
International Journal of Un
ertainty, Fuzziness and Knowledge-Based SystemsVol. 00, No. 00 (0000) 000|000f
 World S
ienti�
 Publishing Company
ON PROOFS IN SYSTEM PSIMON PARSONSy and RACHEL A. BOURNEDepartment of Ele
troni
 Engineering,Queen Mary and West�eld College, University of London,London, E1 4NS, United Kingdom.fS.D.Parsons, R.A.Bourneg�ele
.qmw.a
.ukRe
eived (September 1999)Revised (January 2000)This paper investigates how the rules of System P might be used in order to 
onstru
tproofs for default 
onsequen
es whi
h take into a

ount the bounds on the probabilitiesof the 
onsequents of the defaults. Using a knowledge base of default rules whi
h are
onsidered to be 
onstraints on a probability distribution, the result of applying therules of P gives us new 
onstraints that were impli
it in the knowledge base and theirasso
iated lower bounds. The paper de�nes a proof system for su
h 
onstraints, showsthat it is sound, and then dis
usses at length the 
ompleteness of the system and thekind of proofs that it 
an generate.Keywords: System P; Qualitative probability; Proof theory.1. Introdu
tionDefault reasoning has been widely studied in arti�
ial intelligen
e, and a numberof formalisms have been proposed as a means of 
apturing su
h reasoning1, mostprominent among whi
h are default logi
2 and 
ir
ums
ription3. Many of these sys-tems, in
luding default logi
 and 
ir
ums
ription, have proposed parti
ular me
h-anisms for default reasoning, and might therefore be 
onsidered quite spe
ialised.However, there has also been work on more general approa
hes whi
h attempt toanalyse in broader terms what default reasoning involves. An early attempt to dothis was Shoham's4 proposal that all non-monotoni
 systems 
ould be 
hara
terisedin terms of the preferen
e order over their models. A more proof-theoreti
 strandof this resear
h has investigated the formalisation of the underlying requirementsfor any non-monotoni
 
onsequen
e relation. Perhaps the most in
uential pie
e ofwork within this area is that of Kraus et al.5.Kraus et al. investigated the properties of di�erent sets of Gentzen-style proofrules for non-monotoni
 
onsequen
e relations, and related these sets of rules to themodel-theoreti
 properties of the asso
iated logi
s. Their major result was that ayCurrent address: Department of Computer S
ien
e, University of Liverpool, Chadwi
k Building,Pea
h Street, Liverpool L69 7ZF, United Kingdom, S.D.Parsons�
s
.liv.a
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On proofs in System P 2parti
ular set of proof rules had the same model-theoreti
 properties that Shohamhad identi�ed for logi
s in whi
h there is a preferen
e order over models. Thissystem of proof rules was termed System P by Kraus et al., the P standing for\preferential". System P has been the subje
t of mu
h resear
h, and is now widelya

epted as the weakest interesting non-monotoni
 system; it san
tions the smallesta

eptable set of 
on
lusions from a set of default statements.The reason that we are interested in the rules of System P is that, in addition toa semanti
s in terms of a preferen
e order over models, they also have a probabilisti
semanti
s. In parti
ular, Pearl6, following work by Adams7, showed that a semanti
sbased on in�nitesimal probabilities satis�es the rules of System P. While the use ofin�nitesimal probabilities is theoreti
ally interesting, it la
ks something in pra
ti
alterms. If we are to use System P to reason about the real world we will haveto write defaults whi
h summarise our knowledge about it, and we may well beunhappy making statements whose validity depends upon in�nitesimal values. Toover
ome this diÆ
ulty, we suggest using real probabilities along with the rules ofSystem P, giving ea
h default statement a lower bounded probability, and showingthat proofs in the System P 
an be used to propagate these bounds to �nd outsomething 
on
rete about the probability of the derived results.This paper is organised as follows. Se
tion 2 sets the ba
kground to the paperby dis
ussing the notion of entailment in System P. Then, Se
tion 3 brings up theproblem of using real �-values, and shows how they a�e
t the 
on
lusions drawn bySystem P. At this point, in Se
tion 4, we introdu
e our system SP , whi
h 
apturesone possible proof theory for System P, we show that it is sound and 
omplete, andin Se
tion 5 detail the kinds of 
on
lusions whi
h 
an be drawn by SP . Se
tion 6then gives some examples of the use of SP , Se
tion 7 dis
usses related work, andSe
tion 8 
on
ludes.2. Entailment in System PThe rules of inferen
e for the System P (see Figure 1) may be applied to aknowledge base made up of 
onditional assertions of the form � j��. In this 
ontext� and � are well-formed formulae of 
lassi
al propositional logi
, and j� is a binaryrelation between pairs of formulae. The 
onne
tives ^, _, ! and $ have theirusual meanings. The inferen
e rules are written in the usual Gentzen style, withante
edents above the line and 
onsequents below it. Thus the rule And says thatif it is possible to derive � j�� and it is possible to derive � j� 
, then it is possibleto derive � j��^
. The inferen
e rules 
an thus be viewed as a means of obtainingnew 
on
lusions from 
urrent knowledge; from an initial set of 
onditional assertions,further 
onditional assertions may be obtained by applying the rules.Two things should be noted about the set of rules in Figure 1. Firstly, they onlytell us how to derive new 
onditional assertions. If we wish to know whether weare justi�ed in inferring a new fa
t, say 
, given that we 
urrently know some otherfa
t, say �, and this is all we know, it is ne
essary to determine whether � j� 
 isderivable from our knowledge base of 
onditional assertions. Se
ondly, the proof



On proofs in System P 3� j�� Re
exivityj= �$ �; � j� 
� j� 
 Left Logi
al Equivalen
ej= � ! 
; � j��� j� 
 Right Weakening� j��; � j� 
� j�� ^ 
 And� j��; � j� 
� ^ � j� 
 Cautious Monotoni
ity� j� 
; � j� 
� _ � j� 
 OrFig. 1. Rules of System Prules in Figure 1 form a minimal set suÆ
ient to 
hara
terise System P. Other rulesmay be derived from them in mu
h the same way that new 
onditional assertions arederived. Two su
h rules are given in Figure 2|Cut whi
h allows the eliminationof a 
onjun
t from the ante
edent side, and S whi
h allows the derivation of amaterial impli
ation. Both of these (as we shall see later in the paper) may bederived dire
tly by the appli
ation of the basi
 rules.The semanti
s for System P introdu
ed by Adams makes the assumption that thepropositional variables are the basis of an unspe
i�ed joint probability distributionwhi
h is 
onstrained by the 
onditional assertions. These 
onditionals are takento represent 
onditional probabilities of the 
onsequent given the ante
edent beinggreater than or equal to 1� � for any � > 0, that is:De�nition 1 The 
onditional assertion � j� � denotes the fa
t that Pr(�j�) � 1��for all � > 0.Given this interpretation, we 
an de�ne the notion of the probabilisti
 
onsisten
yof a set of these 
onditional assertions7:De�nition 2 A set of 
onditional assertions � is p-
onsistent if there is at leastone probability distribution whi
h satis�es the 
onstraints imposed by the 
onditionalassertions in �.Probabilisti
 entailment of a further 
onditional is then de�ned as probabilisti
in
onsisten
y of its 
ounterpart, that is:De�nition 3 � j� � is p-entailed by � i� � [ f� j� :�g is not p-
onsistent.



On proofs in System P 4� ^ � j� 
; � j��� j� 
 Cut� ^ � j� 
� j�� ! 
 SFig. 2. Two derived rules of System PThis implies that all probability distributions that satisfy � also satisfy � j��.However this result may only be a
hieved by using in�nitesimal analysis so that thederived 
onditional will be 
onstrained to be greater than 1 � Æ for any Æ > 0 ifthe � of the original 
onditionals is made small enough. This 
an be paraphrasedas saying that System P allows us to make our 
on
lusions as 
lose to 
ertaintyas we like, provided the 
onditional probabilities asso
iated with the 
onditionalassertions are suÆ
iently 
lose to 
ertainty. In the literature this is used to justifythe 
on
lusions drawn using System P; if we are sure of the 
onditional assertions,and so are willing to give them high 
onditional probabilities, then the 
onditionalassertions derived from them will also have high probabilities.However, using this interpretation of the rules means assuming that we are ableto give the 
onditional assertions arbitrarily high 
onditional probabilities. This is�ne in the 
ase that the assertions are pie
es of default knowledge whi
h are feltto hold almost all of the time. However, with less reliable information, for whi
h� is not in�nitesimal, it seems less justi�able to a

ept the in�nitesimal analysis.In parti
ular, if a set of 
onditional assertions are used to derive new assertionsand these new assertions are themselves used as the basis for new dedu
tions, thenit seems likely that some � values will be far from in�nitesimal. Be
ause of this
on
ern, the next se
tion investigates the impa
t of non-in�nitesimal � values by
onsidering what happens to values of � and Æ when the rules of P are applied.The result is twofold. First it is possible to tra
k the e�e
t of non-in�nitesimalvalues, and se
ond it be
omes possible to identify bounds on the a
tual 
onditionalprobability of derived assertions.3. Using real �-valuesWe asso
iate with ea
h 
onditional assertion an �-value whi
h represents, for� j��, an upper bound on the 
onditional probability Pr(:�j�). We demonstratehow using these values for ea
h original 
onditional, we 
an generate Æ values for theoutput 
on
lusions. This enables us to 
al
ulate the lower bound on the probabilityof a 
on
lusion based on the proof steps used to derive it. We 
onsider �rst the sixbasi
 rules of System P, and then use the results obtained for those rules to obtainresults for S and Cut.Re
exivity: A re
exive 
onditional assertion may be introdu
ed at any stage ina proof, and, sin
e Pr(�j�) = 1 for all formulae �, any su
h 
onditional will have



On proofs in System P 5an �-value of zero.Left Logi
al Equivalen
e: This rule means that we may take any 
onditionalassertion and repla
e its ante
edent with a logi
ally equivalent expression. Clearly,the derived 
onditional will have the same �-value as the original one.Right Weakening: Right Weakening involves repla
ing the 
onsequent of a
onditional with any expression 
lassi
ally derivable from it. Now, � ! 
 meansthe models of � are a subset of the models of 
 and hen
e:Pr(
; �) � Pr(�; �)Now, sin
e: Pr(
j�) = Pr(
; �)Pr(�)Pr(�j�) = Pr(�; �)Pr(�)it follows that: Pr(
j�) � Pr(�j�) (1)and therefore the �-value of a rule obtained by Right Weakening will not be largerthan the �-value of the rule from whi
h it was obtained. Sin
e we are dealing withlower bounds, we may use the same value for the derived rule.We now turn to the three basi
 rules of P whi
h generate new 
onditionals from twoknown ones. Given we know the �-values for the two known rules we obtain simpleexpressions whi
h are fun
tions of these for the derived 
onditional.Cautious Monotoni
ity: The rule is as follows:� j��; � j� 
� ^ � j� 
hen
e we are interested in the value of Pr(
j�; �). Now:Pr(
j�) = Pr(
j�; �) Pr(�j�) + Pr(
j�;:�) Pr(:�j�) (2)Substituting 1� Pr(�j�) for Pr(:�j�) and rearranging, we obtain:Pr(
j�; �) = Pr(
j�)� (1� Pr(�j�)) Pr(
j�;:�)Pr(�j�) (3)We are required to minimize this expression subje
t to the 
onstraints:1� �1 � Pr(�j�) � 11� �2 � Pr(
j�) � 10 � Pr(
j�;:�) � 1



On proofs in System P 6Equation (3) is linear in Pr(
j�) and Pr(
j�;:�) and will therefore attain its min-imum when Pr(
j�) is minimum and Pr(
j�;:�) is maximum. This gives us:Pr(
j�; �) � (1� �1)� (1� Pr(�j�))Pr(�j�)� 1� �1Pr(�j�)whi
h will be minimum when Pr(�j�) is minimum. This gives us an �-value for thederived rule � ^ � j� 
 of: �21� �1And: This time the rule is: � j��; � j� 
� j�� ^ 
So we are interested in Pr(�; 
j�). Consider:Pr(�; 
j�) = Pr(�; �; 
)Pr(�)= Pr(�; �; 
) Pr(�; �)Pr(�; �) Pr(�)= Pr(
j�; �) Pr(�j�) (4)We are required to minimize this expression subje
t to the 
onstraints:1� �1 � Pr(�j�) � 11� �2 � Pr(
j�) � 1and in the previous 
ase we saw that these 
onstraints imply that:1� �21� �1 � Pr(
j�; �) � 1Equation (4) will be minimum when both fa
tors in the produ
t on the right-handside are, so that Pr(�; 
j�) � �1� �21� �1� (1� �1)= 1� (�1 + �2) (5)whi
h, as we would expe
t, is symmetri
al in �1 and �2. This gives us an �-value forthe derived rule � j�� ^ 
 of �1 + �2.Or: Here the rule is: � j� 
; � j� 
� _ � j� 




On proofs in System P 70 � Pr(�) � 10 � Pr(�) � 1Pr(�)(1 � �1) � Pr(� ^ 
) � Pr(�)Pr(�)(1� �2) � Pr(� ^ 
) � Pr(�)maxf0;Pr(�) + Pr(�)� 1g � Pr(� ^ �)minfPr(�);Pr(�)g � Pr(� ^ �)maxf0;Pr(� ^ 
) + Pr(� ^ 
)� Pr(� ^ �)g � Pr(� ^ � ^ 
)minfPr(� ^ 
);Pr(� ^ 
);Pr(� ^ �)g � Pr(� ^ � ^ 
)Fig. 3. The 
onstraints for Or.and we are interested in the value of Pr(
j�_�). Let Pr(:
j�) = �1 and Pr(:
j�) =�2 and 
onsider the following:Pr(:
j� _ �) = Pr(� ^ :
) + Pr(� ^ :
)� Pr(� ^ � ^ :
)Pr(�) + Pr(�)� Pr(� ^ �)= Pr(�) Pr(:
j�) + Pr(�) Pr(:
j�)� Pr(� ^ � ^ :
)Pr(�) + Pr(�) � Pr(� ^ �)= �1 Pr(�) + �2Pr(�) � Pr(� ^ � ^ :
)Pr(�) + Pr(�) � Pr(� ^ �) (6)To �nd the maximum value of this expression, we note that Pr(�);Pr(�) � Pr(�_�)and we ignore the last term of the numerator sin
e it is negative and 
ould be zero.Maximizing this subje
t to the 
onstraints in Figure 3 gives usPr(:
j� _ �) � �1 + �2as an upper bound. This gives us an �-value for the derived assertion of �1 + �2.For 
ompleteness sake, we examine the derived rules Cut and S sin
e they are themost useful rules when proving things. To make the presentation 
learer, we writea 
onditional with �-value of �1 as j��1.S: For S we need to derive � j��new � ! 
 and the value of �new from � ^ � j��1 
just using the basi
 rules. This 
an be done as follows. First apply Right Weakeningto � ^ � j��1 
 to get: � ^ � j��1 
; j= 
 ! (� ! 
)� ^ � j��1 � ! 
 (7)We then apply Re
exivity followed by Right Weakening (twi
e) to � ^ :� to get:� ^ :� j�0 � ^ :�; j= :� ! (� ! 
)� ^ :� j�0 � ! 
 (8)Then we 
ombine (7) and (8) using Or and apply Left Logi
al Equivalen
e to get:� ^ � j��1 � ! 
; � ^ :� j�0 � ! 
� j��1 � ! 




On proofs in System P 8� j�0 � Re
exivityj= �$ �; � j��1 
� j��1 
 Left Logi
al Equivalen
ej= � ! 
; � j��1 �� j��1 
 Right Weakening� j��1 �; � j��2 
� j��1+�2 � ^ 
 And� j��1 �; � j��2 
� ^ � j� �21��1 
 Cautious Monotoni
ity� j��1 
; � j��2 
� _ � j��1+�2 
 Or� ^ � j��1 
; � j��2 �� j��1+�2 
 Cut� ^ � j��1 
� j��1 � ! 
 SFig. 4. The extended rules of System P.The 
onsequent of this last derivation is the 
onsequent of S, and 
omparing thiswith the ante
edent, we 
an see that applying S has no e�e
t on the �-value; thevalue for the derived 
onditional assertion is the same as for the original assertion.Cut: For Cut, we need to dis
over how � j��new 
 may be derived from �^� j��1 
and � j��2 �. This turns out to be easy given the result for S. S tells us that the�-value of � j�� ! 
 is the same as that of �^� j� 
, so we have � j��1 � ! 
 andapplying And to � j��1 � ! 
 and � j��2 �, followed by Right Weakening gives:� j��1 � ! 
; � j��2 �� j��1+�2 
Cut is thus proved, and the �-value for its 
onsequent established. We will referto this set of rules, the basi
 rules of System P plus Cut and S, augmented withdetails of how the �-values of the 
onditional assertions are propagated, as theextended rules of System P. The extended rules are summarised in Figure 4. Fromthe previous dis
ussion we 
an state the following theorem:Theorem 1 The extended rules of System P are sound with respe
t to probabilitytheory.In obtaining these results, we have shown that using ea
h of the rules of P, and hen
e



On proofs in System P 9any derived rules, we 
an obtain lower bounds on the 
onditional probability of the
on
lusion given those of the ante
edents. Figure 4 shows the basi
 rules plus Sand Cut annotated with lower probability bounds on ante
edents and 
onsequents.It is 
lear that these lower bounds never improve. Using rules And and Or, orrules derived from these, means adding the �-values so that after only a few proofsteps our 
on
lusions may attain high �-values. A high �-value means that the lowerbound on the asso
iated 
onditional probability is low and if this be
omes too lowthen we don't have mu
h information about the probability sin
e the upper boundis always 1. Clearly, therefore, our input values must either be extremely small,or our proofs short, in order to obtain useful results. However, as our example inSe
tion 7 shows, these 
onditions 
an be met without too mu
h imagination.Another point worth noting at this jun
ture is the fa
t that the following tworules are not in
luded, although they might be expe
ted to follow for systems witha probabilisti
 semanti
s: � j�� �� j��0 :�and � j�� �:� j��00 :�The ante
edent �rst of these implies:Pr(� j �) � 1� �whi
h is only suÆ
ient to set an upper bound on the 
onditional probability of the
onsequent: Pr(:� j �) � �so no useful value for �0 
an be determined|the value we 
an determine 
annot beused in further inferen
es be
ause it is a upper, not an lower, bound. A similarthing o

urs with the se
ond rule. To �nd �00 it is ne
essary to �nd the value of:Pr(:� j :�) = 1� Pr(� j :�)= Pr(:� j �) Pr(�)Pr(:�)whi
h, while it 
an be related to Pr(� j �), and hen
e to �, does not have a usefullower bound.While the work des
ribed so far has solved the problem of determining theimpa
t of the non-in�nitesimal values, it falls short of providing a pra
ti
al reasoningsystem. The problem is that although in System P we 
an tell whether or not � j��follows from the initial set of defaults, the pro
edures for determining this do notpermit the propagation of the �-values. Thus we 
an tell if � j�� follows, and so we
an �nd out if a proof exists, but we 
an't determine the asso
iated �-value. Whatwe need is a proof theory whi
h allows the �-values to be propagated through theproof so that every inferred default has its �-value determined, and providing su
ha proof theory is the subje
t of the remainder of this paper.



On proofs in System P 104. A proof theory for System PNormally in generating a proof theory for some logi
al system the pro
edure8is to establish two rules for ea
h 
onne
tive in the underlying language. One rulerelates to introdu
ing the 
onne
tive into a formula, and one relates to eliminatingthe 
onne
tive from a formula. The set of rules then de�ne all the legal transforma-tions between formulae, and thus de�ne what may be proved from some initial set offormulae. The pro
ess of de�ning a proof theory thus pro
eeds from the underlyinglanguage to the proof rules.The situation here is a little di�erent. System P already has a set of proofrules de�ned. However, these rules do not in
lude introdu
tion and eliminationrules for all the 
onne
tives in the underlying language, and so do not support a
onventional proof theory. However, it is possible to use the existing rules to de�nea proof theory for a signi�
ant part of the underlying language of System P, andthis is the approa
h we adopt.We start with a set of propositions S, a set of 
onne
tives, f:;^;_;!;$;)g,and the following rules for building well-formed formulae in this language:1. If � 2 S, then � is a basi
 well-formed formula (bw� ).2. If � and � are bw� s then :�, � ^ �, � _ �, �! �, �$ � are bw� s.3. If 
 and Æ are bw� s, then 
 )� Æ is a default well-formed formula (dw� ).4. Nothing else is a bw� or a dw�.Together all these formulae 
onstitute a language LS . The denotation of basi
well-formed formulae is as in propositional logi
, while the meaning of dw� s is thefollowing:De�nition 4 The default 
 )� Æ denotes the fa
t that Pr(Æ j 
) � 1� �.Comparing De�nitions 1 and 4 it is 
lear that the defaults of LS are exa
tly the
onditional assertions of System P for a parti
ular �nite �. Two things follow fromthis. The �rst is that this 
hange from the general to the parti
ular both allows us tohave some notion of strength of the defaults in terms of the 
onditional probabilityasso
iated with them and for
es us to propagate the values every time we apply oneof the rules of inferen
e. The se
ond thing whi
h follows is that there is a dualitybetween assertions and defaults. We formalise this as follows:De�nition 5 The default � )�i � is the default dual of the 
onditional assertion� j� � and the 
onditional assertion � j� � is the assertion dual of �)�i �.Similarly, by extension of this notion of duality, any set of 
onditional assertions� = Sif�i j��ig will have a 
orresponding set of dw� s �0 = Sif�i )�i �ig. Moreformally:



On proofs in System P 11�)� � 2 ��; � j�P (�; �) Ax�; � j�P (�; 0) Ref�; � j�P (�; �1) �; � j�P (
; �2)�; � j�P (� ^ 
; �1 + �2) And�; � j�P (�; �1) �; � j�P (
; �2)�; � ^ � j�P (
; �21��1 ) CM�; � j�P (�; �1) � ` 
�; � j�P (
; �1) RW�; � j�P (
; �1) ` �$ ��; � j�P (
; �1) LLE�; � j�P (
; �1) �; � j�P (
; �2)�; � _ � j�P (
; �1 + �2) Or�; � ^ � j�P (
; �1)�; � j�P (� ! 
; �1) S�; � ^ � j�P (
; �1) �; � j�P (�; �2)�; � j�P (
; �1 + �2) CutFig. 5. The 
onsequen
e relation j�P.De�nition 6 Given a set of defaults � and a set of 
onditional assertions �0, �is the default dual of �0 if the default dual of every assertion in �0 is in � andthere are no additional defaults in �.De�nition 7 Given a set of defaults � and a set of 
onditional assertions �0, �0is the assertion dual of � if � is the default dual of �0.The reason for writing the defaults in this way is to distinguish between the 
ondi-tional assertions themselves, and the 
onsequen
e relation whi
h de�nes what maybe inferred from them|a distin
tion whi
h is not always 
lear in work on SystemP. Assuming that we have a knowledge base � whi
h 
onsists of a set of dw� s, we
an then de�ne the valid set of 
on
lusions whi
h may be drawn from � as thosesan
tioned by the 
onsequen
e relation j�P de�ned in Figure 5. Note that this in-
ludes the two rules Cut and S whi
h 
an be derived from the basi
 set of rules5.These rules are in
luded as useful \ma
ros" whi
h are equivalent to appli
ations ofseveral other rules and help to shorten proofs as a result. We 
ould equally wellformulate SP in terms of the basi
 rules of System P, and exa
tly the same resultswould follow, though less 
on
isely.



On proofs in System P 12The proof rules that de�ne j�Pmay need a little explanation. The rule Ax is aform of \bootstrap" rule whi
h says that if some default �)� � is in �, then were� added to �, it would be possible to infer � with probability not less than 1� �.The rule And says that if adding � to � makes it possible to infer � with probabilityno less than 1� �1 and 
 with probability no less than 1� �2, then adding � to �makes it possible to infer � ^ 
 with probability no less than 1� (�1+ �2). Thus thedenotation of the 
onsequen
e: �; � j�P (�; �)is that on the basis of what is given in �, we 
an infer Pr(� j �) � 1� �. Anotherway of viewing this is that if we add � to �, then we 
an infer � with a probabilitygreater than 1� �.The rules RW and LLE are a little unusual in that both have ante
edents whi
hinvolve `, whi
h stands for the 
onsequen
e relation of standard propositional 
al-
ulus. Thus RW says that you 
an repla
e any inferen
e made by j�P with anylogi
al 
onsequen
e, and LLE says that you 
an repla
e anything on the left-handside of j�Pwith something that is logi
ally equivalent to it.This proof system we will 
all SP . As with any proof system we are interestedin the soundness and 
ompleteness of the 
on
lusions whi
h may be drawn usingSP . We de�ne:De�nition 8 A default base is a set of default well-formed formulae.De�nition 9 A basi
 well-formed formula � is a p-
onsequen
e of a default base�, 
onditional on �, i�: �; � j�P (�; �)By analogy with the strength of a default, the value � asso
iated with a p-
on-sequen
e is known as the strength of the 
onsequen
e. With these de�nitions, suit-able soundness results are easy to obtain. The �rst relates what 
an be inferredusing j�P to System P:Theorem 2 For every p-
onsequen
e �, 
onditional on �, of a default base �,� j� � is p-entailed by the set of assertions �0 whi
h is the assertion dual of �.Proof: SP has a set of proof rules whi
h mirror those of System P, and anythingthat may be proved using these rules is a p-
onsequen
e. Sin
e Kraus et al. 5have shown that anything proved using the rules of System P from a given set of
onditional assertions �0 is p-entailed by that set, it follows that any p-
onsequen
eof �, the default dual of �0, is p-entailed by �0. 2Thus SP allows us to infer exa
tly the same things as System P. We also need toshow the soundness of the me
hanism for propagating the strength of the 
onse-quen
es. This is given by the following:



On proofs in System P 13Theorem 3 The strengths of the p-
onsequen
es of a default base are those justi�edby probability theory.Proof: The soundness of the propagation of �-values with respe
t to probabilitytheory follows from Theorem 1. 2Together these two results guarantee that SP is sound|it will generate 
on
lusionssan
tioned by System P with probabilisti
ally 
orre
t strengths. Sin
e Kraus etal. show that the rules of System P are suÆ
ient to infer all the 
onsequen
es ofSystem P, the following 
ompleteness result is immediate:Theorem 4 For every � j� � whi
h is p-entailed by a set of 
onditional assertions�, � is a p-
onsequen
e of the default dual of � 
onditional on �.What this theorem guarantees is any 
onditional assertion whi
h is p-entailed by agiven set of defaults will, when those defaults are translated into the language ofSP , be a 
onsequen
e of the 
orresponding set of dw� s. However, this result givesno 
lue as to the kinds of 
on
lusions we 
an draw from a given set of dw� s. Itdoes not tell us if a parti
ular p-
onsequen
e will be found, it just says that it willbe found if its assertion dual is p-entailed.What we would also like are results whi
h say exa
tly what kind of 
on
lusionswe 
an infer from some initial set of defaults, and that is what we 
onsider in theremainder of the paper.5. De�ning the s
ope of SPOur approa
h is to start by analysing what 
an be inferred from a set of thesimplest kind of defaults, and then extend our s
ope to look at more 
omplexdefaults.5.1. Simple defaultsWe start by 
onsidering that we have a set of simple defaults of the form �)�i 
iwhi
h all have the same ante
edent. These form a simple default base:De�nition 10 A simple default base for a language LS is a default base:� = [i=1;:::;nf�)�i 
igwhere � and the 
i are bw�s in LS .We 
an think of the 
onsequents of this set of defaults forming a set G. In general,we have:De�nition 11 The 
onsequent set of a simple default base � is the set G su
hthat: G = f
ijf�)�i 
ig 2 �g



On proofs in System P 14As we shall see, we need a way of referring to the 
onjun
tion of all the propositionsin the 
onsequent set, and we do this by means of the asso
iated 
onjun
tion:De�nition 12 The asso
iated 
onjun
tion � of a set of propositions G is de�nedby � = î 
i for all 
i 2 GThe set G is 
alled the asso
iated set of �.Now, applying Ax and CM to �)�1 
1 and �)�2 
2, we obtain:�; � ^ 
1 j�P �
2; �21� �1� (9)Using the same rules on �)�1 
1 and �)�3 
3 gives:�; � ^ 
1 j�P �
3; �31� �1�and 
ombining the latter with (9) using CM will give:�; � ^ 
1 ^ 
2 j�P �
3; �31� �1 � �2�If we imagine repeating this pro
ess it is 
lear that given � we 
an re
ursively applyCM to obtain: �; � ^ B0 j�P (
i; �)for any 
i 2 G, and for any B0 whi
h is the asso
iated 
onjun
tion of a set B0 su
hthat B0 � G where � is a fun
tion of the �-values of the defaults to whi
h CM hasbeen applied. In fa
t we have:Lemma 1 Given a simple default base � with ante
edent � and 
onsequent set Gthe 
onsequen
e relation j�P will generate all 
onsequen
es:�; � ^ B0 j�P  
i; �i1�Pj �j!where 
i 2 G, B0 has an asso
iated set B0, for every 
j in B0 there is a default�)�j 
j with strength �j in �, and B0 �G.Proof: This follows more or less dire
tly from the previous dis
ussion. Sin
e it ispossible to use CM to get �; � ^ B0 j�P (
i; �) for any 
i in the 
onsequent set andany B0 whi
h is a 
onjun
tion of propositions from the 
onsequent set, then it ispossible to use it to obtain all su
h p-
onsequen
es. The relevant value of � followsby simple arithmeti
 on the strengths of the relevant defaults. 2In other words, CM allows us to obtain as a p-
onsequen
e any proposition in the
onsequent set of � 
onditional on � 
onjoined with any other propositions in the
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onsequent set. The �-value that results is that of the p-
onsequen
e 
onditional on� alone, divided by 1 minus the sum of the �-values of ea
h of the propositions inthe 
onjun
tion 
onditional on � alone.Sin
e the rule And makes it possible to build up 
onjun
tions on the 
onsequentside, similar reasoning makes it obvious that re
ursively applying the rule to thesame initial set of defaults will give:�; � j�P (�0; �)for some �, where �0 is the asso
iated 
onjun
tion of a set G0 and G0 � G. Thistime, we have:Lemma 2 Given a simple default base � with ante
edent � and 
onsequent set Gthe 
onsequen
e relation j�P will generate all 
onsequen
es:�; � j�P  �0;Xk �k!where �0 has an asso
iated set G0, for every 
k in G0 there is a default � )�k 
kwith strength �k in �, and G0 � G.Proof: As with the dis
ussion of CM, 
onsider applying the rules Ax and And to�)�1 
1 and �)�2 
2. This gives:�; � j�P (
1 ^ 
2; �1 + �2) (10)Using the same rules on �)�3 
3 and �)�4 
4 gives:�; � j�P (
3 ^ 
4; �3 + �4)and 
ombining the latter with (10) using the rule And will give:�; � j�P 0� ^i=1;:::;4 
i; Xi=1;:::;4 �i1ANow, it is 
learly possible to use And in this way to get �; � j�P (�i; �) for any
onjun
tion �i whose 
onstituent propositions 
i are in the 
onsequent set. Thusit is possible to use it to obtain all su
h p-
onsequen
es and the result follows. 2Thus the And rule makes it possible to obtain as a p-
onsequen
e any 
onjun
tionof propositions from the 
onsequen
e set of �, 
onditional on �. The �-value whi
hresults is the sum of the �-values of those propositions alone 
onditional on �.Clearly, then, if we use both rules together, we 
an derive 
on
lusions of the form:�; � ^ B0 j�P (�0; �)where B0 and �0 have asso
iated sets B0 and G0 su
h that B0 � G and G0 � G.Note it is possible that B0 \G0 6= ;. To prove this formally, we �rst need to extend



On proofs in System P 16the notion of duality between di�erent representations of defaults introdu
ed above.There we had the notion of the assertion � j�� being the dual of a default �)�i �.We extend this by noting that any su
h default, after the appli
ation of the proofrule Ax generates a p-
onsequen
e �; � j�P (�; �i). We thus de�ne:De�nition 13 The default � )�i � whi
h is part of �, is the default dual of thep-
onsequen
e �; � j�P (�; �i) and the p-
onsequen
e �; � j�P (�; �i) is the 
onse-quen
e dual of �)�i �.This overloads the term \default dual", but its meaning will always be 
lear from the
ontext. As before we extend this de�nition to sets of defaults and p-
onsequen
es:De�nition 14 Given a set of defaults � and a set of p-
onsequen
es �0, � is thedefault dual of �0 if the default dual of every p-
onsequen
e in �0 is in � and thereare no additional defaults in �.De�nition 15 Given a set of defaults � and a set of p-
onsequen
es �0, �0 is the
onsequen
e dual of � if � is the default dual of �0.With these de�nitions we 
an 
ombine Lemmas 1 and 2 to obtain the following:Theorem 5 Given a simple default base with ante
edent � and 
onsequent set G,the 
onsequen
e relation j�P will generate all 
onsequen
es:�; � ^ B0 j�P  �0; Pk �k1�Pj �j!where B0 and �0 have asso
iated sets B0 and G0, for every 
j in B0 there is a default�)�j 
j with strength �j in �, for every 
k in G0 there is a default �)�k 
k withstrength �k in �, and B0;G0 � G.Proof: First apply Lemma 1 to obtain a series of p-
onsequen
es:�; � ^ B0 j�P  
k; �k1�Pj �j!for ea
h 
k whi
h is one of the 
onjun
ts in �0. Then apply Lemma 2 to the defaultdual of this set. The result follows. 2We refer to the set of 
onsequen
es de�ned by Theorem 5 as the simple 
onsequen
esof �.5.2. More 
omplex defaultsThe results in the previous se
tion 
hara
terise the kind of 
onsequen
es we 
anprove using the rules And and CM on a set of simple defaults. It is possible togeneralise these results to wider sets of defaults. Consider that instead of a set ofsimple defaults, we have, instead, a general set of 
onjun
tive 
onsequent defaults of



On proofs in System P 17the form �)�i �i where �, as before, is a single proposition and �i is 
onjun
tionof propositions, known as the 
onjun
tive 
onsequent. This set of defaults is a
onjun
tive 
onsequent default base:De�nition 16 A 
onjun
tive 
onsequent default base for a language LS is a defaultbase: � = [i=1;:::;nf�)�i �igwhere � is a bw� in LS , and �i is a 
onjun
tion of su
h bw�s.For su
h defaults we expand the notion of the 
onsequent set to in
lude all propo-sitions whi
h o

ur in a 
onjun
tive 
onsequent:De�nition 17 The 
onsequent set of a 
onjun
tive 
onsequent default base � isthe set G su
h that:G = f
ijf�)�i 
1 ^ : : : ^ 
i ^ : : : ^ 
ng 2 �gSin
e a 
onjun
tive 
onsequent default base � 
an 
ontain simple defaults, it ishelpful to distinguish the simple subset, whi
h is the set of all simple default rules in�. We denote this by �s. Now, applying the rule Ax to any 
onjun
tive 
onsequentdefault in � will give: �; � j�P (�i; �i)RW allows us to repla
e any p-
onsequen
e with any of its logi
al 
onsequen
es.This makes it possible to obtain: �; � j�P (
j ; �i)for any 
j whi
h is one of the 
onjun
ts in �i. This immediately gives us:Lemma 3 Given a 
onjun
tive 
onsequent default base �, with 
onsequent set G,then j�P will generate all 
onsequen
es:�; � j�P (
0; �)where � 
ontains a default �)�i �i, Gi is the asso
iated set of �i and 
0 2 GiSin
e this set of p-
onsequen
es is the 
onsequen
e dual of the set of simple defaults� )�i 
0, Lemma 3 suggests that any 
onjun
tive 
onsequent default base has a
orresponding simple default base su
h that both default bases have a 
ommon setof p-
onsequen
es|the 
onsequen
e dual of the simple default basez. We 
all thiszIt should be noted that while the p-
onsequen
es of these two default bases are the same, the�-values of these p-
onsequen
es will, in general, di�er, with the �-values of the p-
onsequen
esderived from the simple default base being higher. As an example, 
onsider the default basef� )� � ^ 
g, whi
h has simple equivalent f� )� �; � )� 
g. The formula � ^ 
 is a p-
onsequen
e of both default bases, but has strength � when derived from the �rst and 2� whenderived from the se
ond.



On proofs in System P 18simple default base the simple equivalent of the 
onjun
tive 
onsequen
e defaultbase.De�nition 18 Given a 
onjun
tive 
onsequent default base �, with 
onsequent setG, then its simple equivalent is the set of defaults:f�)�i 
j j f�)�i 
1 ^ : : : ^ 
j ^ : : : ^ 
ng 2 �gThus to transform a 
onjun
tive 
onsequent default base into its simple equivalentwe repla
e every 
onjun
tive 
onsequent default with a set of simple defaults, ea
hwith the same strength as the original default and a 
onsequent whi
h is one of the
onjun
ts in the 
onsequent of the original default. Given De�nition 18 we have:Theorem 6 Given a 
onjun
tive 
onsequent default base �, the 
onsequen
e re-lation j�P will generate all the simple 
onsequen
es of the simple equivalent of �.Proof: Call the 
onsequen
e dual of the simple subset �s of � by the name P1.Take the set ���s, and apply Lemma 3 to it to obtain a set of p-
onsequen
es ofthe form: �; � j�P (
k; �j)whi
h in
ludes one su
h p-
onsequen
e for ea
h 
k whi
h appears in the 
onsequentset of � ��s. Call this set of p-
onsequen
es P2. The set P1 [ P2 is then exa
tlythe 
onsequen
e dual of the simple equivalent of �. Thus anything whi
h 
an bederived from the simple equivalent of � 
an also be derived from � itself. 2The reason that this result is important is that it allows us to apply Theorem 5to 
onjun
tive 
onsequent default bases, by �rst turning the default base into itssimple equivalent. This in turn means that we 
an immediately write down asubset of the p-
onsequen
es of any 
onjun
tive 
onsequent default base �|thesimple 
onsequen
es of its simple equivalent. We 
all these the simple equivalent
onsequen
es of �.Now let's 
onsider generalising the set of defaults � to what we will 
all a set ofgeneral 
onjun
tive defaults of the form �^Bi )�i �i where �, as before, is a singleproposition and Bi and �i are 
onjun
tions of propositions. This set of defaults isa general 
onjun
tive default base:De�nition 19 A general 
onjun
tive default base for a language LS is a defaultbase: � = [i=1;:::;nf� ^ Bi )�i �igwhere � is a bw� in LS , and the Bi and �i are 
onjun
tions of su
h bw�s.Thus a general 
onjun
tive default base is just a set of 
onjun
tive 
onsequen
edefaults whi
h have a 
onjun
tive ante
edent Bi 
onjoined to their base ante
edent �.Su
h a default base has a simple subset �s as before, and a 
onjun
tive 
onsequent
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 whi
h in
ludes defaults of the form �)�i �i. From su
h a default base we
an 
learly generate all p-
onsequen
es whi
h are simple equivalent 
onsequen
esof �s [ �
. These are all the p-
onsequen
es of � whi
h 
an be obtained byapplying CM, And, and RW alone. However, there are further p-
onsequen
es ofa set of general 
onjun
tive defaults. Applying the rules Ax and S to a default� ^ Bi )�i �i in �� (�s [�
) will give:�; � j�P (Bi ! �i; �i)Now, if we 
an obtain: �; � j�P (Bi; �j)Applying And will give us�; � j�P (Bi ^ (Bi ! �i); �i + �j)and then RW will allow us to obtain:�; � j�P (Bi ^ �i; �i + �j)and hen
e: �; � j�P ('ij ; �i + �j)for any 'ij 2 Bi [Gi where Bi and Gi are the asso
iated sets of Bi and �i. Oneway that: �; � j�P (Bi; �j)
an be obtained at the 
ru
ial point is if this is a simple equivalent 
onsequent of�s [�
. This gives us:Lemma 4 Given a general 
onjun
tive default base � with base ante
edent �,whose simple subset is �s and whose 
onjun
tive 
onsequent subset is �
, thenj�P will generate all the 
onsequen
es of the form:�; � j�P (
0; �i + �j)where � 
ontains a default � ^ Bi )�i �i, Gi is the asso
iated set of �i, 
0 2 Gi,and �; � j�P (Bi; �j)is one of the simple equivalent 
onsequen
es of �s [�
.Proof: This follows immediately from the previous dis
ussion. 2As with Lemma 3, this is a \redu
tion" result, whi
h allows us to use a 
omplexset of defaults to obtain a set of p-
onsequen
es whi
h we 
ould obtain from amu
h simpler set of defaults. Following this analogy, in the same way as we de�nedthe simple equivalent of a set of 
onjun
tive ante
edent defaults, we 
an de�ne aset of simple defaults whi
h, when we apply Ax to them, give us the same set of
onsequen
es as applying Lemma 4 to a general 
onjun
tive default base. This setis de�ned as follows:



On proofs in System P 20De�nition 20 Given a general 
onjun
tive default base � with simple subset �sand 
onjun
tive 
onsequent subset �
, its redu
ed equivalent is the union of �s,the simple equivalent of �
, and the set of defaults:f�)�i 
j j f� ^ �1 ^ : : : ^ �m )�i 
1 ^ : : : ^ 
j ^ : : : ^ 
ng 2 �; �1; : : : ; �m 2 Ggwhere G is the 
onsequent set of �s [�
.With this notion of a redu
ed equivalent set, it is easy to identify one set of 
onse-quen
es of a general 
onjun
tive default base.Theorem 7 Given a general 
onjun
tive default base �, j�Pwill generate all simple
onsequen
es of the redu
ed equivalent of �.Proof: Immediate by applying Lemma 4. 2We 
all these the 
onservative 
onsequen
es of �, so named be
ause they are onlya subset of the full set of 
onsequen
es. However, in establishing this set of 
onse-quen
es, we have 
hara
terised a signi�
ant portion of the 
onsequen
es of general
onjun
tive default bases in a way whi
h makes it easy to determine if a parti
ular
onsequen
e is one of the number. For a given formula 
 and general 
onjun
tivedefault base �, we 
an answer the question \is 
 a 
onservative 
onsequen
e of �?"by inspe
tion.We 
an view the results we have obtained as forming a sequen
e of 
onsonantsets of 
onsequen
es. Consider a general 
onjun
tive default base �. Theorem 5identi�es all the 
onsequen
es of the simple subset of � whi
h 
an be obtainedusing the rules And and CM, the two rules whi
h allow arbitrary 
onjun
tions tobe established on either side of the turnstile. These are the simple 
onsequen
esof �. Theorem 6 makes it possible to draw 
on
lusions from a larger subset of�, namely the union of the simple subset and the set of 
onjun
tive 
onsequentdefaults, again using the rules And and CM, along with RW. This set of 
onse-quen
es, the simple equivalent 
onsequen
es, in
ludes all the simple 
onsequen
es.Finally, Theorem 7 makes it possible to use every default in �, obtaining the set of
onservative 
onsequen
es, whi
h in
ludes all the simple equivalent 
onsequen
es.Theorems 5, 6 and 7 
omplement Theorem 4. The latter says that anythingprovable will eventually be proved. It therefore de�nes what is provable from above,pla
ing a limit on the set of 
onsequen
es whi
h 
an be proved without giving anindi
ation of what they are. The former are a �rst step towards de�ning what isprovable from below. Given a default base these results tell us what 
an be proved.However, they do not identify every possible 
onsequen
e, sin
e other 
onsequen
es
an be determined by the appli
ation of other proof rules. For example we have:Theorem 8 Given a general 
onjun
tive default base � = Sif� ^ Bi )�i �ig withbase ante
edent �, the 
onsequen
e relation j�P will generate all p-
onsequen
es:�; � j�P (�; �)



On proofs in System P 21where � = Vj 'j , î (:Bi _ �i) ` 'jand � =Xi �iProof: For every �^Bi )�i �i we 
an apply Ax, S and RW to get �; � j�P (:Bi_�i; �i). Applying And to all of these gives�; � j�P ( î (:Bi _ �i);Xi �i)and sin
e applying RW to this latter does not 
hange the value of �, the resultfollows. 2The value of � here is 
learly an upper bound, giving a lower bound on the valueof the 
onditional probability of the resulting p-
onsequen
es. A tighter bound
ould be obtained by \And"ing only those defaults whi
h are a
tually used in thederivation of the 'j . This raises the issue of what we should 
on
lude if we obtainseveral p-
onsequen
es of the form:�; � j�P (�; �i)with di�erent strengths �i. What these mean, of 
ourse is that:Pr(� j �) � 1� �ifor various �i. These results are entirely 
onsistent, and we are justi�ed in pi
kingwhi
hever �i we wish. Typi
ally we will 
hoose the smallest, sin
e this gives us thehighest value of Pr(� j �).It should also be noted that Theorem 8 identi�es a mu
h larger set of potential
onsequen
es than the 
onservative 
onsequen
es. However, to establish these it isne
essary to invoke a standard propositional theorem prover.5.3. More than one default baseAll the results presented so far hold for sets of defaults with a single proposition� on the ante
edent side. Clearly we 
an repla
e � with an arbitrary 
onjun
tion ofpropositions, re
overing analogous results after the ne
essary 
hanges in de�nitionof terms su
h as \simple default"|in the interests of spa
e we will not 
onsiderthis extension in detail. Instead, taking the idea of having a 
onjun
tion as anante
edent somewhat further, one might imagine that there are more 
onsequen
esthat might be inferred from defaults with ante
edents with several propositions in
ommon, for instan
e: � ^ � )�1 
0
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00However, if � is a single proposition, we have already analysed the situation sin
ethese two defaults are part of a general 
onjun
tive default base with base ante
edent�. If � is a 
onjun
tion, then this 
ase is part of the simple extension alreadydis
ussed. Thus there are no parti
ularly interesting results that may be obtainedhere.Another 
ase that seems worth investigating is when we have more than onedefault base. Su
h a situation arises when we 
an partition a set of defaults intotwo or more subsets where every default in ea
h subset has at least one ante
edentproposition in 
ommon (the base ante
edent of that subset), but there are no 
om-mon ante
edent propositions between defaults in di�erent subsets. An example ofsu
h a situation is when we have:� = [i=1;:::;nf� ^ Bi )�i �igand �0 = [j=1;:::;nf� ^ Bj )�j �jgwhere Bi and Bj are the asso
iated sets of Bi and Bj respe
tively, and[i Bi \[j Bj = ;However, this is a situation when the very 
onservative nature of System P worksagainst us. The only rule of SP whi
h makes it possible to 
ombine two p-
onsequen
es with su
h ante
edents is Or. Or only applies to two defaults whi
hhave the same formula on the right of the turnstile. In other words, it only appliesdire
tly if �i and �j are identi
al. However, thanks to RW, we 
an 
onvert any-thing on the right hand side to any of its logi
al 
onsequen
es, so we 
an apply Orindire
tly provided that either �i ! �j or �j ! �i. Thus, given:�)�1 �
 )�2 Æprovided that: � ` Æwe 
an apply Ax to both defaults and then RW to the �rst to obtain:�; � j�P (Æ; �1)�; 
 j�P (Æ; �2)and then use Or to infer: �; � _ 
 j�P (Æ; �1 + �2)



On proofs in System P 23However, Or on its own does not modify the right hand side of the turnstile, andso does not make it possible to establish any new p-
onsequen
es|in this examplewe 
ould already obtain: �; � j�P (Æ; �1)using just the �rst default. What Or does is to make it possible to alter the statesthat existing p-
onsequen
es are 
onditional on, and sin
e this is somewhat outsideour interest we will say no more about it here.In fa
t, the only way to draw substantial 
on
lusions from several default basesis to turn them into a single default base. This is possible using a 
ombination ofthe rules S and LLE. Given any default�)�1 
we 
an use Ax and LLE to obtain:�; � ^ > j�P (
; �1)whi
h is not mu
h use on its own, but allows us to apply S to get:�;> j�P (�! 
; �1)Applying this transformation to several defaults from di�erent default bases givesus a new default base with base ante
edent >. Clearly we 
an then establish similarresults to those obtained above for defaults with base ante
edent �, but writing >in pla
e of � on the left of the turnstile, and � ^Bi in pla
e of Bi on the right. We
an summarise everything whi
h 
an be inferred using this parti
ular 
ombinationof proof rules in the same way as is possible in Theorem 8:Theorem 9 Given a general 
onjun
tive default base � = Sif� ^ Bi )�i �ig withbase ante
edent �, the 
onsequen
e relation j�P will generate all p-
onsequen
es:�;> j�P (�; �)where � = Vj 'j , î (:� _ :Bi _ �i) ` 'jand � =Xi �iProof: For every � ^ Bi )�i �i we 
an apply Ax, LLE, S and RW to get�;> j�P (:(� ^ Bi) _ �i; �i). Applying And to all of these gives�; � j�P ( î (:(� ^ Bi) _ �i);Xi �i)



On proofs in System P 24(i) �party ; linda j�P (steve; 0 :1 ) Ax; 4(ii) �party ; linda j�P (great ; 0 :01 ) Ax; 2(iii) �party ; linda ^ steve j�P (great ; 0 :011 ) CM; (i); (ii)(iv) �party ; linda ^ steve j�P (:noisy ; 0 :05 ) Ax; 5(v) �party ; linda ^ steve j�P (great ^ :noisy ; 0 :061 ) And; (iii); (v)Fig. 6. The proof of a 
onservative 
onsequen
e about Lindaand sin
e applying RW to this latter does not 
hange the �-value, the result follows.2 All of the results obtained in this se
tion 
an be 
onsidered to be 
ompletenessresults for SP in the sense that they identify all the possible 
onsequen
es whi
hfall into the parti
ular 
lasses given. In 
ombination with the soundness result ofTheorem 2 and 3 they give the usual guarantees for a parti
ular set of 
onsequen
es.5.4. Future workOne way of looking at the results presented in this se
tion is as a set of partial
lassi�
ations of the kinds of 
onsequen
es whi
h 
an be derived from a set ofdefaults. Another way of 
onsidering them is as a set of results for transforming aset of defaults in a way whi
h does not 
hange their p-
onsequen
es. In this sense, we
an 
onsider De�nition 18 as a way of transforming a 
onjun
tive 
onsequent defaultbase into its simple equivalent without 
hanging the set of simple 
onsequen
eswhi
h 
an be derived from it (though, as mentioned above, the �-values will ingeneral be di�erent).The fa
t that this kind of transformation is possible suggests that it may be pos-sible to identify additional transformations whi
h are distinguished in some way (thetransformation to a simple equivalent being distinguished by the fa
t that it is madeup entirely of simple defaults). Two su
h distinguished transformations spring tomind. One is that whi
h guarantees the lowest �-values for all the p-
onsequen
es|this would 
learly be useful sin
e it would guarantee the strongest 
onsequen
es(equally 
learly it won't be the transformation whi
h gives the simple equivalent).The se
ond is that whi
h gives the shortest proofs (in the sense of requiring thefewest appli
ations of the proof rules of SP) for the set of p-
onsequen
es. Oneinteresting dire
tion for future work in this area is the identi�
ation of su
h distin-guished transformations.6. An exampleWe now illustrate the use of SP on the following, inspired by examples given byKraus et al.5.Brian and Linda are two happy-go-lu
ky people who are normally thelife and soul of any party (so if either go to a party it will normally begreat). Until re
ently Brian and Linda were married, but then Linda



On proofs in System P 25ran o� with a mime artist, Steve. As a result, if both Brian and Lindago to the same party they will probably have a s
reaming row and ruinit (so it will not be great and it will be noisy).If Linda goes to a party she will probably take her new boyfriend Steveand get him to entertain the guests with his marvellous miming. Thusif Linda goes to a party, Steve will probably go to the same party andif Linda and Steve go to a party together it will normally not be noisybe
ause everyone will be wat
hing his miming. Normally parties thatare great are noisy, and those that are not noisy are not great.We represent this by the following default base �party . It should be understoodthat we are trying to as
ertain the likelihood of any given party having variousattributes (brian is present, it is noisy, and so on).1. brian)0:01 great2. linda)0:01 great3. brian ^ linda)0:15 :great ^ noisy4. linda)0:1 steve5. linda ^ steve)0:05 :noisy6. great)0:1 noisy7. :noisy )0:1 :greatAs an example of the generation of a 
onservative 
onsequen
e, 
onsider the proofof Figure 6. As this proof demonstrates, we 
an 
on
lude that if both Linda andSteve go to the party, then the probability that it will be both great and not noisyis greater than 0.939 (1 minus the strength of the p-
onsequen
e linda ^ steve).If we 
ombine defaults from the di�erent 
onjun
tive default bases in �, we 
anobtain additional 
on
lusions. For example, 
onsider Figure 7 whi
h gives a prooffor the p-
onsequen
e linda 
onditional on >. This tells us that the probabilityof Linda going to any parti
ular party is at most 0.26. This last example neatlyillustrates two points.The �rst is a property of System P. We have shown that the probability of Lindagoing to any parti
ular party is quite low. It 
ertainly isn't likely enough to be adefault 
on
lusion. However, if we know that Linda does go to a party|a fa
t whi
hmakes the party somewhat abnormal|then we 
an draw 
on
lusions whi
h are verylikely for su
h abnormal parties (they are very likely to be great, for instan
e). These
ond point is to do with the form of the proof. As stated above, the proof ofthe p-
onsequen
e :linda involves the use of defaults from di�erent 
onjun
tivedefault bases (in parti
ular that with base ante
edent linda and the single defaultwith base ante
edent :noisy). This is possible through the use of LLE and S toobtain p-
onsequen
es 
onditional on > whi
h may then be 
ombined using And.As mentioned above, this is an important me
hanism for 
ombining defaults fromdi�erent default bases.



On proofs in System P 26(i) �party ; linda ^ steve j�P (:noisy ; 0 :05 ) Ax; 4(ii) �party ; linda j�P (steve; 0 :1 ) Ax; 5(iii) �party ; linda j�P (:noisy ; 0 :15 ) Cut; (i); (ii)(iv) �party ; linda j�P (great ; 0 :01 ) Ax; 2(v) �party ; linda j�P (great ^ :noisy ; 0 :16 ) And; (iii); (iv)(vi) �party ;> ^ linda j�P (great ^ :noisy ; 0 :16 ) LLE; (v)(vii) �party ;> j�P (:linda _ (great ^ :noisy); 0 :16 ) S; (vi)(viii) �party ;:noisy j�P (:great ; 0 :1 ) Ax; 7(ix) �party ;> ^ :noisy j�P (:great ; 0 :1 ) LLE(viii)(x) �party ;> j�P (:great _ noisy ; 0 :1 ) S; (ix)(xi) �party ;> j�P ((:great _ noisy) And; (vii); (x)^ (:linda _ (great ^ :noisy)); 0 :26 )(xii) �party ;> j�P (:linda ; 0 :26 ) RW; (xi)Fig. 7. The proof of a non-
onservative 
onsequen
e 
on
erning LindaThe above treatment of the example is an illustration of applying the proof rulesof SP dire
tly. We 
an also 
onsider the example from the perspe
tive of the setsof simple, simple equivalent, and redu
ed equivalent 
onsequen
es of �party . Todo this, we �rst identify the fa
t that the database 
ontains four separate simpledefault bases. These are:�partys1 : linda)0:01 greatlinda)0:1 steve �partys2 : brian)0:01 great�partys3 : great)0:1 noisy �partys4 : :noisy )0:1 :greatOf these only �partys1 has any interesting p-
onsequen
es beyond its 
onsequent dual.Building the simple 
onsequen
es of this set of defaults, and ignoring the 
onse-quen
e duals of the original defaults, and those p-
onsequen
es whi
h have thesame proposition on both sides of the turnstile, we get, by Theorem 5:�party ; linda j�P (steve ^ great; 0:11)�party ; linda ^ steve j�P (great; 0:011)�party ; linda ^ great j�P (steve; 0:101)We 
an also explore the 
onsequen
es of more 
omplex defaults in �party . Thereare no 
onjun
tive 
onsequen
e defaults, so we will look at the general 
onjun
tivedefault bases in �party . Of these, again the most interesting is that with baseante
edent linda. This is:linda)0:01 greatlinda)0:1 stevelinda ^ steve)0:05 :noisywhi
h has the redu
ed equivalent:



On proofs in System P 27linda)0:01 greatlinda)0:1 stevelinda)0:05 :noisyOn
e again we 
an easily generate a set of simple 
onsequen
es from this, part of theset of 
onservative 
onsequen
es of �party . Ignoring, on
e again, 
onsequen
e dualsand p-
onsequen
es in whi
h the same proposition appears on both sides of theturnstile, along with the simple 
onsequen
es of �partys1 , we 
an obtain the following
onservative 
onsequen
es:�party ; linda j�P (steve ^ great ^ :noisy; 0:16)�party ; linda j�P (steve ^ :noisy; 0:15)�party ; linda j�P (great ^ :noisy; 0:16)�party ; linda ^ steve j�P (great ^ :noisy; 0:06)�party ; linda ^ great j�P (steve ^ :noisy; 0:152)As with the simple 
onsequen
es of �partys1 we 
an simply write these down withoutthe need to use SP dire
tly.7. Related workThere are four main areas of 
losely related work. The �rst is the large bodyof work on System P as a me
hanism for default reasoning. Most of this workhas involved extending System P in various ways. The problem that all this workaddresses is the fa
t that System P is too weak. The 
onsequen
es it san
tions are
orre
t, and are widely a

epted as the minimum that any interesting nonmono-toni
 reasoning system should generate, but they are too 
onservative sin
e theyare guaranteed not to be false in the light of any subsequent information. ThusSystem P doesn't really provide nonmonotoni
 reasoning|it doesn't draw 
on
lu-sions whi
h are later withdrawn. In probability terms, what System P does is tolook at all the 
onstraints, embodied in the default assertions, on the probabilitiesof all the propositions in the database it is invoked on, and then identify the familyof probability distributions whi
h satisfy the 
onstraints. It then san
tions any in-feren
e whi
h represents an additional 
onstraint that holds in every distribution.The various approa
hes to extending System P have looked for ways to 
hoose apreferred distribution|they then san
tion any assertion whi
h satis�es that dis-tribution. System Z9, and equivalently rational 
losure10, do this in a way whi
h
orresponds to adding the following proof rule, the rule of rational monotoni
ity, toSystem P: a j� 
; a 6j� :ba ^ b j� 
Another approa
h to 
hoosing the preferred distribution is to use the prin
iple ofmaximum entropy, as initially suggested by Goldszmidt11 and later extended by
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ussion of this line of work may be found elsewhere13, butit should be 
lear from the above that this work has a rather di�erent emphasisfrom that of this paper, being 
on
erned with extending System P rather thanworking within in, and not being greatly 
on
erned with either the strength of the
on
lusions or their proof.The se
ond main pie
e of related work is Ba

hus'14 inheritan
e reasoner. Ba
-
hus' system allows two kinds of relation between formulae, ) and ! whi
h dis-tinguish between stri
t and statisti
al set in
lusion. Thus � ) � denotes the fa
tthat all �s are �s while � ! 
 denotes the fa
t that \most" �s are 
s. The latteris true provided that more than half of all �s are also 
s, in other words if the setof all individuals with both property � and property 
 is at least half as large asthe set with property �. These two relations, along with negation, are suÆ
ient to
apture a range of attra
tive properties for reasoning about inheritan
e.Comparing Ba

hus' system to SP , there are two obvious remarks. The �rstis that SP is more expressive sin
e Ba

hus' system does not in
lude 
onjun
tionor disjun
tion. The se
ond is that SP is dire
tly 
on
erned with the bounds onthe assertions whi
h are derived, while Ba

hus is only 
on
erned with derivingwhether \most" of a 
lass of individuals have some property. The aim of his workis thus 
loser to System P where the value of the bounds is not an issue (though itis arguably more realisti
 not to depend on in�nitesimal values as System P does).It is also possible to 
ompare the systems in more detail|though a full explo-ration of the di�eren
es and similarities would probably require a further paper|looking at the various properties of Ba

hus' system and identifying whether theyhold in SP . The main properties of interest are those relating to dedu
tion (
ap-tured in Ba

hus' Theorem 4.1), those relating to resolving 
lashes between 
on
lu-sions (
aptured in \subset preferen
e" and \
ertainty preferen
e") and the fa
t thatinheritan
e is only san
tioned over one ! link. The dedu
tive properties hold inSP , as does the failure to 
hain over \most" links (assuming a translation betweenBa

hus' �! � and � j��)x. The natural way to resolve 
lashes in SP is to look atthe �-values, allowing: �; � j�P (
; �1) to be preferred to: �; � j�P (:
; �2) providedthat �1 < �2 (sin
e the relevant probability is one minus the �-value). Doing thisensures that 
ertainty preferen
e holds, but subset preferen
e does not|that is we
an resolve 
lashes between properties whi
h are inherited from a 
lass and thoseinherited from a super
lass, but not ne
essarily in a way that respe
ts spe
i�
ity.This, of 
ourse, is a well-known limitation of System P13. Overall, then, while thetwo systems have some properties in 
ommon, neither 
aptures the other.The third pie
e of 
losely related work is that of Gilio15, who has followed theapproa
h adopted in the �rst part of this paper but using de Finetti's approa
h16;17to 
ompute the bounds on the derived assertions. This approa
h makes it possibleto derive the probably tightest bounds on the �-values, and doing this allows GilioxThis 
haining property is investigated by Kraus et al.5 and found not to hold for System P formu
h the same reason as it fails to hold for Ba

hus' system.



On proofs in System P 29to improve on our results for Cut and Or. The resulting rules are, respe
tively:� ^ � j��1 
; � j��2 �� j��1+�2��1�2 
and � j��1 
; � j��2 
� _ � j� �1+�2�2�1�21��1�2 
It should be noted that the di�eren
e between the �-values obtained using theimproved bounds and those obtained using our bounds are small. For example,Gilio obtains an �-value of 0.145 for the assertion Linda j�:noisy as opposed tothe 0.15 we obtain.Finally, Snow 18;19 and Benferhat et al. 20 have investigated probabilisti
 se-manti
s for System P whi
h do not rely upon in�nitesimal values. This work is
learly related to both our approa
h and Gilio's. However, it is more in line withthe work on extensions to System P dis
ussed above be
ause it is not 
on
ernedwith the a
tual probabilities of the assertions or their 
onsequen
es. All Snow andBenferhat et al. are interested in is the fa
t that it is possible to 
onstru
t suit-able non-in�nitesimal probability distributions whi
h satisfy System P, they aren'tparti
ularly interested in the a
tual probabilities.8. Con
lusionThis paper has three main results. The �rst of these is to have shown that giventhe assumption that 
onditional assertions may be treated as 
onditional probabil-ities with lower bounds, we 
an obtain lower bounds for the derived 
onsequen
es.The se
ond main result is to have given a proof me
hanism for obtaining these 
on-sequen
es, and to have explored its properties. Thus if we know the lower boundson the 
onditional probabilities of a set of input assertions, we 
an identify whi
h
onsequen
es may be derived, and establish the lower bounds on the 
onditionalprobabilities of these 
onsequen
es. Moreover the lower bounds are given by simplefun
tions of the initial bounds 
al
ulated for ea
h proof step in System P. The thirdmain result is to have identi�ed three sets of 
onsequen
es of a set of defaults|the simple 
onsequen
es, the simple equivalent 
onsequen
es, and the 
onservative
onsequen
es|in a way whi
h enables them to be easily enumerated. Further setsof 
onsequen
es 
an be obtained at the 
ost of some 
onventional theorem proving.The advantages of these results are as follows. First they allow us to use realrather than in�nitesimal probabilities sin
e by keeping tra
k of the bounds we 
antell whi
h 
onsequen
es are justi�ed|
learly any 
onsequen
e with a low lowerbound might be 
onsidered suspe
t. The se
ond advantage is that only a lowerbound 
onditional probability is required for ea
h default rule rather than a pointprobability, and this may mean that the numeri
al values ne
essary for this approa
hare easier to assess than those ne
essary for approa
hes whi
h use point values.Clearly we still require these values to be high or the results obtained will be uselesssin
e derived 
onditionals will only be known to have an asso
iated 
onditional



On proofs in System P 30probability that is greater than some small value. The third advantage is thata subset of the full set of 
onsequen
es of a given set of 
onditional assertions isimmediately identi�able, without the need for any theorem proving. This makesit possible to both enumerate all su
h 
onsequen
es, and to qui
kly establish if aparti
ular 
onsequen
e is a member of this subset{.Of 
ourse there are disadvantages to the use of our approa
h, and perhaps theworst of these stems from System P itself and our use of its proof rules. As men-tioned above, System P is a

epted as being a s
epti
al reasoning me
hanism, thatis, only 
onservative (and 
ompletely sound) 
on
lusions 
an be obtained. This isinsuÆ
ient for most purposes sin
e we will often want to draw more tenuous 
on
lu-sions. The fa
t that we use the rules of System P dire
tly prevent us extending ourapproa
h to 
over some of the spe
ialisations of System P that have been suggestedsin
e these spe
ialisations do not have expli
it proof rules.Finally, it is worth noting that be
ause the initial set of lower bounded 
ondi-tional probabilities are propagated through the proof, the output is a set of proba-bility statements similar to: Pr(� ^ :� j 
 ^ Æ) � 1� �If the propositions 
 and Æ are pie
es of eviden
e (in other words things whi
hare known to have o

urred), this output information is suÆ
ient to establish theprobability of the state � ^ :�. Thus the output of SP 
an be used, along withinformation on the utility of � ^ :� as the basis of some de
ision making pro
ess,and this is the dire
tion that our resear
h on the topi
 of this paper is taking usnow. This 
onne
tion to de
ision theory also explains our fo
us on 
onjun
tions andthe fa
t that we have not made mu
h use of the proof rule Or|in de
ision makingwe are not usually interested in probability statements like:Pr(� ^ :� j 
 _ Æ) � 1� �A
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