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QUALITATIVE PROBABILITY AND ORDER OF MAGNITUDEREASONINGSIMON PARSONSDepartment of Computer and Information S
ien
e, Brooklyn College,2900 Bedford Avenue, Brooklyn, NY 11210, USA.Re
eived (November 1998)Revised (November 2002)In re
ent years there has been a spate of papers des
ribing systems for probabilisti
reasoning whi
h do not use numeri
al probabilities. In some 
ases these systems areunable to make any useful inferen
es be
ause they deal with 
hanges in probability attoo high a level of abstra
tion. This paper dis
usses one of the problems this level ofabstra
tion 
an 
ause, and shows how the use of a te
hnique for order of magnitudereasoning 
an redu
e its impa
t.Keywords: Qualitative probability, order of magnitude reasoning.1. Introdu
tionIn the past few years there has been a good deal of interest in qualitative ap-proa
hes to reasoning under un
ertainty|approa
hes whi
h do not make use ofpre
ise numeri
al values. Qualitative abstra
tions of probabilisti
 networks1;2, inparti
ular, have proved popular, �nding use in areas in whi
h the full numeri
al for-malism is either not ne
essary or not appropriate. Appli
ations have been reportedin explanation3, diagnosis4;5, engineering design6, and planning2.Whereas in most probabilisti
 systems the main goal is to establish what theprobabilities of hypotheses are when parti
ular observations are made, in qualitativeprobabilisti
 networks2 (QPNs) the main aim is to establish how values 
hange.Sin
e the approa
h is qualitative, the size of the 
hanges are not the fo
us. It onlymatters whether a given 
hange is positive, written as [+℄, negative [�℄, or zero [0℄.Clearly this information is rather weak, but as the appli
ations show it is suÆ
ientfor some tasks. Furthermore, reasoning with qualitative probabilities is mu
h moreeÆ
ient than reasoning with pre
ise probabilities, sin
e 
omputation is quadrati
in the size of the network1, rather than NP-hard7.One of the stumbling blo
ks in applying QPNs more widely is that there aresituations in whi
h it is not possible to resolve the 
hanges that they handle withany pre
ision. In su
h 
ases the value of the 
hange remains unknown, and it iswritten as [?℄. Su
h values tend to multiply, redu
ing the useful 
on
lusions whi
h1
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 [+℄ [0℄ [�℄ [?℄[+℄ [+℄ [0℄ [�℄ [?℄[0℄ [0℄ [0℄ [0℄ [0℄[�℄ [�℄ [0℄ [+℄ [?℄[?℄ [?℄ [0℄ [?℄ [?℄ � [+℄ [0℄ [�℄ [?℄[+℄ [+℄ [+℄ [?℄ [?℄[0℄ [+℄ [0℄ [�℄ [?℄[�℄ [?℄ [�℄ [�℄ [?℄[?℄ [?℄ [?℄ [?℄ [?℄Table 1. Sign multipli
ation and addition.
an be obtained from a QPN. The aim of this paper is to investigate how te
hniquesfrom order of magnitude reasoning, in parti
ular Dague's system ROM[K℄8 
an beused to redu
e the proliferation of su
h [?℄ values.2. Qualitative 
ertainty networksIt is possible9;10 to generalize the approa
h provided by qualitative probabilis-ti
 networks to what are termed qualitative 
ertainty networks (QCNs). Usingthis approa
h it is possible to propagate qualitative probability, possibility11;12 andeviden
e theory13;14 in a uniform way.QCNs are built around the notion of in
uen
es between variables, where thein
uen
e may be given a probabilisti
 semanti
s, as in QPNs, or a semanti
s in termsof possibility or Dempster-Shafer theory. Formally, a QCN is a pair G = (V;Q),where V is a set of variables or nodes in the graph, represented by a 
apital letter,and Q is a set of sets of qualitative relations among the values of the variableswhi
h re
e
t the in
uen
es between the variables. In this paper we 
on
entrateupon QCNs in whi
h the in
uen
es, like the in
uen
es in QPNs, have a probabilisti
semanti
s. These are known as probabilisti
 QCNs (QP/CNs).The qualitative relations are expressed in terms of the derivatives that relatethe di�erent values of the variables together. If A has possible values fa1; a2; a3gand C has possible values f
1; 
2g, then the relationship between the probability ofa1 and the probability of 
1 is spe
i�ed by the derivative: � Pr(
1)=� Pr(a1) thusthe qualitative relationship between the probability of a1 and the probability of 
1is spe
i�ed by [� Pr(
1)=� Pr(a1)℄ where the square bra
kets denote that it is thequalitative value of the quantity that we are interested in. This means that weonly take note of whether it is positive, whi
h we denote by [+℄, negative, whi
h wedenote by [�℄ or is zero, whi
h we denote by [0℄. Then, if we write the qualitative
hange in the probability of A taking value a1 as [�Pr(a1)℄ we have�:[�Pr(
1)℄ = � � Pr(
1)� Pr(a1)�
 [�Pr(a1)℄ (1)whi
h allows us to propagate 
hanges in probability a
ross in
uen
es between vari-ables. All of this begs the question of how we determine what the qualitativein
uen
e between variables is, and it turns out9 that:�Note that while this expression is 
orre
t for qualitative values, it is a linear approximation forexa
t numeri
al values.
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batteryoldbatterygood batteryokradiook lightsok
battery
harging
alternatorok[�℄ [+℄[+℄ [+℄[+℄[+℄Fig. 2. Part of a 
ar diagnosis networkTheorem 1 The qualitative derivative:� � Pr(
1)� Pr(a1)�relating the probability of C taking value 
1 to the probability of A taking value a1has the value [+℄, if, for all a2 and X:Pr(
1 ja1; X) > Pr(
1 ja2; X)Derivatives with values [�℄ and [0℄ are obtained by repla
ing > with < and =. Ifa derivative 
annot be determined to be [+℄, [�℄, or [0℄, then it takes the value[?℄. QCNs with possibilisti
 or Dempster-Shafer belief semanti
s handle 
hanges invalue in a similar way9.The impa
t of eviden
e on a given node 
an be 
al
ulated by taking the sign ofthe 
hange in value at the eviden
e node and multiplying it by the sign of everylink in the sequen
e that 
onne
ts it to the node of interest. To see how this works,
onsider the example5 in Figure 2 in whi
h the value labeling ea
h ar
 is the valueof the qualitative derivative linking the probabilities of the events represented bythe nodes at the end of the ar
. If we observe that the radio is dead, so that theprobability of the radio being ok de
reases, [�Pr(radio ok)℄ = [�℄, and we want toknow the impa
t of this on the probability of the battery being good we 
al
ulatethe e�e
t as [�℄
 [+℄
 [+℄. With the de�nition of sign multipli
ation 
 in Table 1this gives a 
hange in Pr(battery good) of [�℄. If we also observed that the lightswere not ok, and wanted to assess the impa
t of both pie
es of eviden
e on theprobability that the battery was good, we would establish the two individual e�e
tsand sum them using � (Table 1).Des
ribed in these terms, QP/CNs are essentially equivalent to QPNs, the onlydi�eren
e being that the relation between two variables is des
ribed by a singlequalitative value in a QPN and by a set of qualitative values in a QP/CN. However,QP/CNs 
an go somewhat further. In parti
ular, we 
an des
ribe the propagation
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t of a 
hange in theprobability of one value of A on the probability of a value of C is 
al
ulated without
onsidering its e�e
ts on the other values of A. We denote the qualitative separablequalitative derivative relating Pr(
1) and Pr(a1) by:� �s Pr(
1)�s Pr(a1)�Previously9 little use has been made of qualitative separable derivatives sin
e theirvalue is always [+℄, but in this paper they are key. The reason for this is that if welook at the quantitative value of separable derivative, we �nd that:Theorem 2 The separable derivative:�s Pr(
1)�s Pr(a1)relating the probability of C taking value 
1 to the probability of A taking value a1,without taking other Pr(ai), i 6= 1 into a

ount, has the value Pr(
1 ja1).The theorem follows dire
tly from the value of the qualitative separable derivativerelating the two quantities9. We also havey:�Pr(
1) = �s Pr(
1)�s Pr(a1) :�Pr(a1) + �s Pr(
1)�s Pr(a2) :�Pr(a2) + �s Pr(
1)�s Pr(a3) :�Pr(a3) (2)3. Over-abstra
tionThe degree of abstra
tion in both QPNs and QCNs leads to situations in whi
h
ertain 
hanges may only be determined as [?℄ despite the presen
e of informationthat allows more pre
ise inferen
es to be made. One way in whi
h this 
an o

ur iswhen a [+℄ and a [�℄ are 
ombined using �, and several authors have investiagtedways to ta
kle this problem, whi
h is known as \tradeo� resolution"15;16;17. Aseparate problem, whi
h we will 
all \over-abstra
tion", is that for a broad 
lassof networks there are values of C for whi
h it is not possible to predi
t the e�e
tof a 
hange in the probability of a given value of A using Theorem 1 be
ause thevalues of the 
onditional probabilities are su
h that the derivative whi
h links thetwo has value [?℄. This problem has addressed by Renooij and van der Gaag18, forthe situation of over-abstra
tion in QPNs, essentially by reasoning about individualvalues in the same way as in a QCN. The remainder of this paper looks at analternative approa
h to handling over-abstra
tion whi
h is equally appli
able toQCNs and QPNs and goes somewhat further than Renooij and van der Gaag.In some of these 
ases, it is possible to resolve this over-abstra
tion by usingorder-of-magnitude reasoning about the values of separable derivatives. As an ex-yNote that this expression is exa
t, unlike the 
ase for the partial derivatives
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onsider a link from C to A in whi
h it is known that:Pr(
1 ja1)� Pr(
1 ja2) Pr(
1 ja3) � Pr(
1 ja2)where� indi
ates a di�eren
e of at least an order of magnitude. Information aboutthe prior values is also available:Pr(a3) � Pr(a2) Pr(a3)� Pr(a1) Pr(a1) � 1In this situation applying Theorem 1 gives:� � Pr(
1)� Pr(a2)� = [?℄ �� Pr(
1)� Pr(a3)� = [?℄ � � Pr(
1)� Pr(a1)� = [�℄When we apply (1), we �nd that if there is an in
rease in Pr(a1) then [�Pr(
1)℄ =[�℄ but if Pr(a2) or Pr(a3) in
reases, then [�Pr(
1)℄ = [?℄.These ambiguous inferen
es 
an be resolved in some situations by using orderof magnitude about the separable derivatives. From Theorem 2 we know that:�s Pr(
1)�s Pr(a1) � �s Pr(
1)�s Pr(a2) �s Pr(
1)�s Pr(a3) � �s Pr(
1)�s Pr(a2)Consider that we �nd out that Pr(a2) has be
ome 1, meaning that Pr(a1) andPr(a3) have be
ome 0. Bearing the priors in mind:j�Pr(a3)j � j�Pr(a2)j � j�Pr(a1)jThus when we 
ompare the magnitudes of the terms in (2) to establish the 
hangein line fault probability for a delayed alarm, the se
ond term dominates and wehave �Pr(
1) = [+℄.Handling this kind of reasoning formally is pre
isely what order of magnitudesystems are intended to do, and the rest of this paper is 
on
erned with formalizingvariations of the above argument using one parti
ular system of order of magnitudereasoning.4. Order of magnitude reasoningThere are a number of systems whi
h have been proposed for formal order ofmagnitude reasoning21. Of the initial proposals for order of magnitude reasoning,perhaps the most intuitively appealing is Raiman's system FOG22 whi
h makes itpossible to represent and reason with information su
h as \Q1 is negligible withrespe
t to Q2" and \Q1 is of the same order of magniture as Q2". This style ofreasoning was later re�ned by Dague in his system ROM[K℄8. ROM[K℄ gives fourpossible ways of expressing a relation between quantities: Q1 is negligible wrt Q2,Q1 � Q2, Q1 is distant from Q2, Q1 6' Q2, Q1 is 
omparable to Q2, Q1 � Q2, andzThis example is taken from previous work on a diagnosis system for ele
tri
ity distributionnetworks19;20.



Qualitative probability and order of magnitude reasoning 6(A1) A � A(A2) A � B ! B � A(A3) A � B;B � C ! A � C(A4) A � B ! B � A(A5) A � B;B � C ! A � C(A6) A � B ! A � B(A7) A � B ! C:A � C:B(A8) A � B ! C:A � C:B(A9) A � 1! [A℄ = [+℄(A10) A� B $ B � (B +A)(A11) A� B;B � C ! A� C(A12) A � B; [C℄ = [A℄! (A+ C) � (B + C)(A13) A � B; [C℄ = [A℄! (A+ C) � (B + C)(A14) A � (A+A)(A15) A 6' B $ (A�B) � A or (B �A) � B(P3) A� B ! C:A� C:B(P11) A� B;B � C ! A� C(P35) A 6' B ! C:A 6' C:B(P38) A 6' B;C � A;D � B ! C 6' DTable 3. Some of the axioms and properties of ROM[K℄.Q1 is 
lose to Q2, Q1 � Q2. We also write Q1 � Q2 to indi
ate Q2 � Q1. On
ethe relation between pairs of quantities is spe
i�ed, it is possible to dedu
e newrelations by applying the axioms and properties of ROM[K℄.It should be noted that ROM[K℄ is a general s
heme for 
arrying out order ofmagnitude reasoning, and the set of axioms in Table 3 are a minimal set whi
h
apture the properties of the set of relations. (The table also 
ontains some of theproperties whi
h may be derived from these axioms, and whi
h are used in thispaper.) However, be
ause of this generality, it is perfe
tly possible to use ROM[K℄to reason about probability values. Indeed it has already been applied to tradeo�resolution16.4.1. A pro
edure for resolving overabstra
tionThe �rst step in the appli
ation of order of magnitude te
hniques is to obtaina result for any variation of the problem we started with. Su
h a result will makeit possible to 
al
ulate the sign of any qualitative 
hange in a probability Pr(
1)given:1. order of magnitude information about the 
onditionals Pr(
1 jaj) whi
h relateit to the node A whi
h in
uen
es it; and2. order of magnitude information about 
hanges in the values of the Pr(aj).Thus, given initial information:�s Pr(
1)�s Pr(a1) rel1 �s Pr(
1)�s Pr(a2) rel2 �s Pr(
1)�s Pr(a3) (3)



Qualitative probability and order of magnitude reasoning 7relb� � 6' � �� � � 6' � �� � � U � �rela 6' 6' U U U U� � � U � U� � � U U �Table 4. How to establish rel
 (Theorem 3).�Pr(a1) rel3 �Pr(a2) rel4 �Pr(a3) (4)where reli 2 f�;�; 6';�;�g, we 
an use the following pro
edure. Note thatthroughout this pro
edure we are only interested in the absolute values of quantitiessin
e the signs are taken into a

ount by the fa
t that we are looking to determinethe overall sign of:�s Pr(
1)�s Pr(a1) :�Pr(a1)� �s Pr(
1)�s Pr(a2) :�Pr(a2) + �s Pr(
1)�s Pr(a3) :�Pr(a3)in other words the 
ase in whi
h Pr(a1) and Pr(a3) in
rease, and Pr(a2) de
reases.The results of all other 
ases involving three values 
an be established from this
ase by symmetry.Step 1 Establish the relations between the produ
ts of separable derivative and
hange: �s Pr(
1)�s Pr(a1) :�Pr(a1) rel5 �s Pr(
1)�s Pr(a2) :�Pr(a2)�s Pr(
1)�s Pr(a2) :�Pr(a2) rel6 �s Pr(
1)�s Pr(a3) :�Pr(a3)using the following result:Theorem 3 Given �s Pr(x)�s Pr(y) rela �s Pr(w)�s Pr(z)and �Pr(y) relb �Pr(z)where rela, relb 2 f�;�; 6';�;�g, then the relation rel
 that holds between:�s Pr(x)�s Pr(y) :�Pr(y)and �s Pr(w)�s Pr(z) :�Pr(z)is given by Table 4. U indi
ates that the relation may not be established.



Qualitative probability and order of magnitude reasoning 8rele� � 6' � �� � 6' �;�� � �� � U �;�� � �reld 6' �; Uy �; Uy �;�z �;�y 6'� U U � � �� � � �;�� � �Table 5. How to establish relf (Theorem 4).Step 2 From the result of the �rst step, establish the relationship between oneprodu
t and the absolute value of the di�eren
e between the others:�s Pr(
1)�s Pr(a1) :�Pr(a1) rel7��s Pr(
1)�s Pr(a2) :�Pr(a2)� �s Pr(
1)�s Pr(a3) :�Pr(a3)�using Theorem 4.Theorem 4 Given:�s Pr(
1)�s Pr(a1) :�Pr(a1) reld �s Pr(
1)�s Pr(a2) :�Pr(a2)�s Pr(
1)�s Pr(a2) :�Pr(a2) rele �s Pr(
1)�s Pr(a3) :�Pr(a3)then the relation relf su
h that:�s Pr(
1)�s Pr(a1) :�Pr(a1) relf � �s Pr(
1)�s Pr(a2) :�Pr(a2)� �s Pr(
1)�s Pr(a3) :�Pr(a3)�is given by Table 5 where � indi
ates that the �rst relation holds if:�s Pr(
1)�s Pr(a2) :�Pr(a2) > �s Pr(
1)�s Pr(a3) :�Pr(a3)and the se
ond holds otherwise, y indi
ates that the �rst relation holds if:�s Pr(
1)�s Pr(a1) :�Pr(a1) > �s Pr(
1)�s Pr(a2) :�Pr(a2)and the se
ond holds otherwise, and z indi
ates that the �rst relation holds if x:�s Pr(
1)�s Pr(a1) :�Pr(a1) < �s Pr(
1)�s Pr(a2) :�Pr(a2)and the se
ond holds if�s Pr(
1)�s Pr(a1) :�Pr(a1) > �s Pr(
1)�s Pr(a2) :�Pr(a2) > �s Pr(
1)�s Pr(a3) :�Pr(a3)otherwise no relation 
an be established. U indi
ates that the relation may not beestablishedxSin
e all the relations are 6', we don't have to worry about the 
ase in whi
h the quantities areequal.



Qualitative probability and order of magnitude reasoning 9Step 3 From the result of the previous step, establish the sign of:�s Pr(
1)�s Pr(a1) :�Pr(a1)� �s Pr(
1)�s Pr(a2) :�Pr(a2) + �s Pr(
1)�s Pr(a3) :�Pr(a3)using Theorem 5.Theorem 5 Given:�s Pr(
1)�s Pr(a1) :�Pr(a1) relg ��s Pr(
1)�s Pr(a2) :�Pr(a2)� �s Pr(
1)�s Pr(a3) :�Pr(a3)�the sign of:�s Pr(
1)�s Pr(a1) :�Pr(a1)� �s Pr(
1)�s Pr(a2) :�Pr(a2) + �s Pr(
1)�s Pr(a3) :�Pr(a3)is [+℄ if relg is � or if relg is � and�s Pr(
1)�s Pr(a2) :�Pr(a2) � �s Pr(
1)�s Pr(a3) :�Pr(a3)The sign is [�℄ if relg is � and�s Pr(
1)�s Pr(a2) :�Pr(a2) > �s Pr(
1)�s Pr(a3) :�Pr(a3)Otherwise the sign is [?℄.This three step pro
ess makes it possible to determine the sign of the 
hange ata three-valued node from relative order of magnitude information. Of 
ourse thisonly works for the 
ase in whi
h �Pr(a1) and �Pr(a3) are in one dire
tion and�Pr(a2) is in the opposite dire
tion. If this is not the 
ase, we will require initialinformation other than that in (3) and (4). For instan
e, if �Pr(a3) de
reases whileand �Pr(a1) and �Pr(a2) in
rease, then we will need to know:�s Pr(
1)�s Pr(a1) rel1 �s Pr(
1)�s Pr(a3) rel2 �s Pr(
1)�s Pr(a2)and �Pr(a1) rel3 �Pr(a3) rel4 �Pr(a2)rather than (3) and (4) to apply the pro
edure.4.2. Handling more than three valuesClearly it would be useful to have a method for �nding the 
hange at nodes withmore than three values, and it turns out that su
h a method may be obtained byapplying Theorem 4 re
ursively. Consider the extension of the 
ase we have been



Qualitative probability and order of magnitude reasoning 10dealing with to that in whi
h A has four possible values a1; : : : a4. There are thusfour 
hanges in probability and four separable derivatives:�Pr(a1); : : : ;�Pr(a4) �s Pr(
1)�s Pr(a1) ; : : : ; �s Pr(
1)�s Pr(a4)to take into a

ount. We 
an, as before, apply Theorem 3 to obtain the relativeorders of magnitude of the produ
ts of 
hange and derivative su
h as:�s Pr(
1)�s Pr(a1) :�Pr(a1) rel1 �s Pr(
1)�s Pr(a2) :�Pr(a2) (5)�s Pr(
1)�s Pr(a2) :�Pr(a2) rel2 �s Pr(
1)�s Pr(a3) :�Pr(a3) (6)�s Pr(
1)�s Pr(a4) :�Pr(a4) rel3 �s Pr(
1)�s Pr(a2) :�Pr(a2) (7)Then, writing:X for �s Pr(
1)�s Pr(a1) :�Pr(a1) Y for �s Pr(
1)�s Pr(a2) :�Pr(a2)Z for �s Pr(
1)�s Pr(a3) :�Pr(a3) W for �s Pr(
1)�s Pr(a4) :�Pr(a4)Theorem 4 
an be applied to give us:X rel4 Y � Z W rel5 Y � Z (8)reversing the relation in the last equation, and applying Theorem 4 again will giveus X rel6 Y � (Z +W ) from whi
h Theorem 5 will give us: [X � Y + Z +W ℄. Ifinstead we require the sign of one produ
t minus the other three, we need to useTheorem 4 to give W rel50 Z�Y instead of (8). The former 
an then be re-writtenas �W rel500 Y �Z and Theorem 4 applied again to give: X rel6 Y � (Z�W ) fromwhi
h from whi
h Theorem 5 will give us: [X � Y + Z �W ℄.Thus the problem for four values of A is solved. Clearly Theorem 4 
ould beapplied again to allow us to handle �ve or more possible values of A, and so we havea general pro
edure. Equally 
learly, in order to apply this pro
edure we need tohave a spe
i�
 set of relations between 
hanges and derivatives|in other words ifwe did not have the information about the relative magnitudes of produ
ts in (5){(7) we would not be able to obtain the relationship between X and Y � (W + Z).However, I don't think that this is unreasonable. What we have is a method forinferring those order of magnitude relations whi
h follow from what is known. Ifsome relationship 
annot be established from what is known, then it follows thatthe available information is insuÆ
ient to allow 
on
lusions to be drawn.5. Dis
ussionThe previous se
tion has shown how ROM[K℄ 
an be used to resolve overab-stra
tion in qualitative probabilisti
 reasoning. Like the only previous work on
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|Renooij and van der Gaag's use of \provoking variables" to resolvenonmonotoni
 in
uen
es18|the work presented here does not resolve the overab-stra
tion on
e and for all. Instead, the method works for a spe
i�
 set of 
hangesin probability, and so the resolution of overabstra
tion must be 
arried out everytime that probabilities are propagated. This obviously adds to the 
omputational
omplexity of propagation algorithms for QPNs1 and QCNs9.However, this in
rease in 
omplexity need not be great. The propagation algo-rithm for QP/CNs9 has a time 
omplexity that is linear in the number of nodesin the network and quadrati
 in the number of values of the variables representedby the nodes, and a spa
e 
omplexity whi
h is quadrati
 in both. The algorithmtra
ks both the qualitative values of the 
hanges in probability at ea
h node and thederivatives that 
orrespond to ar
s between nodes, and the datastru
tures whi
hhold information 
ould easily be extended to hold the relative orders of magnitudeof the 
hanges and derivatives. Given this information, it is 
omputationally simpleto 
arry out the pro
edure given in the previous se
tion, sin
e that pro
edure 
anbe redu
ed to a look-up. Adding this 
omputation to the standard propagationalgorithm will in
rease the time 
omplexity of 
omputations at a given node, butwill not a�e
t the overall linear 
omplexity in the number of nodes{.Of 
ourse, the pro
edure dis
ussed here will not 
ompletely solve the problemof overabstra
tion. Indeed, all it will do is to provide a means of resolving it insome spe
i�
 
ases. However, as in all appli
ations of qualitative reasoning, giventhe fa
t that redu
ing overabstration is a very hard problem to solve, any methodwhi
h helps to redu
e the number of [?℄ values that are generated has a usefulrole to play. Furthermore the method introdu
ed here has the advantage of beingappli
able in a wider range of situations than previous work on the topi
18|Renooijand van der Gaag's approa
h, while similar in spirit, would not be able to handlethe example we have been dis
ussing.6. Summary and future workThe main results of this paper are to show that order of magnitude reasoning
an be used to resolve overabstra
tion in qualitative probabilitisti
 reasoning, andto give formal results that allow this resolution. This work is far from being the�nal word on the subje
t, but does go further in resolving overabstra
tion thanany similar work. There are two points whi
h should be made about the methodpresented in this paper.First, the generality of the QCN framework means that the results 
an be ap-{The linear time 
omplexity of the existing QP/CN algorithm 
omes from the fa
t that ea
h node
an 
hange value just twi
e, from an initial value of [0℄ to [+℄ or [�℄ and then to [?℄. Given nnodes, ea
h with m values, if ea
h node 
hanges value twi
e then there are 2mn 
omputations,ea
h involving m multipli
ations and m additions9. The method des
ribed in this paper augmentsthe additions and multipli
ations with look-ups, and the number of look-ups required will growexponentially in m as we have to iterate appli
ations of Theorem 4. Thus the approa
h will belinear in n and exponential in m. This makes the method tra
table provided that the number ofvalues of the variables modelled in the underlying network is 
omparatively small.



Qualitative probability and order of magnitude reasoning 12plied to resolve indeterminate values when qualitative versions of possibility andDempster-Shafer theories are used|there is nothing in the te
hnique whi
h makesit spe
i�
 to probability. Se
ond, it should be noted that the method is heuristi
.As with other order of magnitude te
hniques, there is a trade-o� between drawingsafe 
on
lusions whi
h are 
orre
t but unhelpful and drawing more aggressive 
on-
lusions whi
h are more useful but whi
h 
an be wrong. In the 
ase of the te
hniqueemployed here, the trade-o� emerges from the mapping from numeri
al values toROM[K℄ relations. The more aggressive the mapping|the more small relative dif-feren
es are mapped in to �, � and 6' relations|the more the ambiguity that 
anbe resolved, but also the larger the 
han
e of an error. Conversely, the more thatthe mappings are made safe|the more that large relative di�eren
es are mappedinto � and � relations|the less the ambiguity 
an be resolved, but the safer the
on
lusions are guaranteed to be. The third point is related to this. When theapproa
h 
on
ludes that the 
hange is [?℄ it does not represent a failure, but the
on
lusion that it is not safe to make any more pre
ise inferen
e about the 
hange.Se
ond, there is an obvious dire
tion in whi
h this work 
ould usefully be ex-tended, leading on from the observation that in this paper the information whi
his taken as input to the system is provided dire
tly in order of magnitude terms, asROM[K℄ relations. While this seems reasonable for some sets of quantities, it avoidsthe question of how one gets the relations in the �rst pla
e|what mappings fromnumbers to relations are appropriate? Providing maximally safe mappings is thegoal of future resear
h, and seem likely to make use of Dague's system ROM[<℄23whi
h permits numeri
al order of magnitude reasoning.A
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Qualitative probability and order of magnitude reasoning 14Appendix: Proofs of theoremsProof of Theorem 3: To establish the relative magnitude of the produ
ts wepro
eed on a 
ase-by-
ase basis, starting at the top lefthand 
orner of Table andworking a
ross, bearing in mind that the 
ombination is symmetri
 with respe
t tothe diagonal from top left to bottom right, and that all results involving� may beobtained by symmetry from those for �.(i) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we �rst applyA7 to ea
h of the initial expressions to get:�s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(y) �s Pr(w)�s Pr(z) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(z)then we apply A3 to these two to get:�s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(z)whi
h is the required result.(ii) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we applybroadly the same pro
edure as in (i), using A6 to get � from �.(iii) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) 6' �Pr(z), we applyP35 to get: �s Pr(x)�s Pr(y) :�Pr(y) 6' �s Pr(x)�s Pr(y) :�Pr(z)while as before A7 gives:�s Pr(x)�s Pr(y) :�Pr(z) � �s Pr(w)�s Pr(z) :�Pr(z)sin
e A1 tells us that: �s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(x)�s Pr(y) :�Pr(y)and A2 that: �s Pr(w)�s Pr(z) :�Pr(z) � �s Pr(x)�s Pr(y) :�Pr(z)we 
an then apply P38 to these last three expressions to �nd that rel
 is 6'.(iv) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we �rstapply A7, as usual, to get:�s Pr(x)�s Pr(y) :�Pr(z) � �s Pr(w)�s Pr(z) :�Pr(z)and then A6 to get: �s Pr(x)�s Pr(y) :�Pr(z) � �s Pr(w)�s Pr(z) :�Pr(z)



Qualitative probability and order of magnitude reasoning 15Next we use P3 to obtain:�s Pr(x)�s Pr(y) :�Pr(y)� �s Pr(x)�s Pr(y) :�Pr(z)and 
ombining these latter two expressions using A11, we get the ne
essary result.(v) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we againpro
eed as in (i).(vi) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) 6' �Pr(z), we 
anapply P35 in the same way that we usually apply A7, A8 and P11 to obtain:�s Pr(w)�s Pr(z) :�Pr(y) 6' �s Pr(w)�s Pr(z) :�Pr(z)and A8 to obtain: �s Pr(x)�s Pr(y) :�Pr(y) � �s Pr(w)�s Pr(z) :�Pr(y)However, ROM[K℄ deliberately does not allow � to be 
ombined with 6' so thatwe 
annot apply the usual method to establish a relation between the produ
ts.Be
ause of this we 
annot obtain a result for this 
ase.(vii) For �s Pr(x)=�s Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y)� �Pr(z), we pro
eedas in (iv).(viii) For �s Pr(x)=Pr(y) 6' �s Pr(w)=�s Pr(z) and �Pr(y) 6' �Pr(z), we 
an applyP35 in the same way that we usually apply A7, A8 and P11 to obtain:�s Pr(w)�s Pr(z) :�Pr(y) 6' �s Pr(w)�s Pr(z) :�Pr(z) �s Pr(x)�s Pr(y) :�Pr(y) 6' �s Pr(w)�s Pr(z) :�Pr(y)However, 6' is deliberately not transitive so that we 
annot apply the usual methodto establish a relation between the produ
ts. Be
ause of this we 
annot obtain aresult for this 
ase.(ix) For �s Pr(x) Pr(y) 6' �s Pr(w)=�s Pr(z) and �Pr(y)� �Pr(z), we have mu
hthe same problem as in the previous 
ase in that we 
annot 
hain 6' with �.(x) For �s Pr(x) Pr(y) � �s Pr(w)=�s Pr(z) and �Pr(y) � �Pr(z), we apply P3twi
e to obtain:�s Pr(x)�s Pr(y) :�Pr(y)� �s Pr(w)�s Pr(z) :�Pr(y) �s Pr(w)�s Pr(z) :�Pr(y)� �s Pr(w)�s Pr(z) :�Pr(z)and then P11 to obtain:�s Pr(x)�s Pr(y) :�Pr(y)� �s Pr(w)�s Pr(z) :�Pr(z)as required. All other results follow by symmetry. 2Proof of Theorem 4 There are two ways of proving this theorem. One is topro
eed at the obje
t level of ROM[K℄, in the same way that the previous proofs was
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h as to establish relationships between one produ
t andthe di�eren
e of the others. A somewhat shorter proof 
an be obtained by reasoningat the meta-level|this is what we provide here. Here, there are 25 separate 
ases.(i) reld is � and rele is �. The result of the subtra
tion may be positive or negative,but its absolute value will be negligible with respe
t to �s Pr(
1)=�s Pr(a1):�Pr(a1).Thus relf is �.(ii) reld is � and rele is �. The absolute value of the subtra
tion will be quite a lotsmaller than the minuend. Thus relf is 6'.(iii) reld is � and rele is 6'. If�s Pr(
1)�s Pr(a2) :�Pr(a2) > �s Pr(
1)�s Pr(a3) :�Pr(a3)then the result of the subtra
tion is positive, and 
omparable to the value of theminuend. Sin
e the minuend is 
lose in value to �s Pr(
1)=�s Pr(a1):�Pr(a1), the
orre
t relation between the latter and the result of the subtra
tion is �. If the
ondition does not hold, then the result of the subtra
tion is negative and negligiblewith respe
t to that of the minuend. Thus the relation between the absolute valueof the result of the subtra
tion and �s Pr(
1)=�s Pr(a1):�Pr(a1) is �.(iv) reld is � and rele is �. The result of the subtra
tion is negative and ofalmost the same absolute value as �s Pr(
1)=�s Pr(a3):�Pr(a3). Thus, �s Pr(
1)=�s Pr(a1):�Pr(a1) is negligible with respe
t to this absolute value and relf is �.(v) reld is � and rele is �. Sin
e rele is �, the subtra
tion will have negligiblee�e
t on �s Pr(
1)=�s Pr(a2):�Pr(a32), and so relf will just be �.(vi) reld is � and rele is �. The absolute value of result of the subtra
tion willbe negligible with respe
t to the absolute value of either quantity involved in thesubtra
tion. Sin
e the value of �s Pr(
1)=�s Pr(a1):�Pr(a1) is 
lose to that of�s Pr(
1)=�s Pr(a2):�Pr(a2), it will be mu
h greater than the absolute value ofthe result of the subtra
tion, and relf will therefore be �.(vii) reld is � and rele is �. A similar argument to that in (ii) applies, but be
ausereld is � rather than � we 
an draw no 
on
lusions about relf .(viii) reld is � and rele is 6'. A similar argument to that in (iii) applies, and theresult is the same.(ix) reld is � and rele is �. A similar argument to that in (iv) gives the 
on
lusionthat relf is �.(x) reld is � and rele is �. A similar argument to that in (v) gives the 
on
lusionthat relf is �.(xi) reld is 6' and rele is �. The absolute value of the subtra
tion is going tobe negligible with respe
t to the minuend and thus negligible with respe
t to theabsolute value of �s Pr(
1)=�s Pr(a2):�Pr(a2). Thus relf is � so long as:�s Pr(
1)�s Pr(a1) :�Pr(a1) > �s Pr(
1)�s Pr(a2) :�Pr(a2)If not, then �s Pr(
1)=�s Pr(a1):�Pr(a1) might be of 
omparable size to the resultof the subtra
tion and no 
on
lusion 
an be drawn about relf .



Qualitative probability and order of magnitude reasoning 17(xii) reld is 6' and rele is �. A similar argument to that in (xi) applies giving thesame result.(xiii) reld is 6' and rele is 6'. If�s Pr(
1)�s Pr(a2) :�Pr(a2) < �s Pr(
1)�s Pr(a3) :�Pr(a3) (9)the result of the subtra
tion is negative and has an absolute value mu
h larger thanthe minuend. If, in addition,�s Pr(
1)�s Pr(a1) :�Pr(a1) < �s Pr(
1)�s Pr(a2) :�Pr(a2)we know that �s Pr(
1)=�s Pr(a1):�Pr(a1) will be negligible with respe
t to theabsolute value of the result of the subtra
tion, and 
an 
on
lude that relf is �. Ifthe se
ond 
ondition does not hold, then we 
annot establish relf . If (9) does nothold then the result of the subtra
tion is positive and 
omparable to the value ofthe minuend. Sin
e the minuend is far in value from �s Pr(
1)=�s Pr(a1):�Pr(a1),then if �s Pr(
1)�s Pr(a1) :�Pr(a1) > �s Pr(
1)�s Pr(a2) :�Pr(a2)we 
an 
on
lude that relf is �, while if this inequality is reversed, then relf is �.(xiv) reld is 6' and rele is �. The result of the subtra
tion is negative and mu
hbigger than the absolute value of �s Pr(
1)=�s Pr(a2):�Pr(a2). If:�s Pr(
1)�s Pr(a1) :�Pr(a1) > �s Pr(
1)�s Pr(a2) :�Pr(a2)Then the �s Pr(
1)=�s Pr(a1):�Pr(a1) will have the a similar absolute value to theresult of the subtra
tion and relf will be �. If:�s Pr(
1)�s Pr(a1) :�Pr(a1) < �s Pr(
1)�s Pr(a2) :�Pr(a2)then �s Pr(
1)=�s Pr(a1):�Pr(a1) will be negligible with respe
t to the result of thesubtra
tion, and relf will be 6'.(xv) reld is 6' and rele is �. A similar argument to that for (v) means that relf is6'.(xvi) reld is � and rele is �. This time the result of the subtra
tion is negligiblewith respe
t to �s Pr(
1)=�s Pr(a2):�Pr(a2), and so it is impossible to say whatrelf is.(xvii) reld is � and rele is �. A similar argument to that in (xvi) applies, and it isimpossible to say what relf is.(xviii) reld is � and rele is 6'. If:�s Pr(
1)�s Pr(a2) :�Pr(a2) > �s Pr(
1)�s Pr(a3) :�Pr(a3)
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tion is positive and 
omparable to the value of theminuend. Sin
e (�s Pr(
1)=�s Pr(a1)):�Pr(a1) is negligible with respe
t to the min-uend, relf is �. If, on the other hand:�s Pr(
1)�s Pr(a2) :�Pr(a2) < �s Pr(
1)�s Pr(a3) :�Pr(a3)then the result of the subtra
tion is negative and mu
h larger than the minuend.Sin
e we are only interested in the absolute value, this means that relf is �.(xix) reld is� and rele is�. This time the result of the subtra
tion is negative, andits absolute value is negligible with respe
t to �s Pr(
1)=�s Pr(a3):�Pr(a3). Thusrelf is �.(xx) reld is � and rele is �. A similar argument to that for (v) means that relf is�.(xxi) reld is � and rele is �. The result of the subtra
tion will have an absolutevalue negligible with respe
t to the minuend whi
h itself is negligible with respe
tto �s Pr(
1)=�s Pr(a1):�Pr(a1), and so relf is �(xxii) reld is � and rele is �. A similar argument to that in (xxi) applies.(xxiii) reld is � and rele is 6'. Reasoning as in (xviii), if:�s Pr(
1)�s Pr(a2) :�Pr(a2) > �s Pr(
1)�s Pr(a3) :�Pr(a3)then the result of the subtra
tion is positive and 
omparable to the value of theminuend. Sin
e the minuend is negligible with respe
t to (�s Pr(
1)=�s Pr(a1)):�Pr(a1) relf is �. If, on the other hand:�s Pr(
1)�s Pr(a2) :�Pr(a2) < �s Pr(
1)�s Pr(a3) :�Pr(a3)then the result of the subtra
tion is negative and mu
h larger than the minuend.Sin
e we are only interested in the absolute value, this means that relf is �.(xxiv) reld is � and rele is �. The result of the subtra
tion will be negative andhave almost the same absolute value as the subtrahend. Thus �s Pr(
1)=�s Pr(a2):�Pr(a2) will be negligible with respe
t both to the result and �s Pr(
1)=�s Pr(a1):�Pr(a1), and the two latter quantities will be 
omparable. Thus relf is �.(xxv) reld is � and rele is �. A similar argument to that for (v) means that relfis �.Proof of Theorem 5: If relg is � then the result follows immediately. If relg is� then the sign is [+℄ provided that that�s Pr(
1)�s Pr(a2) :�Pr(a2) < �s Pr(
1)�s Pr(a3) :�Pr(a3)so that the bra
keted term is positive. If not, then the sign is [�℄. In all other 
asesthe result is too 
lose to predi
t and the sign is [?℄. 2


