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Abstract

Reasoning with uncertain information is a problem of key importance when

dealing with information about the real world. Obtaining the precise numbers

required by many uncertainty handling formalisms can be a problem. The

theory of rough sets makes it possible to handle uncertainty without the need for

precise numbers, and so has some advantages in such situations. This paper

presents an introduction to various forms of reasoning under uncertainty that

are  based on rough sets. In particular,  a number of sets of numerical and

symbolic truth values which may be used to augment propositional logic are

developed, and a semantics for these values is provided based upon the notion of

possible worlds. Methods of combining the truth values are developed so that they

may be propagated when augmented logic formulæ are combined, and their use

is demonstrated in theorem proving.

1. Introduction

Any system designed to reason about  the real world must be capable of dealing with

uncertain information, that is information whose certainty may not be completely

established, and incomplete knowledge about its domain. This is a direct consequence

of the complexity of the real world and the finite size of the knowledge base that such a

system has at its disposal. Uncertain information is often represented by attaching

some numerical estimate to the facts in question. This numerical information is then

propagated according to the axioms of some theory which seeks to guarantee that the

final degree of certainty accorded to the answer to a query is exactly that determined by

the degrees of the relevant facts in the knowledge base. This seems a natural approach

to the problem, but there is a wealth of evidence, of which Kahneman et al .  (1982) is a

good example, to support the view that human beings, who after all compile the

knowledge bases that contain the uncertain information, are not very good at  dealing

with numbers. There are also many papers, including (Dawes 1982) and (Chard 1991),

which demonstrate that simple symbolic techniques are as good, in many cases, at

dealing with uncertainty as complex numerical ones. However, the provision of a
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symbolic theory for reasoning under uncertainty is a problem that has not been widely

considered. In an attempt to rectify this situation, this paper concentrates on symbolic

methods on the grounds that a symbolic formalism can combine ease of use for a

human expert with a suitable ability to handle uncertainty. The paper does, however,

also deal with a related numerical measure.

1.2 Overview

Section 2.0 introduces the basic concepts of rough set theory, including the key notions

of core and envelope, and discusses the use of rough sets in knowledge representation.

Section 3.0 shows how the theory of rough sets may be extended to cope with computing

the core and envelope of logical combinations of objects.  Following from this, Section

4.0 introduces a family of symbolic and numerical quantifiers for propositional logic,

based on various interpretations of rough sets, suitable for a wide range of reasoning

tasks under uncertainty including theorem proving. Finally, Section 5.0 deals with

the semantics of knowledge representation based on rough sets, providing an account

of how truth values may be established for rough quantifiers. Throughout the paper

there is a running comparison of the method for reasoning with rough sets and

approaches based upon the theory of  evidence [Shafer 1976], since there in much in

common between them.

2. Rough set theory

Rough sets, originally introduced by Pawlak (1982), have been further developed and

applied to a number of problems by  Pawlak (1984), Orlowska and Pawlak (1984),

Farinas del Cerro and Orlowska (1985), Pawlak et al. (1986), Wong et al. (1986) and

Pawlak et al. (1988). This section discusses the basic ideas behind the theory before

relating them to knowledge representation using logic and the handling of

uncertainty.

2.1 Basic concepts of rough sets

Consider a set of elementary concepts or attributes A  = {A1,...,An} such as {green,

blue, egg, ball, cube} . These concepts are the language which is available to describe

the set of objects E = {E1,...,Em} that are being manipulated. For instance, E  may be the

set {green cube, blue cube, blue ball, egg} . Now, if the description of  the E j is based

upon the Ai alone, it could well be the case that some of the E j are indistinguishable

since the values that distinguish them are not present in A . For instance  using the set

of concepts {green, blue, egg, ball, cube} it is not possible to tell a blue prism  from a

blue cone  since there is nothing in the set of descriptive terms to distinguish prism
from cone.

Thus the use of a finite set A  implies the existence of an equivalence relation ±  such

that  Ej ± Ek and E j and Ek cannot be distinguished from one another for a given A , if

for every i, A i is an attribute of Ej if and only if it is an attribute of Ek. Thus there is a

partition on E :

P  = {P1,...,Pr} where ∪ P i  =  E  and PifiPj  =  Ø       for i ≠ j = 1,...,r  (1)

and each P i is an equivalence class. Thus in the example, since A  = {green, blue,

egg, ball, cube}  and E  =  {green cube, blue cube, blue ball, egg}  it follows that P =
{{green cube}, {blue cube, blue ball}, {egg}}.  Let T “ T  = {T1,...,Tp} be an object,
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whose attributes are TA⁄A , that must be described in terms of  the partitioned set of

attributes Ei. The following definitions may be made:

Tc(P , E ) = {e: e∈ P i, Pi‹T} (2)

Te(P, E ) = {e: e∈ P i, PifiT ≠ Ø} (3)

where Tc(P , E)  is the  core  of  T based on E and P , the set of all equivalent objects in E

all of whose attributes are possessed by T , and Te(P , E ) is the envelope of T based on E

and P , the set of all equivalent objects in E  at least one of whose attributes is possessed

by T .  In Pawlak’s original work on rough sets the envelope and core were named

‘upper approximation’ and ‘lower approximation’ respectively. In the example if T =

{blue egg} , then Tc = {egg},  Te = {egg, blue cube, blue ball}. The pair [Tc(P , E ),

Te(P, E )] is a rough set. The  boundary of  T  is the set of equivalent objects in E  in its

envelope that are not in its core:

Tb (P , E) = Te(P, E )  -  Tc(P, E ) (4)

and the indifference set is the set of all equivalent objects in E  which are not involved

in the description of T .

Ti (P , E) = P- Te(P, E ) (5)

Let the set of all rough sets that may be defined using E  partitioned as P  be denoted by R.

Consider R = [R c, Re], R ’ = [R ’c, R ’e] ∈ R . It is simple to show that the following set

theoretic relations hold where the symbol ‘~’ stands for complement:

(RflR’)c ¤ RcflR’c (RflR’)e = ReflR’e

(RfiR’)c = RcfiR’c (RfiR’)e ⁄ RefiR’e (6)

(~R )c = ~(Re) (~R)e = ~(R c)

Note that  ~Rc  is ~(Rc ) is shorthand for the complement of the core of R , and should be

distinguished from (~R)c, the core  of the  complement  of R.

As Skowron and Grzymala-Busse (1991) and Wong et al . (1992) have pointed out, there

is a close relationship between the theory of rough sets and the theory of evidence

(Shafer 1976). Since detailed comparisons are available in the aforementioned papers,

an exhaustive discussion of the similarities will not be given here. Instead some of the

more obvious likenesses between the formalisms will be pointed out. Evidence theory is

based upon the idea of a set of propositions, called the frame of discernment, which is

usually written as Θ. This is equivalent to A . A function m: 2Θ → [0, 1]  takes as its

domain the power set of Θ, associating numbers between 0  and 1 to subsets of Θ. These

subsets may overlap. Now m  cannot distinguish between the members of these subsets,

so that two propositions are equivalent according to m , ±m, if they are members of the

same subset. Thus m  creates a partition on Θ, though this partition is more general than

P  since members of Θ may appear in more than one Pi.

2.2 Rough sets and uncertainty

The traditional view of uncertainty handling centres around the notion of subjective

truth. A fact is uncertain because it is not possible to unambiguously determine whether

or not it is true; there is either some degree of subjective observer accuracy to be taken
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into account, or the fact is true in some cases and false in others. This view results in

reasoning systems in which all facts are quantified with a truth value which expresses

the degree to which they are felt to be certain. The facts may be related to one another,

either by relations that are themselves quantified and which allow  the truth of one fact

to be established from the truth of others, or by relations whose truth may be established

from the truth of the related facts. The aim of mathematical formalisms constructed to

deal with uncertainty is to ensure the correct propagation of such truth values, and they

usually say little about how the values are established. Indeed, the values invariably

come from outside the theory, being the result of some expert assessment of the situation

that a given reasoning system is designed to cope with.

It is clear, however, that the values are not external to the problem, but stem from the

relationships between the facts with which the reasoning system deals. This is where

the uncertainty resides. The relationships between facts are not deterministic because

the relationships that are enforced upon the facts are simply not the real ones; the facts

that are identified as being important do not sit in exact relation to one another. If

symptom A is not uniquely caused by the occurrence of disease B, saying that B → A

with a value of 0.7 does not capture the fact that B is usually accompanied by A,

sometimes by C as well, and that A also occurs when D is present.

In contrast, rough sets model this situation perfectly. The underlying assumption in

rough set theory is that there is a set of basic concepts in terms of which every

interesting fact may be described. There is a many to one mapping between the set of

concepts and the observable facts and between the set of concepts and the set of

hypotheses between which the system discriminates. This means, in general, that there

is no exact relationship between the facts and the hypotheses. Instead, a fact will

encompass concepts that do not apply to the hypothesis to which it is related, or will fail

to cover all of the concepts that the given hypothesis embodies.

This view of uncertainty also fits in well with evidence theory. In evidence theory two

measures of certainty are employed; belief and plausibility. The lower measure,

belief, of a particular object, is the sum of the probability of all the attributes that the

object is known to possess. The upper measure, plausibility, is the sum of the probability

of all the attributes that the object is not known not to possess. The mapping of

probability to sets of attributes reflects the lack of knowledge about exactly which

attributes belong to which objects. The core of an object is the set of attributes whose

probability would be summed to get the belief of the object, and the envelope is the set

whose  summed probability would be the plausibility. However, in the usual application

of evidence theory, the attributes are propositional hypotheses, whereas in the use of

rough sets outlined here, the objects described by the attributes are the hypotheses.

2.3 Rough sets and knowledge representation

The essential idea of using rough sets for knowledge representation is that the basic

item, the object whose core and envelope are manipulated, is a item of knowledge rather

than the object of Pawlak’s original work. Thus the use of rough sets in knowledge

representation will be considered from the stand-point of a knowledge base used to

reason about a physical system. A knowledge item is  the basic unit from which a

knowledge base is constructed. In this case knowledge items will be considered to be

logical propositions  that may be associated with truth values, but  in general they may

be any atomic unit of any knowledge representation scheme.

Consider a set of knowledge items E  = {E1,..., E m} concerning the system being

represented. For instance these might be the symptoms for which an explanation is

sought, say {headaches, fever, spots, rash}. Along with these knowledge items there is a

set of hypotheses T  = {T1,..., Tp} such as {measles, tuberculosis, whooping cough}

which may be related to the facts E by observation. For instance it may be decided that
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Tk →  Ei$ E j, a possible medical gloss  being  “measles implies fever and spots”. Now,

rather than quantify the underlying uncertainty in this rule by attaching a number to

it, consider the set of underlying concepts A  = {A1,...,An}. Often these are unknown,

and they rarely map one to one onto the E j and Tk, the facts that the domain in question

forces one to deal with. All that is known is that the A i map onto the E j so that  one or

more A i relate to each E j. Similarly, one or more concept relates to each Tk.

Because the concepts Ai are the fundamental concepts of the domain, there is an exact

relationship between sets of A i for every piece of information about that domain. For

example, the rule relating to the symptoms of measles may be A4 $ A 5 → A1$ A 2 $

A3.  However, because the things that are observed do not map cleanly onto these

concepts, and statements can only be made in terms of the things that are observable, it

is only possible to make statements that are approximately true. Thus it is said that Tk
→ Ei$ E j which for  E i= A1, Ej = A3 $ A6 and Tk= A4 amounts  to A4 → A1$ A 3 $ A 6
which is clearly not quite right. Thus the use of observable facts to describe systems

means that in general it is only possible to approximate the underlying concepts.

Rough sets make it possible to keep track of these approximations since they relate the E j
and  Tk to the Ai.  If  the E j and Tk are given in terms of the A i it is possible to write

down logical expressions relating them, and manipulate them using the techniques

described in Section 3. Alternatively it is possible to write down the logical relations

between the E j and T k , based on an unknown set  A , from expert knowledge,

quantifying the relations in much the same way as other certainty values (Saffiotti

1987) are obtained. In this case the propagation of the quantifiers is based on rough set

theory, and thus takes into account the mismatch between the observable facts and the

underlying concepts. This is covered in Section 4. Since all ideas of accuracy are

relative to the set of basic concepts A , it is possible to relate quantifiers based on rough

sets to the kind of  truth values discussed in other formalisms by careful choice of A .

This matter is discussed in Section 5.

3.0 Reasoning with rough sets

Having introduced the basic concepts of rough set theory, this section shows how rough

sets may be used to define a new method for dealing with imprecisely known

information.

3.1 Combining rough sets

The degree to which an object T may be defined within (A , E) may be determined from

the cardinality of Tc and Te. Pawlak (1984) gives the following:

If Tc = Te then A is precisely defined by  (A , E)

If Tc ≠ Te  and  Te ≠ Ø then A is roughly defined by (A , E)

If Tc = Ø then A is internally undefined by (A , E ) (7)

If Te = E then A is externally undefined by (A , E)

If Tc = Ø  and Te = E then A is totally undefined by (A , E)

It is possible to determine the degree to which logical combinations of roughly defined

objects may themselves be defined. The usual logical operations of disjunction, £,
conjunction , $ , and negation, ¬, may be defined in terms of set operations on the core

and envelope of the objects concerned:
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(T£S)c = (TflS)c (T£S)e = (TflS)e

(T$S)c = (TfiS)c (T$S)e = (TfiS)e (8)

(¬T)c = (~T)c (¬T)e = (~T)e

where {¬,£ ,$} have their usual meanings so that ¬T means “not T ”, T$S means “both T
and S”, and T£S means “either T or S or both”. Using (6) we obtain:

(T£S)c ¤ TcflSc (T£S)e = TeflSe

(T$S)c = TcfiSc (T$S)e ⁄ TefiSe (9)

(¬T)c = ~(Te) (¬T)e = ~(T c)

These results may be used to determine other logical combinations of roughly defined

objects such as material implication, →, where T→S – ¬T£S:

(T→S)c ¤ ~TeflSc (T→S)e = ~TcflSe (10)

Note that the core of the disjunction of two terms may not be specified precisely since

only the lower bound is ever known. Since the core is itself a lower bound on the

accurate description, this is not a problem. Similarly, given the inequality in the

description of the envelope of the conjunction, the envelope of any combination

involving conjunction will only be defined by an upper bound. Again, this is not

problematic.

Given the results of equations (8)–(10), it is possible to deduce the logical relationships

between objects if the set of concepts A is known. For instance, consider a set of concepts

A  = {A1,A2,A3,A4,A5}, and a pair of objects E1  and E2 where E 1 = [{A1,A2},

{A1,A2,A3}], which is to say that the core of E1 is {A1,A2} and its envelope is

{A1,A2,A3}, and E2 = [{A2,A3}, {A2,A3,A4}] . In this case T1 = [{A 2}, {A2,A3}], i s

equivalent to E1$ E 2, while  T 2 = [{A1,A2,A3}, {A1,A2,A3,A4}], is equivalent to

E1£E2. In a similar way it is possible to establish the validity of logical statements

about objects whose rough descriptions are known. Given E 3  = [{A3,A4},

{A2,A3,A4,A5}] and E4 = [{A 2,A3}, {A1,A2,A3}]  it is clear that E3→E4 will have

the rough description [{A1,A2,A3}, {A1,A2,A3,A5}] .

Similar definitions to those in (7) can be applied to evidence theory, remembering that

Tc corresponds to the set of propositions over which belief in T  is calculated, and Te

corresponds to the set determining the plausibility of T . If the core and envelope of a

proposition are equal, then the belief in it is equal to its plausibility, and both measures

collapse to a single precise probability. If the set over which the plausibility is

calculated is non-zero, and the set over which the belief is calculated is non-zero and

unequal to it, then the two measures provide bounds on the probability of the set. If belief

is computed over the empty set then it is defined to be zero, and when plausibility is

computed over Θ it is defined to be 1 . When a hypothesis has belief 0 and plausibility 1
then nothing is known about it. The logical combinations of sets also transfer to

evidence theory.

3.2 A logic for rough reasoning

The ideas introduced in the previous section can be adapted to create a quantified logic

in which rough sets are used to model upper and lower bounds on the value of the

propositions. The core and envelope are still composed of partitions of E , the language

with which objects may be described. Thus the quantifier of a proposition is determined
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by the accuracy with which it is determined by the set of partitions. The logic, named

RL,  is propositional and is defined as follows (after Reeves and Clarke (1990)). RL
includes the set of connective symbols {Ÿ, ¡, $, £} introduced above, a set of

punctuation symbols {(, )}  and a set of propositional variables P . The set of sentences

based on P forms the propositional language L(P) . Members of this set are defined by:

(1) Each of the elements of P is a sentence based on P.

(2) If  S and T are sentences based on P, then so are (ŸS), (S ¡T ), (S$T ) and (S£T ).
(3) Nothing else is a sentence based on P.

RL also has a set of axioms generated by the following axiom schemata. If S, T, and R

are any sentences, then:

(A1) (S ¡ (T ¡S))
(A2) ((S ¡ (T ¡R)) ¡ (( S¡T ) ¡ (S ¡R)))
(A3) (((ŸS) ¡ (ŸT ) ¡ (T ¡S))

There are three rules of deduction for RL:

(MP) Modus ponens: from S and S ¡T, for any S and T, we obtain T.

(MT) Modus tollens: from ŸT and S ¡T, for any S and T, we obtain ŸS .

(R) Resolution: from S£T and ŸS£R, for any S, T and R, we obtain T£R .

RL is quantified by defining a rough measure R on the propositional language of RL ,

L(P),  such that  Åp  ∈ L(P), R(p) = [p≤c , p≥e] where  p≤c  is the lower bound on pc , and p≥e

is the  upper bound on pe. R(p) is thus an estimate of the degree to which p is defined by the

set of partitions of E . The rough measure of formulæ may be established from the rough

measures of the constituent sentences:

R(p£q) = [(pcflqc), (peflqe)] R(p$q) = [( pcfiqc), (pefiqe)]

(11)

R(¬p) = [(~pe), (~pc )] R(p→q) = [(~peflqc), (~pcflqe)]

Given these results, it is possible to determine how the rough measure is propagated

when the rules of deduction of RL are applied. Firstly for modus ponens:

R(p→q) = [α, β]

R(p) = [γ, δ] (12)
                                                                        _

R(q) = [αfiγ, β]

Proof:  R(q ) ≥ R(pfiq) = R((¬p£q)fip) = [αfiγ, βfiδ] where the inequality ≥ is defined so

that  for p, q  ∈ P R(p)  ≥ R(q) iff pc ⁄qc and pe ⁄ qe, so the lower bound on the core is

αfiγ. In addition, [α, β] = R(¬p£q ) ≥ R(q), so the upper bound on the envelope is β. Hence

R(q) = [αfiγ, β] .■ A similar line of reasoning gives the pattern for modus tollens:

R ( p→q) = [α, β]

R ( ¬q ) = [γ, δ] (13)
                                                                    _

R ( ¬p) = [αfiγ, β]
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and the way in which the propagation of rough measures occurs when the resolution

rule of inference is used may also be determined:

R ( p £ q) = [α, β]
R (¬p £ r) = [γ, δ] (14)
                                                                                 _

R ( q £ r) = [αfiγ, βflδ]

Proof:  R (q£r) = R((p£q£r)$(¬p£q£r)) = [((p£q£r)cfi(¬p£q£r)c), (p£q£r)efi

(¬p£q£r))e]. Now, (p£q£r)c ¤ (p£q) cflrc = αflrc, and (¬p£q£r)c ¤ (¬p£r)cflqc =

γflqc, so the lower limit on their intersection is αfiγ. Similarly, (p£q£r)e = (p£q)eflre

= βflre, and (¬p£q£r)e = (¬p£r)eflqe = δflqe. Now, the upper limits on re and qe are δ

and β, respectively, so that the maximum value of the envelope is βflδ .■

Once again ideas can be transferred to evidence theory. A frame of discernment Θ and

a function m   may be defined such that ±m defines enclosing sets T c and Te for every

proposition p  in Θ. These sets will then combine exactly as described above when  the

various propositions are logically combined. This is a rather different approach from

that adopted by Saffiotti (1990) in his belief function logic since the sets over which the

belief and plausibility measures are defined are manipulated rather than the

measures themselves.

4. Rough truth values

The rough measure described in Section 3 maintains the core and envelope of  each

distinct sentence, allowing a precise estimation of the degree to which it is defined by

the system. In this section coarsenings of this measure are investigated. Instead of

attaching a core and envelope to each sentence, the core and envelope are used to define

a rough truth value for each sentence which is then propagated in place of  the core and

envelope.

4.1 Symbolic rough truth values

The rough measure of a sentence  p  ∈ L(P)  is determined by the degree to which its core

and envelope are defined by the set of descriptors A . The following boundary cases

may be distinguished for Ø‹X‹A , and Ø‹Y‹A. These correspond to the definitions of

(7).

If R(p) = [A , A ] then p is true

If R(p) = [X, A ] then p is  roughly true

If R(p) = [Ø, A ] then p is of unknown value (15)

If R(p) = [Ø, Y] then p is roughly false

If R(p) = [Ø, Ø] then p is false

Similar definitions could be proposed for a measure based upon evidence theory. The

rough values form a lattice, ordered by set inclusion ⁄ , giving the following:

[Ø, Ø] ⁄ [Ø, X]  ⁄  [Ø, A ]  ⁄   [Y,A ] ⁄ [A , A ] (16)

false roughly false unknown roughly true     true

This suggests the introduction of  a rough truth measure  RV over L(P) which identifies

which of these five ordered states the rough measure of each p  ∈ L(P) falls into. The
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advantages of such a measures are its extreme simplicity and robustness, a direct

result of the simple conditions used to define the values, and the fact that the values are

ordered. The latter allows the axioms of  the rough truth measure to be simply stated:

RV (p£q) = max (RV(p), RV(q)) (17)

RV (p$q) = min  (RV(p), RV(q))

These may be easily  verified by considering the set operations on the rough measure

for each proposition. Similar considerations will validate the negation operator:

 true       roughly  true       unknown      roughly false     false

 false     roughly false      unknown      roughly  true        true(Ÿp)

RV

RV

(p)

(18)

The quantified logic may be applied without consideration for the set of basic concepts

that underpin the rough values. However, the sound mathematical basis on which the

logic is built ensures that it is well behaved.

It is possible to identify a further set of truth values. These are the contradictory values

R(ρ) = [U, Ø] ,   R(σ) =  [U, Y] and R(τ) = [X, Ø], and the indeterminate value R(ι) = [Y,
X] .  The first three are contradictory since, from the definition of core and envelope as

being lower and upper approximations, respectively, it is clear that a set of rough values

for p that have pc  › pe  are contradictory to the underlying rough set theory. However,

these values need not be considered since they are not generated by operations on the

rough truth values introduced above.

4.2 Rough inference rules

In order to use the symbolic truth values for practical reasoning purposes, it is first

necessary to provide a set of rules for propagating inference. It is trivial to establish the

rough value of a material implication from that for disjunction:

RV (p→q) = max (RV(¬p), RV(q)) (19)

This is, however, of limited practical use since it only allows the computation of the

strength of an implication from the strengths of its antecedent and consequent. Rules

giving the strength of the consequent (antecedent) based on the strength of the material

implication and its antecedent (consequent) are of more use in automated reasoning.

To this end it is possible to adapt the reasoning patterns of (12), (13) and (14) , giving:

RV (p→q) = α

RV (p) = β
                                                    (20)

α ≥ RV (q) ≥ min (α, β)

Proof:  The upper limit is obtained by realising that RV (p→q) is the maximum of  RV

(p ) and RV (q). The lower limit stems from the fact that  min (α, β) = RV ((p→q)$p) =

RV (p$ q) ≤  RV (q ). ■ A similar line of reasoning gives us the pattern for modus

tollens:

RV (p→q) = α

RV (¬q) = β (21)
                                                                             _
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α ≥ RV (¬p) ≥ min (α, β)

These patterns bear a resemblance to those obtained for necessity weighted clauses

(Dubois and Prade 1987). A rule for the propagation of rough truth values when

sentences are resolved together may also be established:

RV (p£q) = α

RV (¬p£r) = β (22)
                                                                           _

max(α, β) ≥ RV (q£r) ≥ min(α, β)

Proof: RV(q£r) = RV ((p£q£r) $  (¬p£q£r)) = min (RV (p£q£r), (¬p£q£r)). Now,

RV(p£q£r) ≥ RV(p£q) = α, and RV(¬p£q£r) ≥ RV(¬p£q) = β, giving the lower limit.

For the upper limit, consider the fact that RV (p£q) = max(RV(p), RV(q)) , so that  the

maximum value of  RV(q)  is α, and the maximum value of RV(r) is β. Since RV ( q  £ r)

= max(RV(q), RV(r)), RV ( q  £ r) ≤ max(α, β).■

Although, as stated above, a set of values similar to rough truth values could be proposed

based upon the sets from which belief and plausibility are established in evidence

theory, it appears that no such work has been  carried out. The only measures based

upon evidence theory that have been applied in the context of logic (Saffiotti 1990)

(McLeish 1989) are numerical and contrast with the symbolic approach described here.

The fact that this approach is symbolic stems from the decision to only deal with

landmark values of the rough sets and thus the method shares some similarities with

order of magnitude (Dubois and Prade 1989) and qualitative (Parsons 1993a)

approaches. The combination rules are similar to those of possibilistic logic (Dubois,

Lang and Prade 1987, 1989).

4.3 Numerical truth values

Pawlak et al.(1988)  define a measure of the degree of dependency of S  on T by the ratio

of the core of S described by the concept  set T to the full set of concepts. This measure is

adopted here as the degree to which a fact is certainly true, and the notion is extended

with a dual measure based upon the ratio of the envelope to the full set A , which may be

seen as a measure of the degree to which a fact may be true. The validity of these

measures can be seen to follow from the possible worlds-based semantics for rough

certainty values given in Section 5. A rough numerical measure RN is defined over the

sentences L(P) of the logic RL such that  Åp  ∈ L(P), RN(p) = [p l, pu] where pl and pu

are determined by the cardinality of pc and pe respectively:

0 ≤ pl =
|pc|
|A |

¯̄≤ 1 (23)

0 ≤ pu =
|pe|
|A |

¯̄≤ 1

The value of formulæ may be established from the measures of the constituent

propositions. The following equations, which may be easily verified by considering the

cardinalities of the sets in (9) and (10), are obeyed. For RN(p) = [p l, pu], and RN(q) =

[q l, qu]:

RN(p£q) = [max(p l, ql), Cardfl(pu, qu)]

RN(p$q) = [Cardfi(pl, ql), min(pu, qu)] (24)

RN(¬p) = [(1-pu), (1-pl)]

RN(p→q) = [max(1-pu, ql), Cardfl(1-pl, qu)]
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where Cardfi(x,y) =
 

0ּiffּxּ+ּyּ<ּ1
ּxּ+ּyּ-ּ1ּּotherwise

(25)

and Cardfl(x,y) =
 

1ּiffּxּ+ּyּ>ּ1
ּxּ+ּyּּotherwise

(26)

The result for negation comes from ¬p l = 
|~pc|

|A |
  = 

|A ּ-ּpe|
|A |

  =  
|A |ּ-ּ|pe|

|A |
 = 1- pu . A

similar argument establishes ¬pu. Given these results, it is possible to define the ways

in which the numerical values are propagated across the inference rules of RL directly

from the results of Section 3. It is possible to propagate rough numerical values across

modus ponens:

R(p→q) = [α, β]

R(p) = [γ, δ] (27)
                                                                                          _

R(q) = [Cardfi(α, γ), β]

modus tollens:

R ( p→q) = [α, β]

R ( ¬q ) = [γ, δ] (28)
                                                                                          _

R ( ¬p) = [Cardfi(α, γ), β]

and the resolution rule:

R ( p £ q) = [α, β]
R (¬p £ r) = [γ, δ] (29)
                                                                                                                   _

R ( q £ r) = [Cardfi(α, γ), Cardfl(β, δ)]

The definition of the numerical truth values takes the approach back into line with

evidence theory. As Skowron and Grzymala-Busse (1991)  have shown, the lower and

upper bounds of the measure RN are in fact belief and plausibility measures.

4.4 Reasoning using rough truth values

In the previous section, a number of rules for the propagation of rough truth values

attached to the sentences of RL were established. These make it possible to use the

quantified versions of RL to infer the truth of new facts from the truth of existing facts

and relations. Thus a system using quantified RL can infer new information from its

observations. This section examines the way in which the truth values of conclusions

are related to the truth values of the facts on which the conclusions are based. The

investigation is centred around the commonly used resolution rule, using the

following adaptation of  the approach taken by Dubois et al. (1989).

Given a set of clauses quantified with truth values derived from rough set theory, it is

desirable to determine the bounds on the truth value of clauses derived by applying the

resolution rule. Let C  be a set of clauses of quantified RL, and R(C)  be the union of C

with the  results of  resolving together every pair of clauses in C  that may be resolved

together. Rn(C)denotes the result of iterating this procedure n times. It is clear that for
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C  = {C1, ..., Cm}, where Åi = 1, ..., m, RV(C i) ≥ α i, and C n denotes any clause in

Rn(C), it is true that Ån ≥ 0, RV(Cn) ≥ min i = 1, ..., m αi, and maxi = 1, ..., m αi ≥

RV(Cn). Similarly, since any application of the resolution rule for the numerically

quantified logic can result in a lower bound of 0  or an upper bound of 1, it is only

possible to guarantee that 0 ≤ RN(Cn) ≤ 1. Thus one may conclude that the truth value of

the result of resolution between the members of a rough valued set of clauses must lie

between the maximum and minimum values attached to members of that set of clauses,

while the result of resolution between numerically quantified clauses is only

constrained between 0  and 1.

While resolution may be used to reason ‘forwards’ from a set of known clauses in order

to establish new facts, it is often used to reason ‘backwards’ in proofs by refutation. In

proof by refutation, in order to assess whether a clause Cq follows from a set of clauses C

the refutation rule is repeatedly applied to the set of clauses C fl ¬Cq. If the empty clause

{} is obtained (i.e. by resolving a and ¬a ) then the clause Cq follows from the set C . If

this procedure is followed with RL quantified with RV and RN then there will be truth

values attached to all clauses, including the empty clause at the end of the proof. It is

desirable to establish the correspondence between the truth value of the empty clause

and the truth value of the clause that is proved.

Let C = {C1, ..., Cm} be the set of clauses from which an attempt is being made to prove

Cq. After the proof, β ≥ RV({}) ≥ α (respectively β ≥ RN({}) ≥ α) is obtained from a

subset of C, Cα fl{¬Cq}, where Cα  = {Ci | β ≥ RV(Ci) ≥ α} (Cα  = {C i | Åj, C j ∈ Cα, β ≥

Cardfi(Ci, Cj), Cardfl(Ci, Cj) ≥ α}) and RV(¬Cq) = t  (RN(¬Cq) = 1 ). Since {} would be

obtained from Cα by applying the classical resolution rule (ignoring degrees of truth),

Cq is a logical consequence of  Cα so that  RV(¬(fii {Ci ∈ Cα}) £ Cq) = t (RN(¬(fii {Ci ∈

C α}) £ C q) = 1 ). Now, β ≥  RV(fii {C i ∈ Cα}) ≥ α  (β ≥  RN(fii {C i ∈ Cα}) ≥ α), so

applying the resolution rule to the two clauses gives us t ≥ RV(Cq) ≥ α (1 ≥ RV(Cq) ≥
α). So the value of the empty clause is the lower limit of the value of the clause being

proved.

4.5  Theorem proving using rough truth values

An example of reasoning using the rough valued resolution rule is the following

adaptation of the ‘meeting problem’ presented by Dubois et al. (1987). The problem is

restated here, the only change being that resulting from the limited number of values.

Necessity  values of 1 are replaced by rough truth values of true (t), necessity values of

greater than 0.5 are replaced by rough truth values of roughly true (rt), and those values

of less than 0.5 replaced by roughly false (rf). The following clauses, with the rough

value  of each clause in brackets, describe the problem:

C1. If Robert comes to the meeting tomorrow, then Mary will not come. ¬R £ ¬M
(t).
C2. Robert is coming to the meeting tomorrow. R (t).
C3. If Beatrix comes to the meeting tomorrow, it is unlikely to be quiet. ¬B £
¬quiet (rt).
C4. Beatrix may come to the meeting tomorrow. B (rf).
C5. If Albert comes to the meeting tomorrow, and Mary does not come, then it is

almost certain that the meeting will not be quiet. M £ ¬A £ ¬quiet (rt).
C6. It is likely  that Mary or John will come tomorrow. M £ J (rt).
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C7. If John comes tomorrow, it is rather likely  that Albert will come. ¬J £ A
(rt).

To ascertain if  the meeting will be quiet, we add the clause:

C0. The meeting will be quiet. quiet (t).

This apparently  cavalier treatment of values deserves some explanation. Firstly,

there is no attempt to suggest an equivalence between the values. As Dubois and Prade

(1987) point out, necessity measures are not degrees of truth, they are estimates of the

degree of necessity that  the proposition is true. The distinction between necessity

values and rough truth values should thus be clear. All that is proposed is a suitable way

of encoding the difference between the different certainties of the clauses.  Secondly,

the assignment of rt  to N(p) > 0.5  and rf to N(p) < 0.5  is not an indication of ill-

founded assumptions about  the relative necessity values. Instead it indicates that, to

maximise the limited discriminatory power of the rough valued logic, the lesser half of

the possible necessity values will be modelled with the lower rough value, and the upper

half with the higher.

C0 C3

C4ŸB(m) (rt)

Ø (rf)

C0 C5

M(m) £ ŸA(m) (rt)

ŸA(m) (rt)C7

ŸJ(m) (rt)

Ø (rt)

C1 C2

ŸM(m) (t)

J(m) (rt)

C6

Figure 1. Two refutations for the meeting example.

There are two possible refutations of C0 (see Figure 1.). Of these, the second is the

optimal, giving the necessary solution with a higher rough measure. The numerically

quantified logic could be used to solve the problem, giving similar results to those

obtained by Dubois et al.

5.  A possible worlds semantics for rough truth values

This section introduces a possible worlds semantics for measures based on rough sets.

This semantics is similar to that introduced by Carnap [1962] for probability theory,

and subsequently adapted by Ruspini [1987] for evidence theory.

5.1 The Carnapian universe

This section is based upon Ruspini’s [1987] description of Carnap’s semantics.

Carnap’s approach involves the construction of a space of possible worlds that

encompasses all valid states of a system of interest. First, all propositions of relevance

to the system, a, b, c, d, ... are considered. All possible conjunctions of the type:

a $ Ÿb $ Ÿc $ d $ ...
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where every proposition appears only once either as itself or as its negation, are then

constructed. After discarding logical impossibilities, the resultant set of logical

expressions includes all possible system states that may be represented using the

propositions a, b, c,  ... . Each of these states corresponds to the truth of an atomic

proposition about the system that is under consideration. Only one of the propositions

may be true, and so the set of propositions describes all the possible different states of the

universe. Each state thus represents a “possible world”. If a possible world is viewed

through what Ruspini calls a “conceptual microscope” so that the individual

propositions may be discerned (Figure 2) it is clear that the possible world contains all

true propositions in that world, including the negations of all of those that are false in

that world. Two possible worlds will always be different since at least one proposition

that is true in one will be false in the other.

a Ÿb Ÿc d

W

Figure 2. A close-up view of part of the Carnapian universe.

5.2 The universe for rough sets

To provide a semantics for rough set measures, a new set of possible worlds are

constructed from the same set of propositions used by Carnap. Once again a set of

conjunctions are built from the set of interesting propositions about a system, but this

time it is possible for both a proposition and its negation to be missing from a

conjunction. Thus, given the set of propositions a, b, c , the valid conjunctions include

a $ b  and Ÿb as well as a $ b $ Ÿc  allowing a much richer structure than is possible

using Carnap’s scheme. Once again logical impossibilities are discarded, giving a set

of possible system states that are more extensive than those allowed by Carnap. Each of

these states again corresponds to the truth of an atomic proposition about the system, and

any two possible worlds will differ since at least one proposition which is true in one

will either be false or missing in the other.

One of the possible worlds will correspond to the atomic proposition that is true, and this

is chosen to be the possible world in which all of the propositions are present and true.

One possible world will correspond to the contradiction, and this chosen to be the world

in which all the propositions are present and false. This choice enables the set of

attributes A to be taken as the set of interesting propositions a, b, c, d, ... . A structure

may be imposed upon the set of possible worlds by means of an relation R that specifies

which possible worlds are accessible from a given possible world. R  is chosen so that

for every world w i that is accessible from a given world w , the number of propositions

in w and wi differs by one. All those propositions in that are true in the world with fewer

propositions are also true in the other, and all those propositions that are false in the

world with fewer propositions are false in the other. The additional proposition in the

larger world may be true or false. Thus the structure over the possible worlds is that of

Figure 3.
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c a,c

a,b,c

Ÿa,c

a,Ÿb,c
w

w

w

w

w1 4

5

7

6

w0

w3

w2

b,c

Ÿb,c

Figure 3. A structure over the set of possible worlds.

Figure 3 shows all the possible worlds accessible from w1, but not all those accessible

from the other worlds depicted. R  is reflexive, transitive and symmetrical and thus

corresponds to the accessibility relation used in modal logic S5 (Hughes and Cresswell

1968). The structure over the possible worlds is similar to that proposed by Moore (1985).

5.3 Rough truth values and possible worlds

Given R , it is possible to establish the notion of the distance between two possible worlds.

If a possible world is accessible from another possible world by several applications of

R, then the distance between them can be defined as the number of possible worlds

through which the shortest path between them passes. Thus the distance between w1 and

w2 in Figure 3 is zero, but between w1 and w7 is 1 . The truth values attached to atomic

propositions follow from the notion of distance. Given two possible worlds w i and w j, if

there is a greater distance between wi and wT, the possible world that corresponds to the

true atomic proposition, than between w j and w T, then the atomic proposition that

corresponds to wj has a higher truth value than the proposition that corresponds to wi .

Now, the relative distance of two worlds from wT can be determined from the number of

true and false propositions contained in the world. The more true propositions

contained by a world, the closer that world is to wT. This may be seen in Figure 3 from

the relative positions of w1 and w3 with respect to w5 which is wT for the worlds defined

using the propositions a , b,  and c . In a similar manner, the more false propositions

that are contained in a world, the further from wT it is. In Figure 3, w2 is further from

w5 than w1 since it has the additional false proposition Ÿb. Since distance is related to

truth it is possible to say that because w3 has more true propositions in it than w1, the

atomic proposition corresponding to w3 is closer to being true than that corresponding to

w1. It is also possible to say that since w2 contains more false propositions that w1, the

atomic proposition corresponding to w 2  is further from the truth than that

corresponding to w1.

Having established that truth may be determined from the number of true and false

propositions, it is possible to tie the idea of truth to the rough set notions of core and

envelope. Consider an atomic proposition p . This is associated with a possible world w

which contains a subset of a set of propositions A . In particular w contains a

conjunction of positive and negative attributes a1 $ a 2 $ a 3 $ ... $Ÿak $ Ÿa l  ... . It
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seems natural to make the core of p  based upon A , written pc, the set of positive

attributes that are contained in w, and the envelope of p based on A , written pe, the set of

all members of A  whose negation is not contained in w . Thus p e contains all the

members of A  that are not contained in w either positively or negatively. The truth of p

may then be established from pc and pe.

If w is wT then p is the true proposition and pc = pe = A. If w contains every proposition

in A  negated then p is the contradiction and pc = pe = Ø . For other w , p will be neither

true nor false, and  Ø ⁄ pc ⁄ pe ⁄ A . For two propositions p  and q  with pc ‹ qc then p
corresponds to a possible world that has fewer true propositions than the world that q
corresponds. The world that p  corresponds to is thus further from the real world than the

world that q corresponds to, and so p is less true than q. Similar observations may be

based on the knowledge that  pe‹qe. If  pe‹qc then p is less true than q, but  pc‹qe says

nothing about the relative values. This may be stated more formally. For a pair of facts

p and q, and any truth measure T based on the core and envelope values:

T(p) = true if pc = pe = A
T(p) = false if pc = pe = Ø
T(p) ≥ T(q) if pc ¤ qc and  pe ¤ qe (31)

T(p) ≤ T(q) if pc ⁄ qc and  pe ⁄ qe

T(p) = T(q) if pc = qc and  pe = qe

Clearly the extreme values of T(p)  are true and false, but there are a number of

intermediate values. Indeed there is one such value for every possible world other than

the real world and the possible world with no true propositions. The measures RV and

RN considered in the previous section provide two possible ways of dividing up these

intermediate values that seem particularly interesting. It should be noted that when pc

⁄ qc and pe ¤ qe then it is possible for T(p) > T(q), T(p) = T(q) or even T(p) < T(q) .

The exact relationship between T(p) and T(q)  will be decided by the differences in size

of the cores and envelopes, and the measure used. For instance if A  = {a, b, c, d}, p c =

Ø, pe = {a, b, c, d}, qc = {a b}  and qe = {a b c} then RV(p) = u  which is

incommensurable with RV(q)  while RN(p) = [0, 1] which is arguably less than RN(q)
= [0.5, 0.75]  (see (Parsons 1993b) for a discussion of the relative magnitude of

intervals).

6. Discussion

There are a number of points arising from the previous sections that are worthy of

discussion. The first concerns the alternative view of uncertainty that this paper

espouses, as the mismatch between what relates cause to effect and what is observed,

that the rough set approach models. This seems to explain the presence of uncertainty in

many domains quite neatly, but it remains to be seen if it is really helpful. Further

work will help to resolve this concern. The second point concerns symbolic truth values

which provide a simple method of handling uncertainty where only a few different

truth values are required. These values have the interesting property of absorbing

uncertainty in certain circumstances, in that the combination of a known value with

the value “unknown” produces the known value. This is in contrast to other approaches

to reasoning under uncertainty where combination with “unknown” values causes

values to become less certain. This property is discussed in (Parsons et al. 1992). The

third  point concerns the numerical truth values introduced by the measure RN. The

rule given for propagating these values in resolution has the unfortunate property of

generating values which tend to [0, 1]. From this one might suppose that the numerical
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values are of  little interest. However, since the values are belief and plausibility

measures, it is possible that there are means of propagating RN in resolution, perhaps

based on Dempster’s rule, which mean that it does not tend towards [0, 1] so quickly.

Further work will be directed towards discovering whether this is true. Finally, the

consideration of a possible semantics for rough truth values indicates that there are a

whole family of such sets of  values. More work will be required to determine which, if

any, of them are interesting from the point of view of reasoning under uncertainty.

7. Conclusion

This paper has presented several different ways in which rough sets may be used in

reasoning under uncertainty. It is simple to define quantities in terms of rough sets,

and formalisms based upon them are  robust in the face of scarce information; a great

advantage in dealing will ill-known domains such as biotechnology and ecology.

Extending Pawlak’s original work on rough sets this paper has given symbolic and

numerical truth values based on rough measures, and supplied a semantics for them

based on the concept of possible worlds. The symbolic values are simple and robust,

being exceptionally good at assimilating ignorance, but suffer from being unable to

precisely define the truth of the propositions with which they deal. The numerical

values give precise truth values but are less robust, requiring accurate estimates of

truth value. These values have been used to quantify a propositional logic, and rules for

combining values when the inference rules of the logic are applied have been

introduced. Some results have been given for theorem proving using the quantified

logic. The use of rough sets has also been compared with the use of the theory of evidence

and, despite the many similarities between the methods, rough sets alone make it

possible to use a symbolic measure which is both more robust and simpler to understand

than the numerical measures offered by evidence theory.
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