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Abstract How do I choose whom to delegate a task to? This is an important question

for an autonomous agent collaborating with others to solve a problem. Were similar

proposals accepted from similar agents in similar circumstances? What arguments were

most convincing? What are the costs incurred in putting certain arguments forward?

Can I exploit domain knowledge to improve the outcome of delegation decisions? In

this paper, we present an agent decision-making mechanism where models of other

agents are refined through evidence from past dialogues and domain knowledge, and

where these models are used to guide future delegation decisions. Our approach com-

bines ontological reasoning, argumentation and machine learning in a novel way, which

exploits decision theory for guiding argumentation strategies. Using our approach, in-

telligent agents can autonomously reason about the restrictions (e.g., policies/norms)

that others are operating with, and make informed decisions about whom to delegate

a task to. In a set of experiments, we demonstrate the utility of this novel combination

of techniques. Our empirical evaluation shows that decision-theory, machine learning

and ontology reasoning techniques can significantly improve dialogical outcomes.

1 Introduction

In many scenarios, agents (whether human or artificial) depend on others to act on

their behalf. Such dependence is common when agents engage in collaborative activities.

However, agents acting individually can also depend on others (e.g., for the delivery of

some service). Agents engaging in collaborative problem solving activities often form

alliances with other agents. Agreements to collaborate are often ad-hoc and temporary

in nature but can develop into more permanent alliances. The formation of agreements

may, however, be subject to policy (or norm) restrictions. Such policies might regulate

what resources may be released to an agent from some other organisation, under what

conditions they may be used, and what information regarding their use is necessary
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to make a decision. Similarly, policies may govern actions that can be done either to

pursue personal goals or on behalf of another [29].

One important aspect of collaborative activities is resource sharing and task del-

egation [9]. If a plan is not properly resourced and tasks delegated to appropriately

competent agents then collaboration may fail to achieve shared goals. We explore in

this paper strategies for plan resourcing where agents operate under policy constraints.

This is important not only for autonomous agents operating on behalf of individuals

or organisations, but also if these agents support human decision makers in team con-

texts [6,27,32]. To guide strategies regarding who to approach for a resource and what

arguments to put forward to secure an agreement, agents require accurate models of

other decision makers that may be able to provide such a resource. The first question

addressed in this research is how we may utilise evidence from past encounters to de-

velop accurate models of the policies of others. This is importantly different from the

question of whether or not another agent is trustworthy [26,34,14]. Trust models are

concerned with building models of others to determine the likelihood of them doing

what they promise. We, however, focus on building models of others to determine the

likelihood of them promising to do what we ask (e.g., provision of a resource).

Given that agents are operating under policies, and some policies may prohibit an

agent from providing a resource to another under certain circumstances, how can we

utilise the model of others’ policies that have been learned to devise a strategy for

selecting an appropriate provider from a pool of potential providers? Secondly, given

that agents may have access to some background (or ontological) domain knowledge,

how can we exploit such knowledge to improve models of others’ policies? To do these,

we propose an agent decision-making mechanism, which utilises a model of the policies

and resource availabilities of others to aid in deciding who to talk to and what infor-

mation needs to be revealed if some other agent is to provide a resource (or perform an

action). Our approach utilises a combination of ontological reasoning, argumentation

and machine learning to aid in making effective predictions about whom to approach

if some other agent is to be delegated to perform a task on the behalf of another.

The rest of this paper is organised as follows. In Section 2, we present our approach

to task delegation in norm-governed environments. In Section 3, we describe how agents

can learn others’ policies from evidence derived from argumentation-based dialogue,

and how reasoning over domain knowledge can be exploited to refine models of others’

policies with fewer training examples. Section 4 discusses argumentation strategies

for task delegation in norm-gorverned environments. Section 5 evaluates our approach

through simulations. Section 6 summarises our findings, discusses related work and

outlines future directions. We conclude in Section 7.

2 Task delegation in norm-governed environments

Task delegation, in general, is concerned with identifying a suitable candidate (or can-

didates) to transfer authority to act on one’s behalf [20]. In norm-governed systems

agents are regulated by sets of behavioural expectations, referred to as norms (or poli-

cies), which determine the actions an agent is (or is not) allowed to perform in various

situations. Delegation in such environments is not just a matter of finding agents that

possess the appropriate expertise (or resource); if an agent has the required expertise

(or resource) but is operating under a policy that prohibits the performance of that

action (or provision of the required resource), it may not take on the delegated task.
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In such settings, the aim is to identify agents who possess the required expertise (or

resource), and whose policies permit the performance of the required action (or provi-

sion of the required resource). It may also be useful to distinguish between agents that

are permitted to accede to a request and those that are obliged to do so, but we do

not make this distinction here.

Suppose that an agent has been assigned a task t, and that the performance of

this task depends on the provision of some resource r. To fulfill its task, agent x must

delegate the provision of r to another agent y. Similarly, task t, may depend upon the

performance of subtasks t1,1 and t1,2, and to fulfill its task agent x must delegate t1,2

to some other agent y. Provided agent y has resource r (or the expertise to perform

task t1,2), and has no policy that forbids the provision of r or the performance of t1,2

then we assume y will make r available to x or do t1,2 for x. In other words, if an

agent is allowed to perform an action (according to its policy) then we assume it will

be willing to perform it when requested, provided it has the necessary resources and/or

expertise, and that doing so does not yield a negative utility.

We propose a framework that will allow agents to interact, argue and mine data

from past encounters and use evidence from these encounters to build a model of the

policies that others may be operating with. The purpose of the framework is to enable

agents to find effective ways of delegating the provision of resources (or, similarly, the

performance of tasks). To achieve this, we need to identify agents whose policy con-

straints will most likely enable the execution of the delegated task. In our framework,

whenever there is a task to be delegated, policy predictions are generated alongside

the confidence of those predictions from the policy models that have been learned over

time. Confidence values of favourable policy predictions are compared to determine

which candidate to approach for a resource, or to delegate a task. The confidence of

these predictions are derived from evidence from past encounters.

In this section we present a simple model of conditional policies (or norms), specify

the structure of the dialogue that agents use and the forms of evidence that can be

exploited in such dialogues, and discuss the issue of the costs that may be incurred in

revealing information to others. In the remainder of this paper we focus our discussion

on resource negotiation.

2.1 Policies

In order to model our argumentation-based framework, we begin by formulating a

mechanism to capture policies. Policies (aka. norms) govern how resources are normally

provided to others. In our model, policies are conditional; they are relevant to an agent’s

decision under specific circumstances. These circumstances are characterised by a set

of features. Some examples of features may include: the height of a tower, the weather

condition, the temperature of a room, or the manufacturer of a vehicle.

Let F be the set of all features such that f1, f2, . . . ∈ F . We define a feature as

a characteristic of the prevailing circumstance under which an agent is operating (or

carrying out an activity); that is, the task context. In this paper, we shall use the

term set of features and feature vector interchangeably. Our concept of policy maps

a set of features into an appropriate policy decision. We assume that an agent can

make one of two policy decisions, namely: grant, which means that the policy allows

the agent to provide the resource when requested, and decline, which means that the

policy prohibits the agent from providing the resource.
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Table 1 An example of an agent’s policy profile.

Policy Id f1 f2 f3 f4 f5 Decision
P1 h trm g grant
P2 h vc decline
P3 j grant
P4 c vc xx grant
. . . . . . . . . . . . . . . . . . . . .
Pn q yy w xx z decline

We define a policy as a function with signature Π : 2F → {grant, decline}, which

maps feature vectors of tasks, 2F , to appropriate policy decisions. In order to illustrate

the way policies (or norms) are captured in this model, we present the following exam-

ples (see Table 1). Assuming, f1 is the resource requested, f2 is the purpose, f3 is a

weather report (with respect to a location), f4 is the affiliation of the agent in receipt

of the resource, and f5 is the day the resource is required then policies P1, P2, and P3

(see Table 1) will be interpreted as follows:

P1: You are permitted to release a helicopter (h), to any agent if the helicopter is

required for the purpose of transporting relief materials (trm) and the weather is

good (g).

P2: You are prohibited from releasing a helicopter to any agent if the weather report

says there are volcanic clouds (vc) in the location the agent intends to deploy the

helicopter.

P3: You are permitted to release a jeep (j) to any agent for any purpose, irrespective

of the day and the weather report.

If a helicopter is intended to be deployed in an area with volcanic clouds then the

provider is forbidden from providing the resource but might offer a ground vehicle (e.g.,

jeep) to the consumer if the resource is available.

Policies are important factors that regulate agents’ behaviour in a society. Given

that policies are often private, and agents are required to work together as they collab-

orate to solve a problem then how can agents identify what policies others are working

within? Our claim is that there is useful evidence that one can extract from interactions

with other agents. Such additional evidence can help to build more accurate models of

others’ policies. In the next section, we discuss how argumentation-based negotiation

allows us to gather such useful evidence.

2.2 Argumentation-based negotiation

Negotiation may take many forms, but here, we focus on argumentation-based nego-

tiation. First, we explore the evidence that argumentation-based dialogue provides in

revealing underlying policy constraints, and then we present the protocol employed in

this research.

2.2.1 Forms of evidence

Here, we present a number of forms of evidence that can be identified in argumentation-

based negotiation. Three important types of evidence are considered in this paper,
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namely: (i) seeking information about the issue under negotiation; (ii) providing ex-

planations or justifications; and (iii) suggesting alternatives. This is not intended as

an exhaustive list, but do represent three of the most common sources of evidence in

argumentation-based dialogue in general.

Seeking further information. When an agent receives a request to provide a re-

source, it checks whether or not it is permitted to honour the request. To do this, it

must compare the details provided by the consumer with the policies it must operate

within to make a decision. An example of an agent’s policy profile is captured in Table

1. If the details of the task context provided by the consumer is insufficient for the

provider to make a decision, it will need to seek further information. For example, if

an agent requests for the provision of a helicopter (denoted as h in Table 1), then the

provider needs to know the weather report of the location where the helicopter is to

be deployed; therefore, the provider will ask the consumer to forward details about the

location and (possibly) to provide a weather report (although this may be acquired

from elsewhere).

A request for further information about the features of a task context could indi-

cate some of the characteristics of the constraints a provider agent is operating within.

For instance, let us assume that a provider agent has a policy that forbids it from

providing a helicopter, h, to any consumer agent that intends it to fly in an area af-

fected by volcanic ash, vc (see Table 1, Policy Id = P2). Then, given that a consumer

has requested for the provision of a helicopter and the provider agent has requested

information to ascertain that the consumer does not intend to deploy the helicopter in

an area with volcanic clouds, the consumer could use that information as input to try

to model what policies the provider agent may be operating with. Such a request for

further information could mean that there are specific values of certain features that

may lead to different policy-governed decisions.

Suggesting alternatives. When a provider agent is unable to grant a request be-

cause there is either a policy restriction or a resource availability constraint, or both,

it may wish to suggest alternatives. For example, a consumer may request the use of

a helicopter to transport relief materials in bad weather conditions. If the provider is

prohibited from providing a helicopter in such conditions but permitted to provide a

jeep then it may offer a jeep as an alternative for transporting those materials (provided

a jeep is available in its resource pool). If we assume that an agent will only suggest

an alternative if that alternative is available and there is no policy that forbids its

provision, the suggestion provides evidence regarding the policies of the provider with

respect to the suggested resource. Specifically, it is positive evidence that the provider

agent does not have a policy that forbids the provision of that resource to the con-

sumer and that it is available. Furthermore, it serves as evidence regarding the model

that the other agent has with respect to the equivalence of resources, but we do not

consider this here. It is worth noting that we assume agents communicate truthfully.

While the issue of deception remains an open problem, some techniques for addressing

this assumption have been investigated [34,30].

Justifications. Following a request for a resource, ultimately the provider agent will

either agree to provide it or decline the request (though further information may be

sought in the interim and suggestions made). In the case where the provider agent

agrees to grant the request, the consumer agent obtains a positive example of a task
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Fig. 1 The negotiation protocol.

context that the provider agent’s policies permit the provision of the resource. On the

other hand, if the request is refused then the consumer may seek further explanation

for the refusal. The refusal could be due to policy restrictions or resource availability

constraints or both. The justification provided in response to the challenge may offer

further evidence that may help to identify the underlying constraints.

2.2.2 Interaction protocol

Having described three important sources of evidence for learning policy ad resource

constraints, here we illustrate how these pieces of evidence can be extracted from

a typical model of argumentation-based negotiation. The dialogue structure that we

consider is shown in Figure 1. This protocol is modelled as the dialogue for resource

negotiation proposed by McBurney and Parsons [18]. The key differences are: (1) agents

may ask for more information if the information they have is insufficient to make a

decision; and (2) agents can argue about alternatives that have been offered.

To illustrate the sorts of interaction between agents, consider the example dialogue

in Table 2. Let x and y be consumer and provider agents respectively. Suppose we have

an argumentation framework that allows agents to ask for and receive explanations (as

in Table 2, lines 11 to 14), offer alternatives (line 10 in Table 2), or ask and receive

more information about the attributes of requests (lines 4 to 9 in Table 2), then x

can gather additional information regarding the policy rules guiding y concerning the

provision of resources.

Negotiation for resources takes place in a turn-taking fashion. The dialogue starts,

and then agent x sends a request to agent y (e.g., line 3, Table 2). The provider, y, may

respond by conceding to the request (accept), refusing, offering an alternative resource,

or asking for more information (query) such as in line 4 in Table 2. If the provider agrees

to provide the resource then the negotiation ends. If, however, the provider declines

the request then the consumer may challenge that decision, and so on. If the provider

suggests an alternative (line 10 in Table 2) then the consumer evaluates it to see

whether it is acceptable or not. Furthermore, if the provider needs more information

from the consumer in order to decide, the provider would ask questions that will reveal

the features it requires to make a decision (query, assert/refuse in Figure 1). The

negotiation ends when agreement is reached or all possibilities explored have been
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Table 2 Dialogue example.

# Dialogue Sequence Locution Type
1 x: Start dialogue. START-DIALOGUE
2 y: Start dialogue. START-DIALOGUE
3 x: Can I have a helicopter for $0.1M reward? REQUEST
4 y: What do you need it for? QUERY
5 x: To transport relief materials. ASSERT
6 y: To where? QUERY
7 x: A refugee camp near Indonesia. ASSERT
8 y: Which date? QUERY
9 x: On Friday 16/4/2010. ASSERT
10 y: I can provide you with a jeep for $5,000. OFFER
11 x: But I prefer a helicopter, why offer me a jeep? CHALLENGE
12 y: I am not permitted to release a helicopter JUSTIFY

in volcanic eruption.
13 x: There is no volcanic eruption near Indonesia. CHALLENGE
14 y: I agree, but the ash cloud is spreading, and weather JUSTIFY

report advises that it is not safe to fly on that day.
15 x: Ok then, I accept your offer of a jeep. ACCEPT
16 y: That’s alright. Good-bye. END-DIALOGUE

refused. A complete specification of an argumentation-based dialogue game involves

commitment rules, commencement rules, termination rules, etc. (see [18,25]). We do

not provide this additional detail here, however, because this will not add to the key

contribution of the paper. A specification of the permitted moves in the dialogue and

the evidence that may be revealed by certain moves is sufficient.

Before we discuss in detail how the evidence revealed during argumentation-based

negotiation can be exploited to learn models of other agents, it is important to highlight

the fact that in many situations there is a cost associated with revealing information

to others.

2.3 Information revelation

In situations where private information must be revealed before a service can be pro-

vided such as in response to a query, the agent providing this information must take

into account the costs of doing so. There are many reasons why there should be cost

associated with revealing information. In general, the more information you reveal, the

more likely it is that others may become aware of your private plans and goals, and

hence be able to exploit that information. For example, if a consumer reveals to an

insurance provider that there have been recent cases of (unreported) burglary in the

neighbourhood, then the insurance provider might exploit that information and raise

the premium. Similarly, if the consumer reveals the same piece of information to a

friend then the friend may refuse to lend him a valuable item because she may fear

that it could be stolen from his apartment, or, if the friend works for an insurance

provider, then she may be obliged to pass on such information to her employers.

These two examples illustrate the possibility that an agent may be exploited on the

basis of the information he reveals to others, whether in a hostile or cooperative setting.

However, there are situations in which the revelation of an extra piece of information

could be beneficial, but that does not alleviate the risk of exploitation by others. This

risk is what we refer to as information cost, and will be defined in Section 4.
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3 Learning policies from dialogue

One of the core goals of this research is to learn models of the policies of others. When

an agent has a collection of experiences with other agents described by feature vectors

(see Section 2.1), we can make use of existing machine learning techniques to learn

associations between these sets of features (i.e. elements of F) and policy decisions.

The aim of building these policy models is to produce predictions about whether or

not other agents are likely to be forbidden (or permitted) to perform a delegated task

such as providing a resource. One of the main problems regarding learning policies is

that agents may not know in advance which features are good indicators of a specific

policy decision. In reality, agents may start with some a priori model of others’ policies,

which may be incomplete or inaccurate. Here, we randomise the initial policy model to

isolate the effect of learning policies through evidence derived from argumentation. In

this research, we have explored a number of means through which policy models may

be constructed, such as concept similarity measures, rules and decision trees.

Specifically, we investigate three classes of machine learning algorithms1 [19], namely

instance-based learning (using k-nearest neighbours), rule-based learning (using se-

quential covering), and decision tree learning (using C4.5). In addition, we present a

novel semantic-enriched decision tree learning, STree.

3.1 Policies modelled as concepts

Since policies map features of agents’ task contexts into categories of decisions (i.e.

grant or decline), it makes sense to capture them as concepts. Concepts are simply

categories that help in classifying objects (in this case feature vectors), which have

a set of common features that are relevant. With concept learning, a set of policy

features (captured as a feature vector) can be classified based on policy decisions. By

capturing an agent’s policy decision function in this way, we can make use of standard

machine learning techniques (e.g., case-based reasoning [1]) to classify future cases by

computing how similar (or close) they are to labelled examples [5]. When a policy

decision is made for a given input, one can reason about the concept that has been

observed and apply it to future cases. Intuition is that similar task contexts will lead to

similar policy decisions. Instance-based learners, such as k-nearest neighbours (kNN)

are popular for classifying tasks in this kind of settings.

In this regard, concept learning attempts to abstract the central tendency of policy

training examples, and use this for categorising future instances. This means that the

classification of a new task context is based on the similarity between prior examples

and the current task context. Each example represents a point in the instance space,

and new task configurations are classified on the basis of how close they are to others.

In order to identify nearest neighbours, the kNN algorithm adopts a number of

distance metrics, which measure the dissimilarities between feature vectors. One such

metric is Euclidean distance, which is calculated as follows:

d(Fa,Fb) =

vuut nX
i=1

wi(fi(Fa)− fi(Fb))2, (1)

1 We use the Weka [35] implementation of these algorithms.
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where a policy example is defined as a vector F ⊆ F , fi is the ith feature of the policy

example, wi is the weight of the ith feature, and i ranges from 1 to |F|. Generally, the

smaller the value of d(Fa,Fb) the more similar the two examples are.

Using the above distance metric, the kNN algorithm identifies k nearest neighbours

of a given instance. Suppose we define kNN as the set of k nearest neighbours of a

given test instance (dx), we proceed to classify the instance as follows.

classify(dx) = arg max
k

X
Fb∈kNN

z(Fb, ck), (2)

where dx is a test example, Fb is one of its k nearest neighbours in the training set.

z(Fb, ck) indicates whether or not Fb is classified to be of class ck . From Equation 2,

the test instance will be classified to belong to the class that has most members in the

k nearest neighbours. In other words, the test instance will be assigned a class label

based on the majority vote of its k nearest neighbours [28].

3.2 Policies modelled as rules

Rules provide an appropriate means for specifying policies because they allow an agent

to find what the decision (or action) for a given set of pre-conditions will be. In other

words, given these sets of conditions (derived from features in the task context), what

is likely to be the policy decision of the other party. One advantage of representing

polices in this way is the fact that they are amenable to scrutiny by a human decision

maker. In particular, rules (or trees) are relatively simple to understand, as compared

with models produced by other machine learning techniques.

Using rules, it is easier to explain why a particular policy decision is likely to be

made by summarising the pre-conditions of the learned rule that is the closest match to

the current context. This is especially important in scenarios where agents are acting on

behalf of (or supporting) human decision makers. In practical terms, a human decision

maker may want to know why an agent is advising him/her to follow a certain course

of action [33].2

By representing policies as rules, we can make use of standard rule learning tech-

niques (e.g., sequential covering [19,11]) to classify rule sets from training examples.

When a particular decision is chosen for a given input, you can trace the reason for

that decision by looking at the conditions attached to the rule. A rule is not triggered

unless the conditions for the rule are met, and that is exactly how a policy operates. To

this end, it is possible to exploit one of the well-known rule-based induction techniques

to classify an agent’s policies in terms of features in F [22].

3.3 Policies modelled as decision trees

Decision trees [4] provide an appropriate representational abstraction for policies be-

cause they allow a decision (or label) to be found for a given input by selecting paths

from the root of the tree on the basis of values (or conditions) specified at nodes to

2 The rule learning algorithm used here (sequential covering) does not necessarily find the
best or smallest set of rules, but other, more sophisticated rule induction methods may equally
be employed [15].
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Fig. 2 Tree rooted at the test B and its breaches based on its outcomes.

leaf nodes (decisions). By capturing an agent’s policy function as a decision tree, we

can make use of standard machine learning techniques to induce trees from labelled

examples [8,16,23]. Nodes of the decision tree capture features of an agent’s policy,

edges denote feature values, while the leaves are policy decisions.

Although decision trees can be used to generate explanations of policy predictions,

such explanations are not necessarily formulated in an accessible logical structure,

and standard algorithms in the ID3 family cannot exploit background (or domain)

knowledge [21]. In this section we briefly outline a decision tree algorithm (C4.5) and

then present an extension that employs ontological reasoning to exploit background

knowledge during tree induction.

3.3.1 C4.5 decision tree algorithm

The C4.5 decision tree algorithm [24] uses a method known as divide and conquer to

construct a suitable tree from a training set S of cases. If all the cases in S belong to

the same class Ci, the decision tree is a leaf labeled with Ci. Otherwise, let B be some

test with outcomes {b1, b2, . . . , bn} that produces a partition of S, and denote by Si

the set of cases in S that has outcome bi of B. The decision tree rooted at B is shown

in Figure 2, where Ti is the result of growing a sub-tree for the cases in Si. The root

node B is based on an attribute that best classifies S. This attribute is determined by

information theory as the attribute with the highest information gain.

The information gain of an attribute is computed based on information content.

Assume that testing an attribute A in the root of the tree will partition S into disjoint

subsets {S1, S2, . . . , St}. Let RF (Ci, S) denote the relative frequency of cases in S that

belong to class Ci. The information content of S is then computed using Equation 3.

The information gain for A is computed using Equation 4.

I(S) = −
nX

i=1

RF (Ci, S)× log(RF (Ci, S)) (3)

G(S,A) = I(S)−
tX

i=1

|Si|
|S| × I(Si) (4)

Once the attribute representing the root node is selected based on its information gain,

each value of the attribute leads to a branch from the node. These branches divide the

training set into disjoint sets {S1, S2, . . . , St}. Then, we recursively create new nodes

of the tree using these subsets. If Si contains training examples only from class Ci, we

create a leaf node labeled with class Ci; otherwise, we recursively build a child node

by selecting another attribute based on Si. This recursive process stops either when

the tree classifies all training examples, or until no unused attribute remains.
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Table 3 Training Examples.

# Type Age Price Class
1 Van 10 10,000 grant
2 Van 5 20,000 grant
3 Car 8 5,000 grant
4 Car 15 1,000 grant
5 Coach 2 200,000 grant
6 Yacht 20 300,000 decline
7 Yacht 2 500,000 decline
8 Speedboat 4 8,000 decline
9 Speedboat 15 2,000 decline
10 Cruiser 10 100,000 decline

Type=?

Car Van Coach
Yacht Speed

boat
Cruiser

{1,2,3,4,5,6,7,8,9,10}

{1,2} {3,4} {5} {6,7} {8,9} {10}

Price >= 100,000 ?

{1,2,3,4,5,6,7,8,9,10}

tr
u
e

false

{5,6,7,10} {1,2,3,4,8,9}

Fig. 3 Decision nodes created using tests on Type (on the left) and Price (on the right).

Table 3 lists 10 training examples, where Type, Age, and Price are the only fea-

tures. C4.5 decision tree algorithm makes induction only over numerical attribute val-

ues. It cannot generalise over the nominal attribute values (i.e., terms). For instance,

a decision node based on the Price attribute in Figure 3 (on the right) can be used

to classify a new case with price equal to $250, 000, even though there is no case in

the training examples with this price value. However, a new case with an unseen type,

for instance a submarine, cannot be classified using the decision node based on the

attribute Type in Figure 3 (on the left). This limitation can have significant impact on

the accuracy of the models of others built by an agent.

3.3.2 Semantic-enriched decision trees

In this section, we describe one way of addressing the problem identified in the pre-

ceding section. Semantic Web technologies allow software agents to use ontologies to

capture domain knowledge [3,13,10], and employ ontological reasoning to reason about

it [31]. Figure 4 shows a part of a simple ontology about vehicles and weather condi-

tions. The hierarchical relationships between terms in an ontology can be used to

generalise over the values of features while learning policies as demonstrated in Exam-

ple 1. Specifically, we describe how we can exploit ontological reasoning to improve the

performance of agents in learning the policies of others using C4.5 decision trees.

Policies are often specified using numerical features (e.g., vehicle price) and nominal

features (e.g., vehicle type). Each nominal feature may have a large set of possible

values. Without ontological reasoning over relevant domain knowledge, the agent may

require a large training set containing examples with these nominal values. However,

ontological reasoning allows agents to reason about terms unseen in the training set

and learn more general policies with fewer training examples.

Example 1 Consider a situation where an agent x is collaborating with a number

of agents, y1, y2, y3, and y4, to solve an emergency response problem. Let us assume
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GroundVehicle

Vehicle

WaterBorneTransport
AerialVehicle

speedBoatyacht

Boat

cruiser submarine

MilitaryShip

coach car

van
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hunter

reaper

hawk

Thing

...

WeatherConditions

GoodWeatherBadWeather

clear

rainy

foggysnowy

windy

volcanicCloud

Fig. 4 A simple ontology for vehicles and weather conditions. Ellipsis and rectangles represent
concepts and their instances respectively.

that agent x does not have a helicopter in its resource pool, and that each of agents

y1, y2, y3, and y4 can provide helicopters, jeeps, vans, bikes, fire extinguishers, and un-

manned aerial vehicles (UAVs). Suppose agent x has learned from previous interactions

with agent y1 that there is a policy that forbids y1 from providing a helicopter when

the weather is rainy, foggy, snowy, or windy. In addition, suppose agent x has learned

from previous experience that agent y1 is permitted to provide a jeep in these condi-

tions. This information has little value for x if it needs a helicopter when the weather

is not rainy, foggy, snowy, or windy but volcanic clouds are reported. On the other

hand, with the help of the ontology in Figure 4, agent x can generalise over the already

experienced weather conditions and expect that “agent y1 is prohibited from providing

helicopters in bad weather conditions”. Such a generalisation allows x to reason about

the behaviour of y1 for cases that have not yet been encountered. That is, with the help

of the domain knowledge, agent x can deduce that agent y1 may be prohibited from

providing a helicopter if there is an evidence of volcanic clouds in the region.

Here, we propose semantic-enriched decision trees (STree) built upon the subsump-

tions relationships between terms in the ontology. These relationships can be derived

automatically using an off-the-shelf ontology reasoner such as Pellet [31]. The main

idea of STree is to replace the values of nominal attributes with more general terms

iteratively during tree induction, unless this replacement results in a decrease in the

classification performance.

Algorithm 1 summarises how the values of A are generalised for S. First, we com-

pute the original gain G(S,A) (line 3). Second, we create a set called banned, which

contains the terms that cannot be generalised further (line 4). Initially, this set con-

tains only the top concept Thing. Third, we create the set T that contains A’s values

in S (line 5). While there is a generalisable term t ∈ T (lines 6-18), we compute its

generalisation t′ using ontological reasoning (line 8) and create the set T ′ by replacing

more specific terms in T with t′ (line 9). If this term is an instance of a concept, then

the generalisation of the term is the concept, e.g., Y acht is generalisation of Y acht123

(not shown in the ontology in Figure 4). If the term is a concept, its generalisation is

its parent concept, e.g., Boat is generalisation of Y acht, while WaterBorneTransport

is generalisation of Boat. For instance, let S be the data in Table 3, then T would

contain Y acht, Speedboat, Cruiser, V an, Car, Coach, and Cruiser. If Car is selected

as t, t′ would be GroundV ehicle. In this case, T ′ would contain Y acht, Speedboat,

Cruiser, and GroundV ehicle.
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Algorithm 1 Generalising values of nominal attribute A in training set S.

1: Input : S, A
2: Output: T
3: g = G(S, A)
4: banned = {Thing}
5: terms = getAttributeV alues(S, A)
6: while true do
7: if ∃t such that t ∈ T ∧ t /∈ banned then
8: t′ = generalise(t)
9: T ′ = replaceWithMoreSpecificTerms(T, t′)

10: s = replaceAttributeV alues(S, A, T ′)
11: if G(s, A) = g then
12: S = s and T = T ′

13: else
14: banned = banned ∪ {t}
15: end if
16: else
17: break
18: end if
19: end while

Type=?

GroundVehicle WaterBorneTransport

{1,2,3,4,5,6,7,8,9,10}

{1,2,3,4,5} {6,7,8,910}

Type=?

GroundVehicle Boat

{1,2,3,4,5,6,7,8,9,10,11}

{1,2,3,4,5} {6,7,8,9}

Cruiser Submarine

{10} {11}

Fig. 5 Decision nodes using the generalisation of cases in Figure 3 (left hand side) and after
the addition of a new case (11, Submarine, 40, 800, 000, grant) (right hand side).

Next, we check if the generalisation leads to any decrease in the information gain.

This is done by creating a temporary training set s from S by replacing A’s values in

S with the more general terms in T ′ (line 10) and then comparing G(s,A) with the

original gain g (line 11). If there is no decrease in the information gain, S and T are

replaced with s and T ′ respectively; otherwise t is added to banned. We iterate through

until we cannot find any term in T to generalise without a decrease in the information

gain.

For the examples cited in Table 3, the output of the semantic-enriched decision

tree algorithm would be {GroundV ehicle,WaterBorneTransport}, because any fur-

ther generalisation results in a decrease in information gain. Hence, a decision node

based on Type attribute would be as shown in Figure 5 (left hand side). A new test

case (11, Submarine, 40years, $800, 000) would be classified as decline using this

decision node, because a submarine is a WaterBorneTransport and all known Water-

BorneTransport types are labeled as decline. If the actual classification of the case is

grant instead of decline, the decision node would be updated as seen in Figure 5 (right

hand side), because generalisation of Submarine or Cruiser now results in a decrease

in the information gain.

The machine learning algorithms investigated in this paper have very different

properties. Instance-based learning is useful in this context because it can adapt to

and exploit evidence from dialogical episodes as they accrue. In contrast, decision trees

and rule learning are not incremental; the tree or the set of rules must be reassessed

periodically as new evidence is acquired. We define a learning interval, φ, which de-
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termines the number of interactions an agent must engage in before building (or re-

building) its policy model. Once an agent has had φ interactions, the policy learning

process proceeds as follows. For each interaction, which involves resourcing a task t

using a given provider, we add the example (F, grant) or (F, decline) to the training

set (where F ⊆ F), depending on the evidence obtained from the interaction. The

model is then constructed. In this way, an agent may build a model of the relation-

ship between observable features of agents and the policies they are operating under.

Subsequently, when faced with resourcing a new task, the policy model can be used

to obtain a prediction of whether a particular provider has a policy that permits the

provision of the resource.

4 Argumentation strategies

Having described how the policies of others can be learned with the help of evidence

derived from argumentation and further refined by reasoning with relevant domain

knowledge, we demonstrate the use of such structures in developing argumentation

strategies for deciding which agent to negotiate with and what arguments to put for-

ward. Our model takes into account communication cost and the benefit to be derived

from fulfilling a task. Consumer agents attempt to complete tasks by approaching the

most promising provider. Here, we formalise the decision model developed for this aim;

a model that we empirically evaluate in Section 5.

Let A be a society of agents. In any encounter, agents play one of two roles: con-

sumer or provider. Let R be the set of resources such that r1, r2, . . . ∈ R and T be

the set of tasks such that t1, t2, . . . ∈ T , and, as noted above, F is the set of fea-

tures of possible task contexts. Each consumer agent x ∈ A maintains a list of tasks

t1, t2, . . . tn ∈ T and the rewards Ωt1
x , Ω

t2
x , ...Ω

tn
x to be received for fulfilling each cor-

responding task. We assume here that tasks are independent; in other words, x will

receive Ωt1
x if t1 is fulfilled irrespective of the fulfilment of any other task. Further, we

assume that tasks require single resources that can each be provided by a single agent;

i.e. we do not address problems related to the logical or temporal relationships among

tasks or resources. Providers operate according to a set of policies that regulate their

actions, and (normally) agents act according to their policies. For example, a car rental

company may be prohibited from renting out a car if the customer intends to travel

across a country border.

Each consumer agent x ∈ A has a function µr
x with signature A×R×T ×2F → R

that computes the utility gained if x acquires resource r ∈ R from provider y ∈ A in

order to fulfil task t ∈ T , assuming that the information revealed to y regarding the

use of r is F ⊆ F . This F will typically consist of the information features revealed

to persuade y to provide r within a specific task context. (Although we focus here on

resource provision, the model is equally applicable to task delegation, where we may

define a function µt
x : A× T × 2F → R that computes the utility gained if y agrees to

complete task t for x, assuming that the information revealed to y to persuade it to

do t is F ⊆ F .)

Generally, agents receive some utility for resourcing a task. Revealing certain pri-

vate information to others about a task context, however, may incur costs. In our

model, the price that an agent pays for resources they acquire from others may be

influenced by the information revealed. Such influence could be positive (in which case

the consumer pays less) or negative (the consumer pays more). In the first case, the
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consumer gets a discount in the price of the resource. For example, a shop may give

discounts on some items to consumers provided they possesses the shop’s loyalty card,

and to obtain a loyalty card the consumer is required to reveal certain private infor-

mation such as email address, telephone, age to the shopkeeper. These details are then

used to send such things as adverts, promotions or clearance sales to the consumer at

a later date. In the second case, the consumer might actually pay more if, for instance,

he is perceived as a high risk customer for an insurance quote. The utility for the

consumer is, therefore, the reward obtained for resourcing a task minus the cost of the

resource and the cost of revealing information regarding the task context.

Definition 1 (Resource Acquisition Utility) The utility gained by x in acquiring

resource r from y through the revelation of information F is:

µx(y, r, t, F ) = Ωt
x − (Φr

y + Costx(F, y)) (5)

where Ωt
x is the reward received by x for resourcing task t, Φr

y is the cost of acquiring

r from y (given by Φr
y = Φ′r

y ± |δr
Fy
|, where Φ′r

y is the original/published price of the

resource, and δr
Fy

is the influence on the original/published price of the resource), and

Costx(F, y) is the cost of revealing the information features contained in F to y (which

we define below).

The cost of revealing information to some agent captures the idea that there is some

risk in informing others of, for example, details of private plans.

Definition 2 (Information Cost) We model the cost of agent x revealing a single

item of information, f ∈ F , to a specific agent, y ∈ A, through a function: costx :

F × A → R. On the basis of this function, we define the cost of revealing a set of

information F ∈ 2F to agent y, as the sum of the cost of each f ∈ F .

Costx(F, y) =
X
f∈F

costx(f, y) (6)

Cost, therefore, depends on y, but not on the task/resource. This definition captures

a further assumption of the model; i.e. that information costs are additive. In general,

we may define a cost function Cost′x : 2F × A → R. Such a cost function, however,

will have some impact upon the strategies employed (e.g., if the cost of revealing fj

is significantly higher if fk has already been revealed), but the fundamental ideas

presented in this paper do not depend on this additive information cost assumption.

Predictions regarding the information that an agent, x, will need to reveal to y for

a resource r to persuade it to make that resource available is captured in the model

that x has developed of the policies of y. For example, if, through prior experience,

it is predicted that a car rental company will not rent a car for a trip outside the

country, revealing the fact that the destination of the trip is within the country will

be necessary. Revealing the actual destination may not be necessary, but the costs

incurred in each case may differ. Let Pr(Permitted |y, r, F ) be the probability that,

according to the policies of y (as learned by x), y is permitted to provide resource r to

x given the information revealed is F .3

3 We adopt a simple probabilistic approach to compute the probability of a resource being
available based on past experience, but there are far more sophisticated approaches to model
resource availability; e.g. [7].
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Predictions about the availability of resources also form part of the model of other

agents; for example, the probability that there are cars for rent. Let Pr(Avail|y, r)
be the probability of resource r being available from agent y. These probabilities are

captured in the models learned about other agents from previous encounters.

Definition 3 (Resource Acquisition Probability) A prediction of the likelihood of

a resource being acquired from an agent y can be computed on the basis of predictions

of the policy constraints of y and the availability of r from y:

Pr(Yes|y, r, F ) = Pr(Permitted|y, r, F )× Pr(Avail|y, r) (7)

With these definitions in place, we may now model the utility that an agent may

expect to acquire in approaching some other agent to resource a task.

Definition 4 (Expected Utility) The utility that an agent, x, can expect by revealing

F to agent y to persuade y to provide resource r for a task t is computed as follows:

E(x, y, r, t, F ) = µx(y, r, t, F )× Pr(Yes|y, r, F ) (8)

At this stage we again utilise the model of resource provider agents that have been

learned from experience. The models learned also provide the minimal set of infor-

mation that needs to be revealed to some agent y about the task context in which

some resource r is to be used that maximises the likelihood of there being no policy

constraint that restricts the provision of the resource in that context. This set of infor-

mation depends upon the potential provider, y, the resource being requested, r, and

the task context, t. If, according to our model, there is no way to convince y to provide

the r in context t, then this is the empty set.

Definition 5 (Information Function) The information required for y to make avail-

able resource r in task context t according to x’s model of the policies of y is a function

λx : A×R× T → 2F

Now, we can characterise the optimal agent to approach for resource r, given an infor-

mation function λx as the agent that maximises the expected utility of the encounter:

yopt = arg max
y∈A

E(x, y, r, t, F ) s.t. F = λx(y, r, t) (9)

Our aim here is to support decisions regarding which agent to approach regarding task

resourcing (or equivalently task performance); an aim that is met through the iden-

tification of yopt . The question remains, however, how the agent seeking a resource

presents arguments to the potential provider, and what arguments to put forward.

To this aim, we present argumentation strategies that focus on minimising commu-

nication overhead (i.e. reducing the number of messages exchanged between agents),

minimising the information communicated (i.e. reducing the costs incurred in reveal-

ing information, thereby maximising profits), and a trade-off between minimising the

messages exchanged and maximising profits. To illustrate these strategies, consider a

situation in which, according to the evaluation made by x (the consumer) of yopt ’s

(the provider’s) policies, λx(yopt , r, t) = {f1, f2, f3, f4} for resource r used for task t.

The costs for revealing each feature is, as described above, costx(f1, yopt ), etc. Using

this situation, in the following sections we discuss 3 strategies: message minimisation;

profit maximisation; and combined.
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4.1 Message minimisation

The rationale for the use of this first strategy is for the consumer agent, x, to resource

task, t, as soon as possible. There are many situations in the real-world in which it is

important for dialogue to be a brief (and to the point) as possible, particularly in time-

critical situations such as emergency response. To this aim, x seeks to minimise the

number of messages exchanged with potential providers required to release the required

resource, r. The consumer, therefore, reveals all the information that, according to λx,

the provider will require to release the resource in a single proposal. Since cost is

incurred when information is revealed, however, this strategy will, at best, get the

baseline utility; i.e. the utility expected if the provider indeed requires all information

predicted to release the resource.

In the example above, consumer x will send λx(y, r, t) = {f1, f2, f3, f4} to provider

y in one message, and, if the request is successful, the utility gained by x will be:

µx(y, r, t, λx(y, r, t)) = Ωt
x − (Φr

y + Costx(λx(y, r, t), y)) (10)

This strategy ensures minimal messaging overhead if the consumer has accurate models

of the policy and resource availability of providers. Such strategy is certainly useful in

scenarios where the agent is interested in getting a plan resourced (or task performed)

with as few messages as possible with little or no consideration to the cost of revealing

necessary information. Performing a task with as few messages as possible would save

time and so could connote performing the task as quickly as possible (assuming that

it does not take longer to pull the features into fewer messages).

4.2 Profit maximisation

The rationale for this strategy is to attempt to maximise the profit acquired in re-

sourcing a task by attempting to reduce the information revelation costs in acquiring a

resource. Using this strategy, the agent uses the models of other agents developed from

past encounters to compute confidence values for each diagnostic information feature

(i.e. their persuasive power). Suppose that the relative impact on a positive response

from the provider in revealing features from λx(y, r, t) are f3 > f1, f3 > f2, f1 > f4
and f2 > f4. Using this information, the agent will inform the potential provider of

these features of the task context in successive messages according to this order when

asked for justification of its request until agreement is reached (or the request fails).

In the above example, if the most persuasive justification (feature of the task con-

text) succeeds, it will achieve an outcome of Ωt
x − (Φr

x + costx(f3, y)), if further justi-

fication is required either f1 or f2 is used, and so on.

Other strategies are, of course, possible; for example, ordering features according

to the ratio of the confidence value for each diagnostic feature in λx(y, r, t) and the

cost of revealing that feature to y. Rather than discussing such alternatives, in the

following we discuss how simple strategies can be combined.

4.3 Combined strategies

The rationale for these combined strategies is to capture the trade-off between pre-

senting all the features of the task context in a single message, thereby, minimising
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communication, and attempting to extract as much utility as possible from the en-

counter (in this case by utilising information regarding relative persuasive power and

cost). This may be modelled as a multiple criteria decision problem with the goals of

maximising persuasive power versus cost of each message and of minimising the num-

ber of messages (with appropriate weighting between these two goals). Here, we outline

a couple of heuristic methods to solve this general problem. One heuristic is to set a

message threshold (a limit to the number of messages sent to a potential provider),

σm. Then the agent will try to cluster features in λx(y, r, t) in σm messages and use

these in order of reducing persuasive power/cost ratio. It is easy to see that when σm

is set to 1 then the agent adopts the message minimisation strategy, and if σm is set

to |λx(y, r, t)| this is equivalent to profit maximisation.

Another way, is to exploit the fact that the confidence values for each feature

represent the likelihood that the resource provider will need this information to make

a policy-governed decision. If the confidence value of a given feature exceeds some

threshold, σc, then that feature is included in the set of information that will be

revealed first; this is the set of features most likely to persuade the provider to release

the resource. If this does not succeed, the remaining features are revealed according to

the profit maximisation strategy. For example, if f3, f2 and f1 all exceed σc, these are

sent in the first message, providing an outcome of Ωt
x− (Φr

y + Costx({f1, f2, f3}, y)) if

successful, and, if not, f4 is used in a follow-up message.

Again, other strategies are possible such as clustering by topic (if such background

information is available). Our aim here is not to exhaustively list possible strategies,

but to empirically evaluate the impact of utilising information from the models of

others learned from past encounters to guide decisions regarding whom to engage in

dialogue and what arguments to put forward to secure the provision of a resource (or,

equivalently, a commitment to act). We turn to the evaluation of our model in the

following section.

5 Evaluation

As a way of evaluating the contributions of our approach in making informed decisions

about who to collaborate with, based on the policies of others, we test the following

hypotheses:

– Hypothesis 1: In relatively small domains or in situations where sufficiently large

training data is available (which we refer to as a closed world scenario), agents

that reason over domain knowledge will perform no worse than those without such

reasoning.

– Hypothesis 2: In complex domains or in situations where limited training data is

available (which we refer to as an open world scenario), reasoning over appropri-

ate domain knowledge will mean that more accurate and stable models of others’

policies can be derived more rapidly than without exploiting such reasoning.

– Hypothesis 3: Agents that build more accurate models of others and use this to

drive argumentation strategy will perform better than those that do not. In other

words, a combination of decision-theoretic and machine learning techniques can

both significantly improve the cumulative utility of dialogical outcomes, and help

to reduce communication overhead more than those that do not.
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Fig. 6 Agent reasoning architecture.

5.1 Architecture

The framework we propose here (illustrated in Figure 6) enables agents to negotiate

regarding resource provision, and use evidence derived from argumentation to build

more accurate and stable models of others’ policies. These policy models, along with

models of resource availability also derived from previous encounters, are used to guide

dialogical strategies for resourcing plans.

The dialogue manager handles all communication with other agents. In learning

policies from previous encounters, various machine learning techniques can be em-

ployed; Figure 6 illustrates a model derived using rule learning. The arguments ex-

changed during dialogue constitute the evidence used to learn policies and resource

availability. Arguments refer to features of the task context in which a resource is to be

used, and decisions regarding whether or not a resource is made available to another

agent may depend on such features. The plan resourcing strategy mechanism reasons

over policy and resource availability models, and selects the potential provider with

the highest expected utility (see Section 4).

5.2 Experimental setup

In evaluating our approach, we implemented an artificial society where agents acting

as consumers interact with provider agents with regard to resourcing their plans over

a number of runs. Each provider is assigned a set of resources, and resources are

associated with some charge, Φr. Providers also operate under a set of policy constraints

that determine under what circumstances they are permitted to provide a resource to

a consumer. A task involves the consumer agent collaborating with provider agents to

see how assigned tasks can be resourced. Experiments were conducted with consumer

agents initialised with random models of the policies of provider agents. 100 runs were

conducted in 8 rounds for each case, and tasks were randomly created during each run

from the possible configurations. In the control condition (simple memorisation, SM),
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Table 4 Experimental Conditions

Configuration Description
C4.5 Decision tree algorithm using C4.5
SM Simple memorisation of outcomes
kNN Instance-based algorithm using k-nearest neighbour
SC Rule learning algorithm using sequential covering
STree Semantic-enriched decision tree learning algorithm

the consumer simply memorises outcomes from past interactions. Since there is no

generalisation in SM, the confidence (or prediction accuracy) is 1.0 if there is an exact

match in memory, else the probability is 0.5. The evaluation reported in this section is

in two parts. In the first part, we demonstrate that it is possible to use evidence derived

from argumentation to learn models of others’ policies. Furthermore, we demonstrate

that it is possible to exploit ontological reasoning to improve models of others’ policies,

hence increase their predictive accuracy, and performance.

To do this, we consider two experimental scenarios (i.e. closed world and open

world). The closed world scenario refers to simple domains with relatively small num-

bers of terms (each feature may have one of 5 different values), while the open world

scenario refers to more complex domains (each feature may have one of 20 different val-

ues). There are five features that are used to capture agents’ policies, namely resource

type, affiliation, purpose, location, and day. These features provide the possible task

context for each agent in the system. Thus, in the closed world scenario, the consumer is

faced with a problem domain in which there are (potentially) 3,125 individual policies

for different task configurations while the open world scenario has 3.2M possible task

configurations. We investigate the performance of agents in a number of experimental

conditions. These conditions are summarised in Table 4.

In the second part of this evaluation, we utilise the two scenarios described earlier

in the first part of this evaluation (that is, closed world and open world scenarios).

We demonstrate that a combination of machine learning and decision theory can be

used to aid agents in choosing who to collaborate with, and what information needs

to be revealed in order to persuade that agent to release a resource. We consider nine

experimental configurations in total. These configurations are outlined in Table 5.

5.3 Results

In this section, we present the results of the experiments carried out to validate this

work. Tests of statistical significance were applied to all results presented in this eval-

uation and they have been found to be statistically significant by t-test with p < 0.05.

Hypothesis 1

Figure 7 shows the performance of STree with respect to performances of SC, kNN,

C4.5 and SM in terms of policy prediction accuracy, in the closed world scenario. For

clarity, error bars are omitted from Figure 7. The figure clearly demonstrates that STree

performs at least as good as SC while C4.5 always performs significantly worse than

STree. Furthermore, STree outperforms SC when the number of tasks are relatively

small, which leads to relatively smaller training sets. This is because STree takes ad-

vantage of reasoning about background domain knowledge and so can make informed
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Table 5 Experimental Configurations

Condition Description
SM Simple memorisation of outcomes
SMMMS SM + message minimising strategy
SMPMS SM + profit maximising strategy
SC Sequential covering- rule learning algorithm
SCMMS SC + message minimising strategy
SCPMS SC + profit maximising strategy
STree Semantic-enriched decision tree learning algorithm
STreeMMS STree + message minimising strategy
STreePMS STree + profit maximising strategy
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Fig. 7 Policy prediction accuracy (closed world scenario).

inference (or guess) with respect to feature values that do not exist in the training set.

After 400 tasks the accuracy of SC reached 96% to tie with STree. We believe, at this

point, a significant majority of the test instances have been encountered and so have

been learned (and now exist in the training set for future episodes). Since STree is

just C4.5 enhanced with ontological reasoning, we note (from the results) that agents

that exploit ontological reasoning over appropriate domain knowledge can indeed per-

form significantly better than those that do not incorporate such reasoning (even in

relatively small domains).

In order to test the statistical significance of the results of our evaluation, we car-

ried out an analysis of variance (ANOVA), which shows whether or not several means

come from the same population. More specifically, we conducted a one-way repeated

measures ANOVA to compare the performance of agents in various configurations. The

results were found to be statistically significant using ANOVA testing at the p < 0.001

level [F(6.757, 6689.446) = 1486.791, p < 0.001]. Therefore, we conclude that there

is significant change in performance of at least two configurations tested. Post-hoc

comparison using a Bonferroni test indicated that all mean differences between config-
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Fig. 8 Policy prediction accuracy (open world scenario).

urations are significant except for the following cases: STree vs SC, STree vs kNN, SC

vs kNN that each records p > 0.05. Thus, the performance of STree is similar to SC as

well as kNN in relatively small domains or in situations where sufficiently large train-

ing data is available. This supports our hypothesis that agents that exploit ontological

reasoning in such situations will perform no worse than those without such reasoning.

Hypothesis 2

Figure 8 illustrates the effectiveness of four learning techniques (C4.5, kNN, SC, and

STree) and SM in learning policies in the open world scenario. For clarity, error bars

are omitted from Figure 8. The results show that the technique that exploits onto-

logical reasoning over domain knowledge (STree) significantly outperforms the other

techniques that did not. The decision trees (i.e. STree and C4.5) were pruned after

each set of 100 tasks and after 300 tasks the accuracy of the STree model had exceeded

82% while those of SM, C4.5, kNN and SC were just over 54%, 63%, 64%, and 65%

respectively. Furthermore, throughout the experiment, the performance of STree was

significantly higher than all the other configurations.

Tests of statistical significance were applied to the results of our evaluation using

a one-way ANOVA to compare the performance of various agent configurations in the

open world scenario. The results were found to be statistically significant using ANOVA

testing at the p < 0.001 level [F(6.884, 6895.734) = 1958.685, p < 0.001]. Therefore, we

conclude that there is significant change in performance of at least two configurations

tested. Post-hoc comparison using a Bonferroni test indicated that all mean differences

between configurations are significant. From the profile plots in Figure 8), we can see

that predictive accuracy increases as the number of tasks increase for all configura-

tions, with STree recording the highest. This confirms our hypothesis that exploiting

ontological reasoning in complex domains or in situations where limited training data

is available will mean that more accurate and stable models of others’ policies can be



23

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti

ve
 a

ve
ra

ge
 u

ti
lit

y 
ga

in
ed

Number of Tasks

SMPMS

SCPMS

STreePMS

-20

80

180

280

380

480

580

0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti

ve
 a

ve
ra

ge
 u

ti
lit

y 
ga

in
ed

Number of Tasks

SMPMS

SCPMS

STreePMS

(i) closed world scenario (ii) open world scenario

Fig. 9 Comparing the cumulative average utility gained by SMPMS, SCPMS and STreePMS
in both open world and closed world scenarios.

derived more rapidly than without exploiting such reasoning.

Hypothesis 3

Here, we evaluate the effectiveness of configurations that allow agents to utilise a com-

bination of decision-theory and machine learning in comparison with those that do not

utilise such combination. In other words, we evaluate configurations in which agents

build more accurate models of others (using machine learning) and develop argumen-

tation strategies (using decision theory) on this basis and compare their performance

with those in which agents utilise decision theory alone. We consider the following

experimental configurations — SMPMS, SCPMS, STreePMS, SMMMS, SCMMS, and

STreeMMS.

Firstly, we show the cumulative average utility gained by agents that exploit in-

cremental revelation of information in different configurations. In the SMPMS config-

uration, agents utilise simple memorisation of outcomes (which involves little or no

learning) and develop argumentation strategies on that basis. On the other hand, in

the SCPMS and STreePMS configurations agents employ a combination of decision-

theoretic model and standard machine learning techniques. More specifically, agents

that use SCPMS and STreePMS configurations build models of others using rule learn-

ing and semantic-enriched decision trees respectively, and thereafter develop strategies

to argue based on the models learned. Here, we compare the performance of a combi-

nation of decision theory and machine learning against decision theory alone.

In Figures 9(i) and 9(ii), results clearly show that there is a significant difference

between the performance of agents that employ argumentation strategies based on

a combination of machine learning and decision-theoretic models (i.e., SCPMS and

STreePMS) and those that employ argumentation strategies based on simple mem-

orisation of outcomes (SMPMS). In particular, results show that both SCPMS and

STreePMS outperform SMPMS in both closed and open world scenarios. The rea-

son for this, after detailed analysis of the data, is because the agent (in SCPMS and

STreePMS) is (1) able to build more accurate models of others’ policies; (2) able to

make an informed decision concerning which provider to approach for a given resource;

and (3) able to utilise those models to reduce cost of information revelation by incre-

mentally revealing information based on the persuasive power. For example, after 900
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Fig. 10 Comparing the number of messages exchanged by SMMMS, SCMMS and STreeMMS
in both open world and closed world scenarios.

tasks in the closed world scenario, the cumulative average utility gained by agents in

the SCPMS and STreePMS configurations had each risen above $600 while the cumu-

lative average utility gained by agents in the SMPMS configuration is below $222. We

believe, the reason for the poor performance of SMPMS stems from the fact that the

agent is unable to generalise from a number of examples; it only uses exact matches.

This inability to build an accurate model of the policy of others reduces the effective-

ness of the decision-theoretic model whereas a careful combination of decision-theoretic

models and standard machine learning techniques leads to better performance. This

confirms our hypothesis that a combination of machine learning and decision theory

will enable agents to perform better than when there is no such combination.

Tests of statistical significance were applied to the results of our evaluation using

a one-way ANOVA to compare the performance of various agent configurations that

utilise incremental revelation of information in both closed world and open world sce-

narios. The results were found to be statistically significant using ANOVA testing at

the p < 0.001 level [F(8.768, 5697.825) = 1987.968, p < 0.001]. Therefore, we conclude

that there is significant change in performance of at least two configurations tested.

Post-hoc comparison using a Bonferroni test indicated that all mean differences be-

tween configurations are significant except for the following cases: STree vs SC in the

closed world scenario. From the profile plots (see Figure 9), we can see that cumulative

utility increases as the number of tasks increase for all configurations, with STreePMS

and SCPMS (in the closed world scenario) recording the highest. In the open world

scenario, STreePMS clearly outperformed all the other cobnfigurations. This supports

our hypothesis that agents that build more accurate models of others and develop their

argumentation strategies on this basis will perform better than those that do not.

Secondly, we show the number of messages exchanged by agents that anticipate

the information needs of others. In SCMMS and STreeMMS configurations, agents

build models of others using rule learning and semantic-enriched decision trees respec-

tively, and thereafter develop strategies to argue based on the models learned whereas

in SMMMS configuration agents rely on simple memorisation of outcomes in forming

argumentation strategies. Here, we analyse the performance of agents that employ a

combination of decision theory and machine learning against those that utilise decision

theory alone. In Figures 10(i) and 10(ii), results clearly show that there is a significant

difference between the performance of agents in SCMMS and STreeMMS configura-
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tions and those that employ argumentation strategies based on simple memorisation

of outcomes (SMMMS). The reason for this, after detailed analysis of the data, is sim-

ilar to the reasons discussed earlier that account for the difference between SCPMS,

STreePMS and SMPMS in the first part of this evaluation. That is, the agent that

utilises machine learning and decision theory (e.g., SCMMS, STreeMMS) is able to

build more accurate models of others’ policies, preempt the information requirements

of the provider and thereby present it without having to be asked. For example, after

200 tasks in the closed world scenario, the number of messages exchanged per 100 tasks

by agents in the SMMMS configuration is more than twice the number of messages

exchanged by agents using SCMMS and STreeMMS configurations respectively. This,

we believe, is because the agent is unable to generalise from a number of examples since

it only uses exact matches from previous encounters, which reduces the performance

of the decision-theoretic model built from that. This confirms our hypothesis that a

combination of machine learning and decision theory will enable agents perform better

than when there is no such combination.

Tests of statistical analysis showed that the results were statistically significant at

the p < 0.001 level [F(8.743, 5778.384) = 1979.663, p < 0.001]. Therefore, we conclude

that there is significant change in performance of at least two configurations tested.

Post-hoc comparison using a Bonferroni test indicated that all pairwise comparison of

mean differences between configurations are significant except for the following cases:

STreeMMS vs SCMMS in the closed world scenario. From the profile plots (see Figure

10), we can see that communication overhead reduces as the number of tasks increase

for all configurations, with STreeMMS and SCMMS (in the closed world) recording

the lowest, followed by STreeMMS (in the open world). This supports our hypothesis

that agents that build more accurate models of others and develop their argumentation

strategies on this basis will perform better than those that do not.

6 Discussion

We started with the question “What do I need to say to convince you to do some-

thing?”, and have presented and evaluated a model that starts to address this multi-

faceted question. The approach combines argumentation, machine learning and deci-

sion theory to learn underlying social characteristics (e.g., policies or norms) of others

and exploit these models to reduce communication overhead and improve strategic

outcomes. Furthermore, we describe how reasoning about domain knowledge can be

leveraged while learning policy models of others. We empirically show that employing

ontological reasoning over domain knowledge significantly improves policy learning per-

formance especially in complex domains with large number of concepts and instances.

The use of domain knowledge to enhance the performance of algorithms to develop

classifiers is not new [21], but the STree algorithm uses a novel approach to com-

bining these reasoning techniques. We extended C4.5 decision trees with ontological

reasoning to leverage domain knowledge during policy learning. Zhang and Honavar

have also extended C4.5 decision trees with Attribute-value taxonomies [36]. Their

approach is similar to STree, but it does not allow ontological reasoning during tree in-

duction. In contrast, our approach can directly incorporate existing domain ontologies

and exploit these ontologies during policy learning. In the biological domain, Hirsh and

Noordewier [12] showed that DNA sequence learning is possible with significantly lower

error rates by using background knowledge of molecular biology and re-expressing data
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in terms of higher-level features. In their work, these high level features are used by

C4.5 decision trees and neural networks. Ambrosino and Buchanan [2] showed that

the addition of domain knowledge improves the learning of a rule induction program

for predicting the risk of mortality in patients with community-acquired pneumonia.

Kopanas et al. [17] examined the role of domain knowledge using a case study of

customer insolvency in the telecommunications industry. They showed that domain

knowledge plays a critical role mainly in all phases of data mining. As we have shown

here, exploiting domain knowledge also provides significant benefits in building models

of behavioural expectation (in our case norms or policies for resource sharing) from

observed behaviour (in our case dialogue).

We believe that our research also contributes to both to the understanding of ar-

gumentation strategy, and to applications of these techniques in agent support for

human decision-making. Sycara et al. [33] report on a study into how software agents

can effectively support human teams in complex collaborative planning activities. One

area of support that was identified as important in this context is guidance in making

policy-compliant decisions. This prior research focuses on giving guidance to humans

regarding their own policies. An important and open question, however, is how can

agents support humans in developing models of others’ policies and using these in

decision making? Our work seeks to bridge (part of) this gap. Furthermore, as demon-

strated by Núñez [21], the use of domain knowledge improves the logical structure of

decision trees, and hence we expect, would improve explanations of policy predictions

given to decision-makers derived from the classifier. This, however, is an open question

for future research.

There a number of other avenues for future research that can be identified. Here,

we assume that the agent seeking to resource its plan makes a single decision per task

about which provider to negotiate with; i.e. it has one go at resourcing a task. In

reality, such a decision process should be iterative; i.e. if the most promising candidate

fails to provide the resource, the next most promising is approached and the sunk cost

incurred is taken into consideration, and so on. In this paper, we have explored dialogue

strategies for an individual agent modelling another. We have not explored the case

in which both parties attempt to (competatively) model each other from dialogical

encounters and exploit these in future interactions. Further, we do not address the

question of deception, including strategic choices made by an agent to influence the

formation of models of its policies/norms.

7 Conclusions

We have presented an agent decision-making mechanism where models of other agents

are refined through evidence from past dialogues and domain knowledge, and where

these models are used to guide future delegation decisions. Furthermore, we have empir-

ically evaluated our approach and the results of our investigations show that decision-

theoretic and machine learning techniques can individually and in combination sig-

nificantly improve the cumulative utility of dialogical outcomes. In addition, we have

shown that domain knowledge is useful in improving the utility of dialogical outcomes.

The results also demonstrate that this combination of techniques can help in develop-

ing more robust and adaptive strategies for advising human decision makers on how a

plan may be resourced (or a task delegated), who to talk to, and what arguments are

most persuasive.
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