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In recent years there has been a spate of papers describing systems for probabilistic
reasoning which do not use numerical probabilities. In some cases these systems are
unable to make any useful inferences because they deal with changes in probability at
too high a level of abstraction. This paper discusses one of the problems this level of
abstraction can cause, and shows how the use of a technique for order of magnitude
reasoning can reduce its impact.
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1. Introduction

In the past few years there has been a good deal of interest in qualitative ap-
proaches to reasoning under uncertainty—approaches which do not make use of
precise numerical values. Qualitative abstractions of probabilistic networks!-2, in
particular, have proved popular, finding use in areas in which the full numerical for-
malism is either not necessary or not appropriate. Applications have been reported

45 engineering design®, and planning?.

in explanation®, diagnosis

Whereas in most probabilistic systems the main goal is to establish what the
probabilities of hypotheses are when particular observations are made, in qualitative
probabilistic networks? (QPNs) the main aim is to establish how values change.
Since the approach is qualitative, the size of the changes are not the focus. It only
matters whether a given change is positive, written as [+], negative [—], or zero [0].
Clearly this information is rather weak, but as the applications show it is sufficient
for some tasks. Furthermore, reasoning with qualitative probabilities is much more
efficient than reasoning with precise probabilities, since computation is quadratic
in the size of the network!, rather than NP-hard”.

One of the stumbling blocks in applying QPNs more widely is that there are
situations in which it is not possible to resolve the changes that they handle with
any precision. In such cases the value of the change remains unknown, and it is
written as [?]. Such values tend to multiply, reducing the useful conclusions which
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Table 1. Sign multiplication and addition.

can be obtained from a QPN. The aim of this paper is to investigate how techniques
from order of magnitude reasoning, in particular Dague’s system ROM[K]® can be
used to reduce the proliferation of such [?] values.

2. Qualitative certainty networks

It is possible®!? to generalize the approach provided by qualitative probabilis-
tic networks to what are termed qualitative certainty networks (QCNs). Using
this approach it is possible to propagate qualitative probability, possibility!!-!?
evidence theory!3:14

QCNs are built around the notion of influences between variables, where the
influence may be given a probabilistic semantics, as in QPNs, or a semantics in terms
of possibility or Dempster-Shafer theory. Formally, a QCN is a pair G = (V,Q),
where V' is a set of variables or nodes in the graph, represented by a capital letter,
and @ is a set of sets of qualitative relations among the values of the variables
which reflect the influences between the variables. In this paper we concentrate
upon QCNs in which the influences, like the influences in QPNs, have a probabilistic
semantics. These are known as probabilistic QCNs (QP/CNs).

The qualitative relations are expressed in terms of the derivatives that relate
the different values of the variables together. If A has possible values {a1,as, a3}
and C' has possible values {c;, c2}, then the relationship between the probability of
a; and the probability of ¢; is specified by the derivative: 0 Pr(cy)/dPr(a;) thus
the qualitative relationship between the probability of a; and the probability of ¢;
is specified by [0 Pr(c;)/0Pr(a1)] where the square brackets denote that it is the
qualitative value of the quantity that we are interested in. This means that we
only take note of whether it is positive, which we denote by [+], negative, which we
denote by [—] or is zero, which we denote by [0]. Then, if we write the qualitative
change in the probability of A taking value a; as [APr(a;)] we have*:

and
in a uniform way.

0Pr(cq)
AP = | == AP 1
APr(e)] = | Gpred | o [APr(a)] 0
which allows us to propagate changes in probability across influences between vari-
ables. All of this begs the question of how we determine what the qualitative
influence between variables is, and it turns out® that:

*Note that while this expression is correct for qualitative values, it is a linear approximation for
exact numerical values.



Qualitative probability and order of magnitude reasoning 3

battery alternator
old ok
battery battery
good charging
battery
ok
radio lrghts
ok ok

Fig. 2. Part of a car diagnosis network

Theorem 1 The qualitative derivative:

[aPr(cl)}

0Pr(a;)

relating the probability of C' taking value ¢y to the probability of A taking value ay
has the value [+], if, for all ay and X :

Pr(ci|a1, X) > Pr(cy |az, X)

Derivatives with values [—] and [0] are obtained by replacing > with < and =. If
a derivative cannot be determined to be [+], [=], or [0], then it takes the value
[?7]. QCNs with possibilistic or Dempster-Shafer belief semantics handle changes in
value in a similar way®.

The impact of evidence on a given node can be calculated by taking the sign of
the change in value at the evidence node and multiplying it by the sign of every
link in the sequence that connects it to the node of interest. To see how this works,
consider the example® in Figure 2 in which the value labeling each arc is the value
of the qualitative derivative linking the probabilities of the events represented by
the nodes at the end of the arc. If we observe that the radio is dead, so that the
probability of the radio being ok decreases, [A Pr(radio ok)] = [—], and we want to
know the impact of this on the probability of the battery being good we calculate
the effect as [—] ® [+] ® [+]. With the definition of sign multiplication ® in Table 1
this gives a change in Pr(battery good) of [—]. If we also observed that the lights
were not ok, and wanted to assess the impact of both pieces of evidence on the
probability that the battery was good, we would establish the two individual effects
and sum them using @ (Table 1).

Described in these terms, QP/CNs are essentially equivalent to QPNs, the only
difference being that the relation between two variables is described by a single
qualitative value in a QPN and by a set of qualitative values in a QP/CN. However,
QP/CNs can go somewhat further. In particular, we can describe the propagation
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of values in terms of “separable” derivatives® where the effect of a change in the
probability of one value of A on the probability of a value of C' is calculated without
considering its effects on the other values of A. We denote the qualitative separable
qualitative derivative relating Pr(c¢;) and Pr(a;) by:

Previously” little use has been made of qualitative separable derivatives since their
value is always [+], but in this paper they are key. The reason for this is that if we
look at the quantitative value of separable derivative, we find that:

Theorem 2 The separable derivative:

0s Pr(cy)
0s Pr(ay)

relating the probability of C taking value ¢1 to the probability of A taking value ay,
without taking other Pr(a;), i # 1 into account, has the value Pr(cy|ay).

The theorem follows directly from the value of the qualitative separable derivative

relating the two quantities’. We also have':

05 Pr(c1)
0s Pr(aq)

05 Pr(cq1)

0s Pr(c1)
* 3, Pr(a)

APr(c) = + 783 Pr(as)

APr(ay) A Pr(as) APr(as)  (2)

3. Over-abstraction

The degree of abstraction in both QPNs and QCNs leads to situations in which
certain changes may only be determined as [?] despite the presence of information
that allows more precise inferences to be made. One way in which this can occur is
when a [+] and a [—] are combined using @, and several authors have investiagted
ways to tackle this problem, which is known as “tradeoff resolution”!®1617, A
separate problem, which we will call “over-abstraction”, is that for a broad class
of networks there are values of C for which it is not possible to predict the effect
of a change in the probability of a given value of A using Theorem 1 because the
values of the conditional probabilities are such that the derivative which links the
two has value [?]. This problem has addressed by Renooij and van der Gaag'®, for
the situation of over-abstraction in QPNs, essentially by reasoning about individual
values in the same way as in a QCN. The remainder of this paper looks at an
alternative approach to handling over-abstraction which is equally applicable to
QCNs and QPNs and goes somewhat further than Renooij and van der Gaag.

In some of these cases, it is possible to resolve this over-abstraction by using
order-of-magnitude reasoning about the values of separable derivatives. As an ex-

TNote that this expression is exact, unlike the case for the partial derivatives
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amplef, consider a link from C to A in which it is known that:
Pr(ci |a1) < Pr(ey|az) Pr(cy|as) &~ Pr(cy |az)

where < indicates a difference of at least an order of magnitude. Information about
the prior values is also available:

Pr(as) ~ Pr(az) Pr(as) < Pr(a;) Pr(a;) ~ 1
In this situation applying Theorem 1 gives:

{8Pr(cl)]:[?] [8Pr(cl)}

O Pr(as)

0 Pr(as)

g S

When we apply (1), we find that if there is an increase in Pr(a;) then [APr(c;)] =
[—] but if Pr(as) or Pr(as) increases, then [A Pr(cy)] = [7].

These ambiguous inferences can be resolved in some situations by using order
of magnitude about the separable derivatives. From Theorem 2 we know that:

05 Pr(cq1) 05 Pr(c1) 05 Pr(c1) _ 05 Pr(a1)
0s Pr(a1) — O0sPr(as) dsPr(az) ~ O, Pr(as)

Consider that we find out that Pr(az) has become 1, meaning that Pr(a;) and
Pr(as) have become 0. Bearing the priors in mind:

|APr(as)| < |APr(as2)| = |APr(a;)]

Thus when we compare the magnitudes of the terms in (2) to establish the change
in line fault probability for a delayed alarm, the second term dominates and we
have APr(c1) = [+].

Handling this kind of reasoning formally is precisely what order of magnitude
systems are intended to do, and the rest of this paper is concerned with formalizing
variations of the above argument using one particular system of order of magnitude
reasoning.

4. Order of magnitude reasoning

There are a number of systems which have been proposed for formal order of
magnitude reasoning?!. Of the initial proposals for order of magnitude reasoning,
perhaps the most intuitively appealing is Raiman’s system FOG?? which makes it
possible to represent and reason with information such as “@); is negligible with
respect to Q2”7 and “Q; is of the same order of magniture as @5”. This style of
reasoning was later refined by Dague in his system ROM[K]®. ROM[K] gives four
possible ways of expressing a relation between quantities: @ is negligible wrt @2,
Q1 K Q2, Qy is distant from Q2, Q1 % Q2, Q1 is comparable to Q2, Q1 ~ @2, and

fThis example is taken from previous work on a diagnosis system for electricity distribution
networks!?-20.
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1) A=A
2) AxB—->B=xA
3) AxBBx=C—->A=xC
4 A~B—B~A
5 A~B,B~C—>A~C
6) A~B— A~B
7 AxB—->CA=C.B
8 A~B—CA~CB
9) A~1-[Al=[+]
10) AKX B+ Bx(B+A)
11) AKB,B~C—-AKC
) A=B,[C]=[A]—-(A+C)=(B+C)
A13) A~B,[C]=[A]l—- (A+C)~(B+C)
) A~(A+A)
) A#2B+ (A-B)~Aor(B—A)~B

(P3) A<KB—-CAKCB
(P11) AKB,BK(C—AKC
(P35) A#B—CA#CB
(P38) A#B,C=~AD=B—->C#D
Table 3. Some of the axioms and properties of ROM[K].

Q1 is close to @2, Q1 ~ Q2. We also write Q1 > )2 to indicate Q2 < (1. Once
the relation between pairs of quantities is specified, it is possible to deduce new
relations by applying the axioms and properties of ROM[K].

It should be noted that ROM[K] is a general scheme for carrying out order of
magnitude reasoning, and the set of axioms in Table 3 are a minimal set which
capture the properties of the set of relations. (The table also contains some of the
properties which may be derived from these axioms, and which are used in this
paper.) However, because of this generality, it is perfectly possible to use ROM[K]
to reason about probability values. Indeed it has already been applied to tradeoff
resolution?S.

4.1. A procedure for resolving overabstraction

The first step in the application of order of magnitude techniques is to obtain
a result for any variation of the problem we started with. Such a result will make
it possible to calculate the sign of any qualitative change in a probability Pr(c;)
given:

1. order of magnitude information about the conditionals Pr(c; |a;) which relate
it to the node A which influences it; and

2. order of magnitude information about changes in the values of the Pr(a;).

Thus, given initial information:

0s Pr(cy) 0s Pr(cy)

re 0s Pr(cy)
9, Pr(ay) ~ 0, Pr(ay)

3, Pr(as)

rel,

(3)
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rely
R o~ L >
Nl o~ AL >
~ |~~~ U K >
rel, | 2|2 U U U U
1 X U U
>0 > U U >

Table 4. How to establish rel. (Theorem 3).

APr(a;) rels APr(az) rely APr(as) 4)

where rel; € {=,~,%,<,>}, we can use the following procedure. Note that
throughout this procedure we are only interested in the absolute values of quantities
since the signs are taken into account by the fact that we are looking to determine
the overall sign of:

0s Pr(cy)
0s Pr(ay)

_ 05 Pr(cr)
0s Pr(a»)

0s Pr(cy)

A Pr(al) + W(ag)

A Pr(az) A Pr(a3)
in other words the case in which Pr(a;) and Pr(as) increase, and Pr(as) decreases.
The results of all other cases involving three values can be established from this

case by symmetry.

Step 1 Establish the relations between the products of separable derivative and
change:

0s Pr(cy) 0s Pr(cy)
3, Pr(ay) APr(a;) rels 3, Pr(as) APr(as)
0s Pr(cy) 0s Pr(cy)
3. Pr(ay) APr(az) relg 3. Pr(as) APr(as)

using the following result:

Theorem 3 Given

0, Pr(z) rel 05 Pr(w)

ds Pr(y) ~— * 9, Pr(z)
and

A Pr(y) rel, APr(2)

where rel,, rely, € {m, ~, %, <K, >}, then the relation rel. that holds between:

0s Pr(x)

and
0s Pr(w)

s given by Table 4. U indicates that the relation may not be established.
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relg
R~ ~ * < >
R > % ~,&L* < R
~ > U ~, " < ~
relg | 2 | >, U > U <« >t ~ <t #
< U U < < <
> > > >, ~F ~ >

Table 5. How to establish relf (Theorem 4).

Step 2 From the result of the first step, establish the relationship between one
product and the absolute value of the difference between the others:

0s Pr(cy) 05 Pr(cy) 0s Pr(cy)
aST(al)A Pr(al) rel7 (asT(az)A Pr(aQ) — asT(ag)A Pr(ag)
using Theorem 4.

Theorem 4 Given:

then the relation rely such that:

05 Pr(c1)

9. Pr(ar) A Pr(ay) relg <

0s Pr(cy) 0s Pr(cy)
asT(aQ)A Pr(ag) — mA Pr(a3)>

is given by Table 5 where x indicates that the first relation holds if:
0s Pr(cy) 0s Pr(cy)
0s Pr(a») 0s Pr(as)
and the second holds otherwise, 1 indicates that the first relation holds if:
0s Pr(cy) 0s Pr(cy)
0s Pr(ay) 0s Pr(az)

APr(as) > APr(as)

APr(ay) > APr(az)

and the second holds otherwise, and § indicates that the first relation holds if 5:

0s Pr(cy) 0s Pr(cy)
0s Pr(ay) 0s Pr(as)

and the second holds if

05 Pr(c1)
0s Pr(ay)

APr(a;) < A Pr(as)

0s Pr(cy) 0s Pr(cy)
0s Pr(az) 0s Pr(as)

otherwise no relation can be established. U indicates that the relation may not be
established

§Since all the relations are %, we don’t have to worry about the case in which the quantities are
equal.

APr(ar) > APr(az) > A Pr(as)




Qualitative probability and order of magnitude reasoning 9

Step 3 From the result of the previous step, establish the sign of:

0s Pr(cy) 0s Pr(cy) 0s Pr(cy)
L - ————= AP
0s Pr(ay) APr(a) 0s Pr(a») APr(az) + 0s Pr(as) r(a)
using Theorem 5.
Theorem 5 Given:
0s Pr(cy) 0s Pr(cy) 05 Pr(cy)
. —. - ———= AP
3. Pr(ar) APr(a;) relg <as Pr(a) APr(as) 2. Pr(as) r(ag)
the sign of:
0s Pr(c1) 0s Pr(cy) 05 Pr(c1)
- -t ———= AP
0s Pr(ay) A Pr{ar) 0s Pr(as) APr(az) + 05 Pr(as) r(as)
is [+] if rely is > or if relg is € and
0s Pr(cy) 0s Pr(cy)
—_—. < —.
9. Pr(ay) APr(as) < 9. Pr(as) APr(a3)
The sign is [—] if rel, is < and
0s Pr(cy) 0s Pr(cy)
2. Pr(a2) APr(az) > 3. Pr(ay) A Pr(as)

Otherwise the sign is [7].

This three step process makes it possible to determine the sign of the change at
a three-valued node from relative order of magnitude information. Of course this
only works for the case in which APr(a;) and A Pr(ag) are in one direction and
APr(az) is in the opposite direction. If this is not the case, we will require initial
information other than that in (3) and (4). For instance, if A Pr(ag) decreases while
and A Pr(a;) and A Pr(az) increase, then we will need to know:

0s Pr(cy) el 0s Pr(cy) el 05 Pr(cy)
0 Pr(ay) ) Pr(as) >0, Pr(az)

and
APr(ay) rely APr(ag) rely APr(as)

rather than (3) and (4) to apply the procedure.

4.2. Handling more than three values

Clearly it would be useful to have a method for finding the change at nodes with
more than three values, and it turns out that such a method may be obtained by
applying Theorem 4 recursively. Consider the extension of the case we have been
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dealing with to that in which A has four possible values ay,...as. There are thus
four changes in probability and four separable derivatives:

0s Pr(cy) 0s Pr(cy)

APr(ay),...,APr(as) 3. Pr(a)’ " . Pr(ay)

to take into account. We can, as before, apply Theorem 3 to obtain the relative
orders of magnitude of the products of change and derivative such as:

) (
3. Pr(ar) APr(a;) rely 9, Pr(ay) A Pr(az) (5)
0s Pr(cy) 0s Pr(cy)
3. Pr(ay) APr(az) rely 9, Pr(as) A Pr(as) (6)
0s Pr(cy) 0s Pr(cy)
aST(a‘l)A Pr(a4) rel3 as Pr(aZ) A Pr(ag) (7)
Then, writing:
0s Pr(cy) 0s Pr(cy)
X for aST(al)A Pr(al) Y for mA PI‘(G,Q)
0s Pr(cy) 0s Pr(cy)
Z for 3, Pr(as) A Pr(as) W for 9, Pr(as) A Pr(aq)
Theorem 4 can be applied to give us:
X rely, Y-2Z W orely Y —Z (8)

reversing the relation in the last equation, and applying Theorem 4 again will give
us X relg Y — (Z + W) from which Theorem 5 will give us: [X =Y + Z + W]. If
instead we require the sign of one product minus the other three, we need to use
Theorem 4 to give W relss Z —Y instead of (8). The former can then be re-written
as —W relsn Y — Z and Theorem 4 applied again to give: X relg Y — (Z —W) from
which from which Theorem 5 will give us: [X —Y + Z — W].

Thus the problem for four values of A is solved. Clearly Theorem 4 could be
applied again to allow us to handle five or more possible values of A, and so we have
a general procedure. Equally clearly, in order to apply this procedure we need to
have a specific set of relations between changes and derivatives—in other words if
we did not have the information about the relative magnitudes of products in (5)—
(7) we would not be able to obtain the relationship between X and ¥ — (W + Z).
However, I don’t think that this is unreasonable. What we have is a method for
inferring those order of magnitude relations which follow from what is known. If
some relationship cannot be established from what is known, then it follows that
the available information is insufficient to allow conclusions to be drawn.

5. Discussion

The previous section has shown how ROMI[K] can be used to resolve overab-
straction in qualitative probabilistic reasoning. Like the only previous work on
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this topic—Renooij and van der Gaag’s use of “provoking variables” to resolve
nonmonotonic influences'®—the work presented here does not resolve the overab-
straction once and for all. Instead, the method works for a specific set of changes
in probability, and so the resolution of overabstraction must be carried out every
time that probabilities are propagated. This obviously adds to the computational
complexity of propagation algorithms for QPNs' and QCNs®.

However, this increase in complexity need not be great. The propagation algo-
rithm for QP/CNs” has a time complexity that is linear in the number of nodes
in the network and quadratic in the number of values of the variables represented
by the nodes, and a space complexity which is quadratic in both. The algorithm
tracks both the qualitative values of the changes in probability at each node and the
derivatives that correspond to arcs between nodes, and the datastructures which
hold information could easily be extended to hold the relative orders of magnitude
of the changes and derivatives. Given this information, it is computationally simple
to carry out the procedure given in the previous section, since that procedure can
be reduced to a look-up. Adding this computation to the standard propagation
algorithm will increase the time complexity of computations at a given node, but
will not affect the overall linear complexity in the number of nodes?

Of course, the procedure discussed here will not completely solve the problem
of overabstraction. Indeed, all it will do is to provide a means of resolving it in
some specific cases. However, as in all applications of qualitative reasoning, given
the fact that reducing overabstration is a very hard problem to solve, any method
which helps to reduce the number of [?] values that are generated has a useful
role to play. Furthermore the method introduced here has the advantage of being
applicable in a wider range of situations than previous work on the topic'®—Renooij
and van der Gaag’s approach, while similar in spirit, would not be able to handle
the example we have been discussing.

6. Summary and future work

The main results of this paper are to show that order of magnitude reasoning
can be used to resolve overabstraction in qualitative probabilitistic reasoning, and
to give formal results that allow this resolution. This work is far from being the
final word on the subject, but does go further in resolving overabstraction than
any similar work. There are two points which should be made about the method
presented in this paper.

First, the generality of the QCN framework means that the results can be ap-

YThe linear time complexity of the existing QP/CN algorithm comes from the fact that each node
can change value just twice, from an initial value of [0] to [+] or [—] and then to [?]. Given n
nodes, each with m values, if each node changes value twice then there are 2mn computations,
each involving m multiplications and m additions®. The method described in this paper augments
the additions and multiplications with look-ups, and the number of look-ups required will grow
exponentially in m as we have to iterate applications of Theorem 4. Thus the approach will be
linear in » and exponential in m. This makes the method tractable provided that the number of
values of the variables modelled in the underlying network is comparatively small.
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plied to resolve indeterminate values when qualitative versions of possibility and
Dempster-Shafer theories are used—there is nothing in the technique which makes
it specific to probability. Second, it should be noted that the method is heuristic.
As with other order of magnitude techniques, there is a trade-off between drawing
safe conclusions which are correct but unhelpful and drawing more aggressive con-
clusions which are more useful but which can be wrong. In the case of the technique
employed here, the trade-off emerges from the mapping from numerical values to
ROMIK] relations. The more aggressive the mapping—the more small relative dif-
ferences are mapped in to <, > and % relations—the more the ambiguity that can
be resolved, but also the larger the chance of an error. Conversely, the more that
the mappings are made safe—the more that large relative differences are mapped
into &~ and ~ relations—the less the ambiguity can be resolved, but the safer the
conclusions are guaranteed to be. The third point is related to this. When the
approach concludes that the change is [?] it does not represent a failure, but the
conclusion that it is not safe to make any more precise inference about the change.

Second, there is an obvious direction in which this work could usefully be ex-
tended, leading on from the observation that in this paper the information which
is taken as input to the system is provided directly in order of magnitude terms, as
ROMIK] relations. While this seems reasonable for some sets of quantities, it avoids
the question of how one gets the relations in the first place—what mappings from
numbers to relations are appropriate? Providing maximally safe mappings is the
goal of future research, and seem likely to make use of Dague’s system ROM[R]??
which permits numerical order of magnitude reasoning.
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Appendix: Proofs of theorems

Proof of Theorem 3: To establish the relative magnitude of the products we
proceed on a case-by-case basis, starting at the top lefthand corner of Table and
working across, bearing in mind that the combination is symmetric with respect to
the diagonal from top left to bottom right, and that all results involving > may be
obtained by symmetry from those for <.

(i) For 05 Pr(x)/0s Pr(y) = 05 Pr(w)/0s Pr(z) and A Pr(y) = A Pr(z), we first apply
AT to each of the initial expressions to get:

05 Pr(z) _ 05 Pr(w) 05 Pr(w) 05 Pr(w)
.71 r(y) =~ 9, 71(2) APr(y) 9. 71(2) APr(y) & 8. Pr(2) APr(z)
then we apply A3 to these two to get:
0s Pr(x) _ 05 Pr(w)

which is the required result.

(ii) For 9 Pr(z)/0s Pr(y) = 0s Pr(w)/0s Pr(z) and APr(y) ~ APr(z), we apply
broadly the same procedure as in (i), using A6 to get ~ from =.

(iii) For 0s Pr(z)/0s Pr(y) = 0s Pr(w)/0s Pr(z) and APr(y) # APr(z), we apply
P35 to get:

05 Pr(z) 05 Pr(z)

2, Pr(y) APr(y) # 9. Pr(y) APr(z)
while as before A7 gives:

05 Pr(z) _ 05 Pr(w)

9. Pr(y) Pr(z) ~ 9. 71(2) APr(z)
since A1 tells us that:

05 Pr(z) 05 Pr(z)

AP ~ AP

0.P1(y) "W 3, Br(y) AT

and A2 that:
: 05 Pr(w) _ 05 Pr(z) APr(2)

.72 T % 550

we can then apply P38 to these last three expressions to find that rel. is 2.
(iv) For 0, Pr(z)/0s Pr(y) =~ 95 Pr(w)/ds Pr(z) and APr(y) < APr(z), we first
apply A7, as usual, to get:

0s Pr(x) _ 05 Pr(w)

and then A6 to get:
05 Pr(z) 0 Pr(w)
3. Pr(y) APr(z) . P1(2) APr(z)
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Next we use P3 to obtain:

0s Pr(x)
0s Pr(y)”

0s Pr(x)
9; Pr(y)

Pr(y) <« APr(z)

and combining these latter two expressions using A11, we get the necessary result.
(v) For 0s Pr(z)/0s Pr(y) ~ 05 Pr(w)/0s Pr(z) and APr(y) ~ APr(z), we again
proceed as in (i).

(vi) For 05 Pr(x)/0s Pr(y) ~ 05 Pr(w)/0s Pr(z) and APr(y) # APr(z), we can
apply P35 in the same way that we usually apply A7, A8 and P11 to obtain:

0s Pr(w)
9 Pr(z)

APr(y) £ 6821;71;(5)) APr(z)

and A8 to obtain:
05 Pr(z) 0 Pr(w)
0s Pr(y) 0s Pr(z)

However, ROM[K] deliberately does not allow ~ to be combined with # so that
we cannot apply the usual method to establish a relation between the products.
Because of this we cannot obtain a result for this case.

(vii) For 05 Pr(x)/0s Pr(y) ~ 05 Pr(w)/0s Pr(z) and A Pr(y) < A Pr(z), we proceed
as in (iv).

(viii) For 05 Pr(z)/ Pr(y) # 0s Pr(w)/0s Pr(z) and A Pr(y) # APr(z), we can apply
P35 in the same way that we usually apply A7, A8 and P11 to obtain:

APr(y) APr(y)

0s Pr(w)
0s Pr(2)

0s Pr(w)
0s Pr(z)

0s Pr(x)
95 Pr(y)

0s Pr(w)

APr(y) # ———.APr(y)

APry) 2 3, Pr(z)

APr(z)

However, # is deliberately not transitive so that we cannot apply the usual method
to establish a relation between the products. Because of this we cannot obtain a
result for this case.

(ix) For 05 Pr(z) Pr(y) # 0s Pr(w)/0s Pr(z) and APr(y) < APr(z), we have much
the same problem as in the previous case in that we cannot chain % with <.

(x) For 05 Pr(z) Pr(y) < 0sPr(w)/0s Pr(z) and APr(y) < APr(z), we apply P3
twice to obtain:

05 Pr(z) 05 Pr(w) s Pr(w) 0s Pr(w)
as Pr(y) A Pr(y) < @TI‘(Z)A Pr(y) I‘(Z) A Pr(y) < (%Tr(Z)A PI'(Z)
and then P11 to obtain:
05 Pr(z) 05 Pr(w)
as Pr(y) A Pr(y) < @TI‘(Z)A PI'(Z)

as required. All other results follow by symmetry. O

Proof of Theorem 4 There are two ways of proving this theorem. One is to
proceed at the object level of ROM[K], in the same way that the previous proofs was
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obtained, using results such as to establish relationships between one product and
the difference of the others. A somewhat shorter proof can be obtained by reasoning
at the meta-level—this is what we provide here. Here, there are 25 separate cases.
(i) relq is ~ and rel, is &. The result of the subtraction may be positive or negative,
but its absolute value will be negligible with respect to ds Pr(cy)/0s Pr(ai).A Pr(ay).
Thus relf is >.

(ii) relq is &~ and rele is ~. The absolute value of the subtraction will be quite a lot
smaller than the minuend. Thus relf is 2.

(iii) rely is =~ and rele is %. If

0s Pr(cy) 0s Pr(cy)
0s Pr(az) 0s Pr(a3)

then the result of the subtraction is positive, and comparable to the value of the
minuend. Since the minuend is close in value to 0s Pr(c;)/0s Pr(a1).APr(a;), the
correct relation between the latter and the result of the subtraction is ~. If the
condition does not hold, then the result of the subtraction is negative and negligible

APr(az) > A Pr(as)

with respect to that of the minuend. Thus the relation between the absolute value
of the result of the subtraction and J; Pr(c1)/0s Pr(a;).APr(a;) is <.

(iv) relq is ~ and rele is <. The result of the subtraction is negative and of
almost the same absolute value as 9; Pr(c1)/0s Pr(as).APr(as). Thus, 05 Pr(c;)/
0s Pr(a1).A Pr(ay) is negligible with respect to this absolute value and relf is <.
(v) relg is &~ and rele is >. Since rele is >, the subtraction will have negligible
effect on 05 Pr(cy)/0s Pr(az).APr(az2), and so rely will just be =.

(vi) relq is ~ and rel, is &~. The absolute value of result of the subtraction will
be negligible with respect to the absolute value of either quantity involved in the
subtraction. Since the value of 95 Pr(c;)/0s Pr(a;).APr(a;) is close to that of
05 Pr(c1)/0s Pr(as).A Pr(as), it will be much greater than the absolute value of
the result of the subtraction, and rels will therefore be >>.

(vii) relq is ~ and rel, is ~. A similar argument to that in (ii) applies, but because
relg is ~ rather than ~ we can draw no conclusions about rels.

(viii) relq is ~ and rele is 2. A similar argument to that in (iii) applies, and the
result is the same.

(ix) relq is ~ and rele is <. A similar argument to that in (iv) gives the conclusion
that relf is <.

(x) relg is ~ and rele is >. A similar argument to that in (v) gives the conclusion
that relg is ~.

(xi) relg is % and rels is ~. The absolute value of the subtraction is going to
be negligible with respect to the minuend and thus negligible with respect to the
absolute value of 95 Pr(c1)/9s Pr(az).APr(az). Thus rel; is > so long as:

0s Pr(cy) 0s Pr(cy)
0s Pr(ay) 0s Pr(as)

If not, then 05 Pr(c1)/0s Pr(a1).A Pr(a;) might be of comparable size to the result
of the subtraction and no conclusion can be drawn about relg.

APr(a;) > A Pr(as)



Qualitative probability and order of magnitude reasoning 17

(xii) relq is # and rel is ~. A similar argument to that in (xi) applies giving the
same result.
(xiii) relq is % and rel, is %. If

0s Pr(cy)
0s Pr(az)

0s Pr(cy)

A Pr(ag) < 785 Pr(ag)

APr(as) (9)

the result of the subtraction is negative and has an absolute value much larger than
the minuend. If, in addition,

0s Pr(cy)
0s Pr(ay)

0s Pr(cq1)

APr(a;) < B, Pr(as)

APr(az)

we know that 9; Pr(c1)/0s Pr(a;).APr(a;) will be negligible with respect to the
absolute value of the result of the subtraction, and can conclude that rely is <. If
the second condition does not hold, then we cannot establish rels. If (9) does not
hold then the result of the subtraction is positive and comparable to the value of
the minuend. Since the minuend is far in value from 95 Pr(c;)/0s Pr(ai).A Pr(ay),

then if
0s Pr(cy) 0s Pr(cy)

0s Pr(ay) 0s Pr(as)
we can conclude that relg is >, while if this inequality is reversed, then relf is <.

(xiv) relq is % and rele is <. The result of the subtraction is negative and much
bigger than the absolute value of 9, Pr(c;)/0s Pr(as).A Pr(as). If:

APr(ay) > A Pr(as)

0s Pr(cy)
0s Pr(ay)

0s Pr(cy)
AP R AN
r(ar) > 9. Pr(ay) r(as)
Then the ;5 Pr(c1)/0s Pr(ay).A Pr(a;) will have the a similar absolute value to the
result of the subtraction and rely will be ~. If:

0s Pr(cy)

785 Pr(az) A PI‘((IQ)

0s Pr(cy)
aST(al)A Pr(al) <
then 05 Pr(c1)/90s Pr(a1).A Pr(a;) will be negligible with respect to the result of the
subtraction, and rely will be 2.

(xv) relq is % and rele is >. A similar argument to that for (v) means that relg is
#£.

(xvi) relq is < and rele is ~. This time the result of the subtraction is negligible
with respect to 9 Pr(c1)/0s Pr(as).A Pr(asz), and so it is impossible to say what
relg is.

(xvii) relq is < and rele is ~. A similar argument to that in (xvi) applies, and it is
impossible to say what relg is.

(xviii) relg is < and rele is . If:

0s Pr(cy)
0s Pr(az)

0s Pr(c1)

APr(az) > B, Prias)

APr(as)
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then the result of the subtraction is positive and comparable to the value of the
minuend. Since (95 Pr(c1)/0s Pr(a1)).A Pr(a;) is negligible with respect to the min-
uend, rely is <. If, on the other hand:

0s Pr(cy)
0s Pr(az)

0s Pr(c1)

A Pr(az) < m

APr(as)

then the result of the subtraction is negative and much larger than the minuend.
Since we are only interested in the absolute value, this means that rel; is <.

(xix) relq is < and rel, is <. This time the result of the subtraction is negative, and
its absolute value is negligible with respect to 95 Pr(c1)/0s Pr(as).APr(as). Thus
relf is <.

(xx) relq is < and rele is >>. A similar argument to that for (v) means that relf is
<.

(xxi) relq is > and rele is . The result of the subtraction will have an absolute
value negligible with respect to the minuend which itself is negligible with respect
to 0s Pr(c1)/0s Pr(a1).APr(a;), and so relg is >>

(xxii) relg is > and rele is ~. A similar argument to that in (xxi) applies.

(xxiii) relq is > and rele is 2. Reasoning as in (xviii), if:

0s Pr(cy)
0s Pr(az)

0s Pr(cy)

A Pr(az) > BST(a?,)

APr(as)

then the result of the subtraction is positive and comparable to the value of the
minuend. Since the minuend is negligible with respect to (95 Pr(c1)/0s Pr(aq)).
APr(ay) rely is >. If, on the other hand:

0s Pr(cy)
0s Pr(as)

0s Pr(cy)

A Pr(ag) < m

A Pr(ag)

then the result of the subtraction is negative and much larger than the minuend.
Since we are only interested in the absolute value, this means that rel; is ~.

(xxiv) relq is > and rele is <. The result of the subtraction will be negative and
have almost the same absolute value as the subtrahend. Thus 95 Pr(cy)/0s Pr(az).
A Pr(az) will be negligible with respect both to the result and 95 Pr(cy)/0s Pr(ay).
APr(ay), and the two latter quantities will be comparable. Thus rely is ~.

(xxv) relg is > and rele is >. A similar argument to that for (v) means that relg
is <.

Proof of Theorem 5: If rel, is > then the result follows immediately. If rel, is

& then the sign is [+] provided that that

0s Pr(cy)
0s Pr(az)

0s Pr(c1)

A Pr(az) < BST(a?,)

APr(as)

so that the bracketed term is positive. If not, then the sign is [—]. In all other cases
the result is too close to predict and the sign is [?]. O



