
International Journal of Unertainty, Fuzziness and Knowledge-Based SystemsVol. 00, No. 00 (0000) 000|000f World Sienti� Publishing Company
QUALITATIVE PROBABILITY AND ORDER OF MAGNITUDEREASONINGSIMON PARSONSDepartment of Computer and Information Siene, Brooklyn College,2900 Bedford Avenue, Brooklyn, NY 11210, USA.Reeived (November 1998)Revised (November 2002)In reent years there has been a spate of papers desribing systems for probabilistireasoning whih do not use numerial probabilities. In some ases these systems areunable to make any useful inferenes beause they deal with hanges in probability attoo high a level of abstration. This paper disusses one of the problems this level ofabstration an ause, and shows how the use of a tehnique for order of magnitudereasoning an redue its impat.Keywords: Qualitative probability, order of magnitude reasoning.1. IntrodutionIn the past few years there has been a good deal of interest in qualitative ap-proahes to reasoning under unertainty|approahes whih do not make use ofpreise numerial values. Qualitative abstrations of probabilisti networks1;2, inpartiular, have proved popular, �nding use in areas in whih the full numerial for-malism is either not neessary or not appropriate. Appliations have been reportedin explanation3, diagnosis4;5, engineering design6, and planning2.Whereas in most probabilisti systems the main goal is to establish what theprobabilities of hypotheses are when partiular observations are made, in qualitativeprobabilisti networks2 (QPNs) the main aim is to establish how values hange.Sine the approah is qualitative, the size of the hanges are not the fous. It onlymatters whether a given hange is positive, written as [+℄, negative [�℄, or zero [0℄.Clearly this information is rather weak, but as the appliations show it is suÆientfor some tasks. Furthermore, reasoning with qualitative probabilities is muh moreeÆient than reasoning with preise probabilities, sine omputation is quadratiin the size of the network1, rather than NP-hard7.One of the stumbling bloks in applying QPNs more widely is that there aresituations in whih it is not possible to resolve the hanges that they handle withany preision. In suh ases the value of the hange remains unknown, and it iswritten as [?℄. Suh values tend to multiply, reduing the useful onlusions whih1
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 [+℄ [0℄ [�℄ [?℄[+℄ [+℄ [0℄ [�℄ [?℄[0℄ [0℄ [0℄ [0℄ [0℄[�℄ [�℄ [0℄ [+℄ [?℄[?℄ [?℄ [0℄ [?℄ [?℄ � [+℄ [0℄ [�℄ [?℄[+℄ [+℄ [+℄ [?℄ [?℄[0℄ [+℄ [0℄ [�℄ [?℄[�℄ [?℄ [�℄ [�℄ [?℄[?℄ [?℄ [?℄ [?℄ [?℄Table 1. Sign multipliation and addition.an be obtained from a QPN. The aim of this paper is to investigate how tehniquesfrom order of magnitude reasoning, in partiular Dague's system ROM[K℄8 an beused to redue the proliferation of suh [?℄ values.2. Qualitative ertainty networksIt is possible9;10 to generalize the approah provided by qualitative probabilis-ti networks to what are termed qualitative ertainty networks (QCNs). Usingthis approah it is possible to propagate qualitative probability, possibility11;12 andevidene theory13;14 in a uniform way.QCNs are built around the notion of inuenes between variables, where theinuene may be given a probabilisti semantis, as in QPNs, or a semantis in termsof possibility or Dempster-Shafer theory. Formally, a QCN is a pair G = (V;Q),where V is a set of variables or nodes in the graph, represented by a apital letter,and Q is a set of sets of qualitative relations among the values of the variableswhih reet the inuenes between the variables. In this paper we onentrateupon QCNs in whih the inuenes, like the inuenes in QPNs, have a probabilistisemantis. These are known as probabilisti QCNs (QP/CNs).The qualitative relations are expressed in terms of the derivatives that relatethe di�erent values of the variables together. If A has possible values fa1; a2; a3gand C has possible values f1; 2g, then the relationship between the probability ofa1 and the probability of 1 is spei�ed by the derivative: � Pr(1)=� Pr(a1) thusthe qualitative relationship between the probability of a1 and the probability of 1is spei�ed by [� Pr(1)=� Pr(a1)℄ where the square brakets denote that it is thequalitative value of the quantity that we are interested in. This means that weonly take note of whether it is positive, whih we denote by [+℄, negative, whih wedenote by [�℄ or is zero, whih we denote by [0℄. Then, if we write the qualitativehange in the probability of A taking value a1 as [�Pr(a1)℄ we have�:[�Pr(1)℄ = � � Pr(1)� Pr(a1)�
 [�Pr(a1)℄ (1)whih allows us to propagate hanges in probability aross inuenes between vari-ables. All of this begs the question of how we determine what the qualitativeinuene between variables is, and it turns out9 that:�Note that while this expression is orret for qualitative values, it is a linear approximation forexat numerial values.
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batteryoldbatterygood batteryokradiook lightsok
batteryharging
alternatorok[�℄ [+℄[+℄ [+℄[+℄[+℄Fig. 2. Part of a ar diagnosis networkTheorem 1 The qualitative derivative:� � Pr(1)� Pr(a1)�relating the probability of C taking value 1 to the probability of A taking value a1has the value [+℄, if, for all a2 and X:Pr(1 ja1; X) > Pr(1 ja2; X)Derivatives with values [�℄ and [0℄ are obtained by replaing > with < and =. Ifa derivative annot be determined to be [+℄, [�℄, or [0℄, then it takes the value[?℄. QCNs with possibilisti or Dempster-Shafer belief semantis handle hanges invalue in a similar way9.The impat of evidene on a given node an be alulated by taking the sign ofthe hange in value at the evidene node and multiplying it by the sign of everylink in the sequene that onnets it to the node of interest. To see how this works,onsider the example5 in Figure 2 in whih the value labeling eah ar is the valueof the qualitative derivative linking the probabilities of the events represented bythe nodes at the end of the ar. If we observe that the radio is dead, so that theprobability of the radio being ok dereases, [�Pr(radio ok)℄ = [�℄, and we want toknow the impat of this on the probability of the battery being good we alulatethe e�et as [�℄
 [+℄
 [+℄. With the de�nition of sign multipliation 
 in Table 1this gives a hange in Pr(battery good) of [�℄. If we also observed that the lightswere not ok, and wanted to assess the impat of both piees of evidene on theprobability that the battery was good, we would establish the two individual e�etsand sum them using � (Table 1).Desribed in these terms, QP/CNs are essentially equivalent to QPNs, the onlydi�erene being that the relation between two variables is desribed by a singlequalitative value in a QPN and by a set of qualitative values in a QP/CN. However,QP/CNs an go somewhat further. In partiular, we an desribe the propagation



Qualitative probability and order of magnitude reasoning 4of values in terms of \separable" derivatives9 where the e�et of a hange in theprobability of one value of A on the probability of a value of C is alulated withoutonsidering its e�ets on the other values of A. We denote the qualitative separablequalitative derivative relating Pr(1) and Pr(a1) by:� �s Pr(1)�s Pr(a1)�Previously9 little use has been made of qualitative separable derivatives sine theirvalue is always [+℄, but in this paper they are key. The reason for this is that if welook at the quantitative value of separable derivative, we �nd that:Theorem 2 The separable derivative:�s Pr(1)�s Pr(a1)relating the probability of C taking value 1 to the probability of A taking value a1,without taking other Pr(ai), i 6= 1 into aount, has the value Pr(1 ja1).The theorem follows diretly from the value of the qualitative separable derivativerelating the two quantities9. We also havey:�Pr(1) = �s Pr(1)�s Pr(a1) :�Pr(a1) + �s Pr(1)�s Pr(a2) :�Pr(a2) + �s Pr(1)�s Pr(a3) :�Pr(a3) (2)3. Over-abstrationThe degree of abstration in both QPNs and QCNs leads to situations in whihertain hanges may only be determined as [?℄ despite the presene of informationthat allows more preise inferenes to be made. One way in whih this an our iswhen a [+℄ and a [�℄ are ombined using �, and several authors have investiagtedways to takle this problem, whih is known as \tradeo� resolution"15;16;17. Aseparate problem, whih we will all \over-abstration", is that for a broad lassof networks there are values of C for whih it is not possible to predit the e�etof a hange in the probability of a given value of A using Theorem 1 beause thevalues of the onditional probabilities are suh that the derivative whih links thetwo has value [?℄. This problem has addressed by Renooij and van der Gaag18, forthe situation of over-abstration in QPNs, essentially by reasoning about individualvalues in the same way as in a QCN. The remainder of this paper looks at analternative approah to handling over-abstration whih is equally appliable toQCNs and QPNs and goes somewhat further than Renooij and van der Gaag.In some of these ases, it is possible to resolve this over-abstration by usingorder-of-magnitude reasoning about the values of separable derivatives. As an ex-yNote that this expression is exat, unlike the ase for the partial derivatives



Qualitative probability and order of magnitude reasoning 5amplez, onsider a link from C to A in whih it is known that:Pr(1 ja1)� Pr(1 ja2) Pr(1 ja3) � Pr(1 ja2)where� indiates a di�erene of at least an order of magnitude. Information aboutthe prior values is also available:Pr(a3) � Pr(a2) Pr(a3)� Pr(a1) Pr(a1) � 1In this situation applying Theorem 1 gives:� � Pr(1)� Pr(a2)� = [?℄ �� Pr(1)� Pr(a3)� = [?℄ � � Pr(1)� Pr(a1)� = [�℄When we apply (1), we �nd that if there is an inrease in Pr(a1) then [�Pr(1)℄ =[�℄ but if Pr(a2) or Pr(a3) inreases, then [�Pr(1)℄ = [?℄.These ambiguous inferenes an be resolved in some situations by using orderof magnitude about the separable derivatives. From Theorem 2 we know that:�s Pr(1)�s Pr(a1) � �s Pr(1)�s Pr(a2) �s Pr(1)�s Pr(a3) � �s Pr(1)�s Pr(a2)Consider that we �nd out that Pr(a2) has beome 1, meaning that Pr(a1) andPr(a3) have beome 0. Bearing the priors in mind:j�Pr(a3)j � j�Pr(a2)j � j�Pr(a1)jThus when we ompare the magnitudes of the terms in (2) to establish the hangein line fault probability for a delayed alarm, the seond term dominates and wehave �Pr(1) = [+℄.Handling this kind of reasoning formally is preisely what order of magnitudesystems are intended to do, and the rest of this paper is onerned with formalizingvariations of the above argument using one partiular system of order of magnitudereasoning.4. Order of magnitude reasoningThere are a number of systems whih have been proposed for formal order ofmagnitude reasoning21. Of the initial proposals for order of magnitude reasoning,perhaps the most intuitively appealing is Raiman's system FOG22 whih makes itpossible to represent and reason with information suh as \Q1 is negligible withrespet to Q2" and \Q1 is of the same order of magniture as Q2". This style ofreasoning was later re�ned by Dague in his system ROM[K℄8. ROM[K℄ gives fourpossible ways of expressing a relation between quantities: Q1 is negligible wrt Q2,Q1 � Q2, Q1 is distant from Q2, Q1 6' Q2, Q1 is omparable to Q2, Q1 � Q2, andzThis example is taken from previous work on a diagnosis system for eletriity distributionnetworks19;20.



Qualitative probability and order of magnitude reasoning 6(A1) A � A(A2) A � B ! B � A(A3) A � B;B � C ! A � C(A4) A � B ! B � A(A5) A � B;B � C ! A � C(A6) A � B ! A � B(A7) A � B ! C:A � C:B(A8) A � B ! C:A � C:B(A9) A � 1! [A℄ = [+℄(A10) A� B $ B � (B +A)(A11) A� B;B � C ! A� C(A12) A � B; [C℄ = [A℄! (A+ C) � (B + C)(A13) A � B; [C℄ = [A℄! (A+ C) � (B + C)(A14) A � (A+A)(A15) A 6' B $ (A�B) � A or (B �A) � B(P3) A� B ! C:A� C:B(P11) A� B;B � C ! A� C(P35) A 6' B ! C:A 6' C:B(P38) A 6' B;C � A;D � B ! C 6' DTable 3. Some of the axioms and properties of ROM[K℄.Q1 is lose to Q2, Q1 � Q2. We also write Q1 � Q2 to indiate Q2 � Q1. Onethe relation between pairs of quantities is spei�ed, it is possible to dedue newrelations by applying the axioms and properties of ROM[K℄.It should be noted that ROM[K℄ is a general sheme for arrying out order ofmagnitude reasoning, and the set of axioms in Table 3 are a minimal set whihapture the properties of the set of relations. (The table also ontains some of theproperties whih may be derived from these axioms, and whih are used in thispaper.) However, beause of this generality, it is perfetly possible to use ROM[K℄to reason about probability values. Indeed it has already been applied to tradeo�resolution16.4.1. A proedure for resolving overabstrationThe �rst step in the appliation of order of magnitude tehniques is to obtaina result for any variation of the problem we started with. Suh a result will makeit possible to alulate the sign of any qualitative hange in a probability Pr(1)given:1. order of magnitude information about the onditionals Pr(1 jaj) whih relateit to the node A whih inuenes it; and2. order of magnitude information about hanges in the values of the Pr(aj).Thus, given initial information:�s Pr(1)�s Pr(a1) rel1 �s Pr(1)�s Pr(a2) rel2 �s Pr(1)�s Pr(a3) (3)



Qualitative probability and order of magnitude reasoning 7relb� � 6' � �� � � 6' � �� � � U � �rela 6' 6' U U U U� � � U � U� � � U U �Table 4. How to establish rel (Theorem 3).�Pr(a1) rel3 �Pr(a2) rel4 �Pr(a3) (4)where reli 2 f�;�; 6';�;�g, we an use the following proedure. Note thatthroughout this proedure we are only interested in the absolute values of quantitiessine the signs are taken into aount by the fat that we are looking to determinethe overall sign of:�s Pr(1)�s Pr(a1) :�Pr(a1)� �s Pr(1)�s Pr(a2) :�Pr(a2) + �s Pr(1)�s Pr(a3) :�Pr(a3)in other words the ase in whih Pr(a1) and Pr(a3) inrease, and Pr(a2) dereases.The results of all other ases involving three values an be established from thisase by symmetry.Step 1 Establish the relations between the produts of separable derivative andhange: �s Pr(1)�s Pr(a1) :�Pr(a1) rel5 �s Pr(1)�s Pr(a2) :�Pr(a2)�s Pr(1)�s Pr(a2) :�Pr(a2) rel6 �s Pr(1)�s Pr(a3) :�Pr(a3)using the following result:Theorem 3 Given �s Pr(x)�s Pr(y) rela �s Pr(w)�s Pr(z)and �Pr(y) relb �Pr(z)where rela, relb 2 f�;�; 6';�;�g, then the relation rel that holds between:�s Pr(x)�s Pr(y) :�Pr(y)and �s Pr(w)�s Pr(z) :�Pr(z)is given by Table 4. U indiates that the relation may not be established.



Qualitative probability and order of magnitude reasoning 8rele� � 6' � �� � 6' �;�� � �� � U �;�� � �reld 6' �; Uy �; Uy �;�z �;�y 6'� U U � � �� � � �;�� � �Table 5. How to establish relf (Theorem 4).Step 2 From the result of the �rst step, establish the relationship between oneprodut and the absolute value of the di�erene between the others:�s Pr(1)�s Pr(a1) :�Pr(a1) rel7��s Pr(1)�s Pr(a2) :�Pr(a2)� �s Pr(1)�s Pr(a3) :�Pr(a3)�using Theorem 4.Theorem 4 Given:�s Pr(1)�s Pr(a1) :�Pr(a1) reld �s Pr(1)�s Pr(a2) :�Pr(a2)�s Pr(1)�s Pr(a2) :�Pr(a2) rele �s Pr(1)�s Pr(a3) :�Pr(a3)then the relation relf suh that:�s Pr(1)�s Pr(a1) :�Pr(a1) relf � �s Pr(1)�s Pr(a2) :�Pr(a2)� �s Pr(1)�s Pr(a3) :�Pr(a3)�is given by Table 5 where � indiates that the �rst relation holds if:�s Pr(1)�s Pr(a2) :�Pr(a2) > �s Pr(1)�s Pr(a3) :�Pr(a3)and the seond holds otherwise, y indiates that the �rst relation holds if:�s Pr(1)�s Pr(a1) :�Pr(a1) > �s Pr(1)�s Pr(a2) :�Pr(a2)and the seond holds otherwise, and z indiates that the �rst relation holds if x:�s Pr(1)�s Pr(a1) :�Pr(a1) < �s Pr(1)�s Pr(a2) :�Pr(a2)and the seond holds if�s Pr(1)�s Pr(a1) :�Pr(a1) > �s Pr(1)�s Pr(a2) :�Pr(a2) > �s Pr(1)�s Pr(a3) :�Pr(a3)otherwise no relation an be established. U indiates that the relation may not beestablishedxSine all the relations are 6', we don't have to worry about the ase in whih the quantities areequal.



Qualitative probability and order of magnitude reasoning 9Step 3 From the result of the previous step, establish the sign of:�s Pr(1)�s Pr(a1) :�Pr(a1)� �s Pr(1)�s Pr(a2) :�Pr(a2) + �s Pr(1)�s Pr(a3) :�Pr(a3)using Theorem 5.Theorem 5 Given:�s Pr(1)�s Pr(a1) :�Pr(a1) relg ��s Pr(1)�s Pr(a2) :�Pr(a2)� �s Pr(1)�s Pr(a3) :�Pr(a3)�the sign of:�s Pr(1)�s Pr(a1) :�Pr(a1)� �s Pr(1)�s Pr(a2) :�Pr(a2) + �s Pr(1)�s Pr(a3) :�Pr(a3)is [+℄ if relg is � or if relg is � and�s Pr(1)�s Pr(a2) :�Pr(a2) � �s Pr(1)�s Pr(a3) :�Pr(a3)The sign is [�℄ if relg is � and�s Pr(1)�s Pr(a2) :�Pr(a2) > �s Pr(1)�s Pr(a3) :�Pr(a3)Otherwise the sign is [?℄.This three step proess makes it possible to determine the sign of the hange ata three-valued node from relative order of magnitude information. Of ourse thisonly works for the ase in whih �Pr(a1) and �Pr(a3) are in one diretion and�Pr(a2) is in the opposite diretion. If this is not the ase, we will require initialinformation other than that in (3) and (4). For instane, if �Pr(a3) dereases whileand �Pr(a1) and �Pr(a2) inrease, then we will need to know:�s Pr(1)�s Pr(a1) rel1 �s Pr(1)�s Pr(a3) rel2 �s Pr(1)�s Pr(a2)and �Pr(a1) rel3 �Pr(a3) rel4 �Pr(a2)rather than (3) and (4) to apply the proedure.4.2. Handling more than three valuesClearly it would be useful to have a method for �nding the hange at nodes withmore than three values, and it turns out that suh a method may be obtained byapplying Theorem 4 reursively. Consider the extension of the ase we have been



Qualitative probability and order of magnitude reasoning 10dealing with to that in whih A has four possible values a1; : : : a4. There are thusfour hanges in probability and four separable derivatives:�Pr(a1); : : : ;�Pr(a4) �s Pr(1)�s Pr(a1) ; : : : ; �s Pr(1)�s Pr(a4)to take into aount. We an, as before, apply Theorem 3 to obtain the relativeorders of magnitude of the produts of hange and derivative suh as:�s Pr(1)�s Pr(a1) :�Pr(a1) rel1 �s Pr(1)�s Pr(a2) :�Pr(a2) (5)�s Pr(1)�s Pr(a2) :�Pr(a2) rel2 �s Pr(1)�s Pr(a3) :�Pr(a3) (6)�s Pr(1)�s Pr(a4) :�Pr(a4) rel3 �s Pr(1)�s Pr(a2) :�Pr(a2) (7)Then, writing:X for �s Pr(1)�s Pr(a1) :�Pr(a1) Y for �s Pr(1)�s Pr(a2) :�Pr(a2)Z for �s Pr(1)�s Pr(a3) :�Pr(a3) W for �s Pr(1)�s Pr(a4) :�Pr(a4)Theorem 4 an be applied to give us:X rel4 Y � Z W rel5 Y � Z (8)reversing the relation in the last equation, and applying Theorem 4 again will giveus X rel6 Y � (Z +W ) from whih Theorem 5 will give us: [X � Y + Z +W ℄. Ifinstead we require the sign of one produt minus the other three, we need to useTheorem 4 to give W rel50 Z�Y instead of (8). The former an then be re-writtenas �W rel500 Y �Z and Theorem 4 applied again to give: X rel6 Y � (Z�W ) fromwhih from whih Theorem 5 will give us: [X � Y + Z �W ℄.Thus the problem for four values of A is solved. Clearly Theorem 4 ould beapplied again to allow us to handle �ve or more possible values of A, and so we havea general proedure. Equally learly, in order to apply this proedure we need tohave a spei� set of relations between hanges and derivatives|in other words ifwe did not have the information about the relative magnitudes of produts in (5){(7) we would not be able to obtain the relationship between X and Y � (W + Z).However, I don't think that this is unreasonable. What we have is a method forinferring those order of magnitude relations whih follow from what is known. Ifsome relationship annot be established from what is known, then it follows thatthe available information is insuÆient to allow onlusions to be drawn.5. DisussionThe previous setion has shown how ROM[K℄ an be used to resolve overab-stration in qualitative probabilisti reasoning. Like the only previous work on



Qualitative probability and order of magnitude reasoning 11this topi|Renooij and van der Gaag's use of \provoking variables" to resolvenonmonotoni inuenes18|the work presented here does not resolve the overab-stration one and for all. Instead, the method works for a spei� set of hangesin probability, and so the resolution of overabstration must be arried out everytime that probabilities are propagated. This obviously adds to the omputationalomplexity of propagation algorithms for QPNs1 and QCNs9.However, this inrease in omplexity need not be great. The propagation algo-rithm for QP/CNs9 has a time omplexity that is linear in the number of nodesin the network and quadrati in the number of values of the variables representedby the nodes, and a spae omplexity whih is quadrati in both. The algorithmtraks both the qualitative values of the hanges in probability at eah node and thederivatives that orrespond to ars between nodes, and the datastrutures whihhold information ould easily be extended to hold the relative orders of magnitudeof the hanges and derivatives. Given this information, it is omputationally simpleto arry out the proedure given in the previous setion, sine that proedure anbe redued to a look-up. Adding this omputation to the standard propagationalgorithm will inrease the time omplexity of omputations at a given node, butwill not a�et the overall linear omplexity in the number of nodes{.Of ourse, the proedure disussed here will not ompletely solve the problemof overabstration. Indeed, all it will do is to provide a means of resolving it insome spei� ases. However, as in all appliations of qualitative reasoning, giventhe fat that reduing overabstration is a very hard problem to solve, any methodwhih helps to redue the number of [?℄ values that are generated has a usefulrole to play. Furthermore the method introdued here has the advantage of beingappliable in a wider range of situations than previous work on the topi18|Renooijand van der Gaag's approah, while similar in spirit, would not be able to handlethe example we have been disussing.6. Summary and future workThe main results of this paper are to show that order of magnitude reasoningan be used to resolve overabstration in qualitative probabilitisti reasoning, andto give formal results that allow this resolution. This work is far from being the�nal word on the subjet, but does go further in resolving overabstration thanany similar work. There are two points whih should be made about the methodpresented in this paper.First, the generality of the QCN framework means that the results an be ap-{The linear time omplexity of the existing QP/CN algorithm omes from the fat that eah nodean hange value just twie, from an initial value of [0℄ to [+℄ or [�℄ and then to [?℄. Given nnodes, eah with m values, if eah node hanges value twie then there are 2mn omputations,eah involving m multipliations and m additions9. The method desribed in this paper augmentsthe additions and multipliations with look-ups, and the number of look-ups required will growexponentially in m as we have to iterate appliations of Theorem 4. Thus the approah will belinear in n and exponential in m. This makes the method tratable provided that the number ofvalues of the variables modelled in the underlying network is omparatively small.



Qualitative probability and order of magnitude reasoning 12plied to resolve indeterminate values when qualitative versions of possibility andDempster-Shafer theories are used|there is nothing in the tehnique whih makesit spei� to probability. Seond, it should be noted that the method is heuristi.As with other order of magnitude tehniques, there is a trade-o� between drawingsafe onlusions whih are orret but unhelpful and drawing more aggressive on-lusions whih are more useful but whih an be wrong. In the ase of the tehniqueemployed here, the trade-o� emerges from the mapping from numerial values toROM[K℄ relations. The more aggressive the mapping|the more small relative dif-ferenes are mapped in to �, � and 6' relations|the more the ambiguity that anbe resolved, but also the larger the hane of an error. Conversely, the more thatthe mappings are made safe|the more that large relative di�erenes are mappedinto � and � relations|the less the ambiguity an be resolved, but the safer theonlusions are guaranteed to be. The third point is related to this. When theapproah onludes that the hange is [?℄ it does not represent a failure, but theonlusion that it is not safe to make any more preise inferene about the hange.Seond, there is an obvious diretion in whih this work ould usefully be ex-tended, leading on from the observation that in this paper the information whihis taken as input to the system is provided diretly in order of magnitude terms, asROM[K℄ relations. While this seems reasonable for some sets of quantities, it avoidsthe question of how one gets the relations in the �rst plae|what mappings fromnumbers to relations are appropriate? Providing maximally safe mappings is thegoal of future researh, and seem likely to make use of Dague's system ROM[<℄23whih permits numerial order of magnitude reasoning.AknowledgmentsThis work was partially supported by EPSRC grant GR/L84117. The authoris very grateful to the anonymous reviewers, espeially one who took the time toexamine the proofs in great detail making omments that orreted a number ofmistakes and led to a omsiderable strengthening of the results.Referenes1. M. J. Druzdzel and M. Henrion. EÆient propagation in qualitative probabilistinetworks. In Proeedings of the 11th National Conferene on Arti�ial Intelligene,1993.2. M. P. Wellman. Formulation of tradeo�s in planning under unertainty. Pitman,London, 1990.3. M. Henrion and M. J. Druzdzel. Qualitative propagation and senario-based ap-proahes to explanation of probabilisti reasoning. In Proeedings of the 6th Confer-ene on Unertainty in Arti�ial Intelligene, 1990.4. A. Darwihe and M. Goldszmidt. On the relation between kappa alulus and proba-bilisti reasoning. In Proeedings of the 10th Conferene on Unertainty in Arti�ialIntelligene, 1994.5. M. Henrion, G. Provan, B. Del Favero, and G. Sanders. An experimental omparisonof numerial and qualitative probabilisti reasoning. In Proeedings of the 10th
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Qualitative probability and order of magnitude reasoning 14Appendix: Proofs of theoremsProof of Theorem 3: To establish the relative magnitude of the produts weproeed on a ase-by-ase basis, starting at the top lefthand orner of Table andworking aross, bearing in mind that the ombination is symmetri with respet tothe diagonal from top left to bottom right, and that all results involving� may beobtained by symmetry from those for �.(i) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we �rst applyA7 to eah of the initial expressions to get:�s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(y) �s Pr(w)�s Pr(z) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(z)then we apply A3 to these two to get:�s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(z)whih is the required result.(ii) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we applybroadly the same proedure as in (i), using A6 to get � from �.(iii) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) 6' �Pr(z), we applyP35 to get: �s Pr(x)�s Pr(y) :�Pr(y) 6' �s Pr(x)�s Pr(y) :�Pr(z)while as before A7 gives:�s Pr(x)�s Pr(y) :�Pr(z) � �s Pr(w)�s Pr(z) :�Pr(z)sine A1 tells us that: �s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(x)�s Pr(y) :�Pr(y)and A2 that: �s Pr(w)�s Pr(z) :�Pr(z) � �s Pr(x)�s Pr(y) :�Pr(z)we an then apply P38 to these last three expressions to �nd that rel is 6'.(iv) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we �rstapply A7, as usual, to get:�s Pr(x)�s Pr(y) :�Pr(z) � �s Pr(w)�s Pr(z) :�Pr(z)and then A6 to get: �s Pr(x)�s Pr(y) :�Pr(z) � �s Pr(w)�s Pr(z) :�Pr(z)



Qualitative probability and order of magnitude reasoning 15Next we use P3 to obtain:�s Pr(x)�s Pr(y) :�Pr(y)� �s Pr(x)�s Pr(y) :�Pr(z)and ombining these latter two expressions using A11, we get the neessary result.(v) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we againproeed as in (i).(vi) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) 6' �Pr(z), we anapply P35 in the same way that we usually apply A7, A8 and P11 to obtain:�s Pr(w)�s Pr(z) :�Pr(y) 6' �s Pr(w)�s Pr(z) :�Pr(z)and A8 to obtain: �s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(y)However, ROM[K℄ deliberately does not allow � to be ombined with 6' so thatwe annot apply the usual method to establish a relation between the produts.Beause of this we annot obtain a result for this ase.(vii) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y)� �Pr(z), we proeedas in (iv).(viii) For �s Pr(x)=Pr(y) 6' �s Pr(w)=�s Pr(z) and �Pr(y) 6' �Pr(z), we an applyP35 in the same way that we usually apply A7, A8 and P11 to obtain:�s Pr(w)�s Pr(z) :�Pr(y) 6' �s Pr(w)�s Pr(z) :�Pr(z) �s Pr(x)�s Pr(y) :�Pr(y) 6' �s Pr(w)�s Pr(z) :�Pr(y)However, 6' is deliberately not transitive so that we annot apply the usual methodto establish a relation between the produts. Beause of this we annot obtain aresult for this ase.(ix) For �s Pr(x) Pr(y) 6' �s Pr(w)=�s Pr(z) and �Pr(y)� �Pr(z), we have muhthe same problem as in the previous ase in that we annot hain 6' with �.(x) For �s Pr(x) Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we apply P3twie to obtain:�s Pr(x)�s Pr(y) :�Pr(y)� �s Pr(w)�s Pr(z) :�Pr(y) �s Pr(w)�s Pr(z) :�Pr(y)� �s Pr(w)�s Pr(z) :�Pr(z)and then P11 to obtain:�s Pr(x)�s Pr(y) :�Pr(y)� �s Pr(w)�s Pr(z) :�Pr(z)as required. All other results follow by symmetry. 2Proof of Theorem 4 There are two ways of proving this theorem. One is toproeed at the objet level of ROM[K℄, in the same way that the previous proofs was



Qualitative probability and order of magnitude reasoning 16obtained, using results suh as to establish relationships between one produt andthe di�erene of the others. A somewhat shorter proof an be obtained by reasoningat the meta-level|this is what we provide here. Here, there are 25 separate ases.(i) reld is � and rele is �. The result of the subtration may be positive or negative,but its absolute value will be negligible with respet to �s Pr(1)=�s Pr(a1):�Pr(a1).Thus relf is �.(ii) reld is � and rele is �. The absolute value of the subtration will be quite a lotsmaller than the minuend. Thus relf is 6'.(iii) reld is � and rele is 6'. If�s Pr(1)�s Pr(a2) :�Pr(a2) > �s Pr(1)�s Pr(a3) :�Pr(a3)then the result of the subtration is positive, and omparable to the value of theminuend. Sine the minuend is lose in value to �s Pr(1)=�s Pr(a1):�Pr(a1), theorret relation between the latter and the result of the subtration is �. If theondition does not hold, then the result of the subtration is negative and negligiblewith respet to that of the minuend. Thus the relation between the absolute valueof the result of the subtration and �s Pr(1)=�s Pr(a1):�Pr(a1) is �.(iv) reld is � and rele is �. The result of the subtration is negative and ofalmost the same absolute value as �s Pr(1)=�s Pr(a3):�Pr(a3). Thus, �s Pr(1)=�s Pr(a1):�Pr(a1) is negligible with respet to this absolute value and relf is �.(v) reld is � and rele is �. Sine rele is �, the subtration will have negligiblee�et on �s Pr(1)=�s Pr(a2):�Pr(a32), and so relf will just be �.(vi) reld is � and rele is �. The absolute value of result of the subtration willbe negligible with respet to the absolute value of either quantity involved in thesubtration. Sine the value of �s Pr(1)=�s Pr(a1):�Pr(a1) is lose to that of�s Pr(1)=�s Pr(a2):�Pr(a2), it will be muh greater than the absolute value ofthe result of the subtration, and relf will therefore be �.(vii) reld is � and rele is �. A similar argument to that in (ii) applies, but beausereld is � rather than � we an draw no onlusions about relf .(viii) reld is � and rele is 6'. A similar argument to that in (iii) applies, and theresult is the same.(ix) reld is � and rele is �. A similar argument to that in (iv) gives the onlusionthat relf is �.(x) reld is � and rele is �. A similar argument to that in (v) gives the onlusionthat relf is �.(xi) reld is 6' and rele is �. The absolute value of the subtration is going tobe negligible with respet to the minuend and thus negligible with respet to theabsolute value of �s Pr(1)=�s Pr(a2):�Pr(a2). Thus relf is � so long as:�s Pr(1)�s Pr(a1) :�Pr(a1) > �s Pr(1)�s Pr(a2) :�Pr(a2)If not, then �s Pr(1)=�s Pr(a1):�Pr(a1) might be of omparable size to the resultof the subtration and no onlusion an be drawn about relf .



Qualitative probability and order of magnitude reasoning 17(xii) reld is 6' and rele is �. A similar argument to that in (xi) applies giving thesame result.(xiii) reld is 6' and rele is 6'. If�s Pr(1)�s Pr(a2) :�Pr(a2) < �s Pr(1)�s Pr(a3) :�Pr(a3) (9)the result of the subtration is negative and has an absolute value muh larger thanthe minuend. If, in addition,�s Pr(1)�s Pr(a1) :�Pr(a1) < �s Pr(1)�s Pr(a2) :�Pr(a2)we know that �s Pr(1)=�s Pr(a1):�Pr(a1) will be negligible with respet to theabsolute value of the result of the subtration, and an onlude that relf is �. Ifthe seond ondition does not hold, then we annot establish relf . If (9) does nothold then the result of the subtration is positive and omparable to the value ofthe minuend. Sine the minuend is far in value from �s Pr(1)=�s Pr(a1):�Pr(a1),then if �s Pr(1)�s Pr(a1) :�Pr(a1) > �s Pr(1)�s Pr(a2) :�Pr(a2)we an onlude that relf is �, while if this inequality is reversed, then relf is �.(xiv) reld is 6' and rele is �. The result of the subtration is negative and muhbigger than the absolute value of �s Pr(1)=�s Pr(a2):�Pr(a2). If:�s Pr(1)�s Pr(a1) :�Pr(a1) > �s Pr(1)�s Pr(a2) :�Pr(a2)Then the �s Pr(1)=�s Pr(a1):�Pr(a1) will have the a similar absolute value to theresult of the subtration and relf will be �. If:�s Pr(1)�s Pr(a1) :�Pr(a1) < �s Pr(1)�s Pr(a2) :�Pr(a2)then �s Pr(1)=�s Pr(a1):�Pr(a1) will be negligible with respet to the result of thesubtration, and relf will be 6'.(xv) reld is 6' and rele is �. A similar argument to that for (v) means that relf is6'.(xvi) reld is � and rele is �. This time the result of the subtration is negligiblewith respet to �s Pr(1)=�s Pr(a2):�Pr(a2), and so it is impossible to say whatrelf is.(xvii) reld is � and rele is �. A similar argument to that in (xvi) applies, and it isimpossible to say what relf is.(xviii) reld is � and rele is 6'. If:�s Pr(1)�s Pr(a2) :�Pr(a2) > �s Pr(1)�s Pr(a3) :�Pr(a3)



Qualitative probability and order of magnitude reasoning 18then the result of the subtration is positive and omparable to the value of theminuend. Sine (�s Pr(1)=�s Pr(a1)):�Pr(a1) is negligible with respet to the min-uend, relf is �. If, on the other hand:�s Pr(1)�s Pr(a2) :�Pr(a2) < �s Pr(1)�s Pr(a3) :�Pr(a3)then the result of the subtration is negative and muh larger than the minuend.Sine we are only interested in the absolute value, this means that relf is �.(xix) reld is� and rele is�. This time the result of the subtration is negative, andits absolute value is negligible with respet to �s Pr(1)=�s Pr(a3):�Pr(a3). Thusrelf is �.(xx) reld is � and rele is �. A similar argument to that for (v) means that relf is�.(xxi) reld is � and rele is �. The result of the subtration will have an absolutevalue negligible with respet to the minuend whih itself is negligible with respetto �s Pr(1)=�s Pr(a1):�Pr(a1), and so relf is �(xxii) reld is � and rele is �. A similar argument to that in (xxi) applies.(xxiii) reld is � and rele is 6'. Reasoning as in (xviii), if:�s Pr(1)�s Pr(a2) :�Pr(a2) > �s Pr(1)�s Pr(a3) :�Pr(a3)then the result of the subtration is positive and omparable to the value of theminuend. Sine the minuend is negligible with respet to (�s Pr(1)=�s Pr(a1)):�Pr(a1) relf is �. If, on the other hand:�s Pr(1)�s Pr(a2) :�Pr(a2) < �s Pr(1)�s Pr(a3) :�Pr(a3)then the result of the subtration is negative and muh larger than the minuend.Sine we are only interested in the absolute value, this means that relf is �.(xxiv) reld is � and rele is �. The result of the subtration will be negative andhave almost the same absolute value as the subtrahend. Thus �s Pr(1)=�s Pr(a2):�Pr(a2) will be negligible with respet both to the result and �s Pr(1)=�s Pr(a1):�Pr(a1), and the two latter quantities will be omparable. Thus relf is �.(xxv) reld is � and rele is �. A similar argument to that for (v) means that relfis �.Proof of Theorem 5: If relg is � then the result follows immediately. If relg is� then the sign is [+℄ provided that that�s Pr(1)�s Pr(a2) :�Pr(a2) < �s Pr(1)�s Pr(a3) :�Pr(a3)so that the braketed term is positive. If not, then the sign is [�℄. In all other asesthe result is too lose to predit and the sign is [?℄. 2


