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Abstract

Reasoning with uncertain information is a problem of key importance when

dealing with knowledge from real situations. Obtaining the precise numbers

required by many uncertainty handling formalisms can be a problem when

building real systems. The theory of rough sets allows us to handle uncertainty

without the need for precise numbers, and so has some advantages in such

situations. We develop a set of symbolic truth values based upon rough sets

which may be used to augment predicate logic, and provide methods for

combining these truth values so that they may be propagated when augmented

logic formulæ are used in automated reasoning.
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1. Introduction

One fundamental requirement of all intelligent systems is that they have a means of

representing knowledge, and a means of using this knowledge in order to act

intelligently. This knowledge can range from the thousands of production rules that

the expert system R1/XCON [23] uses to configure computers for Digital, to the

knowledge of how to conduct a whimsical conversation employed by the winning entry

in the First Annual Loebner Prize Competition1 [13]. In addition to representing

knowledge, intelligent systems need to be able to use that knowledge to reason from

what they know, or are told, about situations in order to make decisions about what

actions they should take in response to those situations. Thus an intelligent medical

system must reason with its knowledge to determine the correct treatment for a patient,

and intelligent fire fighting equipment [4] must reason with its knowledge to

determine the best plan for putting out a fire.

Many early intelligent systems favoured the use of logic or production rules as a

means of representing knowledge, since these formalisms made it easy to express the

knowledge of experts in the domain in which the intelligent system was intended to

operate, and systems built using these formalisms performed well when the knowledge

that they were used to encode was complete and certain. However, many real situations

may not be completely and certainly described, so that many systems designed to

operate in the real world must, perforce, be capable of dealing with uncertain

information, that is information whose certainty may not be completely established.

This is a direct consequence of the complexity of the real world and the finite size of the

1Which provides a yearly forum in which machines attempt to fool humans in progressively more

difficult versions of the Turing test.
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knowledge base that any intelligent system has at its disposal. Now, uncertain

information cannot be expressed using production rules or logic alone— other, non-

standard, logics are required, and it is one particular non-standard logic that is the

subject of this paper. Uncertain information is often represented by attaching some

numerical estimate to the information in question to express the fact that it is not

known to be true and most people agree that this seems an obvious and natural way to

express uncertainty. The numerical information is propagated according to the

axioms of some more or less well established mathematical theory which seeks to

guarantee that the final degree of certainty accorded to the answer to a query is exactly

that determined by the degrees of the relevant facts in the knowledge base. There are

many such formalisms, all with their unique advantages and disadvantages. What

we propose in this paper is something rather different, that is a logic which attaches

non-numerical values to facts and uses these to express the certainty, or lack of

certainty, of those facts. The advantage of such a symbolic approach is its simplicity

compared with the mathematical complexities of some of the numerical formalisms,

and the fact that it does not use numbers since these can at times be unintuitive.

However, unlike most other symbolic approaches such as the theory of endorsements

[5], these symbolic values have a solid mathematical foundation2.

Section 2 begins our discussion with a brief survey of formalisms for reasoning under

uncertainty— a necessary preliminary to proffering our approach. Then in Section 3

we introduce the basic concepts of rough set theory, including the key notions of core

and envelope, along with the related idea of flou sets, and discuss the use of rough sets

in knowledge representation. In Section 4, we show how the theory of rough sets may be

extended to cope with computing the core and envelope of logical combinations of objects

and describe a first order logic that may be quantified with the rough sets.  Following

from this Section 5 introduces set of symbolic quantifiers for predicate logic and

provides rough versions of classical inference rules such as modus ponens. Section 6

extends these results with a rough resolution rule and proves some properties of the

results of resolution. Section 7 concludes.

2. A brief survey of uncertainty handling formalisms

As mentioned above, the problem with expressing uncertain information in logic [36],

or using production rules [7] is that in such formalisms facts and rules can only be true

or false. Thus it is possible to express the fact that “it is raining” is true, and that the

rule “if it is raining, then Simon must wear a hat” is true and to use these two pieces of

information to decide that “Simon must wear a hat”. However, it is not possible to

express the fact that “There is a 40% chance of rain in the afternoon” or to say that the

rule “if it will rain in the afternoon then Simon must take a hat to work” is correct some

of the time, and so it is impossible to reason about whether Simon should take a hat to

work. A natural response to this problem is to try and break up the space of possible

values of facts so that there are values other than true or false. A typical response is to

use the [0, 1] interval, with false represented by 0  and true by 1, allowing any other

value in between. This allows any value to be assigned to any fact, but raises two new

problems— how should values be combined when reasoning is performed, and what do

the values mean? There are any number of answers to these questions, and each pair of

answers, in effect, provides a different system for reasoning under uncertainty.

The oldest formalism for reasoning under uncertainty is probability theory, which,

according to Shafer [39] was founded by Pascal and Fermat in an exchange of letters in

1654. Over the subsequent 340 years the theory has been well defined and its capabilities

extensively explored, so that the rules for propagating values are established without

question, and may be found in any textbook on probability (for instance [22]). It is,

2For the purposes of this discussion we will not be considering nonmonotonic logics, since these are

applicable to reasoning under conditions of incomplete information rather than with uncertainty.
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however, less clear what the numbers mean. Some advance the view that the probability

of an event is a measure of its frequency of occurence in the long term, while others

insist that the probability is a subjective measure of one’s belief in the occurence of the

event. There are arguments for and against both positions, and a good summary of

these may be found in [12]. An important point about the use of probability theory is that

it is not truth functional. That is, it is not possible to precisely establish the probability

of a combination of two or more propositions from the probabilities of the propositions

alone. This is in direct contrast to logic which is truth functional. The result of this

difference between logic and probability is that attaching probability values to logical

propositions is not very fruitful. For instance, in the best known of these hybrids,

Nilsson’s [26] probabilistic logic, when two propositions are combined together it is only

possible to establish the bounds on the probability of the combination, and these tend to

[0, 1] very quickly.

There are two possible solutions to this problem— to change the representation from

logic to something that is more natural from the point of view of probability theory, or to

use a numerical measure of uncertainty that is truth functional. The first approach is

that taken by Pearl [34] and Lauritzen and Spiegelhalter [20] in their seminal work on

probabilistic networks. Probabilistic networks explicitly record the conditional

independencies between the probabilities of propositions, so that when the probability of

a particular proposition is required, it is clear which other probabilities must be taken

into account. This provides a means of establishing the precise probabilities of

interesting propositions which is efficient in practice, despite being intractable in the

general case [6]. This approach has become very propular, but, despite much recent

work, does not have the flexibility of a first order formalism. The second approach, that

of truth functional values, was adopted by Bundy [2] who proposed using “incidences”

as a measure of uncertainty. In Bundy’s approach, incidences are associated with

propositions, are combined truth functionally, and may be used to establish the

probabilities of the propositions within tighter bounds than are otherwise possible.

There are a vast number of other numerical methods for reasoning under uncertainty

which have been proposed as alternatives to probability theory, and we will discuss a

few of them. However, this is far from being an exhaustive survey, and the interested

reader is directed to [21] for other methods, and more detail on the methods mentioned

here.

Firstly, an honourable mention must go to certainty factors [1] which have been widely

used in production rule systems, especially MYCIN and its sucessors. Certainty

factors aimed to release expert system developers from the restrictive fact that in

probability theory the negation of a proposition is supported by all the probability that is

not assigned to that proposition. The method worked well, but was eventually

discredited by Heckerman [18] who showed that certainty factors were just another

application of probability theory, but one which entailed a lot of unrealistic

assumptions. Another widely used formalism is that of fuzzy logic, which quantifies

propositions using fuzzy sets [46], sets whose members need not be unambiguously in or

out of the set (as in classical set theory), but may be in the set to some degree. Fuzzy

logic, despite the philosphical attackes made on it by, for instance Haack [17], has

proved immensely useful in automatic control and is now in wide use in industry in

systems from rice cookers to turbines.

Fuzzy sets also provide the basis for another formalism that has provoked a lot of

academic interest— possibility theory [45]. Possibility theory is based around the

possibility measure, which quantifies the degree to which a proposition might have a

particular property. For instance, the possibility that x is tall is a measure of the degree

to which x  may be tall, and in the simplest case this comes down to the degree to which x
is in the fuzzy set of tall things. From this simple basis has grown a theory which

largely parallels probability theory, with different methods for normalising
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distributions of numerical values and manipulating them. In fact, one of the strengths

of possibility theory is that it has a whole family of different combinaton operations,

each member of which assumes slightly different nuances of meaning of the values.

However, from the point of view of providing a means of extending logic to handle

uncertain information, possibility theory has gone beyond probability theory.

Possibilistic logic [10], [11] quantifies propositions with possibility values, and their

dual necessity values, and provides a means for combining the values in all the

situations that will be encountered in logical reasoning. The result is a first order,

quantified truth functional logic, which is perfect for many instances of reasoning

under uncertainty. This logic is very similar in many ways to the one introduced in

this paper.

It is also worth mentioning the Dempster-Shafer theory [39] since this has many

similarities with the theory of rough sets on which this paper is based [43] [29]. The

theory addresses the problem that in probability theory one must attach a measure of

uncertainty to every proposition of interest by allowing measures to be attached to sets of

propositions. It has been extended to permit logical inference by McLeish [24] and

Saffiotti [37].

All of the approaches mentioned above use numerical quanitifiers. However, despite

the many successes that such methods have provided, this may well not be the best

approach. To begin with there is a wealth of evidence, of which [19] is a good example, to

support the view that human beings, who after all compile the knowledge bases that we

are interested in, are not very good at  dealing with numbers. They are not good at

estimating them, even when they are very familiar with the theories that underlie

them, and they are very bad at reasoning with them. Since human beings are very

adept at reasoning under uncertainty, this suggests that there may be a lot to gain by

investigating non-numerical techniques. Another problem with strictly numerical

methods is their over-precision. As Wellman [42] points out, crafting a system with a

particular set of numbers that cover particular instances (which has to be done in many

formalisms) means that it is then invalid to apply the system to other cases because the

numbers would be incorrect, despite the fact that the underlying principles are

applicable. To combat this problem robust methods based on techniques from

qualitative reasoning have been developed [42], [28].

There are also many papers, including [1] and [2], which demonstrate that simple

symbolic techniques which essentially count the numbers of reasons for and against a

hypothesis are as good, in many cases, at dealing with uncertainty as complex

numerical ones. This simple approach was refined by Cohen [5] with his theory of

endorsements which attempted to give some structure to the symbolic reasons, so that it

was possible to capture more subtle details of their strength. At the same time Fox was

attempting to logically capture the meaning of linguistic terms expressing

uncertainty, so that, for instance, a hypothesis is “possible” if there is no reason to

exclude it [16]. A natural successor to these ideas is the concept of argumentation [15]

[21] in which the intuitive idea of establishing the certainty of a hypothesis by weighing

all the reasons for and against it is given a formal treatment. Our aim in this paper is

to take the germ of these symbolic ideas and combine them with logic, developing a

simple truth-functional, quantified logic that has symbolic quantifiers with intuitive

meanings which are mathematically well-behaved since they are soundly based on

rough set theory.

3. Rough set theory

Rough sets, originally introduced by Pawlak [30], have been further developed and

applied to a number of problems by various authors [14], [27], [31], [32], [33] and [44]. Here

we discuss the basic ideas behind the theory before relating them to knowledge

representation using logic and the handling of uncertainty.
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3.1 Basic concepts of rough sets

Consider a set of elementary concepts or attributes A  = {A1,...,An} such as {green,

blue, egg, ball, cube} . These concepts are the language which is available to describe

the set of objects E = {E1,...,Em} in which we are interested. For instance, E  may be the

set {green cube, blue cube, blue ball, egg} . Now, if we base our description of  the Ej
on the Ai alone, it could well be the case that some of the E j are indistinguishable since

the values that distinguish them are not present in A . For instance  using the set of

concepts {green, blue, egg, ball, cube} we cannot tell a blue prism  from a blue cone
since there is nothing in our set of descriptive terms to distinguish prism from cone.

Thus the use of a finite set A  implies the existence of an equivalence relation ±  such

that  Ej ± Ek, and E j and Ek cannot be distinguished from one another for a given A  if

for every i, A i is an attribute of Ej  if and only if it is an attribute of Ek. Thus there is a

partition on E :

P  = {P1,...,Pr} where ∪ P i  =  E  and PifiPj  =  Ø       for i ≠ j = 1,...,r  (1)

and each P i is an equivalence class. Thus in our example where A  = {green, blue,

egg, ball, cube}  and E  =  {green cube, blue cube, blue ball, egg} , P = {{green
cube}, {blue cube, blue ball}, {egg}} .  Let T “ T  = {T1,...,Tp} be an object, whose

attributes are TA⁄A , that we wish to describe in terms of  the partitioned set of  attributes

E i. Let:

Tc(P , E ) = {e:e∈ Pi, Pi‹T} (2)

Te(P, E ) = {e: e∈ P i, PifiT ≠ Ø} (3)

where Tc(P , E ) is the  core3  of  T based on E and P , the set of all equivalent objects in E

all of whose attributes are possessed by T , and Te(P , E ) is the envelope of T based on E

and P , the set of all equivalent objects in E  at least one of whose attributes is possessed

by T.  So for our example if T = {blue egg}, then Tc = {egg}, Te = {egg, blue cube, blue

ball}. The pair [Tc(P , E ), Te(P, E )] is a rough set. The  boundary of  T  is the set of

equivalent objects in E   in its envelope that are not in its core:

Tb (P , E) = Te(P, E )  -  Tc(P, E ) (4)

and the indifference set is the set of all equivalent objects in E   which are not involved

in the description of T .

Ti (P , E) = P- Te(P, E ) (5)

Let the set of all rough sets that may be defined using E  partitioned as P  be denoted by R .

Consider R = [R c, Re], R ’ = [R ’c, R ’e] ∈ R . It is simple to show that the following set

theoretic relations hold where the symbol ‘~’ stands for complement4:

3In Pawlak’s original work on rough sets the envelope and core were named ‘upper approximation’

and ‘lower approximation’ respectively.

4Note that  ~Rc is ~(Rc), the complement of the core of R and should be distinguished from (~R)c,
the core  of the  complement  of R
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(RflR’)c ¤ RcflR’c (RflR’)e = ReflR’e

(RfiR’)c = RcfiR’c (RfiR’)e ⁄ RefiR’e (6)

(~R )c = ~(Re) (~R)e = ~(R c)

It is also straightforward to show that R  is a lattice [35] with maximal element (E , E) ,

and minimal element (Ø, Ø):

RflR’ = R ’flR,  RfiR’ = R ’fiR
(RflR ’)flR” = Rfl(R ’flR”), (RfiR ’)fiR” = Rfi(R ’fiR”) (7)

RflR = R, RfiR = R
Rfl(RfiR ’) = Rfi(RflR ’) = R

The central idea of this paper is that rough sets may be used to handle uncertainty,

providing a new method of dealing with an old problem. In Section 3.3 we discuss how

rough sets may be used to capture uncertainty. First we introduce the related idea of flou

sets.

3.2 Flou sets

For completeness it is worth briefly considering the notion of  a flou set  since it is

closely related to that of a rough set. A flou set [25] is a pair of sets. For a some U , we

have:

F = (E , F ) where E  ⁄ F ; E ,F  ⁄ U (8)

The set of all flou sets is denoted by Fl(U), and has a natural ordering, so that for F, F ’ ∈

Fl(U), F = (E, F ) and F ’ = (E’, F ’) :

F ⁄ F ’ ⇔ E ⁄ E ’ and    F ⁄ F ’ (9)

For F ∈ Fl(U), F = ( E , F ), E  is the sure region, F  the maximum region, and F/E  the

flou region. Set operations on flou sets are defined as follows. For F, F’ ∈ Fl(U), F = ( E,
F ) and F = (E ’, F ’) :

FflF’ = (EflE ’, FflF ’)
FfiF’ = (EfiE ’, FfiF ’) (10)

~F = (~F , ~E )

It is simple to show that Fl(U)  is a completly distributive lattice [35], so that, for F, F ’, F ’ ’

∈ Fl(U) :

FflF ’ = F’flF ,  FfiF’ = F ’fiF
(FflF’)flF” = Ffl(F ’flF”), (FfiF’)fiF” = Ffi(F’fiF”)
FflF = F, FfiF = F (11)

Ffl(FfiF ’) = Ffi(FflF’) = F
Ffl(fii∈I Fi) = fii∈I(FflFi), Ffi(fli∈I Fi) = fli∈I(FfiFi)

The maximal element of the lattice Fl(U) is clearly  (U , U), and the minimal element

(Ø,Ø) . Comparing the results in the last two sections, it is clear that the properties of

rough sets and flou sets are closely related. Both are pairs of sets, one of which is a

subset of the other  as shown by (2), (3) and (8). Comparing (6) and (10) shows that set

theoretic operations on rough and flou sets are broadly similar, but that flou sets allow
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the exact determination of the outcome of operations in all cases whereas rough sets at

times only allow limits to be set on the outcomes.

The fact that flou sets always give exactly known combinations under set theoretic

operations means that a set of flou sets is a distributive lattice (11) while a set of rough

sets forms a non-distributive lattice (7). In this sense flou sets are a special case of

rough sets which are well behaved under union and intersection. Thus all the results

that are derived below could be re-derived using flou sets— the only difference being

that in every result that is bounded by ¤ or ⁄ the ¤ or ⁄ would become equality.

3.3 Rough sets and knowledge representation

The essential idea of using rough sets for knowledge representation is that the basic

item, the object whose core and envelope are manipulated, is a logical fact rather than

the object of Pawlak’s original work. We will consider the use of rough sets in

knowledge representation from the stand-point of a knowledge base used to reason

about a physical system. A knowledge item is  the basic unit from which a knowledge

base is constructed. In this case we will consider knowledge items to be logical

propositions  that may be associated with truth values, but  in general they may be any

atomic unit of any knowledge representation scheme.

We have a set of knowledge items E  = {E1,..., E m} about the system we are interested

in, for instance the symptoms which require an explanation such as {headaches, fever,

spots, rash}. We also have a set of hypotheses T  = {T1,..., T p} such as {measles,

tuberculosis, whooping cough} which may be related to the facts E  by observation. For

instance we may  decide that E i$ E j → Tk, a possible medical gloss being “fever and

spots implies measles”. Now, rather than quantify the underlying uncertainty in this

rule by attaching a number to it, we turn to the set of underlying concepts A  =
{A1,...,An}. Often we don’t know what these are, and they rarely map one to one onto

the Ej and Tk, the facts that the domain in question forces us to deal with. All we know

is that the Ai map onto the Ej so that  one or more Ai relate to each E j. Similarly, one or

more concept relates to each Tk.

Because the concepts Ai are the fundamental concepts of the domain, there is an exact

relationship between sets of A i for every piece of information about that domain. For

example, the rule relating to the symptoms of measles may be A1$ A 2 $ A 3 → A4 $

A5.  However, because  the things that we observe do not map cleanly onto these

concepts, and we are constrained to make statements in terms of the things that we

observe, we can only make statements that are approximately true. Thus we say E i$ E j
→ Tk which for  E i= A 1, Ej = A 3 $ A 6 and Tk= A 4 amounts  to A1$ A 3 $ A 6 → A4
which is clearly not quite right. Thus the use of observable facts to describe systems

means that in general we can only approximate the underlying concepts. Rough sets

enable us to keep track of these approximations since they relate the E j and  Tk to the Ai .

If we have the Ej and Tk given in terms of the A i we can write down logical expressions

relating them, and manipulate them using the techniques described in Section 3.

Alternatively we can write down the logical relations between the E j and Tk, based on

an unknown set  A , from expert knowledge, quantifying the relations in much the

same way as other certainty values [38] are obtained. In this case the propagation of the

quantifiers is based on rough set theory, and thus takes into account the mismatch

between the observable facts and the underlying concepts. This is covered in Section 4.

Since all ideas of accuracy are relative to the set of basic concepts A , we can relate

quantifiers based on rough sets to the kind of  truth values discussed in other

formalisms by careful choice of A . This matter is discussed in [29].
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4. Reasoning with rough sets

Having introduced the basic concepts of rough set theory, we proceed, in this section, to

show how they may be used to define a new method for dealing with imprecisely known

information.

4.1 Combining rough sets

The degree to which an object T  may be defined within (A , E ) depends on the

cardinality of Tc and Te. Pawlak [31] gives the following:

If Tc = Te then A is precisely defined by  (A , E)

If Tc ≠ Te  and  Te ≠ Ø then A is roughly defined by (A , E )

If Tc = Ø then A is internally undefined by (A , E ) (12)

If Te = E then A is externally undefined by (A , E)

If Tc = Ø  and Te = E then A is totally undefined by (A , E)

We can determine the degree to which logical combinations of roughly defined objects

may themselves be defined. The usual logical operations of disjunction, £ ,
conjunction, $ , and negation, ¬, may be defined in terms of set operations on the core

and envelope of the objects concerned. We define:

(T£S)c = (TflS)c (T£S)e = (TflS)e

(T$S)c = (TfiS)c (T$S)e = (TfiS)e (13)

(¬T)c = (~T)c (¬T)e = (~T)e

where we give {¬,£ ,$} their usual meaning so that ¬T means not T , T$S means both T
and S , and T£S means either T or S or both. Using (6) we obtain:

(T£S)c ¤ TcflSc (T£S)e = TeflSe

(T$S)c = TcfiSc (T$S)e ⁄ TefiSe (14)

(¬T)c = ~(Te) (¬T)e = ~(T c)

we can use these results to define other logical operations such as material implication,

→, where T→S – ¬T£S :

(T→S)c ¤ ~TeflSc (T→S)e = ~TcflSe (15)

Note that the core of the disjunction of two terms may not be specified precisely, we only

ever know the lower bound. Since the core is itself a lower bound on the accurate

description, this is not a problem. Similarly, given the inequality in the description of

the envelope of the conjunction, the envelope of any combination involving conjunction

will only be defined by an upper bound. Again, this is not problematic.

Given the results of equations (13)–(15), we can deduce the logical relationships

between objects if the set of concepts A is known. For instance, consider a set of concepts

A  = {A1,A2,A3,A4,A5}, and a pair of objects E1  and E2 where E 1 = [{A1,A2},

{A1,A2,A3}], which is to say that the core of E1 is {A1,A2} and its envelope is

{A1,A2,A3}, and E 2 = [{A2,A3}, {A2,A3,A4}] . Here we can say that T1 = [{A2},
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{A2,A3}], is equivalent to E1$E2, while  T 1 = [{A1,A2,A3}, {A1,A2,A3,A4}], i s

equivalent to E1£E2.

Similarly we can establish the validity of logical statements about  objects whose rough

descriptions we know. Given E3 = [{A 3,A4}, {A2,A3,A4,A5}] and E4 = [{A 2,A3},

{A1,A2,A3}]  we can say that E3→E4 will have the rough description [{A1,A2,A3},

{A1,A2,A3,A5}] .

4.2 A logic for rough reasoning

The ideas introduced in the previous section can be adapted to create a quantified logic

in which rough sets are used to model the upper and lower bounds on the value of the

propositions. The core and envelope are still composed of partitions of E , the language

with which we may describe objects. Thus the value of a proposition is determined by

the accuracy with which it is determined by the set of partitions. If we consider that the

full set of partitions alone suffices to accurately describe true propositions we can relate

the accuracy of description to truth.

We will deal with a first order predicate logic language PRL  of roughly described terms

where (after Reeves and Clarke [36]) the constant terms are the names N  of all the

roughly described objects that we are interested in. In addition we have a set of

connectives {Ÿ, ¡, £, $} ,  a set of punctuation symbols {(, ),,}, and a set of quantifier

symbols {Å,Ê}. Finally  there is a set P of sets Pn of n-ary predicate symbols for each

n≥0 , a set Fn of n-ary function symbols {f, g, h...} for each n≥0 , and a set V  of variables

{x1, x2, ...}. The set of sentences L(<P N F>),  based on this logic is defined by:

(1) any element of N  is a term based on  L(<P N F>).

(2) If p is a member of P, and x1, ..., xn are  members of V , then Åp(x1 , ...,

xn) and Êp(x1, ..., xn) is a  formula based on L(<P N F>).

(3) If S and T are formulae based on L(<P N F>) then so are ŸS, S¡T, S$T
and S£T.

(4) If  S1, ..., Sn  are terms or formulae based on L(<P N F>)  then  f( S1 , ...,

Sn ), where the arity of f is n , is a term based on L(<P N F>).

(5) If S1, ..., S n are are terms or formulae based on L(<P N F>)  then p (

S1,..., Sn ) where p is amember of P , and the arity of p is n, is a term based

on L(<P N F>).

(6) Nothing else is term or a formula based on L(<P N F>).

If x1 is a variable in a sentence, and x1 is not in the scope of any quantifier, then x1 is

a free variable. If S  is a member of L(<P N F>)  and x1 is a free variable in S  then the

term t is free for v in S  iff there is no variable x2 in t such that x1 appears within the

scope of the quantifier that binds x2 in S .

PRL   has a set of axioms generated by the following axiom schemas. If S , R and T  are

members of L(<P N F>), then:

(A1) (S¡(T¡S))
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(A2) ((S¡(T¡R))¡((S¡T)¡(S¡R)))
(A3) (((ŸS)¡(ŸT))¡(T¡S))
(A4) (Åx i S¡S), if x i does not occur free in S
(A5) (Åx i S¡S[t/x i]) if S is a formula of the language in which x i

may appear free, and t is free for xi in S.
(A6) (Åx i (S¡T)¡(S¡Åx i T)), if xi does not occur free in S

We have a number of rules of inference for PRL  :

(MP) Modus ponens: From S  and S¡T, for any S and T , deduce T
(MT) Modus tollens: From ŸT and S¡T, for any S  and T, deduce ŸS
(R) Resolution: From S£T  and ŸS£R, for any S , R and T, deduce T£R
(S) Syllogism: From S¡T and T¡R, for any S , R and T, deduce S¡R
(UI) Universal instantiation: From Åx i Q(x i) deduce Q(a) where Q

is any formula, and a  is any term not containing free variables.

We are interested in the rough set descriptions of the sentences based on L(<P N F>) ,

which we manipulate as quantifiers expressing our knowledge about these concepts.

We define a rough measure R over the sentences of L(<P N F>)  such that for any

element  p  of  L(<P N F>), R(p) = [p≥C, p≤E] where p≥C is the lower bound on the core of

pand p≤E is the upper bound on the envelope of  p . R(p ) gives us  the rough set that

describes p . The components of the rough set are drawn from a finite set U  of

descriptors. Thus, rather than dealing with numerical quantifiers expressing the truth

of the sentences we quantify the sentences with examples of the concept that they

embody. It is possible, however, to use rough sets to model truth values [29].

5. Rough truth values

The rough measure described in Section 3 maintains the core and envelope of  each

distinct sentence, allowing a precise estimation of the degree to which it is defined by

the system. In this section we investigate coarsenings of this measure. Instead of

attaching a core and envelope to each sentence, we use the core and envelope to define a

rough truth values for each sentence which are then propagated in place of  the

approximations themselves.

5.1 Symbolic truth values

The rough measure of a sentence  p  ∈ L(<P N F>) is determined by the degree to which

its core and envelope are defined by the set of descriptors A . We can distinguish the

following boundary cases for Ø‹X‹A , and Ø ‹ Y ‹A  which correspond to the

definitions of (12):

If R(p) = [A , A ] then p is true

If R(p) = [X, A ] then p is  roughly true

If R(p) = [Ø, A ] then p is of unknown value (16)

If R(p) = [Ø, Y] then p is roughly false

If R(p) = [Ø, Ø] then p is false

These rough values form a lattice, ordered by set inclusion ⁄ , giving the following:

[Ø, Ø] ⁄ [Ø, Y]  ⁄  [Ø, A ]  ⁄   [X,A ] ⁄ [U, A ] (17)

false roughly false unknown roughly true     true
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This suggests the introduction of  a rough truth measure  RV over L(<P N F>)  which

identifies which of these five ordered states the rough measure of each p  ∈ L(<P N F>)
falls into. The advantages of such a measures are its extreme simplicity and

robustness, a direct result of the simple conditions used to define the values, and the fact

that the values are ordered. The latter allows the axioms of  the rough truth measure to

be simply stated:

RV (p£q) = max (RV(p), RV(q)) (18)

RV (p$q) = min  (RV(p), RV(q))

These may be easily  verified by considering the set operations on the rough measure

for each proposition. Similar considerations will validate the negation operator:

 true       roughly  true       unknown      roughly false     false

 false     roughly false      unknown      roughly  true        trueŸ(p)

RV

RV

(p)

(19)

The quantified logic may be applied without consideration for the set of basic concepts

that underlie the rough values. However, the sound mathematical basis on which the

logic is built ensures that it is well behaved.

It is possible to identify a further set of truth values. These are the contradictory5 value

R(⊥) = [U, Ø] , the indeterminate value R(i) = [Y, X] , and two ‘partially  contradictory’

values R(s) =  [U, Y] and R(t) = [X, Ø] .  These, happily, need not concern us, since they

are not generated by operations on the values introduced above.

5.2 Reasoning with rough truth values

In order to use our symbolic truth values for practical reasoning purposes, we need to

provide a set of rules for propagating inference. It is trivial to establish the rough value

of a material implication from that for disjunction:

RV (p→q) = max (RV(¬p ), RV(q)) (20)

This is, however, of limited practical use since it only allows us  to establish the

strength of an implication from that of its antecedent and consequent. Rules giving the

strength of the consequent (antecedent) based on the strength of the material

implication and its antecedent (consequent) are of more use in an expert system

context. To this end we can specify how the rough truth values are propagated when we

use the logical inference rules of Section 4.2.

5From the definition of core and envelope as being lower and upper approximations, respectively, it

is clear that a set of rough values for  p that have pc  › pe  are contradictory to the underlying rough

set theory.
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Theorem 5.1: For modus ponens (MP) we have:

RV (p→q) = α

RV (p) = β
                                                    (21)

α ≥ RV (q) ≥ min (α, β)

Where p, q  are any sentences of  L(<P N F>).

Proof:  RV(q ) ≥ RV(pfiq) = RV((¬p£q)fip) = min( α, β), so the lower bound on RV(q ) is

min(α, β). In addition, α = RV(¬p£q) ≥ RV(q), so the upper bound on RV(q) is α.■

Theorem 5.2: For modus tollens (MT):

RV (p→q) = α

RV (¬q) = β
                                                    (22)

α ≥ RV (¬p) ≥ min (α, β)

Where p, q  are any sentences of  L(<P N F>).

Proof:  as for Theorem 5.1.■

In order to reason about specific roughly described objects if we are given general

statements about classes of such objects we need to know how our rough measure

responds to instantiation:

Theorem 5.3: For universal instantiation (UI):

RV(Åx iP(x i)) = α
                                                    (23)

t ≥ RV (P(a)) ≥ α

where a  is any rough object.

Proof : R V (Å x iP(x i )) = RV(P(a))$RV (P(b))$.. .$RV (P(n)) = min[RV(P(a)),
RV(P(b)),...,RV(P(n))]. Thus RV(P(a)) ≥ RV(Åx iP(x i)).■

These theorems enable us to propagate rough measures in our logic of rough objects

PRL .

5.3 An example

To illustrate the kind of reasoning possible with our rough valued logic, consider the

following simple example. An intelligent system has a set of rules which it uses to

determine when it is appropriate to open and close a pressure regulating valve. These

rules are expressed as logical sentences, each of which is quantified with a rough truth

value:

C1 high(pressure, x) → open(valve, x) (t)
C2 Ÿlow(pressure, y) → low(level, y) (t)
C3 low(pressure, z) → Ÿopen(valve, z) (t)
C4 high(temperature, w) → Ÿlow(level, w) (rt)
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The system is also supplied with two predictions about the state of the system at times t1
and t2:

C5 high(pressure, t1) (rf)
C6 high(temperature, t2) (rt)

From this data the system can use the rules of modus ponens (21) and modus tollens (22)

along with universal instantiation to find the lower biunds on the rough truth value of

new facts:

C1 C2

open(valve, t1) (rf)

C4 C6

Ÿlow(level, t2) (rt) C2

low(pressure, t2) (rt)C3

Ÿopen(valve, t2) (rt)

to establish that the valve may be open at time t1, and is very likely to be closed at time

t2.

5.4. Robust reasoning in rule based systems

For most practical purposes, intelligent knowledge-based systems are rule-based , with

knowledge encoded in the form of ‘if...then...’ rules. In many domains detailed

numerical estimates of the certainty of rules and facts may be impossible to obtain, and

the reasoning mechanism adopted must be capable of dealing with vague estimates.

Especially important is the robustness of the mechanism— its ability to deal with rules

and facts whose certainty is unknown. In this section we analyse the robustness of

rough valued logic in the context of rule based reasoning.

The knowledge base of a typical rule-based system consists of a series of rules of the

form ‘if p  then q ’ with a certainty value attached to each. In forward chaining

inference starts with one or more facts, also with an associated certainty, which match

the antecedents of particular rules. These rules are fired to obtain their consequents,

with the certainty of the consequent being determined by  a combination of the

certainties of rule and antecedent, and the consequents used to fire more rules. This

process continues until there are no facts that match the antecedents of unfired rules, or

the goal fact has been deduced. If we assume that rules of the form ‘if p  then q’ are

translated by use of material implication into logical statements of the form p→q, then

the mechanism of forward chaining is the rule of modus ponens (21). This allows us to

establish when consequent values of unknown certainty will be generated, taking the

lower bound on the value of q :
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p p     q q→

t
rt
u
rf
f

u
u
u
u
u

u
u
u
rf
f

p p     q q→

t
rt
u
rf
f

u
u
u
u
u

u
u
u
rf
f

No  combinations of values of antecedent and rule other than those shown, have either

antecedent, consequent, or rule valued as unknown. The truth tables show that the

value of the consequent can be determined if the value of the rule and the antecedent is

given, or, if one has an unknown value the other has the value false (f) or roughly false

(rf) .

A similar analysis may be performed for backward chaining. Here we are interested

in determining the antecedent of a rule from the rule and its consequent. Reasoning

proceeds from the goal, and continues until a known fact is identified as the antecedent

of a rule that must be fired in order to generate the goal. Using the pattern for rough

modus tollens (22) we obtain a similar truth tables to those above for the lowest bound on

the value of p:

pp     qq →

t
rt
u
rf
f

u
u
u
u
u

u
u
u
rf
f

pp     qq →

t
rt
u
rf
f

u
u
u
u
u

u
u
u
rf
f

Ÿ ŸŸŸ

Once again, no  combinations of values of antecedent and rule other than those shown,

have either antecedent, consequent, or rule valued as unknown.The tables show that a

fact of known value may be deduced from a fact and a rule of known value, or from a

fact of unknown value and a rule that is false (f) or roughly false (rf), or from a rule of

unknown value and a fact that is false or roughly false. In both these latter cases, the

deduced fact has value false or roughly false. Thus, in both forward and backward

chaining, uncertainty can be absorbed by  the logic at the cost of reducing the certainty

value of the facts deduced. In situations in which the certainty of conclusions is

secondary to the need to continue to operate in the face of degraded information such

behaviour will be an advantage.

6.  Other patterns of rough reasoning

There are two other patterns of reasoning that are important, the resolution rule and, to

a lesser extent, syllogism. These are discussed at some length in this section. Firstly

we indicate how rough truth values may be propagated across these patterns, then we

prove two results  about the value of conclusions established using the resolution rules.

Finally we show  the resolution rule in action.
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6.1 Resolution and syllogism

Rough truth values may be propagated across these inference patterns as follows:

Theorem 6.1: For resolution (R):

RV (p£q) = α

RV (¬p£r) = β
                                                    (24)

max(α, β) ≥ RV (q£r) ≥ min(α, β)

Where p, q  , r are any sentences of  L(<P N F>).

Proof: RV(q£r) = RV ((p£q£r) $  (¬p£q£r)) = min (RV  (p£q£r), (¬p£q£r)). Now,

RV(p£q£r) ≥ RV(p£q ) = α, and RV(¬p£q£r) ≥ RV(¬p£q ) = β, and we get the lower limit.

For the upper limit, consider the fact that RV (p£q) = max(RV(p), RV(q)) , so that  the

maximum value of  RV(q)  is α, and the maximum value of RV(r) is β. Since RV ( q  £ r)

= max(RV(q), RV(r)), RV (q  £ r) ≤ max(α, β).■

Theorem 6.2: Syllogism (S):

RV ( p ¡ q ) = α

RV ( q  ¡ r) = β
                                                    (25)

max(α, β) ≥ RV ( p¡  r) ≥ min(α, β)

Where p, q  , r are any sentences of  L(<P N F>).

Proof: This follows from the resolution principle. Rewriting the pattern remembering

that (a ¡ b ) –  (Ÿa £  b) , we get: RV(Ÿp£q) = α, RV(Ÿq£r)  = β which resolve to give

max(α, β) ≥ RV(Ÿp£r) ≥ min(α, β).■

And we have sufficient results to handle most reasoning tasks using PRL .

6.2 The results of resolution

The rules discussed above allow us to us the quantified versions of PRL  to infer the truth

of new facts from the truth of existing facts and relations. Thus a system using

quantified PRL  can infer new information from its observations. In this section we

investigate how the truth values of the conclusions are related to the truth values of the

facts on which the conclusions are based. We will centre our investigation around the

commonly used resolution rule, following the approach of Dubois et al [11]. Given a set

of clauses quantified with truth values derived from rough set theory, we are interested

in determining the bounds on the truth value of the clauses derived by applying the

resolution rule. We have:

Theorem 6.3: the truth value of the result of resolution between the members of a rough

valued set of clauses must lie between the maximum and minimum values attached to

members of  that set of clauses.

Proof: Let C  be a set of clauses of quantified RL, and R(C)  be the union of C with all the

results of  resolving together every pair of clauses in C  that may be resolved together.

We write Rn(C) to denote the result of iterating this procedure n times. We can easily

see that for C  = {C1, ..., Cm}, where Åi = 1, ..., m, RV(Ci) ≥ αi, and C n denotes any



-16-

clause in Rn(C), we have Ån ≥ 0, RV(Cn) ≥ min i = 1, ..., m αi, and maxi = 1, ..., m αi ≥

RV(Cn).■

While resolution may  be used to reason ‘forwards’ from a set of known clauses in

order to establish new facts, it is often used to reason ‘backwards’ in proofs by

refutation. In proof by refutation, in order to assess whether a clause Cq follows from a

set of clauses C  we repeatedly apply the refutation rule to the set of clauses C  fl ¬Cq. If

we deduce the empty clause {} (ie. by resolving a  and ¬a) then the clause Cq follows

from the set C . In both of our logics we will have truth values attached to all clauses,

including the empty clause at the end of the proof. What we would like to establish is the

correspondence between the truth value we derive for the empty clause and the truth

value of the clause we set out to prove.

Theorem 6.4: the rough truth value of the empty clause that results from resolution is the

lower bound on the value of the clause we are trying to prove.

Proof: Let C  = {C1 , ..., Cm} be the set of clauses from which we are trying to prove

Cq.After the proof, we obtain β ≥ RV({}) ≥ α from a subset of C , Cα fl{¬Cq}, where Cα  =

{Ci | β ≥ RV(Ci) ≥ α}  and RV(¬Cq) = t. Since {} would be obtained from Cα by applying

the classical resolution rule (ignoring degrees of truth), Cq is a logical consequence of

C α so that  RV(¬(fi i {Ci ∈ Cα}) £ Cq) = t. Now, β ≥ RV(fii {C i ∈ Cα}) ≥ α, so applying

the resolution rule to the two clauses gives us t ≥ RV(Cq) ≥ α. ■

6.5  Theorem proving using rough truth values

An example of reasoning using the rough valued resolution rule is the following

problem. Another control system has a number of pieces of information that relate the

states of a number of valves to the pressure of some vessel:

C1. If Valve1 is open, then Valve2 is not  open.

C2. Valve1 will be open at time t1.

C3. If Valve3 is open then pressure is likely to be low.

C4. Valve3 may be open at time t2
C5. If Valve4 is open, and Valve2 is not open, then it is almost certain

that the pressure will be low.

C6. It is likely  that Valve2 or Valve5 will be open at t1
C7. If Valve5 is open then Valve4 will be open

The system wishes to ascertain if the pressure will be low at any time so we add the

clause:

C0. The pressure will not be low.

The clauses may be translated into first order logic quantified with rough truth values:

C0. Ÿlow(pressure, v) (t)
C1. Ÿopen(Valve1, x) £ Ÿopen(Valve2, x) (t)
C2. open(Valve1,t1) (t)
C3. Ÿopen(Valve3 , y) £ low(pressure, y) (rt)
C4. open(Valve3 ,t2) (rf)
C5. open(Valve2, z) £ Ÿopen(Valve4, z) £ low(pressure, z) (rt)
C6. open(Valve2, t1) £ open(Valve5, t1) (rt)
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C7. Ÿopen(Valve5, w) £ open(Valve4, w) (t)

There are two possible refutations of C0:

C0 C3

C4

Ÿopen(Valve3, v (rt)

Ø (rf)
v = t2

C0 C5

open(Valve2, v) £ Ÿopen(Valve4, v) (rt)

Ÿopen(Valve4, t1) (rt)

C7

Ÿopen(Valve5, t1) (rt)

Ø (rt)
v = t1

C1 C2

Ÿopen(Valve2, t1) (t)

open(Valve5, t1) (rt)

C6

Thus we can conclude that the pressure may be low at time t2, and is likely to be low at

time t1.

7. Discussion

There are a three points arising from the previous sections that are worthy of brief

discussion. The first concerns the alternative view of uncertainty that this paper

espouses, as the mismatch between what relates cause to effect and what is observed,

and which the rough set approach models. This seems to explain the presence of

uncertainty in many domains quite neatly, but it remains to be seen if it is really

helpful. Further work will help to resolve this concern, especially work to use rough

logic and symbolic truth values in systems that must contend with uncertainty. The

second point concerns the symbolic truth values and their provision of a simple method

of handling uncertainty where only a few different truth values are required. These

values have the interesting property of absorbing uncertainty in certain

circumstances, in that the combination of some known values with the value

“unknown” produces the known values. This is in contrast to other approaches to

reasoning under uncertainty where combination with “unknown” values causes

values to become less certain. Again, the usefulness of this property remains to be

proven, and the development of exacting applications would seem to be the best means of

doing so. The third point is the similarity between our symbolic truth values and

possibility measures [10], [11]. From the results presented, it does seem as though the

symbolic measures behave in much the same way as possibility measures, a fact that

might be expected given the similarity between the formalisms on which the two

measures are based, namely rough and fuzzy sets. However, it is not yet clear whether

this connection is meaningful or superficial, and to what extent it is related to the close

relationship that exists between rough sets, and measures defined over them, and belief

functions [29], [43]. We hope to be able to investigate this relationship more closely  in

the near future.
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8. Summary

In summary, we have presented several different ways in which rough sets may be

used in reasoning under uncertainty. It is simple to define quantities in terms of rough

sets,  and formalisms based upon them  are  robust in the face of scarce information; a

great advantage in dealing will ill-known domains such as biotechnology and

ecology. Extending Pawlak’s original work on rough sets we  have defined symbolic

truth values based on rough measures. These values are simple and robust, being

exceptionally good at assimilating ignorance. The values have been used to quantify a

predicate logic, and rules for combining values when the inference rules of the logic

are applied have been introduced. Some results have been given for theorem proving

using the quantified logic, and several examples have demonstrated the kind of

automated reasoning that may be achieved using the logic.
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