-b
alhbpc

Another approach to choosing the preferred distribution is to use the principle of
maximum entropy, as initially suggested by Goldszmidt'! and later extended by
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Bourne!?. More discussion of this line of work may be found elsewhere!?, but
it should be clear from the above that this work has a rather different emphasis
from that of this paper, being concerned with extending System P rather than
working within in, and not being greatly concerned with either the strength of the
conclusions or their proof.

The second main piece of related work is Bacchus’'* inheritance reasoner. Bac-
chus’ system allows two kinds of relation between formulae, = and — which dis-
tinguish between strict and statistical set inclusion. Thus o = 3 denotes the fact
that all as are 8s while 8 — ~ denotes the fact that “most” (s are ys. The latter
is true provided that more than half of all 8s are also 7s, in other words if the set
of all individuals with both property £ and property = is at least half as large as
the set with property . These two relations, along with negation, are sufficient to
capture a range of attractive properties for reasoning about inheritance.

Comparing Bacchus’ system to SP, there are two obvious remarks. The first
is that SP is more expressive since Bacchus’ system does not include conjunction
or disjunction. The second is that SP is directly concerned with the bounds on
the assertions which are derived, while Bacchus is only concerned with deriving
whether “most” of a class of individuals have some property. The aim of his work
is thus closer to System P where the value of the bounds is not an issue (though it
is arguably more realistic not to depend on infinitesimal values as System P does).

It is also possible to compare the systems in more detail—though a full explo-
ration of the differences and similarities would probably require a further paper—
looking at the various properties of Bacchus’ system and identifying whether they
hold in SP. The main properties of interest are those relating to deduction (cap-
tured in Bacchus’ Theorem 4.1), those relating to resolving clashes between conclu-
sions (captured in “subset preference” and “certainty preference”) and the fact that
inheritance is only sanctioned over one — link. The deductive properties hold in
SP, as does the failure to chain over “most” links (assuming a translation between
Bacchus’ o — 3 and a p )} The natural way to resolve clashes in SP is to look at
the e-values, allowing: A, a |~p (7, €1) to be preferred to: A, a |~p (-, €2) provided
that €1 < ez (since the relevant probability is one minus the e-value). Doing this
ensures that certainty preference holds, but subset preference does not—that is we
can resolve clashes between properties which are inherited from a class and those
inherited from a superclass, but not necessarily in a way that respects specificity.
This, of course, is a well-known limitation of System P!3. Overall, then, while the
two systems have some properties in common, neither captures the other.

The third piece of closely related work is that of Gilio'®, who has followed the
approach adopted in the first part of this paper but using de Finetti’s approach!%:17
to compute the bounds on the derived assertions. This approach makes it possible
to derive the probably tightest bounds on the e-values, and doing this allows Gilio

§ This chaining property is investigated by Kraus et al.5 and found not to hold for System P for
much the same reason as it fails to hold for Bacchus’ system.
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to improve on our results for Cut and Or. The resulting rules are, respectively:

alf l’vﬂ 7, & |N€2/8

@ |N61+€2*€1€2 Y

and
a |Ne1 iz B |~€2 Y

aV B |N c1tea—2eren Y

T—cien

It should be noted that the difference between the e-values obtained using the
improved bounds and those obtained using our bounds are small. For example,
Gilio obtains an e-value of 0.145 for the assertion Linda |~ —noisy as opposed to
the 0.15 we obtain.

Finally, Snow '®!% and Benferhat et al. 2° have investigated probabilistic se-
mantics for System P which do not rely upon infinitesimal values. This work is
clearly related to both our approach and Gilio’s. However, it is more in line with
the work on extensions to System P discussed above because it is not concerned
with the actual probabilities of the assertions or their consequences. All Snow and
Benferhat et al. are interested in is the fact that it is possible to construct suit-
able non-infinitesimal probability distributions which satisfy System P, they aren’t
particularly interested in the actual probabilities.

8. Conclusion

This paper has three main results. The first of these is to have shown that given
the assumption that conditional assertions may be treated as conditional probabil-
ities with lower bounds, we can obtain lower bounds for the derived consequences.
The second main result is to have given a proof mechanism for obtaining these con-
sequences, and to have explored its properties. Thus if we know the lower bounds
on the conditional probabilities of a set of input assertions, we can identify which
consequences may be derived, and establish the lower bounds on the conditional
probabilities of these consequences. Moreover the lower bounds are given by simple
functions of the initial bounds calculated for each proof step in System P. The third
main result is to have identified three sets of consequences of a set of defaults—
the simple consequences, the simple equivalent consequences, and the conservative
consequences—in a way which enables them to be easily enumerated. Further sets
of consequences can be obtained at the cost of some conventional theorem proving.

The advantages of these results are as follows. First they allow us to use real
rather than infinitesimal probabilities since by keeping track of the bounds we can
tell which consequences are justified—clearly any consequence with a low lower
bound might be considered suspect. The second advantage is that only a lower
bound conditional probability is required for each default rule rather than a point
probability, and this may mean that the numerical values necessary for this approach
are easier to assess than those necessary for approaches which use point values.
Clearly we still require these values to be high or the results obtained will be useless
since derived conditionals will only be known to have an associated conditional
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probability that is greater than some small value. The third advantage is that
a subset of the full set of consequences of a given set of conditional assertions is
immediately identifiable, without the need for any theorem proving. This makes
it possible to both enumerate all such consequences, and to quickly establish if a
particular consequence is a member of this subset

Of course there are disadvantages to the use of our approach, and perhaps the
worst of these stems from System P itself and our use of its proof rules. As men-
tioned above, System P is accepted as being a sceptical reasoning mechanism, that
is, only conservative (and completely sound) conclusions can be obtained. This is
insufficient for most purposes since we will often want to draw more tenuous conclu-
sions. The fact that we use the rules of System P directly prevent us extending our
approach to cover some of the specialisations of System P that have been suggested
since these specialisations do not have explicit proof rules.

Finally, it is worth noting that because the initial set of lower bounded condi-
tional probabilities are propagated through the proof, the output is a set of proba-
bility statements similar to:

PraA-B|yAd)>1—¢

If the propositions v and J are pieces of evidence (in other words things which
are known to have occurred), this output information is sufficient to establish the
probability of the state a A =8. Thus the output of SP can be used, along with
information on the utility of a A =3 as the basis of some decision making process,
and this is the direction that our research on the topic of this paper is taking us
now. This connection to decision theory also explains our focus on conjunctions and
the fact that we have not made much use of the proof rule Or—in decision making
we are not usually interested in probability statements like:

PraA—-f|yVi)>1—c¢
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