Informatica 17 page xxx-yyy 1

Approximating Knowledge in a Multi-Agent System

Miroslav Kubat* and Simon l:’arsomsJ[i

*Ludwig-Boltzmann Institute of Medical Informatics and Neuroinformatics,

Department of Medical Informatics,
Institute of Biomedical Engineering

Graz University of Technology
Brockmanngasse 41, A-8010 Graz, Austria
email mirek@dpmi.tu-graz.ac.at

T Advanced Computation Laboratory,
Imperial Cancer Research Fund,
P.O. Box 123, Lincoln’s Inn Fields,
London WC2A 3PX,

United Kingdom.

email sp@acl.lif.icnet.uk

iDepartmemt of Electronic Engineering,
Queen Mary and Westfield College,
Mile End Road, London E1 4NS,
United Kingdom.

Keywords: Artificial Intelligence, abstraction, granularity of knowledge, dl-cut, rough con-

cepts

Edited by: Matjaz Gams

Received: 777777, 1993 Revised: 777777, 1994 Accepted: 777777, 1994

This paper is concerned with establishing a common language that can be used

to communicate between the different members of a multi-agent system. We

suggest that this may be done by successively approximating the concepts that
each agent in the system deals with, and the paper gives algorithms which make

this possible. Along the way we introduce the notion of a description language
cut, or dl-cut, which is an abstraction to which a rich class of languages may be
mapped. The idea of a dl-cut is then used to introduce rough concepts— rough

descriptions of the concepts used by the agents. Finally we discuss the way in

which rough concepts can be logically combined and used in deductive reasoning,

also debating the scope of the validity of inferences using the concepts.

1 Introduction

Over the last twenty years, techniques from
artifcial intelligence have been successfully
applied to problems ranging from factory
scheduling [23], to process control [15], and

the diagnosis of faults in complex systems [12].
Expert systems have been developed which
can replicate or exceed the accuracy of human
experts [3], and which have bodies of knowl-
edge that make them as knowledgeable as the

2 Informatica 17 page xxx-yyy

best informed human expert [16]. With the in-
creasing power and sophistication of these sys-
tems have come a number of well-documented
problems — in general intelligent systems do
not scale up easily, they tend to be brittle so
that their performance breaks down as they
leave their domain of expertise rather than
degrading slowly as that of a human expert
would, and it is difficult to ensure that they
are consistent.

A number of solutions have been suggested
to remedy these ills, each stemming from a ma-
jor research effort. One is to try to ensure con-
sistency by constructing intelligent systems in
a more rigorous way, structuring the knowl-
edge that they contain and applying tech-
niques from software engineering. This work
is typified by the KADS project [22] and has
led to interesting developments in areas such
as the formal specification of knowledge-based
systems [5].

A second approach is to reduce brittleness
by building intelligent systems around a vast
body of commonsense knowledge that approx-
imates the kind of knowledge that people use
in their interactions with everyday situations.
This, in theory, will allow such intelligent sys-
tems to fall back on more general ideas when
their specific expert knowledge fails. For in-
stance, when a medical diagnosis system is
queried about the ailments suffered by some-
one’s car it should be able to transfer some of
its basic knowledge about diagnosis and use
this with commonsnese knowledge of how cars
work to attempt an answer. The CYC project
[14] which aims to do precisely this has re-
cently released the first version of its knowl-
edge base, and it will be interesting to observe
whether the claims made for it are justified.

A third approach, and the one that we will
consider in this paper, is to build communi-
ties of small, and therefore more manageable,
systems. Because the individual systems con-
tribute different skills and knowledge, together
they are capable of handling problems that are
beyond the scope of a single system. This
is the approach of the ARCHON project [11]

M. Kubat and S. Parsons

which has proved itself in the area of industrial
process control in general, and in the construc-
tion of a co-operative system for electricity dis-
tribution management [4] in particular.

Now, one of the most interesting things
about the ARCHON system is that it provides
a framework for combining together existing
systems. The motivation for this is the pro-
motion of code and resource reuse, which is
clearly a worthy aim, but in doing so raises
a new and difficult problem. Different sys-
tems developed at different times may use dif-
ferent languages for knowledge representation.
If this is the case, how should they be com-
bined? Work on ARCHON understandably
stopped short of providing an answer to this
question, and it seems that little has yet been
published on general solutions to the problem,
though there has been some work on trans-
lating between different uncertainty handling
formalisms in this context [19, 25].

However, some preliminary work has been
published on related subjects. Huhns et al.
[9] describe ways of integrating different in-
formation models of businesses, that is they
discuss the problems of relating such models
and resolving incompatibilities between them.
To do this they make use of the CYC ontology,
which is postulated to be of sufficient extent to
encompass any notion in any business model,
and integrate different models by integrating
them into CYC. The result of this work is a
system called Carnot, which provides an ar-
chitecture and tools for integrating the infor-
mation models of large businesses. Neches et
al. [17] make a similar suggestion but from the
more general perspective of integrating knowl-
edge representation systems irrespective of do-
main or interpretation. To do this they sug-
gest the idea of an “interlingua” which is a
general language for knowledge interchange.
At first blush, such a language certainly seems
to be a good idea, but, as Ginsberg [6] argues,
there are reasons why the definition of a stan-
dard interlingua seem premature.

This work on interlinguae assumes that
there will be some underlying ontology, some

APPROXIMATING KNOWLEDGE

agent 1

concepts| formulae

agent n

formulae

concepts

Informatica 17 page xxx-yyy 3

CL

context

Figure 1: The system under consideration

basic set of concepts and their inter-relations,
that is understood by all systems. Now, while
such ontologies exist in some domains [17],
they are far from universal, so there are do-
mains in which the approaches discussed above
will founder. In this paper we present some
initial ideas about the way in which a model
that is common to a number of intelligent
systems that do not have a known common
ontology might be constructed automatically
from the models of individual agents within
the group.

2 Basic concepts

Our inspiration to develop methods to ob-
tain a common interpretation of knowledge
from multiple sources stems from the domain
of multistrateqy learning, first proposed by
Brazdil [1]. The ability of this principle to
improve performance was demonstrated by
Brazdil and Torgo [2], and by Torgo and Ku-
bat [24]. In the particular case we will consider
here, the problem involves several agents and
a central system.

The agents possess knowledge which is ex-
pressed in a particular language and the task
of the central system is to combine the knowl-
edge into a general structure. The problem in

doing this is that the language used by any
agent may be different to the languages used
by any other agent, and, if this is the case, the
central system will need to translate the in-
formation obtained from the individual agents
into some common basis which we will refer to
as the central language CL.

Figure 1 illustrates the situtation we will
consider. Fach agent has a language which
expresses a set of concepts and a set of logical
formulae concerning those concepts. The cen-
tral system contains the context of the over-
all system which plays an important role in
any application of the knowledge of the multi-
agent system since the kind of concepts with
which the system will deal have connotations
which vary widely according to the context.
Thus, for instance, the concepts ‘fertile land’
and ‘warm day’, have widely different mean-
ings in Central Africa and in Sweden.

Note also that in this case, unlike the agents,
the central system has no direct access to the
environment, however there is no theoretical
reason why the central system should not have
access, nor, for that matter why there should
be a “central” system with a distilled com-
mon language. Instead the common language
could be replicated in each agent, producing a
group with no central focus, but whose mem-

4 Informatica 17 page xxx-yyy

M. Kubat and S. Parsons

x CH{a, b}y ={d},{f} CzC{e f,g}

Figure 2: Roughly described concepts =, y and z

bers could all understand each other.

Now, when the system of agents is ini-
tially set up, the central system has no un-
derstanding of the languages used by the vari-
ous agents. However, it is possible that it can
establish a common language by approxima-
tion. That is, it is possible for each agent to
describe its knowledge to the central system in
terms of its set of concepts. Depending upon
the wealth of concepts available to the agent
this may be a very precise or a very coarse
description of its knowledge so that there is
no guarantee as to the precision of the trans-
lation that is possible between the agent and
the central system.

When all the agents do this the central sys-
tem will end up with a language which can deal
to some degree with all of the knowledge dealt
with by all the agents, and so is broader than
that of any single agent. In addition, due to
the intersection between concepts, it may be
more detailed than that of any agent.

What we propose in this paper are some
thoughts as to how this might be achieved
within the framework of rough concepts which
we have developed [13] from ideas on rough
sets [21].

A few informal definitions are needed to
clarify some of the notions that we will oper-
ate with. A language, often called a descrip-
tion language, 1s understood as a set of well
formed formulae (wff). We will only deal with
languages with a finite number of wffs. Fach
wff represents a concept captured by the lan-
guage. FEach concept, in turn, is interpreted
as a set of relevant objects assigned to it by

its context. Thus, when speaking about stu-
dents, we usually do not mean all students
in the world. Rather, we implicitly constrain
ourselves to the students of our university, stu-
dents of Computer Engineering, students from
the secondary school in the neighbourhood,
and the like. The context represents addi-
tional information common to all concepts,
and in this case we assume that the context
is common to all agents.

Figure 2 presents a graphical representation
of possible relationships between CL and con-
cepts known by an agent. Fach segment «
through ¢ stands for one wff of a simple CL,
and consists of objects that cannot be further
discerned in CL. Each wff is true for one or
more objects. The lozenges x, y and z are
concepts known by an agent. Note that, due
to the different languages used by the agent
and the central system, the boundaries of x
do not coincide with those of the wffs of C'L so
that is not described as precisely by CL as by
the language of the agent. However, without
any additional information, the classification
of the objects from the segment b as positive
or negative instances of x is completely un-
known and cannot be quantified by a proba-
bility or a fuzzy degree of membership, so that
this imprecise classification is still very useful.
In addition, as concepts y and z illustrate, CL
may be able to precisely distinguish the con-
cepts of an agent, or even some subsets of some
the concepts understood by an agent.

This issue is closely related to work on gran-
ularity such as that by Hobbs [8] who defined

an indistinguishability relation for unary pred-

APPROXIMATING KNOWLEDGE

icates and Imielinski [10] who extended Hobbs
work so that the idea can be applied to ap-
proximate reasoning. Our proposal also has
notions in common with Carnot [9] which uses
the idea of finding the best generalisation of a
given concept, and with Ginsberg’s [6] discus-
sion of KIFs in which he proposes discarding
details such as probabilities in order to facili-
tate interchange between agents that quantify
their knowledge and those that do not.

For simplicity, we assume that the infor-
mation possessed by the agents is noise-free
and relevant. Readers interested in a method
for pruning out noisy and irrelevant knowledge
can find details in work by Brazdil and Torgo
[2]. Thus the task that we will address is de-
fined as follows:

Given:

A definition of the central language CL;

The general context expressed either as a
set of constraints on the set of objects with
which the multi-agent system will deal (such
as the set of all types of car manufactured in
Europe), or as a list of possible objects (such
as Rover Metro, Nissan Micra, Ford Escort,

-);

For each agent, the descriptions of con-
cepts and formulae in the agent’s language
which allow the agent to classify objects in
terms of the concepts;

Find:
The description of all concepts in CL;

The scope of validity of the old as well as
newly inferred propositions in CL.

The essence of this translation process is ab-
straction, a phenomenon that has been widely
studied in artificial intelligence. A comprehen-
sive analysis is provided by Giunchiglia and
Walsh [7] where three types of abstraction are
defined, depending on the ability of the source
language L; and the object language L, to dis-
tinguish objects. Informally, an abstraction is
constant if both languages discern the same
objects; an abstraction is decreasing if Ly is

Informatica 17 page xxx-yyy 5

able to distinguish the same objects as L, and
possibly some more; an abstraction is increas-
ing if Lo 1s able to distinguish the same objects
as L and possibly some more. The preceeding
discussion makes it clear that, depending upon
the exact concepts available, our method may
give any of these types of abstraction, and in-
deed may give a mixture of different types for
different agents in the same system.

3 Translating into CL

In this paper, no strong requirement is made
on the syntax of the well-formed formulae—
we use a logic-like notation to describe the
attributes of the objects which exemplify the
concepts the various agents deal with. How-
ever, this notation is used purely for conve-
nience since it allows us to write down ideas
such as “the shape of a certain class of object
is either a cube or a pyramid” in a concise way
as, for instance:

(shape(x) = cube) Y (shape(x) = pyramid)
or:
shape(z, cube) V shape(z, pyramid)

and 1t should not be seen as a fundamental
limitation on the approach— the results pre-
sented in the paper hold whatever form the
wffs are written in.

To get an idea of the motivation for the dl-
cut and rough concepts, consider a simple ex-
ample.

Example 1.

Let a set of toy blocks be described by their
shape: cube, pyramid, ball, and prism. The
CI-language capable of describing the shape
by means of these terms decomposes the set
into four disjoint subsets, each of which is rep-
resented by at least one object. Suppose the
concept to be translated into CL is ‘stable in
an earthquake.” Cubes and pyramids are sta-
ble, balls are not stable, and the stability of
a prism depends on the ratio of its base area

6 Informatica 17 page xxx-yyy

to its height. Since no distinction is made be-
tween the different types of prism, CL can-
not discern short, fat prisms (stable) from tall,
thin prisms (unstable). If no additional infor-
mation is available, the concept ‘stable in an
earthquake’ can only be approximated by its
lower bound (sufficient condition) and upper
bound (necessary condition):

lower bound:

Va stable(z) =
shape(z, cube) Vv shape(x, pyramid)

upper bound:

Va stable(z) =
shape(z, cube) Vv shape(x, pyramid)
V shape(z, prism)

O

The lower-bound description (core) is true for
cubes and pyramids, whereas the upper-bound
description (envelope) is true for cubes, pyra-
mids, and prisms. Obviously, the ‘distance’
between the core and envelope depends on the
language CL. Concepts expressed by the pair
[core, envelope] are called rough concepts.

The notion of a dl-cut, defined below, will
facilitate the formalization of the approach
that we have just outlined. In the following
definition, the universe U is the set of all ob-
jects seen by the central system.

Definition 3.1 (dl-cut) Denote by DI the
set of all wits of a language. A subset dl C DI
is called a dl-cut iff it decomposes U into a
system of pairwise disjoint sets such that each
set is assigned precisely one wff f € dl that is
true for all elements of this set.

Thus in the simple system from Example 1,
the universe of all blocks can be decomposed
into four disjoint sets each of which is assigned
one of the following predicates:

shape(z, cube), shape(x, pyramid),
shape(z, ball), shape(x, prism)

Each predicate is a wff and the set of four
predicates is a dl-cut. In general there is not
a unique dl-cut for a given universe. In this

M. Kubat and S. Parsons

case, an alternative dl-cut is made up of the
following three wffs:

shape(x, cube) V shape(x, prism),
shape(x, pyramid), shape(zx, ball)

The elements (wffs) of a dl-cut are descrip-
tion items or generic concepts which may be
distinguished by the central system, and may
be used by it to approximate the concepts
handled by the various agents with which it
communicates. Knowing that any disjunction
of description items can be considered to be
a concept, we can discern, by means of the
dl-cut, 2V different concepts, where N is the
number of wffs in the dl-cut. The notion of a
dl-cut facilitates a mapping of a rich class of
languages onto easy-to-handle boolean expres-
sions (for a deeper analysis, see [13]).

Basically, there are two possible approaches
to the construction of a dl-cut from the un-
derlying language— a naive approach, and a
concept-oriented approach. We only cover the
naive approach in detail, contenting ourselves
with hinting at how the concept-oriented ap-
proach can be employed.

The naive method uses a hill-climbing
search technique. The initial state is the
empty set of wffs, the final state is a set of
wffs that form a dl-cut, and the search mecha-
nism is to augment the current set of wffs with
a wff that does not overlap with any previous
wff. Obviously, an exhaustive search would re-
veal many different dl-cuts whose capacity to
model concepts varies. Hence, the search must
be made heuristic by adding some criterion for
selecting which wff to add to the dl-cut. To be
useful, this criterion should reflect the ability
of the dl-cut that results from the addition the
wff to model concepts. This approach leads us
to propose Algorithm 1.

The prerequisite for this algorithm is the
availability of a generality criterion which
gives some idea of the quality of a dl-cut, and
of a mechanism for a subsumption test to es-
The
generality criterion in a system such as ours
which is based upon the manipulation of at-

tablish if one wff can replace another.

APPROXIMATING KNOWLEDGE

mammal

vertebrate

Informatica 17 page xxx-yyy 7

Figure 3: Example of a generalization tree

tributes naturally reflects the number of liter-
als in an expression since each of these corre-
sponds to an attribute of the domain. Thus
A is more general than AA B and AV B is
more general than A. The subsumption test
can be based on knowledge of the domain, so
that ‘bird” subsumes ‘eagle’ as in Figure 3 or
on the explicit listing of the concepts repre-
sented by a wff. Thus if all objects represent-
ing concept A also represent concept B, then
B subsumes A. By convention, we write p C ¢
if ¢ subsumes p, and p O ¢ if p subsumes g¢.

A similar notion to subsumption is that of
overlapping. Two wffs [and [, are said to
overlap if [{ = ;11 VIV ...Vi,, I3 =11V
lag V ...V Iy, and [y; = ly; for some 7 and
j. Finally, the language CL is assumed to be
sufficiently rich that at least some of its wffs {;
must be subsumed by some concepts s;, that
is [; C s;, and for each object uy € U, a wff [,
can be found such that [, is true for wuy.

The input to the algorithm is the set S of all
concepts, the context which defines the extent
of the universe U, and CL, which when the
first dl-cut is constructed will be empty, but
for other dl-cuts will be a set of wffs. Further,
let L(F) = {l;,....1,} be the list of wffs from
CL, in descending order according to some
generality criterion so that for {;,[; € LD,
if + < j, [; is not more general than [;.

The algorithm terminates when S is empty
or when the ability of dI®Y to discern con-

cepts cannot be increased without backtrack-
ing from the current state.

Algorithm 1
1. Let dI(¢L) = ¢

2. Starting with [y, search for the first [; €
LEL) such that an s; € S can be found for
which [; C s;. If no such /; can be found, go
to 5;

3. Let di(F) = @Dy {i;}. Discard all I; €
LcL) overlapping with [;;

4. Delete from S all concepts s; such that s; C
d; where d; is any disjunction of wffs from
dICCL) 1f S is not empty, go to 2;

5. Find a wff that is true for the rest of the
universe U, add it to dl(°L) and stop.

Of course, many different procedures us-
ing more powerful heuristics and search tech-
niques can be proposed, and their detailed
analysis is an open research topic. The algo-
rithm we have presented can serve as a guide-
line.

Before we proceed to the illustration of the
algorithm by a simple example, a few com-
ments are necessary. Firstly, an additional re-
quirement in step 2 can demand that the con-
cept s; subsuming /; is not allowed to subsume
any other concept s;. This requirement makes
sense if agents are able to order their concepts
by subsumption.

8 Informatica 17 page xxx-yyy

Secondly, since the explicit storing of L(CF)

would limit the utility of the procedure to very
small languages, the list is intended to be im-
plicit. Thus in the language based on conjunc-
tions of unary predicates, the algorithm would
begin with single predicates, then, when the
ability of the predicates to describe concepts
has been exhausted, proceed to conjunctions
of pairs of predicates selected by a suitable
heuristics.

It is also possible to derive an alternative
algorithm driven by the concepts s; instead
of the wffs. This is the ‘concept-oriented’ ap-
proach hinted at above.

Finally, it should be noted that, in general,
subsumption checking is NP-hard for first-
order logic and must be assisted, in realistic
applications, by background classification in-
formation based on notions of generality of
concept, such as that depicted in Figure 3. A
similar problem can arise with the discarding
of overlapping wffs in step 3.

Example 2.

Consider once again the blocks world of Ex-
ample 1 which is extended so that the blocks
can be described in terms of the material from
which they are made as well as their shape—
all cubes, prisms, and pyramids are metallic
while balls are wooden. The agents under-
stand the concepts ‘stable’ and ‘belongs to
Tom’, and are able to classify the objects in
U as positive and negative examples of the
concepts. In the first step, the central system
picks the unary predicates one by one until one
of them turns out to be subsumed by any of
the two concepts.

Suppose that the concept ‘stable’ sub-
sumes the predicates shape(x, cube) and
shape(x, pyramid) while ‘belongs to Tom’ sub-
sumes shape(x, pyramid). The system selects
shape(x, pyramid) as the first wff of dl(“").
From now on, all predicates overlapping with
shape(x, pyramid) will be discarded so that
only the predicates shape(x, cube), shape(z,
prism), shape(z, ball), material(x, wood) and
their conjunctions are allowed to appear in any

M. Kubat and S. Parsons

of the future wffs. Thus we might end up with
dI“D) being:

shape(z, pyramid), shape(z, cube),
shape(z, ball) N material(z, wood),
shape(z, prism)

O

Now, we can define the important notion of a
rough concept.

Definition 3.2 (rough concept) Let
2B(dl) = [z9(dl),=F(dl)] be a rough set. A
rough concept is the pair [des(z%), des(x?)],
where des(x) is the description of the core of
z in Dlg and des(z¥) is the description of the
envelope of x in Dly.

Note that the core description does not apply
to any negative instance of x, the envelope de-
scription applies to all positive instances of x,
and the complement of the envelope applies
only to negative instances of x. Beware, how-
ever, that any pair [core,envelope| pertains to
a particular dl-cut. Different dl-cuts tend to
imply different rough concepts since the core
and envelope are wffs from dl(¢")
spect, the idea of rough concepts departs from
Pawlak’s rough sets [21]. Even though a wff
can be understood as a set of objects for which
it is true, the symbolic interpretation of an ap-
proximation of a concept is dominant.

. In this re-

The next algorithm translates the concepts
from the agent’s language into CL. The input
is formed by dI(®") and by the concepts to be
translated into CL. As output, the algorithm
produces rough concepts in CL.

Algorithm 2

For each concept C' of an agent, and for any

de;, de, € di1):

1. If d., is subsumed by C, then d., belongs to
the core;

2. If d., overlaps with C, then d., belongs to
the envelope;

APPROXIMATING KNOWLEDGE

3. The core (respectively, the envelope) is the
union of all items d., (respectively, d.,),
so that C¢ = J,d,,, (respectively, C¥ =
U, de,)-

Example 3.

Thus in our running blocks world example, we
can write down the rough description of the
concepts “stable” and “belongs to Tom”. Ap-
plying Algorithm 2 we find that for the dl-cut
described in Example 2:

stable(z)” =
{shape(x, cube), shape(x, pyramid)}

stable(x)¥ =
{shape(x, cube), shape(z, pyramid),
shape(z, prism)}

Thus:
stable(z)F =
{shape(x, cube), shape(x, pyramid)},
{shape(x, cube), shape(x, pyramid),
shape(z, prism)}

Similarly since the only objects that are
known not to belong to Tom are prisms, we
have:
belongsto Tom(z)" =

{shape(z, ball) AN material (z, wood),

shape(z, pyramid)}
belongsto Tom(z)¥ =

{shape(z, ball) AN material (z, wood),

shape(z, pyramid), shape(z, cube) }
Thus:
belongs_to Tom(z)F =
{shape(z, ball) AN material (z, wood),
shape(z, pyramid)},
{shape(z, ball) N material(x,wood),

shape(z, pyramid), shape(z, cube)}

Informatica 17 page xxx-yyy 9

4 Reasoning with Rough
Concepts

The work presented in previous sections makes
it possible translate concepts from the lan-
guages of various agents into CL. If we con-
sider that the central system that uses CL will
need to reason with these concepts, a natural
question arises— how can one logically manip-
ulate rough concepts?

Well, if we take = and y as concepts roughly
defined in dI{°") by means of cores and en-
velopes it can be easily shown that for the
cores and envelopes of their disjunction, con-
junction, and negation, the following relations
hold where the dlin the parentheses is a short-
hand for di“"), and V is the set of all wffs in
the language CL:

(xVvy)E(dl) = 2B(dl)uyP(dl)
(zVy)(dl) 2 a9(dl)uy’(dl)
(z Ay)P(dl) C F(dl) nyP(dl)
(x Ay)9(dl) = z9(dl) Nny“(dl)
(mo)P(dl) =V —(2)(dl)
(mx)(dl) =V —(2P)(dl)

For instance, the envelope of a disjunction of
two concepts is equal to the union of the en-
velopes of the individual concepts. The en-
velope is understood as a subset of V' and is
subject to unions, intersections, and subtrac-
tions; the concepts themselves are subject to
disjunctions, conjunctions, and negations.

The relation of implication can easily be de-
fined by means of the partial ordering < im-
posed on the space of all wffs such that for wffs
li, l]‘ and lki lZ < l]‘ it l]‘ == lZUlk and lZ S l]‘ it
l; < l]‘ or [; = l]‘.

Definition 4.1 (implication) Let 2 =

(2%, 2 and yT = (y©, y¥) be rough concepts.
The operation of implication is defined as fol-
lows:
(2" = yf) & («f <)
& [<y A (@ <y
From the well-known properties of partially

ordered sets it follows that (z* — ¢f) <
(mzf v y?) & [P U y©, 2@ Uy,

10 Informatica 17 page xxx-yyy

M. Kubat and S. Parsons

[0, 0] [0, X]

[0,V] (X, V] [V, V]

false | roughly false

unknown

roughly true | true

Table 1: Rough truth values (§ ¢ X C V)

We can consider the elements of CL, which
are the rough concepts translated into CL by
the algorithms in Section 3, as the set of lan-
guage elements that form the basis of a formal
logic. These may be propositional constants
or predicate symbols. Denoting this set of lan-
guage elements as P we can then consider the
set of well formed formulae of this logic, denot-
ing this set as L(P) [18, 20]. For any p € L(P)
we define the rough measure R(p) of p which is
the rough description of the concept or combi-
nation of concepts that correspond to p. More
precisely:

R(p) =

pgc,sz]

where p<¢ is the lower bound on the core of p
and p2¥ is the upper bound on the envelope.

Example 4.

To delve a little
world example,consider the compound con-
cept p which represents stable(x) V belongs.
to_Tom(x). Now:

stable(x)F =
[{Shape(x, cube), shape(x, pyramid)},

further into our blocks

{shape(x, cube), shape(x, pyramid),
shape(x, prism)}
belongs to Tom(z)? =
[{Shape(x, ball) A material(z,wood),
shape(x, pyramid)},
{shape(z,ball) N material(x,wood),
shape(x, pyramid), shape(z, cube)}]
so that:
R(p) =
[{shape(x, ball) A material(x, wood),
shape(z, cube), shape(x, pyramid)},
{shape(z, ball) N material(x,wood),

shape(z, cube), shape(z, prism),

shape(z, pyramid)}]
O

One way of interpreting the rough measure of
an element p € L(P) is the degree to which p is
true in the universe of rough concepts. That is
how universally it is true amongst the rough
concepts. Obviously, for p© = p¥ = L(P),
the proposition is always true and we define
the rough truth measure RV (p) = true(t). For
p® = pP = () the proposition is always false.
Three other important truth values of R(p)
may be posited, and these are summarized in
Table 1 (for more detailed discussion, see Par-
sons et al. [20]).

The symbolic values in Table 1 indicate to
what degree a proposition is true in V. How-
ever, the pair R(p) = [p¥, p¥] can also be un-
derstood as a more general measure since it
explicitly determines in what part of the uni-
verse of rough concepts the proposition is true,
roughly true and so on. More specifically, the
expression R(p) = [p, p¥] says that p is true
in p“ and roughly true in p¥. Similar consid-
erations enable us to define a truth-ordering
on the set of propositions.

Definition 4.2 (truth ordering)
Let py and py be propositions. We say that p,
is more true than py iff p¥ D p§ and pP D p¥.

By now this section has introduced a rough
measure of truth, a set of basic symbolic truth
values, the scope of validity of a proposition,
and the ordering of propositions based on their
With this background, we can
study what happens with the truth measure
if we subject the formulae of £L(P) to rules of
inference. This is expressed by Theorem 4.1
which is proved in the Appendix:

truth value.

APPROXIMATING KNOWLEDGE

Theorem 4.1 For formuale p, g and r €
L(P), variable x and a constant symbol a,
modus ponens (a), modus tollens (b), resolu-
tion (c), syllogism (d), and universal instan-
tiation (e) have the following effect on rough
descriptions:

a) Rlp—q) = [of]
R(p) = [775]
R(q) = [any,f]
b) R(p—q) = [o[]
R(_'Q) = [775]
R(=p) = [any,f]
c) Rpve = [a,f]
R(—!p\/T‘) = [775]
R(qVr) = [an~,[U{]
d) Rlp—q) = [o[]
Rlg—r) = [y,4]
R(p—r) = [an~,[U{]
e) R(VaP(z)) = [a,f]
R(P(a)) = l[a,V]

For instance, for modus ponens the theorem
reads as follows:

If the implication p — ¢ is true in
a C V and roughly true in g C V,
and if the formula p is true in y C V
and roughly true in § C V' then ¢ is
true in o N+ and roughly true in 3.

In this respect, the theorem gives truth-
preserving inferential rules for automated rea-
soning and says in what part of the universe
described by CL the rules are really deductive.

Example 5.

Suppose that the dl-cut obtained from
CL by Algorithm 1 consists of the fol-
lowing four predicates: material(x,wood),
material(x, stone), material(x, metal), and
material(x, plastic). Furthermore, let the
background knowledge contain the decision
tree from Figure 4 (see overleaf). After
simplification with respect to an agent that
understands the concepts interesting and

Informatica 17 page xxx-yyy 11

tedious and whose knowledge is summarised
by Figure 5 (see overleaf), the dl-cut becomes
material(x, natural), material(x, metal), and
material(x, plastic), because the background
knowledge says that natural material in our
universe is either wood or stone and be-
cause this simplification does not interfere
with the system’s ability to discern the con-
cepts interesting and tedious. The concepts
interesting and tedious are then translated
into CL as follows:

interesting(z)F(dl) =

{material(z, natural)},

{material(z, natural), material(z, metal)}]
tedious(x) T (dl) =

[{material(x, metal)},

{material(xz, metal), material(z, plastic)}]
Thus:
—interesting(z)F(dl) =

[{material(x, plastic) },

{material(z, plastic), material (z, metal)}]

and:
(—interesting(z) — tedious(z))F(dl) =

[{material(x, natural),

material(z, metal)}, V]

If some piece of knowledge says that, with
the exception of metal objects, it is always the
case that interesting(x) — foobar(x) (where
foobar(z) is a concept unknown to the agents)
so that (interesting(z) — foobar(x))R(dl) =
[{material(x, natural), material(x, plastic)},
material(x, natural), material(z, plastic)}],
then it is possible to conclude, using Theorem

3.1 (a), that
foobar(z)F(dl) =

{material(z, natural)},

{material(z, natural), material(z, plastic)}
a

12 Informatica 17 page xxx-yyy

M. Kubat and S. Parsons

/

wood

N\

stone

Figure 4: A classification tree

agent’s proposition:

—interesting — tedious

. . tedious agent
interesting
s “ A
f T T T 1
wood stone metal plastic
L J
natural CL

Figure 5: Translation of interesting and tedious into CL

5 A larger example

In this section we give a more extensive exam-
ple than any so far in order to bring together
all the ideas introduced in the paper.

We will consider the construction of a com-
mon language from the knowledge of two sim-
ple agents. In doing so description language
cuts are built from both sets of concepts and
their exemplary objects. We will then use
the overall language CL which understands
the concepts known to both agents to build
rough descriptions of all concepts, and show
how these might be combined in the central
system to learn things that were not apparent
to the individual systems. The example is kept
simple to make it easy to follow, and aims to
elucidate new features of our work rather than
duplicate previous examples.

Since both Huhns et al. [9] and Pawlak
[21] have used similar examples, it seems en-
tirely appropriate that the agents we con-
sider should be concerned with motor ve-
The first agent understands three
concepts, small_car(x), fast_car(z),
slow_car(x)which are described in terms of the
objects in Table 2 (see overleaf). where the ta-
ble should be read as saying, for instance, that

hicles.
and

a Rover Metro is an example of both a small
car and a slow car. The second agent also
knows about slow cars, but also understands
the concepts family_car(x)and van(x), defin-
ing these with the examples in Table 3 (see

overleaf).

The context of this example is precisely the
set of vehicles known by both agents, so that
between them they know of every object in
U. The set of concepts and objects gives us a

APPROXIMATING KNOWLEDGE

Informatica 17 page xxx-yyy 13

small_car(x)

rover_metro(x) *
austin_mini(x) *
ford_escort(x) *

lotus_eclat(x)
reliant robin(x)

vw_gol f(x)

fast_car(z) slow_car(x)
*
*
*
*
*

Table 2: The concepts known by the first agent

family_car(x) wvan(z) slow_car(x)
ford_escort(x) V ford_cortina(x) *
toyota_corrola(x) *
ford_transit(x) *
vauzhall astra(x) *
rover_metro(x) *
nissan_micra(x) *

Table 3: The concepts known by the second agent

deliberately simple dl-cut with which to con-
struct CL in the hope of making the example
reasonably transparent. Applying Algorithm
1 to the knowledge possessed by the first agent,
we initially have dI{®") =). Then, one by one
we add wffs, each of which in this case is a sim-
ple term such as rover_metro(xz). Since each
wff is this simple, dl(°") increases with each
iteration:

iteration 0

dlCL) = ¢

iteration 1
diCL) = {rover_metro(z)}

iteration 2
diCL) = {rover_metro(z), austin_mini(x)}

iteration 6

diCL) = {rover_metro(z), austin_mini(z),
ford_escort(z), vw_gol f(z),
reliant_robin(z), lotus_eclat(z)}

This is a dl-cut that is suitable for describ-
ing all the concepts known to the first agent.
We then apply the same algorithm to the
wffs that are formed by the objects known
to the second agent. All this second applica-
tion of the algorithm does is to extend d[(¢1)
at every iteration, with the exception of the

time the wff ford_escort(x)V ford_cortina(x)
1s considered since this subsumes and thus
replaces ford_escort(x), and the time that
rover_metro(x) is considered since it is al-

(L)

ready in d{'~*. Thus we have:

iteration 7
di'°L) = {rover_metro(x), austin_mini(z),
ford_escort(z) Vv ford_cortina(z),
lotus_eclat(x), reliant robin(z),

vwgol f(2)}

iteration 15
diCL) = {rover_metro(z), austin_mini(z),
ford_escort(z) Vv ford_cortina(z),
lotus_eclat(x), reliant robin(z),
vw_gol f(z), toyota_corrolla(x),
ford_transit(z), vauzhall_astra(z),
nissan_micra(z)}

Given this dl-cut, we can then use Algo-
rithm 2 to build rough descriptions in CL of
the concepts known by the two agents. In this
case the concepts are quite precisely known,
and we have:

slow_car(z)? =
{rover_metro(z), austin_mini(z),

reliant_robin(z), nissan_micra(z)},

14 Informatica 17 page xxx-yyy

{rover_metro(z), austin_mini(z),

reliant_robin(z), nissan_micra(z)}

fast_car(x)f =

[{lotus_eclat(x), vw_gol f(x)},

{lotus_eclat(z), vw_gdf(ﬂﬁ)}]

van(z)F =

[{ford_transit(x), vauzhall_astra(z)},

{fordtransit(z), vauxhall_astra(x)}]

family_car(z)F =

[{ford_escort(x) V ford_cortina(z),
toyota_corrolla(x)},
{ford_escort(z) VvV ford_cortina(z),

toyota_corrolla(z)}

small_car(z)f =

[{rover_metro(x), austin_mini(x)},
{rover_metro(z), austin_mini(z),

ford_escort(z) V ford_cortina(x) }]

which neatly illustrates the point made in Sec-
tion 2 about the nature of the abstraction at-
tainable by the use of rough sets. CL contains
knowledge of more concepts than either of the
agents, it can define most of them as precisely
as either agent, though it has a coarser knowl-
edge of what constitutes a small car. However,
it has more precise knowledge of the kinds of
slow car than either agent.

Having established CL we can of course
use the results of Section 4 to manipulate the
rough concepts. For instance, we can evaluate
the validity of the idea that all cars known to
the system are either fast or slow. That is we
can find the rough measure R(fast_car(xz)V
slow_car(x)), which is:

R(fast_car(z)V slow_car(z)) =
[{rover_metro(x), reliant _robin(z),
lotus_eclat(x), austin_mini(z), vw_gol f(x)},
{rover_metro(z), austin_mini(z),

lotus_eclat(x), reliant robin(z), vw_golf(ac)}]

M. Kubat and S. Parsons

so that the proposition is completely true in
that part of the universe known to the cen-
tral system that does not include vans or
family cars, since the rough description of
fast_car(z) V slow_car(x) does not overlap
with the rough description of family_car(x)V
van(x).
tween the rough descriptions of fast_car(x)V

However, there is an overlap be-

slow_car(x) and small_car(x). Indeed, we
can test the hypothesis that slow_car(x) <
small_car(x), taking this to mean that:

slow_car(z) — small_car(z)A
small_car(z) — slow_car(x)
Now

(slow_car(x) — small_car(z))F =
{rover_metro(z), austin_mini(z),
ford_escort(z) Vv ford_cortina(z),
lotus_eclat(x), vw_gol f(x),
toyota_corrolla(z), fordtransit(z),

vauzhall_astra(z)},
{rover_metro(z), austin_mini(z),
ford_escort(z) Vv ford_cortina(z),
lotus_eclat(x), vw_gol f(x),
toyota_corrolla(z), fordtransit(z),
vauzhall_astra(z)}

and:

(small_car(z) — slow_car(z))? =
{rover_metro(z), austin_mini(z),
lotus_eclat(x), reliant robin(z),
vw_gol f(z), toyota_corrolla(x),
ford_transit(z), vauzhall_astra(z),

nissan_micra(x)},
{rover_metro(z), austin_mini(z),
ford_escort(z) Vv ford_cortina(z),
lotus_eclat(x), reliant robin(z),
vw_gol f(z), toyota_corrolla(x),
ford_transit(z), vauzhall_astra(z),

nissan_micra(z)}

so that:

APPROXIMATING KNOWLEDGE

(slow_car(z) + small_car(z))F =

{rover_metro(z), austin_mini(z),
lotus_eclat(x), vw_gol f(x),
toyota_corrolla(z), fordtransit(z),

vauzhall_astra(z)},

{rover_metro(z), austin_mini(z),
ford_escort(z) Vv ford_cortina(z),
lotus_eclat(x), vw_gol f(x),

toyota_corrolla(z), fordtransit(z),

vauzhall_astra(z)}

which implies that the proposition is less than
roughly true, and less true than the proposi-
tion that being a small car implies being a slow
car.

6 Conclusion

The primary goal of this work was to develop
the basis of a method of translating concepts
and propositions from different languages used
by a set of agents. This goal was achieved with
the introduction of the notions of a dl-cut and
a rough concept which allow the common lan-
guage to be established as a dl-cut of all the
different languages used by the various agents,
and this dl-cut to be used to specify the rough
concepts that may be used to express the con-
cepts manipulated by the agents. Two simple
algorithms have been provided that make it
possible to establish dl-cuts and rough con-
cepts. We also addressed the problem of rea-
soning with the dl-cuts once they were es-
tablished, giving results describing how logi-
cal reasoning may be performed with the con-
cepts.

Future research in this direction should con-
centrate on the heuristics needed for the devel-
opment of more efficient algorithms construct-
ing dl-cuts from description languages. The
main issues are, in this respect, the need to
minimize the amount of information lost in
the process of translation and the complexity

Informatica 17 page xxx-yyy 15

of the subsumption checks and tests for over-
lapping wffs.

References

[1] Brazdil, P. B. (1989) Transfer of Knowl-
edge Between Systems: Use of Meta-
knowledge in Debugging. In Kodratoft,Y.
and Hutchinson, A. (ed.): Machine and
Human Learning. Michael Horwood, Lon-
don.

[2] Brazdil, P. B. and Torgo, L. (1990)
Knowledge Acquisition via Knowledge In-
tegration. In: Wielinga,B. et al. (eds.):
Current Trends in Knowledge Acquisi-
tion, 10S Press, Amsterdam.

[3] Buchanan, B. G. and Shortliffe, E.
H. (1984) Rule-based expert systems:
the MYCIN experiments of the Stanford
heuristic programming project, Addison-

Wesley, Reading, Mass.

[4] Cockburn, D, Varga, L. Z. and Jennings,
N. (1992) Cooperating INtelligent Sys-
tems for Electricity Distribution, Pro-
ceedings of the 12th Annual Conference
of the British Computer Society Special-

ist Group on Frpert Systems, Cambridge,
UK.

[5] Fensel, D. and van Harmelen, F. (1994)
A comparison of languages which oper-
ationalize and formalise KADS models
of expertise, The Knowledge Engineering
Review, 9, (to appear).

[6] Ginsberg, M. L. (1991) Knowledge Inter-
change Format: The KIF of Death. Al
Magazine, Fall.

[7] Giunchiglia, F. and Walsh, T. (1992) A
Theory of Abstraction. Artificial Intelli-
gence 57, 323-389.

[8] Hobbs, J. (1985) Granularity. Proceedings
of the International Joint Conference on

Artificial Intelligence, Los Angeles, CA.

16

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

Informatica 17 page xxx-yyy

Huhns, M. N., Jacobs, N., Ksiezyk, T.,
Shen, W-M, Singh, M. P, and Cannata, P.
E. (1993) Integrating enterprise models in
Carnot, Proceedings of the International
Conference on Intelligent and Coopera-
tive Information Systems, Rotterdam.

Imielinski, T. (1987) Domain Abstrac-
tion and Limited Reasoning. Proceedings
of the International Joint Conference on
Artificial Intelligence, Milan, Italy, 997
1003.

Jennings, N. R. Wittig, T. Archon, the-
ory and practice, in Distributed Artificial
Intelligence; Theory and Praxis, (N. M.
Avouris and L. Gasser eds.), Kluwer Aca-

demic Press, (1992).

de Kleer, J. and Williams, B. C. (1987)
Diagnosing multiple faults, Artificial In-
telligence, 32, 97-130.

Kubat, M. and Parsons, S. (1993) Rea-
soning with Roughly Described Concepts.
Technical Report 356, Institutes for Infor-
mation Processing, Graz.

Lenat, D. B. and Guha, R. V. (1990)
Building Large Knowledge-based Systems:
Representation and Reasoning in the Cye

Project, Addison-Wesley, Reading, Mass.
Mamdani, E. H. and Assilian, S. (1975)

An experiment in linguistic synthesis with
a fuzzy logic controller, International

Journal of Man-Machine Studies, 7, 1-
13.

McDermott, J. (1982) Rl: a rule-based
configurer of computer systems, Artificial
Intelligence, 19, 39-88.

Neches, R. Fikes, R. Finin, T. Gruber, T.
Patil, R. Senator, T. and Swartout, W.
R. (1991) Enabling technology for knowl-
edge sharing, AI Magazine, Fall.

Parsons, S. and Kubat, M. (1994) A first

order logic for reasoning under uncer-

[20]

[21]

[22]

23]

[24]

[25]

M. Kubat and S. Parsons

tainty using rough sets, Journal of Intel-
ligent Manufacturing (to appear).

Parsons, S. and Saffiotti, A. (1993) Inte-
grating uncertainty handling formalisms
in distributed artificial intelligence, Pro-
ceedings of the Furopean Conference on
Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, Granada.

Parsons, S., Kubat, M., and Dohnal, M.
(1994) A Rough Set Approach to Reason-
ing under Uncertainty. Journal of Exper-
imental and Theoretical Artificial Intelli-
gence (to appear)

Pawlak, Z. (1982) Rough Sets. Interna-
tional Journal of Computer and Informa-
tion Sciences 11, 341-356

Schrieber, G., Wielinga, B., and Breuka,
J. (1993) KADS: A Principled Approach
to Knowledge-Based System Develop-
ment, Knowledge-Based Systems, Vol-
ume 11, Academic Press, London.

Smith, 5. F., Fox, M. S. and Ow, P.
S. (1986) Construction and maintaining
detailed production plans: investigations
into the development of knowledge-based
factory scheduling systems, Al Magazine,

7, 4.

Torgo, L. and Kubat, M. (1991) Knowl-
edge Integration and Forgetting. Proceed-
ings of the Czechoslovak Conference on
Artificial Intelligence, Prague, Czechoslo-
vakia.

Zhang, C. (1992) Cooperation under un-
certainty in distributed expert systems,
Artificial Intelligence, 56, 21-69.

APPROXIMATING KNOWLEDGE

Appendix
Proof of Theorem 5.1

a) Modus Ponens

k(q) 2 R(pnq) = R((=pVq)Ap) = [any, BN
4], so the lower bound on the core is o N 7.
In addition, [,] = R(—-p V ¢q) 2 R(q), so
the upper bound on the envelope is 3. Hence

R(q) =[an~,B]. 0
b) Modus Tollens

R(=p) 2 R(=pN=q) = R((=pVg)A=q) = [an
v, BN6], so the lower bound on the core is aN~.
In addition, [a, 8] = R(=pV q¢) 2 R(—p), so
the upper bound on the envelope is 3. Hence

R(-p) =laN~,5]. 0
¢) Resolution

We know that R(¢Vr) = R((pVqVr)A(-pV
gVr)=[((pVvaVvr)®n(=pVvaeVr)9),((pV
gVr)Pn(=pVqVvr)F). Now, (pVgVvr)© 2
(pVq)“UrY = aUr® and (=pVqVvr)® D (=pV
7)Y U ¢” = v Uq", so the lower limit on their
intersection is @ N . Similarly, (pV ¢V r)¥ =
(pVFfur? =pUrf and (mpVqVvr)¥ =
(mpVr)PUq¢? = yUq”. Now, the upper limits
on r¥ and ¢¥ are § and 3, respectively, so the
maximum size of the envelope is U 4. O

d) Syllogism

This follows immediately from the resolution
result. We have R(—p V ¢q) = [o,] and
R(—q V r) = [v,6]. Resolving these together
gives R(-pVr) =[aN~,B U] and the result
follows. O

e) Universal Instantiation

R(P(a)) A R(P(b))
P(b)“N...0nP(n)°
Thus P(a)’ 2 (Va;P(x;))
(VaiP(2:)", so R(P(a)) = |

Informatica 17 page xxx-yyy

17

