
Informatica 17 page xxx{yyy 1Approximating Knowledge in a Multi-Agent SystemMiroslav Kubat� and Simon Parsonsyz�Ludwig-Boltzmann Institute of Medical Informatics and Neuroinformatics,Department of Medical Informatics,Institute of Biomedical EngineeringGraz University of TechnologyBrockmanngasse 41, A-8010 Graz, Austriaemail mirek@dpmi.tu-graz.ac.atyAdvanced Computation Laboratory,Imperial Cancer Research Fund,P.O. Box 123, Lincoln's Inn Fields,London WC2A 3PX,United Kingdom.email sp@acl.lif.icnet.ukzDepartment of Electronic Engineering,Queen Mary and West�eld College,Mile End Road, London E1 4NS,United Kingdom.Keywords: Arti�cial Intelligence, abstraction, granularity of knowledge, dl-cut, rough con-ceptsEdited by: Matja�z GamsReceived: ??????, 1993 Revised: ??????, 1994 Accepted: ??????, 1994This paper is concerned with establishing a common language that can be usedto communicate between the di�erent members of a multi-agent system. Wesuggest that this may be done by successively approximating the concepts thateach agent in the system deals with, and the paper gives algorithms which makethis possible. Along the way we introduce the notion of a description languagecut, or dl-cut, which is an abstraction to which a rich class of languages may bemapped. The idea of a dl-cut is then used to introduce rough concepts| roughdescriptions of the concepts used by the agents. Finally we discuss the way inwhich rough concepts can be logically combined and used in deductive reasoning,also debating the scope of the validity of inferences using the concepts.1 IntroductionOver the last twenty years, techniques fromartifcial intelligence have been successfullyapplied to problems ranging from factoryscheduling [23], to process control [15], and the diagnosis of faults in complex systems [12].Expert systems have been developed whichcan replicate or exceed the accuracy of humanexperts [3], and which have bodies of knowl-edge that make them as knowledgeable as the



2 Informatica 17 page xxx{yyy M. Kubat and S. Parsonsbest informed human expert [16]. With the in-creasing power and sophistication of these sys-tems have come a number of well-documentedproblems | in general intelligent systems donot scale up easily, they tend to be brittle sothat their performance breaks down as theyleave their domain of expertise rather thandegrading slowly as that of a human expertwould, and it is di�cult to ensure that theyare consistent.A number of solutions have been suggestedto remedy these ills, each stemming from a ma-jor research e�ort. One is to try to ensure con-sistency by constructing intelligent systems ina more rigorous way, structuring the knowl-edge that they contain and applying tech-niques from software engineering. This workis typi�ed by the KADS project [22] and hasled to interesting developments in areas suchas the formal speci�cation of knowledge-basedsystems [5].A second approach is to reduce brittlenessby building intelligent systems around a vastbody of commonsense knowledge that approx-imates the kind of knowledge that people usein their interactions with everyday situations.This, in theory, will allow such intelligent sys-tems to fall back on more general ideas whentheir speci�c expert knowledge fails. For in-stance, when a medical diagnosis system isqueried about the ailments su�ered by some-one's car it should be able to transfer some ofits basic knowledge about diagnosis and usethis with commonsnese knowledge of how carswork to attempt an answer. The CYC project[14] which aims to do precisely this has re-cently released the �rst version of its knowl-edge base, and it will be interesting to observewhether the claims made for it are justi�ed.A third approach, and the one that we willconsider in this paper, is to build communi-ties of small, and therefore more manageable,systems. Because the individual systems con-tribute di�erent skills and knowledge, togetherthey are capable of handling problems that arebeyond the scope of a single system. Thisis the approach of the ARCHON project [11]

which has proved itself in the area of industrialprocess control in general, and in the construc-tion of a co-operative system for electricity dis-tribution management [4] in particular.Now, one of the most interesting thingsabout the ARCHON system is that it providesa framework for combining together existingsystems. The motivation for this is the pro-motion of code and resource reuse, which isclearly a worthy aim, but in doing so raisesa new and di�cult problem. Di�erent sys-tems developed at di�erent times may use dif-ferent languages for knowledge representation.If this is the case, how should they be com-bined? Work on ARCHON understandablystopped short of providing an answer to thisquestion, and it seems that little has yet beenpublished on general solutions to the problem,though there has been some work on trans-lating between di�erent uncertainty handlingformalisms in this context [19, 25].However, some preliminary work has beenpublished on related subjects. Huhns et al.[9] describe ways of integrating di�erent in-formation models of businesses, that is theydiscuss the problems of relating such modelsand resolving incompatibilities between them.To do this they make use of the CYC ontology,which is postulated to be of su�cient extent toencompass any notion in any business model,and integrate di�erent models by integratingthem into CYC. The result of this work is asystem called Carnot, which provides an ar-chitecture and tools for integrating the infor-mation models of large businesses. Neches etal. [17] make a similar suggestion but from themore general perspective of integrating knowl-edge representation systems irrespective of do-main or interpretation. To do this they sug-gest the idea of an \interlingua" which is ageneral language for knowledge interchange.At �rst blush, such a language certainly seemsto be a good idea, but, as Ginsberg [6] argues,there are reasons why the de�nition of a stan-dard interlingua seem premature.This work on interlinguae assumes thatthere will be some underlying ontology, some
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Figure 1: The system under considerationbasic set of concepts and their inter-relations,that is understood by all systems. Now, whilesuch ontologies exist in some domains [17],they are far from universal, so there are do-mains in which the approaches discussed abovewill founder. In this paper we present someinitial ideas about the way in which a modelthat is common to a number of intelligentsystems that do not have a known commonontology might be constructed automaticallyfrom the models of individual agents withinthe group.2 Basic conceptsOur inspiration to develop methods to ob-tain a common interpretation of knowledgefrom multiple sources stems from the domainof multistrategy learning, �rst proposed byBrazdil [1]. The ability of this principle toimprove performance was demonstrated byBrazdil and Torgo [2], and by Torgo and Ku-bat [24]. In the particular case we will considerhere, the problem involves several agents anda central system.The agents possess knowledge which is ex-pressed in a particular language and the taskof the central system is to combine the knowl-edge into a general structure. The problem in

doing this is that the language used by anyagent may be di�erent to the languages usedby any other agent, and, if this is the case, thecentral system will need to translate the in-formation obtained from the individual agentsinto some common basis which we will refer toas the central language CL.Figure 1 illustrates the situtation we willconsider. Each agent has a language whichexpresses a set of concepts and a set of logicalformulae concerning those concepts. The cen-tral system contains the context of the over-all system which plays an important role inany application of the knowledge of the multi-agent system since the kind of concepts withwhich the system will deal have connotationswhich vary widely according to the context.Thus, for instance, the concepts `fertile land'and `warm day', have widely di�erent mean-ings in Central Africa and in Sweden.Note also that in this case, unlike the agents,the central system has no direct access to theenvironment, however there is no theoreticalreason why the central system should not haveaccess, nor, for that matter why there shouldbe a \central" system with a distilled com-mon language. Instead the common languagecould be replicated in each agent, producing agroup with no central focus, but whose mem-



4 Informatica 17 page xxx{yyy M. Kubat and S. Parsons�� �� ��a b c e f gdx y zx � fa; bg; y = fdg; ffg � z � fe; f; ggFigure 2: Roughly described concepts x, y and zbers could all understand each other.Now, when the system of agents is ini-tially set up, the central system has no un-derstanding of the languages used by the vari-ous agents. However, it is possible that it canestablish a common language by approxima-tion. That is, it is possible for each agent todescribe its knowledge to the central system interms of its set of concepts. Depending uponthe wealth of concepts available to the agentthis may be a very precise or a very coarsedescription of its knowledge so that there isno guarantee as to the precision of the trans-lation that is possible between the agent andthe central system.When all the agents do this the central sys-temwill end up with a language which can dealto some degree with all of the knowledge dealtwith by all the agents, and so is broader thanthat of any single agent. In addition, due tothe intersection between concepts, it may bemore detailed than that of any agent.What we propose in this paper are somethoughts as to how this might be achievedwithin the framework of rough concepts whichwe have developed [13] from ideas on roughsets [21].A few informal de�nitions are needed toclarify some of the notions that we will oper-ate with. A language, often called a descrip-tion language, is understood as a set of wellformed formulae (w�). We will only deal withlanguages with a �nite number of w�s. Eachw� represents a concept captured by the lan-guage. Each concept, in turn, is interpretedas a set of relevant objects assigned to it by

its context. Thus, when speaking about stu-dents, we usually do not mean all studentsin the world. Rather, we implicitly constrainourselves to the students of our university, stu-dents of Computer Engineering, students fromthe secondary school in the neighbourhood,and the like. The context represents addi-tional information common to all concepts,and in this case we assume that the contextis common to all agents.Figure 2 presents a graphical representationof possible relationships between CL and con-cepts known by an agent. Each segment athrough g stands for one w� of a simple CL,and consists of objects that cannot be furtherdiscerned in CL. Each w� is true for one ormore objects. The lozenges x, y and z areconcepts known by an agent. Note that, dueto the di�erent languages used by the agentand the central system, the boundaries of xdo not coincide with those of the w�s of CL sothat x is not described as precisely by CL as bythe language of the agent. However, withoutany additional information, the classi�cationof the objects from the segment b as positiveor negative instances of x is completely un-known and cannot be quanti�ed by a proba-bility or a fuzzy degree of membership, so thatthis imprecise classi�cation is still very useful.In addition, as concepts y and z illustrate, CLmay be able to precisely distinguish the con-cepts of an agent, or even some subsets of somethe concepts understood by an agent.This issue is closely related to work on gran-ularity such as that by Hobbs [8] who de�nedan indistinguishability relation for unary pred-



APPROXIMATING KNOWLEDGE Informatica 17 page xxx{yyy 5icates and Imielinski [10] who extended Hobbswork so that the idea can be applied to ap-proximate reasoning. Our proposal also hasnotions in common with Carnot [9] which usesthe idea of �nding the best generalisation of agiven concept, and with Ginsberg's [6] discus-sion of KIFs in which he proposes discardingdetails such as probabilities in order to facili-tate interchange between agents that quantifytheir knowledge and those that do not.For simplicity, we assume that the infor-mation possessed by the agents is noise-freeand relevant. Readers interested in a methodfor pruning out noisy and irrelevant knowledgecan �nd details in work by Brazdil and Torgo[2]. Thus the task that we will address is de-�ned as follows:Given:A de�nition of the central language CL;The general context expressed either as aset of constraints on the set of objects withwhich the multi-agent system will deal (suchas the set of all types of car manufactured inEurope), or as a list of possible objects (suchas Rover Metro, Nissan Micra, Ford Escort,. . . );For each agent, the descriptions of con-cepts and formulae in the agent's languagewhich allow the agent to classify objects interms of the concepts;Find:The description of all concepts in CL;The scope of validity of the old as well asnewly inferred propositions in CL.The essence of this translation process is ab-straction, a phenomenon that has been widelystudied in arti�cial intelligence. A comprehen-sive analysis is provided by Giunchiglia andWalsh [7] where three types of abstraction arede�ned, depending on the ability of the sourcelanguage L1 and the object language L2 to dis-tinguish objects. Informally, an abstraction isconstant if both languages discern the sameobjects; an abstraction is decreasing if L1 is

able to distinguish the same objects as L2 andpossibly some more; an abstraction is increas-ing if L2 is able to distinguish the same objectsas L1 and possibly some more. The preceedingdiscussion makes it clear that, depending uponthe exact concepts available, our method maygive any of these types of abstraction, and in-deed may give a mixture of di�erent types fordi�erent agents in the same system.3 Translating into CLIn this paper, no strong requirement is madeon the syntax of the well-formed formulae|we use a logic-like notation to describe theattributes of the objects which exemplify theconcepts the various agents deal with. How-ever, this notation is used purely for conve-nience since it allows us to write down ideassuch as \the shape of a certain class of objectis either a cube or a pyramid" in a concise wayas, for instance:�shape(x) = cube�_ �shape(x) = pyramid�or: shape(x; cube) _ shape(x; pyramid)and it should not be seen as a fundamentallimitation on the approach| the results pre-sented in the paper hold whatever form thew�s are written in.To get an idea of the motivation for the dl-cut and rough concepts, consider a simple ex-ample.Example 1.Let a set of toy blocks be described by theirshape: cube, pyramid, ball, and prism. TheCL-language capable of describing the shapeby means of these terms decomposes the setinto four disjoint subsets, each of which is rep-resented by at least one object. Suppose theconcept to be translated into CL is `stable inan earthquake.' Cubes and pyramids are sta-ble, balls are not stable, and the stability ofa prism depends on the ratio of its base area



6 Informatica 17 page xxx{yyy M. Kubat and S. Parsonsto its height. Since no distinction is made be-tween the di�erent types of prism, CL can-not discern short, fat prisms (stable) from tall,thin prisms (unstable). If no additional infor-mation is available, the concept `stable in anearthquake' can only be approximated by itslower bound (su�cient condition) and upperbound (necessary condition):lower bound:8x stable(x) �shape(x, cube) _ shape(x, pyramid)upper bound:8x stable(x) �shape(x, cube) _ shape(x, pyramid)_ shape(x, prism)2The lower-bound description (core) is true forcubes and pyramids, whereas the upper-bounddescription (envelope) is true for cubes, pyra-mids, and prisms. Obviously, the `distance'between the core and envelope depends on thelanguage CL. Concepts expressed by the pair[core, envelope] are called rough concepts.The notion of a dl-cut, de�ned below, willfacilitate the formalization of the approachthat we have just outlined. In the followingde�nition, the universe U is the set of all ob-jects seen by the central system.De�nition 3.1 (dl-cut) Denote by Dl theset of all w�s of a language. A subset dl � Dlis called a dl-cut i� it decomposes U into asystem of pairwise disjoint sets such that eachset is assigned precisely one w� f 2 dl that istrue for all elements of this set.Thus in the simple system from Example 1,the universe of all blocks can be decomposedinto four disjoint sets each of which is assignedone of the following predicates:shape(x, cube), shape(x, pyramid),shape(x, ball), shape(x, prism)Each predicate is a w� and the set of fourpredicates is a dl-cut. In general there is nota unique dl-cut for a given universe. In this

case, an alternative dl-cut is made up of thefollowing three w�s:shape(x, cube) _ shape(x, prism),shape(x, pyramid), shape(x, ball)The elements (w�s) of a dl-cut are descrip-tion items or generic concepts which may bedistinguished by the central system, and maybe used by it to approximate the conceptshandled by the various agents with which itcommunicates. Knowing that any disjunctionof description items can be considered to bea concept, we can discern, by means of thedl-cut, 2N di�erent concepts, where N is thenumber of w�s in the dl-cut. The notion of adl-cut facilitates a mapping of a rich class oflanguages onto easy-to-handle boolean expres-sions (for a deeper analysis, see [13]).Basically, there are two possible approachesto the construction of a dl-cut from the un-derlying language| a na��ve approach, and aconcept-oriented approach. We only cover thena��ve approach in detail, contenting ourselveswith hinting at how the concept-oriented ap-proach can be employed.The na��ve method uses a hill-climbingsearch technique. The initial state is theempty set of w�s, the �nal state is a set ofw�s that form a dl-cut, and the search mecha-nism is to augment the current set of w�s witha w� that does not overlap with any previousw�. Obviously, an exhaustive search would re-veal many di�erent dl-cuts whose capacity tomodel concepts varies. Hence, the search mustbe made heuristic by adding some criterion forselecting which w� to add to the dl-cut. To beuseful, this criterion should reect the abilityof the dl-cut that results from the addition thew� to model concepts. This approach leads usto propose Algorithm 1.The prerequisite for this algorithm is theavailability of a generality criterion whichgives some idea of the quality of a dl-cut, andof a mechanism for a subsumption test to es-tablish if one w� can replace another. Thegenerality criterion in a system such as ourswhich is based upon the manipulation of at-
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� @@@@R����	 @@@@RFigure 3: Example of a generalization treetributes naturally reects the number of liter-als in an expression since each of these corre-sponds to an attribute of the domain. ThusA is more general than A ^ B and A _ B ismore general than A. The subsumption testcan be based on knowledge of the domain, sothat `bird' subsumes `eagle' as in Figure 3 oron the explicit listing of the concepts repre-sented by a w�. Thus if all objects represent-ing concept A also represent concept B, thenB subsumes A. By convention, we write p � qif q subsumes p, and p � q if p subsumes q.A similar notion to subsumption is that ofoverlapping. Two w�s l1 and l2 are said tooverlap if l1 = l11 _ l12 _ . . . _ l1n, l2 = l21 _l22 _ . . . _ l2m, and l1i = l2j for some i andj. Finally, the language CL is assumed to besu�ciently rich that at least some of its w�s limust be subsumed by some concepts sj, thatis li � sj, and for each object uk 2 U , a w� lpcan be found such that lp is true for uk.The input to the algorithm is the set S of allconcepts, the context which de�nes the extentof the universe U , and CL, which when the�rst dl-cut is constructed will be empty, butfor other dl-cuts will be a set of w�s. Further,let L(CL) = fl1; . . . ; lng be the list of w�s fromCL, in descending order according to somegenerality criterion so that for li; lj 2 L(CL),if i < j, lj is not more general than li.The algorithm terminates when S is emptyor when the ability of dl(CL) to discern con-

cepts cannot be increased without backtrack-ing from the current state.Algorithm 11. Let dl(CL) = ;;2. Starting with l1, search for the �rst li 2L(CL) such that an sj 2 S can be found forwhich lj � sj . If no such li can be found, goto 5;3. Let dl(CL) = dl(CL) [ flig. Discard all lj 2L(CL) overlapping with li;4. Delete from S all concepts si such that si �dj where dj is any disjunction of w�s fromdl(CL). If S is not empty, go to 2;5. Find a w� that is true for the rest of theuniverse U , add it to dl(CL) and stop.Of course, many di�erent procedures us-ing more powerful heuristics and search tech-niques can be proposed, and their detailedanalysis is an open research topic. The algo-rithm we have presented can serve as a guide-line.Before we proceed to the illustration of thealgorithm by a simple example, a few com-ments are necessary. Firstly, an additional re-quirement in step 2 can demand that the con-cept sj subsuming li is not allowed to subsumeany other concept sk. This requirement makessense if agents are able to order their conceptsby subsumption.



8 Informatica 17 page xxx{yyy M. Kubat and S. ParsonsSecondly, since the explicit storing of L(CL)would limit the utility of the procedure to verysmall languages, the list is intended to be im-plicit. Thus in the language based on conjunc-tions of unary predicates, the algorithm wouldbegin with single predicates, then, when theability of the predicates to describe conceptshas been exhausted, proceed to conjunctionsof pairs of predicates selected by a suitableheuristics.It is also possible to derive an alternativealgorithm driven by the concepts sI insteadof the w�s. This is the `concept-oriented' ap-proach hinted at above.Finally, it should be noted that, in general,subsumption checking is NP-hard for �rst-order logic and must be assisted, in realisticapplications, by background classi�cation in-formation based on notions of generality ofconcept, such as that depicted in Figure 3. Asimilar problem can arise with the discardingof overlapping w�s in step 3.Example 2.Consider once again the blocks world of Ex-ample 1 which is extended so that the blockscan be described in terms of the material fromwhich they are made as well as their shape|all cubes, prisms, and pyramids are metallicwhile balls are wooden. The agents under-stand the concepts `stable' and `belongs toTom', and are able to classify the objects inU as positive and negative examples of theconcepts. In the �rst step, the central systempicks the unary predicates one by one until oneof them turns out to be subsumed by any ofthe two concepts.Suppose that the concept `stable' sub-sumes the predicates shape(x, cube) andshape(x, pyramid) while `belongs to Tom' sub-sumes shape(x, pyramid). The system selectsshape(x, pyramid) as the �rst w� of dl(CL).From now on, all predicates overlapping withshape(x, pyramid) will be discarded so thatonly the predicates shape(x, cube), shape(x,prism), shape(x, ball), material(x, wood) andtheir conjunctions are allowed to appear in any

of the future w�s. Thus we might end up withdl(CL) being:shape(x; pyramid); shape(x; cube);shape(x; ball)^material(x; wood);shape(x; prism)2Now, we can de�ne the important notion of arough concept.De�nition 3.2 (rough concept) LetxR(dl) = [xC(dl); xE(dl)] be a rough set. Arough concept is the pair [des(xC); des(xE)],where des(xC) is the description of the core ofx in Dldl and des(xE) is the description of theenvelope of x in Dldl.Note that the core description does not applyto any negative instance of x, the envelope de-scription applies to all positive instances of x,and the complement of the envelope appliesonly to negative instances of x. Beware, how-ever, that any pair [core,envelope] pertains toa particular dl-cut. Di�erent dl-cuts tend toimply di�erent rough concepts since the coreand envelope are w�s from dl(CL). In this re-spect, the idea of rough concepts departs fromPawlak's rough sets [21]. Even though a w�can be understood as a set of objects for whichit is true, the symbolic interpretation of an ap-proximation of a concept is dominant.The next algorithm translates the conceptsfrom the agent's language into CL. The inputis formed by dl(CL) and by the concepts to betranslated into CL. As output, the algorithmproduces rough concepts in CL.Algorithm 2For each concept C of an agent, and for anydci ; dej 2 dl(CL):1. If dci is subsumed by C, then dci belongs tothe core;2. If dej overlaps with C, then dej belongs tothe envelope;



APPROXIMATING KNOWLEDGE Informatica 17 page xxx{yyy 93. The core (respectively, the envelope) is theunion of all items dci (respectively, dej),so that CC = Si dci , (respectively, CE =Sj dej).Example 3.Thus in our running blocks world example, wecan write down the rough description of theconcepts \stable" and \belongs to Tom". Ap-plying Algorithm 2 we �nd that for the dl-cutdescribed in Example 2:stable(x)C =fshape(x; cube); shape(x; pyramid)gstable(x)E =fshape(x; cube); shape(x; pyramid);shape(x; prism)gThus:stable(x)R =�fshape(x; cube); shape(x; pyramid)g;fshape(x; cube); shape(x; pyramid);shape(x; prism)g�Similarly since the only objects that areknown not to belong to Tom are prisms, wehave:belongs to Tom(x)C =fshape(x; ball)^material(x; wood);shape(x; pyramid)gbelongs to Tom(x)E =fshape(x; ball)^material(x; wood);shape(x; pyramid); shape(x; cube)gThus:belongs to Tom(x)R =�fshape(x; ball)^material(x; wood);shape(x; pyramid)g;fshape(x; ball)^material(x; wood);shape(x; pyramid); shape(x; cube)g�2

4 Reasoning with RoughConceptsThe work presented in previous sections makesit possible translate concepts from the lan-guages of various agents into CL. If we con-sider that the central system that uses CL willneed to reason with these concepts, a naturalquestion arises| how can one logically manip-ulate rough concepts?Well, if we take x and y as concepts roughlyde�ned in dl(CL) by means of cores and en-velopes it can be easily shown that for thecores and envelopes of their disjunction, con-junction, and negation, the following relationshold where the dl in the parentheses is a short-hand for dl(CL), and V is the set of all w�s inthe language CL:(x _ y)E(dl) = xE(dl) [ yE(dl)(x _ y)C(dl) � xC(dl) [ yC(dl)(x ^ y)E(dl) � xE(dl) \ yE(dl)(x ^ y)C(dl) = xC(dl) \ yC(dl)(:x)E(dl) = V � (xC)(dl)(:x)C(dl) = V � (xE)(dl)For instance, the envelope of a disjunction oftwo concepts is equal to the union of the en-velopes of the individual concepts. The en-velope is understood as a subset of V and issubject to unions, intersections, and subtrac-tions; the concepts themselves are subject todisjunctions, conjunctions, and negations.The relation of implication can easily be de-�ned by means of the partial ordering � im-posed on the space of all w�s such that for w�sli, lj and lk: li < lj i� lj = li [ lk and li � lj i�li < lj or li = lj.De�nition 4.1 (implication) Let xR =(xC ; xE) and yR = (yC; yE) be rough concepts.The operation of implication is de�ned as fol-lows:(xR ! yR), (xR � yR), [(xC � yC) ^ (xE � yE)]From the well-known properties of partiallyordered sets it follows that (xR ! yR) ,(:xR _ yR), [:xE [ yC;:xC [ yE].



10 Informatica 17 page xxx{yyy M. Kubat and S. ParsonsR(p) [;; ;] [;; X ] [;; V ] [X; V ] [V; V ]RV (p) false roughly false unknown roughly true trueTable 1: Rough truth values (; � X � V )We can consider the elements of CL, whichare the rough concepts translated into CL bythe algorithms in Section 3, as the set of lan-guage elements that form the basis of a formallogic. These may be propositional constantsor predicate symbols. Denoting this set of lan-guage elements as P we can then consider theset of well formed formulae of this logic, denot-ing this set as L(P) [18, 20]. For any p 2 L(P)we de�ne the rough measure R(p) of p which isthe rough description of the concept or combi-nation of concepts that correspond to p. Moreprecisely: R(p) = �p�C ; p�E�where p�C is the lower bound on the core of pand p�E is the upper bound on the envelope.Example 4.To delve a little further into our blocksworld example,consider the compound con-cept p which represents stable(x) _ belongsto Tom(x). Now:stable(x)R =�fshape(x; cube); shape(x; pyramid)g;fshape(x; cube); shape(x; pyramid);shape(x; prism)g�belongs to Tom(x)R =�fshape(x; ball)^material(x;wood);shape(x; pyramid)g;fshape(x; ball)^material(x;wood);shape(x; pyramid); shape(x; cube)g�so that:R(p) =�fshape(x; ball)^material(x; wood);shape(x; cube); shape(x; pyramid)g;fshape(x; ball)^material(x; wood);

shape(x; cube); shape(x; prism);shape(x; pyramid)g�2One way of interpreting the rough measure ofan element p 2 L(P) is the degree to which p istrue in the universe of rough concepts. That ishow universally it is true amongst the roughconcepts. Obviously, for pC = pE = L(P),the proposition is always true and we de�nethe rough truth measure RV (p) = true(t). ForpC = pE = ; the proposition is always false.Three other important truth values of R(p)may be posited, and these are summarized inTable 1 (for more detailed discussion, see Par-sons et al. [20]).The symbolic values in Table 1 indicate towhat degree a proposition is true in V . How-ever, the pair R(p) = [pC; pE ] can also be un-derstood as a more general measure since itexplicitly determines in what part of the uni-verse of rough concepts the proposition is true,roughly true and so on. More speci�cally, theexpression R(p) = [pC ; pE] says that p is truein pC and roughly true in pE . Similar consid-erations enable us to de�ne a truth-orderingon the set of propositions.De�nition 4.2 (truth ordering)Let p1 and p2 be propositions. We say that p1is more true than p2 i� pC1 � pC2 and pE1 � pE2 .By now this section has introduced a roughmeasure of truth, a set of basic symbolic truthvalues, the scope of validity of a proposition,and the ordering of propositions based on theirtruth value. With this background, we canstudy what happens with the truth measureif we subject the formulae of L(P) to rules ofinference. This is expressed by Theorem 4.1which is proved in the Appendix:



APPROXIMATING KNOWLEDGE Informatica 17 page xxx{yyy 11Theorem 4.1 For formuale p, q and r 2L(P), variable x and a constant symbol a,modus ponens (a), modus tollens (b), resolu-tion (c), syllogism (d), and universal instan-tiation (e) have the following e�ect on roughdescriptions:a) R(p! q) = [�; �]R(p) = [; �]R(q) = [� \ ; �]b) R(p! q) = [�; �]R(:q) = [; �]R(:p) = [� \ ; �]c) R(p _ q) = [�; �]R(:p _ r) = [; �]R(q _ r) = [� \ ; � [ �]d) R(p! q) = [�; �]R(q ! r) = [; �]R(p! r) = [� \ ; � [ �]e) R(8xP (x)) = [�; �]R(P (a)) = [�; V ]For instance, for modus ponens the theoremreads as follows:If the implication p ! q is true in� � V and roughly true in � � V ,and if the formula p is true in  � Vand roughly true in � � V , then q istrue in � \  and roughly true in �.In this respect, the theorem gives truth-preserving inferential rules for automated rea-soning and says in what part of the universedescribed by CL the rules are really deductive.Example 5.Suppose that the dl-cut obtained fromCL by Algorithm 1 consists of the fol-lowing four predicates: material(x;wood),material(x; stone), material(x;metal), andmaterial(x; plastic). Furthermore, let thebackground knowledge contain the decisiontree from Figure 4 (see overleaf). Aftersimpli�cation with respect to an agent thatunderstands the concepts interesting and

tedious and whose knowledge is summarisedby Figure 5 (see overleaf), the dl-cut becomesmaterial(x; natural),material(x;metal), andmaterial(x; plastic), because the backgroundknowledge says that natural material in ouruniverse is either wood or stone and be-cause this simpli�cation does not interferewith the system's ability to discern the con-cepts interesting and tedious. The conceptsinteresting and tedious are then translatedinto CL as follows:interesting(x)R(dl) =�fmaterial(x; natural)g;fmaterial(x; natural); material(x;metal)g�tedious(x)R(dl) =�fmaterial(x;metal)g;fmaterial(x;metal); material(x; plastic)g�Thus::interesting(x)R(dl) =�fmaterial(x; plastic)g;fmaterial(x; plastic);material(x;metal)g�and:(:interesting(x)! tedious(x))R(dl) =�fmaterial(x; natural);material(x;metal)g; V�If some piece of knowledge says that, withthe exception of metal objects, it is always thecase that interesting(x)! foobar(x) (wherefoobar(x) is a concept unknown to the agents)so that (interesting(x) ! foobar(x))R(dl) =[fmaterial(x; natural);material(x; plastic)g;material(x, natural), material(x, plastic)g],then it is possible to conclude, using Theorem3.1 (a), thatfoobar(x)R(dl) =�fmaterial(x; natural)g;fmaterial(x; natural); material(x; plastic)g�2



12 Informatica 17 page xxx{yyy M. Kubat and S. Parsons�� �natural�� �wood �� �stone����	 @@@@RFigure 4: A classi�cation treeinteresting tediouswood stonenatural metal plastic agentCLagent's proposition: :interesting ! tedious� �� �
 	Figure 5: Translation of interesting and tedious into CL5 A larger exampleIn this section we give a more extensive exam-ple than any so far in order to bring togetherall the ideas introduced in the paper.We will consider the construction of a com-mon language from the knowledge of two sim-ple agents. In doing so description languagecuts are built from both sets of concepts andtheir exemplary objects. We will then usethe overall language CL which understandsthe concepts known to both agents to buildrough descriptions of all concepts, and showhow these might be combined in the centralsystem to learn things that were not apparentto the individual systems. The example is keptsimple to make it easy to follow, and aims toelucidate new features of our work rather thanduplicate previous examples.
Since both Huhns et al. [9] and Pawlak[21] have used similar examples, it seems en-tirely appropriate that the agents we con-sider should be concerned with motor ve-hicles. The �rst agent understands threeconcepts, small car(x), fast car(x), andslow car(x)which are described in terms of theobjects in Table 2 (see overleaf). where the ta-ble should be read as saying, for instance, thata Rover Metro is an example of both a smallcar and a slow car. The second agent alsoknows about slow cars, but also understandsthe concepts family car(x) and van(x), de�n-ing these with the examples in Table 3 (seeoverleaf).The context of this example is precisely theset of vehicles known by both agents, so thatbetween them they know of every object inU . The set of concepts and objects gives us a



APPROXIMATING KNOWLEDGE Informatica 17 page xxx{yyy 13small car(x) fast car(x) slow car(x)rover metro(x) ? ?austin mini(x) ? ?ford escort(x) ?lotus eclat(x) ?reliant robin(x) ?vw golf(x) ?Table 2: The concepts known by the �rst agentfamily car(x) van(x) slow car(x)ford escort(x) _ ford cortina(x) ?toyota corrola(x) ?ford transit(x) ?vauxhall astra(x) ?rover metro(x) ?nissan micra(x) ?Table 3: The concepts known by the second agentdeliberately simple dl-cut with which to con-struct CL in the hope of making the examplereasonably transparent. Applying Algorithm1 to the knowledge possessed by the �rst agent,we initially have dl(CL) = ;. Then, one by onewe add w�s, each of which in this case is a sim-ple term such as rover metro(x). Since eachw� is this simple, dl(CL) increases with eachiteration:iteration 0dl(CL) = ;iteration 1dl(CL) = frover metro(x)giteration 2dl(CL) = frover metro(x); austin mini(x)g...iteration 6dl(CL) = frover metro(x); austin mini(x);ford escort(x); vw golf(x);reliant robin(x); lotus eclat(x)gThis is a dl-cut that is suitable for describ-ing all the concepts known to the �rst agent.We then apply the same algorithm to thew�s that are formed by the objects knownto the second agent. All this second applica-tion of the algorithm does is to extend dl(CL)at every iteration, with the exception of the

time the w� ford escort(x)_ ford cortina(x)is considered since this subsumes and thusreplaces ford escort(x), and the time thatrover metro(x) is considered since it is al-ready in dl(CL). Thus we have:iteration 7dl(CL) = frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x);lotus eclat(x); reliant robin(x);vw golf(x)g...iteration 15dl(CL) = frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x);lotus eclat(x); reliant robin(x);vw golf(x); toyota corrolla(x);ford transit(x); vauxhall astra(x);nissan micra(x)gGiven this dl-cut, we can then use Algo-rithm 2 to build rough descriptions in CL ofthe concepts known by the two agents. In thiscase the concepts are quite precisely known,and we have:slow car(x)R =�frover metro(x); austin mini(x);reliant robin(x); nissan micra(x)g,



14 Informatica 17 page xxx{yyy M. Kubat and S. Parsonsfrover metro(x); austin mini(x);reliant robin(x); nissan micra(x)g�fast car(x)R =�flotus eclat(x); vw golf(x)g;flotus eclat(x); vw golf(x)g�van(x)R =�fford transit(x); vauxhall astra(x)g;fford transit(x); vauxhall astra(x)g�family car(x)R =�fford escort(x) _ ford cortina(x);toyota corrolla(x)g;fford escort(x) _ ford cortina(x);toyota corrolla(x)g�small car(x)R =�frover metro(x); austin mini(x)g;frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x)g�which neatly illustrates the point made in Sec-tion 2 about the nature of the abstraction at-tainable by the use of rough sets. CL containsknowledge of more concepts than either of theagents, it can de�ne most of them as preciselyas either agent, though it has a coarser knowl-edge of what constitutes a small car. However,it has more precise knowledge of the kinds ofslow car than either agent.Having established CL we can of courseuse the results of Section 4 to manipulate therough concepts. For instance, we can evaluatethe validity of the idea that all cars known tothe system are either fast or slow. That is wecan �nd the rough measure R(fast car(x) _slow car(x)), which is:R(fast car(x) _ slow car(x)) =�frover metro(x); reliant robin(x);lotus eclat(x); austin mini(x); vw golf(x)g;frover metro(x); austin mini(x);lotus eclat(x); reliant robin(x); vw golf(x)g�

so that the proposition is completely true inthat part of the universe known to the cen-tral system that does not include vans orfamily cars, since the rough description offast car(x) _ slow car(x) does not overlapwith the rough description of family car(x)_van(x). However, there is an overlap be-tween the rough descriptions of fast car(x)_slow car(x) and small car(x). Indeed, wecan test the hypothesis that slow car(x) $small car(x), taking this to mean that:slow car(x)! small car(x)^small car(x)! slow car(x)Now,(slow car(x)! small car(x))R =�frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x);lotus eclat(x); vw golf(x);toyota corrolla(x); ford transit(x);vauxhall astra(x)g;frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x);lotus eclat(x); vw golf(x);toyota corrolla(x); ford transit(x);vauxhall astra(x)g�and:(small car(x)! slow car(x))R =�frover metro(x); austin mini(x);lotus eclat(x); reliant robin(x);vw golf(x); toyota corrolla(x);ford transit(x); vauxhall astra(x);nissan micra(x)g;frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x);lotus eclat(x); reliant robin(x);vw golf(x); toyota corrolla(x);ford transit(x); vauxhall astra(x);nissan micra(x)g�so that:



APPROXIMATING KNOWLEDGE Informatica 17 page xxx{yyy 15(slow car(x)$ small car(x))R =�frover metro(x); austin mini(x);lotus eclat(x); vw golf(x);toyota corrolla(x); ford transit(x);vauxhall astra(x)g;frover metro(x); austin mini(x);ford escort(x) _ ford cortina(x);lotus eclat(x); vw golf(x);toyota corrolla(x); ford transit(x);vauxhall astra(x)g�which implies that the proposition is less thanroughly true, and less true than the proposi-tion that being a small car implies being a slowcar.6 ConclusionThe primary goal of this work was to developthe basis of a method of translating conceptsand propositions from di�erent languages usedby a set of agents. This goal was achieved withthe introduction of the notions of a dl-cut anda rough concept which allow the common lan-guage to be established as a dl-cut of all thedi�erent languages used by the various agents,and this dl-cut to be used to specify the roughconcepts that may be used to express the con-cepts manipulated by the agents. Two simplealgorithms have been provided that make itpossible to establish dl-cuts and rough con-cepts. We also addressed the problem of rea-soning with the dl-cuts once they were es-tablished, giving results describing how logi-cal reasoning may be performed with the con-cepts.Future research in this direction should con-centrate on the heuristics needed for the devel-opment of more e�cient algorithms construct-ing dl-cuts from description languages. Themain issues are, in this respect, the need tominimize the amount of information lost inthe process of translation and the complexity
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APPROXIMATING KNOWLEDGE Informatica 17 page xxx{yyy 17AppendixProof of Theorem 5.1a) Modus PonensR(q) � R(p\q) = R((:p_q)^p) = [�\; �\�], so the lower bound on the core is � \ .In addition, [�; �] = R(:p _ q) � R(q), sothe upper bound on the envelope is �. HenceR(q) = [� \ ; �]. 2b) Modus TollensR(:p) � R(:p\:q) = R((:p_q)^:q) = [�\; �\�], so the lower bound on the core is �\.In addition, [�; �] = R(:p _ q) � R(:p), sothe upper bound on the envelope is �. HenceR(:p) = [� \ ; �]. 2c) ResolutionWe know that R(q_ r) = R((p_ q _ r)^ (:p_q _ r)) = [((p _ q _ r)C \ (:p _ q _ r)C); ((p _q _ r)E \ (:p _ q _ r)E)]. Now, (p _ q _ r)C �(p_q)C[rC = �[rC and (:p_q_r)C � (:p_r)C [ qC =  [ qC, so the lower limit on theirintersection is � \ . Similarly, (p _ q _ r)E =(p _ q)E [ rE = � [ rE and (:p _ q _ r)E =(:p_r)E [qE = [qE. Now, the upper limitson rE and qE are � and �, respectively, so themaximum size of the envelope is � [ �: 2d) SyllogismThis follows immediately from the resolutionresult. We have R(:p _ q) = [�; �] andR(:q _ r) = [; �]. Resolving these togethergives R(:p _ r) = [�\ ; � [ �] and the resultfollows. 2e) Universal InstantiationR(8xiP (xi)) =R(P (a))^R(P (b))^ . . .^R(P (n)) = [P (a)C \P (b)C\. . .\P (n)C; P (a)E\P (b)E\. . .P (n)E].Thus P (a)C � (8xiP (xi))C and P (a)E �(8xiP (xi))E, so R(P (a)) = [�;U ]. 2


