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tThis paper surveys methods for representing and reasoning with imper-fe
t information. It opens with an attempt to 
lassify the di�erent typesof imperfe
tion that may pervade data, and a dis
ussion of the sour
esof su
h imperfe
tions. The 
lassi�
ation is then used as a framework for
onsidering work that expli
itly 
on
erns the representation of imperfe
tinformation, and related work on how imperfe
t information may be usedas a basis for reasoning. The work that is surveyed is drawn from both the�eld of databases and the �eld of arti�
ial intelligen
e. Both of these areashave long been 
on
erned with the problems 
aused by imperfe
t infor-mation, and this paper stresses the relationships between the approa
hesdeveloped in ea
h.1 Introdu
tionImperfe
t information is ubiquitous|almost all the information that we haveabout the real world is not 
ertain, 
omplete and pre
ise. Thus to insiston studying just 
ertain information, as has been the 
ase in most work indatabases, is to 
on
entrate upon a small part of the whole problem. AsSmithson [148℄ points out, mu
h of Western philosophy has been taken up withbuilding attra
tive models that are based upon idealisations that are never ap-proa
hed in reality. This he 
laims has led to the study of un
ertainty beingmarginalised, even to the extent that it is de�ned only in terms of negative
onnotations|that whi
h is not 
ertain, those things that may not be knownexa
tly|rather than being a

epted as the natural state of all information.The fa
t that the study of un
ertainty has not, in general, attained intelle
tualrespe
tibility in turn has meant that the norm is to attempt to model the realworld using some idealisation by engineering out the inherent un
ertainty [24℄.
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tions on Knowledge and Data Engineering, 8(3):353|372. 2This means that one ends up with an elegant model, but one whi
h 
an nevergive 
ompletely 
orre
t answers be
ause it does not attempt to model pre
iselywhat is going on [137℄. Instead, one should take the un
ertainty into a

ount,trading the loss of elegan
e and simpli
ity for more a

urate modelling.Motro [97℄ summarises this argument with the terse statement that:Un
ertainty permeates our understanding of the real world. Thepurpose of information systems is to model the real world. Hen
einformation systems must be able to deal with un
ertainty.As a result, Motro is interested in how imperfe
t information may be repre-sented in a database. Turtle and Croft [154℄ in their dis
ussion of un
ertainty ininformation retrieval systems also argue that the issue of imperfe
t information
annot be ignored. However, their interest is slightly di�erent. In informationretrieval systems it is not so mu
h the representation of imperfe
tions in storedinformation that is of 
on
ern, as taking imperfe
tions into a

ount when de-
iding what information to retrieve. In other words reasoning with imperfe
tinformation is also important, and su
h reasoning will also be ne
essary in anexpert database system [3, 80℄, as well as any dedu
tive database.Thus, to build useful information systems1, it is ne
essary to learn howto represent and reason with imperfe
t information. In order to do this, it isne
essary to learn a little about what it is and where it 
omes from. As a resultthis paper begins with a dis
ussion of 
lassi�
ations of imperfe
t information,and some analysis of the sour
es of the imperfe
tion. Both of these topi
sare 
overed in Se
tion 2. This is followed by a detailed survey of some of themeans of representing and reasoning with imperfe
t information that have beenproposed. Many of these proposals have 
ome from people dire
tly interested indatabases, but there is also a good deal of relevant work that has been 
arriedout in the �eld of arti�
ial intelligen
e. This work is espe
ially relevant giventhe need [54℄ to integrate reasoning with data management to 
reate the nextgeneration of information systems [3℄. As a result, this paper attempts a broadsurvey of work 
arried out in both �elds, with work from the database �eld inSe
tion 3 and that from arti�
ial intelligen
e in Se
tion 4. Note that the paperis mainly 
on
erned with imperfe
tion in data rather than imperfe
tion in theproperties of data, su
h as would be introdu
ed by vague integrity 
onstraints,or in queries made by users who are not 
ompletely sure of what query theywant to make.Now, I had hoped to be able to draw a sharp boundary between work onstoring imperfe
t data in databases and work done on reasoning with imperfe
tdata in arti�
ial intelligen
e. However, the distin
tion is a lot less 
lear 
ut,with authors in both �elds writing about both topi
s, and with some �elds, su
has logi
 programming, having 
lose 
onne
tions with both dedu
tive databasesand arti�
ial intelligen
e. Despite this, I believe that it is worth making somedistin
tion between the two 
amps in order to demonstrate what ea
h may1We will use the term information system as a suitable gloss for a system whi
h is either adatabase in the sense of the database world, or a knowledge base in the sense of the arti�
ialintelligen
e world.



IEEE Transa
tions on Knowledge and Data Engineering, 8(3):353|372. 3learn from the other. As a result I have maintained the division by followingthe 
laims of the authors, so that work whi
h the author 
laims is 
on
ernedwith databases may be found in Se
tion 3, while work whi
h the author 
laimsis more to do with the study of un
ertainty in arti�
ial intelligen
e will be foundin Se
tion 4. Within ea
h se
tion the approa
hes are divided up along the linesof the 
lassi�
ation introdu
ed in Se
tion 2.Before beginning, it is making a brief aside on the use I have made ofthe word \un
ertainty". Throughout the literature this term is overloaded,being 
ommonly used both as a generi
 term for imperfe
tion in data, as inthe quotation from Motro, and as a term for a parti
ular form of imperfe
tknowledge of whether or not a statement is true. There is no easy way to resolvethis overloading. I have attempted to use \imperfe
tion" and \imperfe
t" in thegeneri
 sense, and \un
ertainty" and \un
ertain" in the spe
i�
, but this hasnot always been possible (as in the 
ase of the quotation) and when possible hasinvolved reinterpreting what others have said. I hope that in the main I haveavoided 
onfusion and trust that any errors I have introdu
ed will be forgiven.2 Imperfe
t information in generalOver the years there have been many attempts to produ
e a 
ategori
al 
lassi-�
ation of the di�erent types of un
ertainty, and to elu
idate the relationshipsbetween them. Several of these manage to seem entirely self-
onsistent and in-tuitively plausible whilst managing to be mutually in
onsistent suggesting thatthere is no one best 
lassi�
ation. However, it is worth 
onsidering a 
ouple inorder to get a feel for the subje
t.2.1 General 
lassi�
ations of imperfe
t informationOne of the earlier 
lassi�
ations is that of Bonnissone and Tong [16℄ who advo-
ated the point of view that there are three types of imperfe
tion that might befound in an information system. These are un
ertainty, in
ompleteness and im-pre
ision. In
ompleteness arises from the absen
e of a value, impre
ision fromthe existen
e of a value whi
h 
annot be measured with suitable pre
ision, andun
ertainty from the fa
t that an agent has 
onstru
ted a subje
tive opinionabout the truth of a fa
t whi
h it does not know for 
ertain.In
ompleteness 
an be existential, as when a parti
ular instan
e of the valueof an attribute is unknown. Thus the statement that: \The author of `NakedLun
h' is an important �gure in twentieth 
entury literature" is an exampleof existential in
ompleteness sin
e the author's identity is left unknown. Al-ternatively in
ompleteness 
an be universal, when all instan
es of parti
ularattributes are unknown as in the statement: \Sylvia Plath wrote some verymoving poems" whi
h fails to say what the names of the poems are.Impre
ision 
an be interval valued, as in the 
ase that the author's age atthe time of writing is given as \between 25 and 30", or fuzzy valued, as in the
ase that the author is said to be \quite young". It is also possible to have adis
rete form of impre
ision, su
h as that arising from disjun
tive informationas in the statement that \the author is either 26, 27 or 28", and there is a form
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ision that arises from negation. If all that we know is that \Simon isnot married to Ann", very little may be said about his marital status sin
e he
ould easily be married to someone else.Both impre
ision and in
ompleteness as de�ned here are obje
tive to somedegree. They stem from limitations in the way that quantities are measured,and re
e
t the absolute nature of the available information. In 
ontrast un
er-tainty is seen by Tong and Bonnissone as being inherently subje
tive. Un
er-tainty is an estimate of the truth of some fa
t by some individual. The estimatemay be made by estimating the probability that some proposition is true, bymaking some statement about one's belief that the proposition is true, or byusing some form of epistemi
 possibility or ne
essity that gives, for instan
e,the degree to whi
h the author's age may be, or must be, 26, given that he isyoung.Bos
 and Prade [15℄, e
hoing an earlier 
lassi�
ation made by Dubois andPrade [40℄, are in broad agreement with this 
lassifying imperfe
tions as beingdue to un
ertainty, impre
ision, vagueness and in
onsisten
y. However, thede�nitions of some of these terms are given slightly di�erent emphasis. Thusun
ertainty arises from a la
k of information about the state of the world. Thisla
k of information makes it impossible to determine if 
ertain statements aboutthe world are true or false|all that 
an be done is to estimate the tenden
y ofthe statement to be true or false either by using some numeri
al measure of thedegree to whi
h one may be sure, or may spe
ulate, that the statement is true.Impre
ision is 
onsidered as arising from the granularity of the languageused to make the impre
ise statements. Thus the statement that \Simon is26 years old" is pre
ise only if we are not interested in Simon's exa
t age interms of years and months. In general, impre
ise information is represented asnon-singleton subsets of values from a given domain, and in extreme 
ases mayen
ompass every possible value of the domain, as in the 
ase in whi
h Simon'sage is 
ompletely unknown.Bos
 and Prade also make the important point that un
ertainty and impre-
ision may arise together in the same pie
e of information. Thus a statementabout Simon's age may be impre
ise, su
h as \between 26 and 28", but this in-formation may not be 
ertain sin
e its 
ertainty will depend upon the knowledgeof the person making the estimate. However, there is a heuristi
 
onne
tion be-tween pre
ision and 
ertainty sin
e very impre
ise statements su
h as \Simon'sage is less than 50" have a greater 
han
e of being 
orre
t than pre
ise ones.Vagueness is a new 
ategory, and in Bos
 and Prade's terms is essentiallyfuzzy valued impre
ision as 
lassi�ed by Bonnissone and Tong. Thus a vaguestatement 
ontains some vague predi
ate su
h as \young". This informationmay be used in a number of ways. For instan
e, given the statement that\Simon is quite young", we 
an use this information to say something about the
ertainty of the un
ertain statement that \Simon is 28 years old". Alternatively,the statement 
ould be used to establish the range of possible values for Simon'sage, based on a fuzzy set interpretation of the term \young". Furthermore, ifwe know that the statement \Simon is 28" is true, then the statement \Simonis young" will be true to some degree.In
onsisten
y is also a new 
ategorisation, and des
ribes the situation in
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h there are two or more 
on
i
ting values for a variable, for instan
e \Simonis 26" and \Simon is over 30". In su
h a 
ase there is no possible way of mergingthe two pie
es of information to obtain a 
onsensus value sin
e there is no valuethat is 
onsistent with both, and it is possible that the in
onsisten
y has arisenfrom a number of sour
es of information. In su
h a 
ase the only solution is toretra
t the information from the least reliable sour
es, given of 
ourse that itis possible to determine whi
h these are.Combining these two slightly di�erent means of 
lassifying imperfe
tions ininformation, we 
an split the area into �ve seperate parts. We have un
ertaintywhi
h arises from the la
k of information about the real world, and whi
h maybe due to subje
tive error on the part of some observer. We have impre
ision,whi
h arises from a la
k of granularity and may be disjun
tive, existential oruniversal, but whi
h is distinguished from vagueness. We have in
ompleteness,whi
h is simply a la
k of relevant information, and we have in
onsisten
y, whi
harises from having too mu
h information from too many sour
es. In addition tothese we also have the term \ignoran
e", whi
h is used in a number of di�erentways in the literature, but whi
h we will use to des
ribe a la
k of knowledge,parti
ularly a la
k of knowledge about the relative 
ertainty of a number ofstatements.2.2 Types and sour
es of imperfe
t information in databasesHaving established some kind of 
lassi�
ation, we 
an use it to attempt to makesome overall sense of the kinds of un
ertainty that people have studied withrespe
t to databases. The types of un
ertainty that may be found spe
i�
allyin relational databases are the 
on
ern of Motro [97℄, who builds upon his earlierwork [98℄. Within relations the value of individual data items may be unknown,the appli
ability of a tuple to the obje
ts 
ontained in it may be vague, andrelations themselves may be un
ertain. Thus the salary of an employee may beunknown, the assignment of employees to proje
ts may be unde�ned, though\employee" and \proje
t" are themselves well de�ned, and the relationshipbetween employee and department might be un
ertain be
ause it might notbe known whi
h of a possible range of departments some employees belongto. Queries may also introdu
e un
ertainty, sin
e the relevan
e of parti
ularqueries to the obje
ts in the database might not be 
ertain. Thus in terms ofour 
lassi�
ation we may have in
omplete, vague and impre
ise data, thoughthe impre
ision may well be related to some degree of un
ertainty. Motro alsoidentifes the sour
es of these imperfe
tions. They may result from unreliablesour
es, su
h as faulty sensors, input errors, or the inappropriate 
hoi
e ofrepresentation.Further dis
ussion of the problems in 
ompiling information 
omes fromKwan et al. [76℄ who suggest a number of sour
es of un
ertainty and in
om-pleteness in databases used in s
ienti�
 appli
ations, taking a database of thehuman genome as an example. They suggest that some data is re
orded sta-tisti
ally and so is inherently un
ertain, whilst other data is deliberately madeun
ertain for reasons of se
urity. Other data may not be measured a

urately,due perhaps to some quantum me
hani
al e�e
t, and so will in
lude some ir-
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ible un
ertainty|a point of view whi
h 
on
ords with mine in suggestingthat \perfe
t information" is an unattainable ideal.In all of these 
ases there is a one-to-one mapping between real values andmeasured values. However, Kwan et al. also 
laim that it is very likely thatsome values will be missed be
ause of imperfe
t measuring equipment. The dif-ferent types of un
ertainty vary from appli
ation to appli
ation. Thus in
om-plete data, due to an inability to re
ord every desired value, will 
hara
terisebiomole
ular databases, and these also have problems with measurement noise,while evasive and untruthful responses from people worried about higher taxesare apparently a big problem in introdu
ing un
ertainty into e
onomi
 data.Un
ertainty in information retrieval is 
onsidered by Turtle and Croft [154℄,who identify three areas in whi
h they 
laim un
ertainty may be found. Firstlythere is the problem of the representation of a do
ument. Given the text ofa do
ument, humans 
annot agree on the set of 
on
epts that should be usedto represent it and automated pro
edures for 
reating des
riptions will intro-du
e 
onsiderable un
ertainty. Furthermore, diÆ
ulties arise when attemptingto represent the degree to whi
h a do
ument addresses the 
on
epts in its de-s
ription. The se
ond problem is the representation of the kind of informationthat a user needs to retrieve. Modelling this need is espe
ially diÆ
ult sin
e ittypi
ally 
hanges during the sear
h pro
ess. Thirdly, it is ne
essary to mat
hneeds to 
on
epts, and the pro
ess of doing so would be likely to be approxi-mate even if 
ontent and needs were pre
isely represented sin
e the needs wouldnot ne
essarily map 
leanly onto the 
on
epts, for example sin
e they may beexpressed in di�erent languages. In our terminology, the problems do not seemto be so mu
h of un
ertainty as of vagueness and impre
ision. The 
on
eptsby whi
h a do
ument is indexed, and the des
ription of the do
ument that theuser wants to retrieve, are limited by the pre
ision of the terms in whi
h thedes
riptions are 
ou
hed and the vagueness of the 
on
epts. However, it is quitelikely that some form of un
ertainty will be introdu
ed in that the impre
isionand vagueness will be subje
t to some degree of subje
tive opinion.3 Imperfe
t information in databasesHaving attempted a form of 
lassi�
ation, we will try to use some elementsof it in order to 
arve up the work that has been done on modelling imper-fe
tion in a database setting into manageable 
hunks. Thus we will 
onsider,in turn, storing in
omplete information, whi
h has strong links with work onnon-monotoni
 reasoning [55℄, impre
ise information, whi
h has been handledby various appli
ations of fuzzy sets [168℄ and fuzzy logi
 [165, 166℄, and un
er-tain information, whi
h has been dealt with using probability [48℄, possibility[40, 167℄ and Dempster-Shafer theory [141℄. It should be noted, however, thatthe di�erent forms of imperfe
tion 
annot be so 
leanly seperated as this de-s
ription suggests. For instan
e, the fa
t that data is impre
ise will lead toqueries that are made upon it returning answers that are un
ertain. In 
on-trast, if data were pre
isely known and the queries were imperfe
t, the answergenerated by the query would not be un
ertain, but would only impre
isely
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h the query.3.1 In
omplete informationMu
h of the work on handling imperfe
t information in databases has 
enteredon the question of how to handle information that is imperfe
t due to its in-
ompleteness, and most of this has been 
on
erned with how to handle missingattribute values. As a result quite a number of s
hemes have been proposed,most of whi
h 
entre around the null value, a pla
eholder for the missing valuewhi
h was initially introdu
ed by Codd [23℄. While the use of a null value seemsa very sensible way of handling the problem of representing in
ompleteness, itintrodu
es a new problem| interpreting what the null value is representing.A number of possible interpretations have been suggested, in
luding \un-known" [23℄ when the value is assumed to exist but is not known, and \nonex-istent" interpretations [81℄. In addition there is the \no information" interpre-tation [169℄ under whi
h a null value is merely a pla
eholder for a value thatis either unknown or non-existent and interpretations that take null as being avalue that is \unde�ned", \inappli
able" or \non-existent". For ea
h of theseinterpretations there is a relational algebra whi
h takes the interpretation intoa

ount in an appropriate way when answering queries. The use of null valueshas also been 
onsidered in the 
ontext of obje
t oriented databases [171℄ withthe 
on
lusion that missing values of obje
t attributes 
an be handled in theway that null values are handled in relational databases, although the added
ompli
ation introdu
ed by inheritan
e must also be taken into a

ount.Related to this work on missing attribute values are the e�orts of Lipski [84℄who 
on
entrated upon the problem of in
ompletely spe
i�ed attribute values,and 
ontrasted the mismat
h between the 
ommon o

urren
e of in
ompleteinformation and the fa
t that at the time no 
ommer
ial databases providedsupport for in
omplete information. Lipski was 
on
erned with the problem ofanswering queries su
h as \List all blue obje
ts" where not all obje
ts in thedatabase have their 
olours listed. Thus all that 
an be said is that there aresome obje
ts that are known to be blue, and some that are known not to beblue. These two sets of obje
ts bound the possible answers to the query in away that suggests similarities with modal logi
 [67℄ and rough sets [111, 112℄.Whilst the pro
edure of establishing the bounds is simple enough for elementaryproperties, su
h as 
olour, it be
omes mu
h harder for queries involving 
ombi-nations of elementary properties. Lipski provides the basis for a system 
apableof answering these more 
omplex queries, giving a simple query language andalgorithms for establishing the bounding values.In a similar vein, Imieli�nski and Lipski [69℄ dis
uss extensions to Codd'smodel of null values in whi
h unknown values are repla
ed by variables. Theuse of variables makes it possible to distinguish the situations in whi
h valuesare unknown but known to be equal and those in whi
h they are unknown andknown to be unequal. The authors show that while Codd's system supportsproje
tion and sele
tion it is unable to support a 
ombined \proje
t and join"operations. They also show that their system 
an support proje
tion, sele
tion,union and join but 
annot, unlike Codd's, support 
ombined \proje
t and se-
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t". Finally they introdu
e a new s
heme, in whi
h the admissable values ofthe variables are made expli
it, and dis
uss how this 
an over
ome the \proje
tand sele
t" problem whi
h their original system su�ers from.Further problems with in
omplete attribute values are 
reated by dedu
-tive databases and these are 
onsidered by Williams and Kong [161℄. Not leastamong the problems is the interpretation of what in
ompletely spe
i�ed dedu
-tive rules mean, and thus what they might be used to infer. The suggestionmade by Williams and Kong is that an in
omplete set of rules be 
onsideredto represent all the 
omplete sets that may be established by repla
ing everymissing value by every possible legal value. Allowable inferen
es are then thosethat are san
tioned by the set of sets, and they distinguish between those thatmay be made from every set, and are thus de�nite, and those that may be madefrom at least one set and are thus possible. Later work extended this 
on
ept to
over time as well [160℄, and de�ned an extended SQL for dedu
tive databaseswhi
h allows the manipulation of both fa
ts and rules [158℄.Another approa
h to handling dedu
tion in the 
ontext of in
ompleteness issuggested by Demolombe and Fari~nas del Cerro [31℄ who advo
ate the extensionof relational algebra with Skolem 
onstants. They devise and �x a number ofproblems with a naive approa
h to a
hieving this, proving that their system issound and 
omplete for a reasonably unrestri
ted 
lass of formulae.Clearly, the kind of querying it is possible to a
hieve with dedu
tive data-bases is more 
omplex and powerful than that possible with ordinary rela-tional databases, and the 
omputational 
omplexity of the kind of reasoningone 
an perform with dedu
tive databases whi
h handle 
an in
ompleteness isthe 
entral 
on
ern of [68℄. In this paper Imieli�nski provides a 
hara
terisationof in
omplete dedu
tive databases and �nds that in general inferen
e in su
hdatabases is unde
idable2. However, he does identify some 
lasses of database,de�ned in terms of the 
hara
teristi
s of the rules that they 
ontain, for whi
hthe 
omplexity results are more promising, espe
ially given the 
omplexity ofsimple queries on su
h databases [1℄.Despite their widespread use, expli
it null values are not the only means ofhandling in
omplete information sin
e it is also possible to try to \�ll in" thein
ompleteness in some way. This is espe
ially possible when questions whi
heli
it yes/no answers are posed. In this 
ase there are two basi
 ways of makingan assumption about the unknown value and using this to reply to a query. The�rst is to impli
itly a
knowledge that some information may not be present.This is known as the open-world assumption, and in some 
ir
umstan
es willmean that a query will not be answered be
ause the database does not 
onatinthe relevant information.A more useful alternative is dis
ussed by Reiter [131℄, who was the �rstto formalise the 
losed-world assumption|the idea that when the database
annot answer a parti
ular query it assumes that the answer is `no'. As Reitershows, the 
losed-world assumption is not infallible, but it does not produ
e2This result is not very surprising sin
e dedu
tive databases are an implementation of asubset of �rst order logi
 whi
h does not improve on the semi-de
idable nature of logi
alinferen
e.
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onsistent answers for databases that are expressed as Horn 
lauses, and so isa reasonable assumption for many 
ases. Clearly the 
losed world assumption is
losely related to `negation as failure' [21℄, the pro
edure that a Prolog systemuses in order to de
ide that a goal is not true if the system fails to prove it,and s
hemes for non-monotoni
 reasoning developed in arti�
ial intelligen
ewhi
h are dis
ussed below. The use of open and 
losed world assumptions alsoprovides a way of interpreting null values [170℄ in whi
h the assumptions mayeither be global and �xed, or lo
al and dependent upon where the null value isen
ountered.Finally, it should be noted that there are other forms of in
ompletenessthan missing attribute values. As Zi
ari [170℄ points out, the use of a relationaldatabase s
heme implies that data has a 
learly de�ned stru
ture, that thisstru
ture �ts into a relational s
hema, and that it may be represented by valuesof attributes in the s
hema. This set of assumptions may fail either be
ause thestru
ture of the data is in
ompletely spe
i�ed, or be
ause the data does not �tinto the relations, as well as be
ause attribute values are not known, and theformer two problems are yet to be addressed.3.2 Impre
ise informationMost of the work on the modelling of impre
ise information within databaseshas involved the use of fuzzy sets [168℄ and fuzzy logi
 [165, 166℄. Fuzzy settheory is a generalisation of normal set theory in whi
h it is re
ognised that thekinds of 
lasses of obje
ts one en
ounters in the real world do not always havepre
isely de�ned 
riteria of membership. Thus it is 
lear that the 
lass of livingthings should in
lude people, dogs and trees and should not in
lude roads andquasars, but whether viruses should be in
luded is more 
ontroversial.One way to resolve this problem is to atta
h a degree of membership toevery obje
t whi
h indi
ates the degree to whi
h it is a member of a givenset. Thus dogs would be members of the set of living things with degree 1,quasars would have a degree of membership 0, while viruses would have adegree of membership somewhere in between. Degrees of membership maybe 
ombined, so that it is possible to 
ompute the degree to whi
h obje
tsare members of logi
al 
ombinations of sets. Degrees of membership may beapplied to predi
ates in �rst order logi
 to form a fuzzy logi
, and relations 
anbe fuzzi�ed in a similar way.There are four distin
t ways in whi
h fuzzy notions may be applied to han-dling un
ertainty in databases. The �rst is to asso
iate a fuzzy degree of mem-bership with ea
h tuple of a relation. This is the approa
h taken, for instan
e,by Baldwin and Zhou [10℄. As Dubois and Prade [37℄ point out, su
h a degreemay be interpreted in a number of ways. It may be taken to be a degree ofasso
iation between the elements of a tuple, that is the degree to whi
h they allbelong together in the tuple, as a measure of 
on�den
e about the informationthat is stored in the tuple, that is as a measure of the 
ertainty of the informa-tion, and as an estimate of the degree to whi
h the tuple is a typi
al exampleof the relation to whi
h it belongs. Baldwin and Zhou opt to take the degree ofmembership atta
hed to a tuple to be the degree to whi
h it satis�es the relation
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onstru
t a fuzzy valued algebra for manipulating 
olle
tionsof relations to 
reate new relations in response to queries. This approa
h hasbeen automated in the programming language FRIL (see Se
tion 4.2).A very similar approa
h is that of Zvelli [172℄ who handles the problemof representing un
ertain information by generalising the relational databasemodel to in
lude fuzzy relations, introdu
ed by means of a fuzzy �rst orderpredi
ate logi
. In doing this he essentially fuzzi�es the whole of the relationalmodel, giving fuzzy relations in whi
h every member of a tuple has a degreeof membership, fuzzy stru
tures in whi
h obje
t names are mapped to fuzzyobje
ts, fuzzy assignment of variables to fuzzy sets, and fuzzy formulae withweights on 
lauses and the use of fuzzy 
onne
tives. All of these are features onewould expe
t from a fuzzy logi
. Zvelli also introdu
es operations whi
h trans-form relations into semanti
ally related relations (similar to fuzzy similarity)and fuzzy satisfa
tion where a fuzzy formula satsi�es a fuzzy stru
ture to somedegree. This work, however, stops short of de�ning a fuzzy query language.The se
ond basi
 approa
h is to use a fuzzy similarity relation to measure theextent to whi
h the elements of an attribute domain may be inter
hanged. Thisis the approa
h taken by Bu
kles and Petry [17, 19℄ while Prade and Testemale[124℄ des
ribe a related idea using fuzzi�ed rough sets whi
h also en
ompassthe modelling of in
omplete information. Under Bu
kles and Petry's approa
h,a relational database is augmented with an expli
it re
ord of the degree ofsimilarity between 
ertain attribute values in a parti
ular domain. These valuesare 
reated by the database designer, but have to 
onform to 
ertain rules whi
hensure that the relation is re
exive, symmetri
, and has a form of transitivity.Sin
e an equivalen
e relation would be re
exive and symetri
, but have a morelimited form of transitivity, it is 
lear that a similarity relation is a generalisationof an equivalen
e relation. The similarity measures allow the usual relationaloperations to be extended to give fuzzy solutions, so that the result of a sele
toperation, for instan
e, will not only give the re
ords that exa
tly mat
h thequery, but also those that mat
h it to some degree.The advantage of using similarity relations is that they enable a form offuzzy pattern mat
hing to be used when answering queries. Thus, to use Bu
klesand Petry's baseball example, when sear
hing for a repla
ement left�elder, amanager would want to 
onsider possible right or 
enter�elders sin
e out�eldersare almost 
ompletely inter
hangeable. Similarly when 
hoosing a repla
ementshortstop, it is quite likely that a se
ond baseman 
ould do a good job, buta 
at
her would never be a possible repla
ement for a pit
her. All of thesepossibilitites 
ould be o�ered by the system by giving the appropriate similaritymeasures.Shenoi and Melton [142℄ extend the work of Bu
kles and Petry by repla
ingsimilarity relations with proximity relations. These relations are a generali-sation of similarity relations, whi
h result from de
iding to partition a s
alardomain with re
exive and symmetri
 relations. Thus the transitivity of Bu
k-les and Petry's similarity relation is dropped, sin
e, it is argued, it is a veryrestri
tive 
onstraint. The result is that all the \ni
e" properties of Bu
klesand Petry's model are retained, so that Shenoi and Melton's model is at leastas good as its prede
essor and, if one reje
ts transitivity, is better. However,
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an equally be argued that the transitivity of similarity relations is not toorestri
tive for 
ertain properties so that its appli
ability is dependent on thesemanti
s of the attributes to whi
h it is applied|a point that seems to havees
aped both Bu
kles and Petry and Shenoi and Melton.Another extension is 
overed in [18℄ in whi
h the basi
 framework is alteredto allow fuzzy numbers to be used to spe
ify the value of attributes. Thisne
essitates the extension of the fuzzy relational algebra that is used to answerdatabase queries to allow the 
ombination of fuzzy numbers, but this work isjusti�ed by the additional fun
tionality, su
h as the ability to establish theaverage of a parti
ular domain, that is provided.A further extension to the similarity-based approa
h is provided by Georgeet al. [54℄ who 
onsider applying it to an obje
t-oriented data model. In orderto do this they �rst fuzzify the notion of a 
lass heira
hy so that a given 
lassneed only be a sub
lass of another to some degree. This in itself is a usefulnotion given the diÆ
ulty with whi
h some 
lass/sub
lass 
lassi�
ations aremade, and allows the de�nition of a fuzzy inheritan
e me
hanism so that thedegree to whi
h some obje
t is a member of its super
lasses 
an be determined.On top of this George at al. build the similarity me
hanism, making itpossible to provide answers that partially mat
h queries as in the relationalsimilarity systems, but whi
h also take inheritan
e into a

ount. Thus, whenreturning the set of all young resear
h sta� from a university database, thesystem would both take into a

ount the fuzziness of the term \young" usingsimilarity mat
hing, but would also return appropriately aged members of the
lass of graduate students sin
e the latter is a fuzzy sub
lass of the former.The third fuzzy approa
h is to make use of fuzzy inferen
e me
hanisms.Thus Leung et al. [80℄ use fuzzy produ
tion rules 
oupled to a standard re-lational database to 
reate a dedu
tive \expert database system" whi
h 
anhandle impre
ise information. The expert system uses fuzzy produ
tion rulesto answer queries, 
alling the database system for information when required.However, the database itself does not have any fuzzy information in it|insteadfuzzy queries are satisi�ed by making several exa
t queries, the translation be-tween fuzzy and exa
t queries being 
arried out by the expert system. A similarpro
edure underlies Guardalben and Lu
arella's information retrieval system[58℄. Fuzzy inferen
e is used to determine whi
h do
uments are most relevantto a request for information, and a query is then formulated for a do
umentbase.The �nal approa
h whi
h is strogly related to the use of fuzzy sets is to usepossibility distributions, whi
h are based upon fuzzy restri
tions, to representun
ertain information. Su
h possibilisti
 approa
hes are 
overed in the nextse
tion. Before we pass on to look at un
ertain information, however, it isworth 
onsidering two other, unfuzzy, approa
hes to dealing with impre
iseinformation.The �rst is provided by Morrissey [95, 96℄, who is 
on
erned with the repre-sentation of disjun
tive information about a single valued attribute, for instan
eknowing that Bill's phone number is one of 909281, 904131, or 909591. This ishandled by allowing attributes to have sets of possible values, and queries areanswered by supplying \possible" and \known" values in a way reminis
ent of
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h is that Morrisseythen pro
eeds to quantify the un
ertainty that this impre
ision introdu
es byusing te
hniques from information theory, e�e
tively hybridising Lipski's workwith more numeri
al methods. He provides two measures for the un
ertaintyof an answer to a query|one assesses how mu
h more information would beneeded to be 
ertain that the attribute in question exa
tly ful�ls the query, andthe other estimates the entropy involved in de
iding that the attribute satis�esa query. Both measures make the strong assumption that a priori all values ofthe attributes are equally likely.The se
ond approa
h is suggested by Gunter and Libkin [59℄ who dis
ussthe same problem from a di�erent angle. They are interested not in the kind ofqueries investgated by Morrissey for whi
h the ne
essary information is presentin the database, but rather in queries that 
an only be answered by reasoningwith the disjun
tive information that is present.3.3 Un
ertain informationUn
ertain information is typi
ally handled by atta
hing a number, whi
h repre-sents a subje
tive measure of the 
ertainty of the un
ertain element a

ordingto some observer, to that element. The way in whi
h the number is manip-ulated depends upon the theory that underlies the number. We will 
onsiderapproa
hes based upon possibility and probability theories, the latter in
ludingthose approa
hes that make use of Dempster-Shafer eviden
e theory.3.3.1 Possibilisti
 databasesPossibility theory [167℄ is built upon the idea of a fuzzy restri
tion. Considera variable that is 
onstrained to take its value from some fuzzy set of values.Any value within that set is a possible value for the variable. However, sin
ethe values have di�erent degrees of membership in the set, they are possibleto di�erent degrees. A value that has a degree of membership of 1 will be
ompletely possible as a value, while a value that has a degree of membershipof 0.1 will be mu
h less possible. In fa
t, the degree of membership of the setof a parti
ular value is taken to be the possibility of the variable taking thatvalue. The use of a possibilisti
 approa
h has been developed over a numberof years by Dubois, Prade and Testemale and some of their work is dis
ussedbelow. For another view of this, and the relation between it and other methods,see [15℄.The initial method suggested by Prade and Testemale [123℄ is the mostobvious one|to atta
h a possibility degree to every value of every attribute,so that one may represent un
ertainty about the age of Simon's 
ar by givinga possibility distribution over the set of possible ages. They also allow thein
lusion of the null hypothesis in the set of values over whi
h the possibilitydistribution is de�ned, so that it is possible to atta
h a value to the hypothesisthat \Simon does not have a 
ar" as well as the hypothesis that \Simon's 
ar is 5years old". Thus the approa
h expli
itly 
onsiders the modelling of in
ompleteinformation, and by sleight of hand transforms a possibly in
omplete database
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omplete one. Now, given the possibility measures of the degree to whi
h
ertain values are held, the query language given by Prade and Testemale allowsthe degree to whi
h a 
ertain tuple must and may satisfy a 
ondition to bedetermined. This approa
h is reminis
ent of that of Lipski [84℄, but quanti�esthe degree of satisfa
tion.This work is extended in [125℄ to 
over multivalued attributes. Thus thevalues over whi
h the possibility distributions are de�ned may be fuzzy, so that,for instan
e, we 
ould store information about the degree to whi
h \Simon isold" is known to be possible. This represents a useful generalisation of theoriginal approa
h sin
e it allows the method to be applied to \linguisti
" values,making it possible to argue that information represented in a form of naturallanguage may be represented.The paper also dis
usses ways to represent 
onstraints on the value of anattribute and between the values of two attributes in su
h a way that the
onstraint is not stri
tly enfor
ed, but merely serves to alter the possibilityof 
ertain values being adopted, and a query language is developed that 
anmanipulate the possibility values. This generalised method is then applied tothe problem of retrieving do
uments using vaguely spe
i�ed information [126℄.The approa
h is related to fuzzy pattern mat
hing [43℄.Prade [122℄ dis
usses the ways in whi
h the use of possibility theory to modelun
ertainty in databases is related to the approa
h taken by Lipski [84℄. Heshows how Lipski's approa
h may be 
aptured by using possibility degrees of 0and 1, and then generalises this to use intermediate degrees. Results are givenfor establishing the upper and lower measures in the 
ases that the attributeson whi
h the query is made are independent, dependent, or have some fuzzyrelation that relates them.3.3.2 Probabilisti
 databasesThe simplest possible method for using probabilities to quantify the un
ertaintyin a database is that of atta
hing a probability to every member of a relation,and to use these values to provide the probability that a parti
ualr value is the
orre
t answer to aprti
ualr query. This is exa
tly the 
ourse proposed by Wong[162℄ who shows how the relational model may be modi�ed to take a

ount ofprobabilisti
 information and to provide answers to queries.Cavallo and Pittarelli [20℄ take a similar 
ourse giveing proje
tion and joinoperations for relational databases systems augmented with probability mea-sures. They also dis
uss in some depth the use of information theoreti
 mea-sures of information, in parti
ular Shannon entropy, and show how the infor-mation loss introdu
ed by proje
tion and join operations may be 
al
ulated.Throughout the paper Cavallo and Pittarelli stress that their system is 
om-pletely general, and may be used to 
ombine probabilisti
 and fuzzy approa
hes,but unfortunately they give no inkling of how this may be done. In later papersthe approa
h is extended to 
over the 
ase in whi
h only the bounds on theprobability of an event are known [115℄, and to extend the relational algebra toprovide de
ision support [114℄.Another similar approa
h, but one applied to obje
t oriented models, is
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t, the un
ertainvalues of attributes are modelled by allowing them to have ranges of values, in-
luding the null value, a
ross whi
h a probability distribution is de�ned. How-ever, this is not all that Kornatzky and Shimony o�er. They are interested inun
ertain inheritan
e as well, and so want to be able to �nd the probabilitythat a given obje
t is a member of 
lass Ci given that it is a member of Cj .They provide a me
hanism for doing this, provided that the 
lass heira
hy doesnot allow multiple inheritan
e, along with a system for answering 
onjun
tivequeries about the probabilities of parti
ular obje
t attributes having parti
ularvalues.Other relevant work has been 
arried out by Ng and Subrahmanian whohave 
onsidered the use of probabilities in dedu
tive databases and logi
 pro-grams [101, 104℄. To do this they allow logi
al 
lauses to be annotated witha probability interval, and provide rules for establishing the bounds on 
ombi-nations of 
lauses, that do not make the kind of restri
tive assumptions aboutthe independen
e of 
lauses required by previous e�orts [46℄. The propagationrules are ba
ked up by a full proof pro
edure, �xpoint theory, and a formalmodel theory whi
h is shown to be probabilisti
.This work is extended in [103℄ to 
over the use of nonmonotoni
 negation,whi
h makes it possible to 
apture some kind of default reasoning, and in [102℄to 
over obje
tive probabilities. Now, it might not seem that obje
tive proba-bilities raise any problems not 
overed by a s
heme that 
an handle subje
tiveprobabilities, but this is not the 
ase (due to a te
hni
al hit
h with Herbranduniverses). Despite this problem Ng and Subrahmanian provide a means ofanswering queries and ensuring the 
onsisten
y of the database when obje
tiveprobabilities are used.Barbara et al. [11℄ develop a rather di�erent probabilisti
 model. Givena parti
ular relational tuple, it is possible to spe
ify a probability distributionfor the values of a given attribute. Thus if it is pre
isely known that employeeJohn Smith is in the Toy Department, but there is un
ertain knowledge abouthis sales for the year, this information is modelled by providing a probabilitydistribution a
ross the possible values. The paper gives a de�nition for suit-able Proje
t, Sele
t and Join operations whi
h largely respe
t the probabilisti
semanti
s given to the relations|where they di�er it is be
ause of ignoran
eabout the distribution, and this seems a

eptable. What is parti
ularly inter-esting about this approa
h is that Barbara et al. are 
on
erned with how tohandle ignoran
e about what probabilities to atta
h to parti
ular fa
ts, andre-invent a part of the Dempster-Shafer theory [141℄ in order to do so.Writing a few years later, and in apparent ignoran
e of Barbara et al.'s work,Lee [79℄ deals with the same problem and proposes the same solution3. He,however, is aware of Dempster-Shafer theory, and uses it to de�ne a general re-lational algebra that allows the belief and plausibilities of 
omplex queries to beestablished from those of their 
onstituents. The modelling of ignoran
e is also
onsidered by S
ho
ken and Hummel [140℄ who also use the Dempster-Shafer3\Hegel remarks somewhere that all the great events and 
hara
ters of world history o

ur,so to speak, twi
e." (Karl Marx, The Eighteenth Brumaire of Louis Bonaparte)
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on
ern is to pool expert opinions about the relevan
e ofdo
uments in a retrieval system, many of their 
on
erns are equally appli
ableto other database systems.Another type of probabilisti
 model is due to Van Rijsbergen [132℄ whointrodu
es the idea of using a logi
 for information retrieval, that is a logi
that mat
hes keywords in a query to keywords in a do
ument to de
ide whi
hdo
ument in a large 
olle
tion is most relevant to a parti
ular user. To do thishe introdu
es a form of impli
ation \!", whi
h is unde�ned but distin
t frommaterial impli
ation, su
h that:fset of keywordsg ! queryThis impli
ation is then asso
iated with the 
onditional probability of the querygiven the keywords, p(query j fset of keywordsg), and a possible world seman-ti
s introdu
ed in order to allow the estimation of p(x j y) = p(y ! x). Thissemanti
s is dependent upon the notion that the 
ertainty of y ! x is depen-dent upon the amount of additional information that is required to establishthe truth of y ! x. Van Rijsbergen's idea is extended by Nie [105℄ who bringsin ideas from modal logi
, asso
iates a possible world with the list of keywords,and then uses a generalised a

essibility relation to estimate the degree of 
or-responden
e between the keywords.Finally, we should brie
y mention the work of Kie�ling and 
olleagues [71℄who have introdu
ed un
ertainty into inheritan
e relations in a similar way tothat suggested by George et al. [54℄, but using a probabilisti
 measure of thedegree to whi
h it is 
ertain that a property is inherited.3.4 SummaryTo summarise, there are four basi
 ways in whi
h we 
an handle imperfe
tinformation and all the methods we have dis
ussed involve variations on one ormore of them. We 
an: (1) use a number or symbol to indi
ate the degree towhi
h a given attribute is known to satisfy a relation, (2) use a number or symbolto indi
ate the strength of the relation between attributes, (3) use a numberor symbol to indi
ate the strength of inheritan
e, or (4) derive the appropriatenumber or symbol to result from a query. Di�erent methods simply providedi�erent me
hanisms for doing some or all of these things, and give di�erentmeanings to the numbers or symbols that are provided. For instan
e, we 
anuse null values to indi
ate that a given attribute (telephone number) withina relation (employee) has a value that is unknown, or we 
an use probabilityof 0.8 to indi
ate that a parti
ular instantiation of an attribute (a parti
ularnumber) in a given relation is known to be very likely to be 
orre
t. Oftena 
hoi
e of one way of modelling for
es the 
hoi
e of others. Thus the use offuzzy sets to model the degree to whi
h attributes satisfy relations will impose
onstraints upon the way in whi
h various database operations, su
h as Proje
tand Join, are 
arried out, and similar 
onstraints are imposed by the use of thevarious types of null values to 
omplete relations.
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t information in arti�
ial intelligen
eAs is the 
ase within the database 
ommunity, there is a split in the arti�
ialintelligen
e 
ommunity between those who deal symboli
ally with the problemof in
omplete information, and those who deal numeri
ally with the problem ofimpre
ise and un
ertain information. This split is largely histori
al, and stemsfrom the s
hism between mainstream pra
tioners of arti�
ial intelligen
e whos
orned quantitative approa
hes and those who 
hampioned numeri
al methodsof handling un
ertainty. As a result of the split, work on in
omplete informationand that on un
ertain information has largely taken pla
e with no regard forthe other, and it is only 
omparatively re
ently that work has begun on relatingthe two. As a result mu
h of the work on 
ombining the approa
hes is ratherpreliminary, and we thus present the methods seperately.Firstly we 
onsider the major te
hniques for handling in
omplete informa-tion, all of whi
h are nonmonotoni
 logi
s. That is, in general, they are methodsbased upon 
lassi
al logi
 in whi
h the ususal inferen
e me
hanism is augmentedwith some method for making assumptions about missing pie
es of information.Whereas 
lassi
al logi
 has the property that adding formulae 
an never makeold 
on
lusions invalid, adding a formula in a nonmonotoni
 logi
 
an violate anassumption and so 
ause a 
on
lusion to be withdrawn (and hen
e the name).Thus, to some extent, non-monotoni
 logi
s are extensions of 
lassi
al logi
s.However, there are also non-monotoni
 logi
s that are weaker than 
lassi
allogi
 in that many of the theorems of 
lassi
al logi
 are not true of them.Having 
overed the main symboli
 methods, we then take a look at thestate of the art in numeri
al methods where there is work both on 
ombininglogi
al methods with numeri
al quanti�ers and on the use of pure numeri
alte
hniques. The former has mu
h to re
ommend it to those interested in de-du
tive reasoning, but the mismat
h between logi
al inferen
e and the methodsused to propagate the numbers 
an 
ause problems. As a result the 
ommunityhas 
on
entrated largely upon purely numeri
al te
hniques. Mu
h re
ent workhas 
entred upon using network models to represent the dependen
ies betweenrelevant fa
ts, and the use of su
h models has been 
ru
ial in establishing thehandling of un
ertainty as a major sub�eld of arti�
ial intelligen
e. However,the use of network models has some serious problems, and these and their pro-posed solutions are also dis
ussed.Finally, we turn to a 
losely related set of approa
hes that have been de-veloped over the last few years. These are methods based upon systems ofargumentation, and they provide a very general framework for reasoning thatenable the representation of both numeri
al and symboli
 information. Theythus represent a form of integration between the approa
hes to in
omplete andun
ertain data, and thus seem parti
ularly appropriate for use in dedu
tivedatabases in whi
h both types of imperfe
t information must be handled.4.1 In
omplete informationFrom the point of view of the arti�
ial intelligen
e 
ommunity, the problem ofhandling in
omplete information is bound up with the problem of representing
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ality and prototypi
al obje
ts. For instan
e, to takethe usual example, we know that, generally speaking, birds 
y. Thus, when
onfronted by a parti
ular bird Tweety, one naturally assumes that Tweety 
an
y, although we do not know this for sure, and despite the fa
t that there aremany types of bird (penguins, dead birds, and birds whose feet have been set in
on
rete are the most 
ommonly quoted ones) that 
annot 
y. This assumptionmay be used to draw new 
on
lusions, about the wisdom of letting Tweety outof her 
age when the window is open for example, and as the basis for makingde
isions based on those 
on
lusions.However, it is also possible that the assumption is invalid, as in the 
asethat Tweety's wings have been 
lipped pre
isely be
ause of her predeli
tion foropen windows, and we have no problem in revising 
on
lusions and de
isions inthe light of this new information. Now, it turns out that this kind of reason-ing, involving making assumptions and then revising beliefs in the light of newinformation, 
annot be 
aptured in 
lassi
al logi
 be
ause the monotoni
ity of
lassi
al logi
 prevents 
on
lusions being withdrawn. As a result, the arti�-
ial intelligen
e 
ommunity has invested a lot of time and e�ort in produ
ingnonmonotoni
 logi
s.In this se
tion we present a brief des
ription of three of the original non-monotoni
 formalisms and some of their des
endents. There are many othervarieties of nonmonotoni
 logi
. Some are 
overed in the 
olle
tion edited byGinsberg [55℄, others may be found in the books by Brewka [14℄ and Besnard[13℄ or the re
ent spe
ial issue of the Journal of Applied Non-Classi
al Logi
s[22℄.One of the �rst nonmonotoni
 systems to be proposed was Reiter's defaultlogi
. This augments standard �rst order logi
 with a set of default rules whi
hexpli
itly state what assumptions may be made. Thus, if we want to make itpossible to infer that a given bird 
an 
y, unless we have information to the
ontrary, we 
an write the default rule:bird(x) : Mfly(x)fly(x)where the M is an operator read as `it is 
onsistent that', and \bird(x)" and\fly(x)" represent the statements \x is a bird" and \x 
ies", respe
tively. Thisdefault rule allows the tentative 
on
lusion that an individual 
an 
y to bedrawn if it is known that the individual is a bird, and may be paraphrased \ifit is known that x is a bird, and it is 
onsistent that x 
ies, then assume thatx 
ies". The statement of rules outside the logi
 that say how assumptions 
anbe made is very appealing, and default logi
 has, perhaps as a result, provedvery enduring.It has, however, had some te
hni
al problems. The major one is that there isno 
onstru
tive pro
edure for building all the 
onsequen
es of a set of defaults,and this has frustrated attempts to build an eÆ
ient implementation. The othermain problem is the interpretation of the notion of 
onsisten
y that is impli
itin the idea of a default. Given that �rst order logi
 is only semi-de
idable, it isnot ne
essarily possible to de
ide, for instan
e, that Tweety 
annot 
y, and so it
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essarily 
lear whether it is possible to apply a default about Tweety'sability to 
y.Another early s
heme for nonmonotoni
 reasoning is 
ir
ums
ription [89,88℄|an attempt to formalise 
losed world reasoning in a way that defeats someof the problems of simple te
hniques su
h as the 
losed world assumption [131℄and negation as failure [21℄ where the failure to derive parti
ular fa
ts allowstheir negation to be assumed. Unlike other te
hniques, 
ir
ums
ription appliesa set of rules of 
onje
ture that are based on synta
ti
 manipulation rather thanappeals to unde
idable provability or 
onsisten
y.Predi
ate 
ir
ums
ription [89℄ was the �rst variant to be introdu
ed, and
onsequently is the most studied of the di�ering varieties of 
ir
ums
ription.Predi
ate 
ir
ums
ription allows expli
it assumptions of 
ompleteness to bemade as required, providing a way of applying a 
losed world assumption toa parti
ular predi
ate at a given moment. A s
hema for a set of �rst ordersenten
es is generated, and then instantiated repla
ing predi
ate variables withparti
ular predi
ates, the 
hoi
e determining the 
omposition of the extensionof the 
ir
ums
ribed predi
ate. This has the e�e
t of asserting that the onlypositive instan
es of that predi
ate that exist are those known to exist at thattime within the 
ir
ums
ribed domain. Any instan
es that are not known tobe positive are assumed to be negative.Predi
ate 
ir
ums
ription has been amended and re�ned to handle variouste
hni
al diÆ
ulties that have been dis
overed in the years sin
e the formalismwas introdu
ed. These in
lude formula 
ir
ums
ription [88℄ whi
h permits ar-bitrary predi
ate expressions to be 
ir
ums
ribed, and whi
h forms the basisof a simple means of implementing 
ommonsense reasoning whi
h is 
ommonlyknown as abnormality theory. This allows the \birds 
y" example to be en
odedas: bird(x) ^ :abnormal(x) ! flies(x)and if penguins are distinguished as abnormal birds formula 
ir
ums
riptiondoes not san
tion the inferen
e that penguins 
an 
y. There is also pointwise
ir
ums
ription [82℄ in whi
h the 
ir
ums
ription, instead of being 
arried outeverywhere simultaneously, is performed by minimising one point at a time,and domain 
ir
ums
ription [47℄ whi
h provides a formalisation of the so 
alleddomain 
losure assumption; the assumption that the only individuals that asystem must deal with are those expli
itly named.While default logi
 attempts to formalise parti
ular assumptions, and 
ir-
ums
ription the basis for assuming that something is not true, a third approa
hwas proposed that attempted to formalise nonmonotoni
 reasoning using thenotion of what is known. Following the initial attempts by M
Dermott andDoyle [91, 90℄, Moore proposed his autoepistemi
 logi
 [94℄ whi
h used ideasfrom modal logi
 to authorise 
on
lusions that are either ne
essarily true, ornot ne
essarily untrue.Moore 
laims that autoepistemi
 reasoning is the kind of reasoning intu-itively employed in many situations, giving the example of how he determineswhether or not he has an elder brother. He argues that he does not knowthat he has no elder brother be
ause he has been expli
itly told that no su
h
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arefully sifting all the available eviden
e, but simply be-
ause if he had an elder brother he would know about him. In its originalform autoepistemi
 logi
 is a purely propositional modal logi
, with no meansof in
orporating quanti�ers or individual variables. Konolige [73, 72℄ extendsMoore's approa
h to a �rst order system initially [73℄ to a a system that doesnot allow \quantifying in" to the s
ope of a modality and later [72℄ to a full�rst order system.4.2 Impre
ise informationThe pioneering work in 
ombining fuzzy sets and logi
 to allow the representa-tion of and inferen
e with vague information was performed by Zadeh [165, 166℄.He des
ribed a system whi
h generalised both two-valued and multi-valued logi
by allowing all predi
ates, and the relations between predi
ates, to be des
ibedby fuzzy sets. Thus within fuzzy logi
 it is possible to provide a mathemat-i
al des
ription of the statement: \If Hans has a new red Pors
he then it islikely that his wife is young" whi
h Zadeh 
laims is able to take a

ount of thenatural fuzziness of the terms \new", \likely" and \young". Representation ishandled by de�ning fuzzy sets for these fuzzy terms, and inferen
e by applyingmethods for infering the fuzzy term that is implied by what is known. A num-ber of methods are proposed, in
luding one that involves solving a non-linearprogram, but the most widely used is a generalisation of the 
lassi
al inferen
epattern of modus ponens. This allows the inferen
e of one fuzzy predi
ate fromanother and a fuzzy impli
ation that relates them.The idea behind Zadeh's proposal is extremely appealing, and many peoplehave been moved to build upon his work. There are many appli
ations of fuzzylogi
 (see for example those 
olle
ted in [86℄), espe
ially in the domain of 
ontrolwhere a vast number of su
esses have been reported. There has also been a lot oftheoreti
al work, ranging from philosophi
al assaults on the basis of the theory[45, 61℄ and their rebuttals [42, 51℄, to detailed elaborations of the nature ofthe 
onne
tives it uses [146℄.Building on the work on fuzzy logi
, there have been several approa
hesto providing some form of fuzzy logi
 programming environment. Indeed, one
ould 
onsider FRIL as su
h although as Baldwin and Zhou [10℄ point outwhen introdu
ing it, the system is based upon the mathemati
s of relationsrather than the predi
ate 
al
ulus. As dis
ussed above, in FRIL one spe
i�esa database of fa
ts and rules using a fuzzy relational algebra, and then queriesthe database. In order to answer the query FRIL 
ombines relations and thefuzzy degrees of membership of the members of the relations to 
ompute whi
hfa
ts �t the query and to what degree. Thus FRIL is inherently fuzzy, but 
analso deal with point, interval and fuzzy probabilities [9℄.A subsequent development [8℄, whi
h has now been 
ombined with the fuzzyrelational inferen
e me
hanism des
ribed above, is support logi
 programming.In this system ea
h 
lause is quanti�ed with a support pair, that is a pairof numbers whi
h represent the possible and ne
essary degree to whi
h thestatement is supported. Roughly speaking the possible support is the largestdegree of support that might be provided for a 
lause and the ne
essary support
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tions on Knowledge and Data Engineering, 8(3):353|372. 20is the smallest degree of support that is known to be provided. These degrees ofsupport are related to possibility measures (and their dual ne
essity measures)and the measures introdu
ed in Shafer's [141℄ theory of eviden
e.Another approa
h to providing a fuzzy logi
 programming is FProlog [87℄, afuzzy prolog interpreter. This builds the asso
iation of a degree of membershipto 
lauses into the proof me
hanism, so that ea
h time a fuzzy fa
t is used tode�ne a subgoal the degree of membership of the goal within the set of true fa
tsis adjusted a

ording to the rules of fuzzy logi
. This means that the degree ofmembership is in fa
t a degree of truth. In the FProlog system ba
ktra
kingmay be triggered by partial failure when a truth value falls below a 
ertainthreshold, and the not operator is extended so that if the query X su

eedswith truth value v, then not(X) su

eeds with degree 1� v.4.3 Logi
al approa
hes to un
ertain informationOne obvious approa
h to handling dedu
tive reasoning with un
ertain infor-mation is to take a logi
 and atta
h some measure of validity to every pie
e ofinformation with whi
h one wants to reason. Just as in Se
tion 3.3 this measure
an be a probability, possibility, Dempster-Shafer belief, or indeed any otherkind of measure that one desires to use, and ea
h measure will di
tate di�erentrules for 
ombining the measures when reasoning. A variation on this themeis the use of augmented logi
 programming systems, and these are 
learly veryrelevant from the point of view of dedu
tive databases sin
e there is a 
lose
onne
tion between logi
 programs and 
ertain 
lasses of dedu
tive database.Thus we will 
over both the use of augmented logi
s and logi
 programminglanguages in this se
tion.4.3.1 Possibilisti
 logi
While fuzzy logi
 may be used to represent non-Boolean properties whi
h maybe satis�ed to some degree, possibility theory is a natural tool for representingthe un
ertainty in Boolean properties that is 
reated by in
omplete knowledge[42℄. To handle this un
ertainty in a logi
al framework, possibility theory hasbeen extended by Dubois and Prade [41℄ to 
reate a numeri
ally quanti�edlogi
 
alled possibilisti
 logi
. In this formalism either a possibility measureor a ne
essity measure4 is atta
hed to every formula of 
lassi
al �rst orderlogi
. Extensions of 
lassi
al inferen
e patterns su
h as modus ponens and theresolution prin
iple that in
lude the propagation of the possibility measures areprovided, and the approa
h provides a means of performing theorem provingunder un
ertainty [36℄.Possibilisti
 logi
 has several advantages over probabilisti
 logi
. In par-ti
ular the measure atta
hed to a formula is not ne
essarily redu
ed when theformula is 
ombined with others, and the possibility and ne
essity bounds onthe measure may be obtained with more pre
ision than the probabilisti
 ones.Further extensions to the system may be found in [35, 39℄, in
luding a resolution4Ne
essity measures are the dual of posibility measures and quantify the degree to whi
hpropositions are known to be true.



IEEE Transa
tions on Knowledge and Data Engineering, 8(3):353|372. 21prin
iple that allows possibility weighted 
lauses to be 
ombined with ne
essityweighted ones, and a s
heme for in
luding fuzzy predi
ates. Furthermore the
ompleteness of resolution in possibilisti
 logi
 has been proven, and a s
hemefor representing default information in possibilisti
 logi
 has been proposed [12℄.There has also been progress in providing a logi
 programming languagein whi
h un
ertainty is quanti�ed with possibility values. Poslog [34℄ is anautomated theorem prover based on resolution refutation for �rst order 
lausesweighted with lower bounds on their possibility or ne
essity degree. The systemis 
omplete in that it has been proved that it �nds optimal refutations|thoserefutations with maximal possibility or ne
essity degrees.Extending this Dubois et al. [32℄ lay the groundwork for a logi
 program-ming environment based on Prolog in whi
h 
lauses may be quanti�ed withpossibility measures. This allows the logi
al 
on
lusions of a set of quanti�ed
lauses to be obtained along with their asso
iated degrees of possibility. Ina similar vein the same authors [33℄ dis
uss a possibilisti
 truth maintenan
esystem whi
h maintains the degree of possibility of every pie
e of informationthat it deals with, allowing reasoning that 
ombines handling un
ertainty andmaintaining 
onsisten
y. Indeed, the degrees of possibility are used in order toresolve 
on
i
ts between in
onsistent pie
es of information.4.3.2 Probabilisti
 logi
sThe 
lassi
 paper on reasoning 
ombining logi
 and probability is due to Nilsson[107℄, though unbeknownst to him he was restating for an arti�
ial intelligen
eaudien
e work that was originally 
arried out by Smith [147℄ and de Finetti [48℄.The paper 
onsiders the 
onsequen
e of 
ombining the probabilities assigned toP and P � Q when the two are 
ombined using modus ponens. In general theprobabilities on a set of senten
es do not 
ompletely determine the underlyingjoint distribution so that it is only possible to determine the bounds on derivedsenten
es. Thus: p(P ) + p(P � Q)� 1 � p(Q) � p(P � Q)The advantage of the approa
h is that it makes no assumptions about the jointdistribution over all the senten
es, the disadvantage is that only the boundson probabilities may be 
omputed. A se
ond problem is that it is possible toargue that p(P � Q) is not a good representation of the 
ertainty of the rule\if P then Q". In a more re
ent paper Nilsson [106℄ suggests that asso
iatingthe 
onditional value p(Q j P ) gives more natural results whi
h in
lude:p(Q j P )p(P ) � p(Q) � 1M
Leish [92℄ extends Nilsson's method to 
over 
ases in whi
h p(P )+p(P �Q) < 1 sin
e these give invalid results for reasonable probability values in Nils-son's s
heme. This extension allows the representation of default information(assumptions that may be 
ontradi
ted at a later stage). A further exten-sion of Nilsson's method repla
es the probabilities of P , P � Q and Q withthe relevant belief fun
tions [141℄ allowing M
Leish to explore notions of belief
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tion entailment, a me
hanism whi
h di�ers from probabilisti
 entailment.It is worth noting that in doing so she uses both the open and 
losed world as-sumptions. She has also [93℄ 
onsidered how probabilisti
 logi
 may be used tohandle default information by allowing in
onsistent information and suggestinghow probabilisti
 entailment may be 
arried out in su
h a situation.Another attempt to 
ombine logi
 and belief fun
tions is SaÆotti's belieffun
tion logi
 [133, 134℄. In this system every senten
e of a �rst order logi
language is quanti�ed with a pair of numbers [a; b℄ whi
h respe
tively representthe degree to whi
h the senten
e is known to be true, and may be true. Thequanti�
ation makes the logi
 a generalisation of standard �rst order logi
 thatboasts a well de�ned semanti
s and notion of dedu
tion in whi
h the senten
esthat may be derived are determined by the rules of the underlying logi
 andthe degrees to whi
h they are believed are determined using the rules of belieffun
tions. The logi
 also handles reasoning by 
ases and by allowing belief inthe 
ontradi
tion5 provides a means of 
oping with partial in
onsisten
y in asimilar way to that proposed for possibilisti
 logi
.Further 
onsiderations are provided by Ba

hus [7℄ who examines the seman-ti
s of probabilisti
 logi
 in some detail. He argues that a reasonably expressivelanguage will need to be �rst order, and that a �rst order language will needa more sophisti
ated means of establishing the probabilities of its 
onstituentsenten
es than generating a distribution over possible worlds. He then proposesa solution and dis
usses its use in the representation of defaults and statisti
alknowledge of the form \90% of birds 
y". Halpern [62℄ takes this solution, andarguing that it is often useful to 
ombine reasoning using statisti
al informationand information about beliefs, whi
h is essentially a distribution over possibleworlds, shows that it is possible to �nd a 
ommon framework for both kinds ofknowledge. The 
oupling of probability with logi
 has also been 
onsidered byHeinsohn [64℄, although his work is more 
on
erned with drawing 
on
lusionsabout members of terminologi
al heirar
hies than general �rst order te
hniques,and so is in some ways 
loser to Kei�ling et al. [71℄ than Ba

hus and Halpern.Another interesting advan
e in 
ombining probabilisti
 methods with de-du
tive te
hniques is made by G�untzer et al. [60℄. They deal with rule-basedreasoning where every rule in the knowledge base has an asso
iated 
onditionalprobability, and provide a set of inferen
e rules for dedu
ing 
onne
tions be-tween various events that are impli
it in the knowledge base. These inferen
erules enable the bounds on the 
onditional probabilities of these new 
onne
-tions to be dedu
ed, and the soundness of these bounds is proved. Clearly thenew 
onne
tions and their asso
iated probabilties allow new fa
ts to be dedu
edalong with a probabilisti
 quanti�er. It seems at �rst as if this formalism is anew probabilisti
 logi
.However, the kind of links over whi
h the probabilities are propagated arenot logi
al impli
ations, but a form of \
ausal" relation su
h as that handledby Pearl [113℄. Thus the formalism provides an alternative notation for proba-bilisti
 
ausal networks, providing a means of performing 
orre
t probabilisti

al
ulations without expli
itly building the 
ausal network. Like 
ausal net-5As suggested by Smets [145℄
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edurefor any one query may not be used to answer another query. In [153℄ the sameauthors demonstrate that their approa
h 
an handle multiply 
onne
ted net-works to give the same results as Lauritzen and Spiegelhalter [78℄, while arguingthat it is really just a more a

urate version of Quinlan's INFERNO [129℄.This work bears many similarities to that of Amarger et al. [4℄. Althoughthey tie their work in with the use of default rules, what Amarger et al. areessentially doing is to take a series of propositions, whose relationships arestated using impre
isely known probabilities, and inferring new probabilisti
relations between them. Thus given the information that between 70 and 90%of students do sport, and between 85 and 90% of students are young, theyshow how to 
on
lude what proportion of young people do sport. The mostinteresting point about the method that they propose, whi
h is based uponlo
al rules for 
al
ulating the tightest possible bounds just as G�untzer et al.'sis, is that they require no prior probabilities, and that the existen
e of loops inthe graph of dependen
ies between propositions serves to improve the bounds.4.4 Numeri
al approa
hes to un
ertain informationThe other main approa
h to handling un
ertainty is to deal with purely numeri-
al methods, 
on
entrating on 
ombining pie
es of eviden
e for some 
on
lusion,performing inferen
e in ways that are derived from 
lassi
al statisti
s. Thusthere is no idea of dedu
tive reasoning|rather there is an adjustment of someunderlying distribution whi
h makes parti
ular options the 
orre
t 
on
lusions.For a number of years the use of methods su
h as these were s
orned by thearti�
ial intelligen
e 
ommunity, but due to pioneering work on a novel formof representation known as Bayesian belief networks [113℄, purely numeri
almethods have be
ome well a

epted.4.4.1 Reasoning with belief networksThe major reason that probabilisti
 methods were initially shunned by thearti�
ial intelligen
e 
ommunity was be
ause they were thought to be impra
-ti
al. If we have a system that involves n variables we need 2n probabilitiesto fully spe
ify the probabilisti
 relationships between those variables. For ex-pert systems in whi
h n is reasonably large this suggests that vast numbers ofprobabilities need to be eli
ited and then updated during inferen
e.What Pearl [113℄6 realised that although this is true in general, in pra
ti
eone often needs many fewer probabilities. This is be
ause the kind of knowl-edge that is represented in arti�
ial intelligen
e systems does not usually involveinter-relationships between many variables. The relationships that do exist, andthus the probabilities that are required, may be exposed by the 
onstru
tion ofa network in whi
h variables are represented by nodes and the expli
it depen-den
ies between them by ar
s. When two nodes are not 
onne
ted it is be
ause6Pearl's original proposal was made in a series of papers in journals and 
onferen
es. Thebook [113℄ 
ontains this material edited together and has be
ome the ben
hmark referen
e forbelief networks.
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Figure 1: Some medi
al knowledgethe value of one node is known to be 
onditionally independent of that of theother. The resulting stru
ture not only identi�es the ne
essary probabilities butmay be used as the basis for 
omputing the updated values during inferen
e,and a s
heme for doing so is provided in [113℄.As an example, 
onsider the network in Figure 1 whi
h represents medi
alknowledge about a set of related 
onditions. From the network we 
an tell thatboth the o

uren
e of in
reased 
al
ium and the o

uren
e of brain tumoursare dependent upon the o

urrren
e of metastati
 
an
er, while the o

uren
eof severe heada
hes is dependent upon the o

uren
e of a brain tumour and theo

uren
e of 
oma is dependent jointly upon the o

uren
e of in
reased 
al
iumand a brain tumour. Thus when eli
ting the probabilities that 
on
ern 
omawe need not bother with metastati
 
an
er or severe heada
hes, redu
ing thene
essary number of probabilities from 25 to 23. Similarly, the graph tells usthat the probabilities of in
reased 
al
ium and brain tumour are 
onditionallyindependent of one another on
e the existen
e of metastati
 
an
er and 
omaare established.Pearl's method for updating values works for a large 
lass of networks|allthose in whi
h there is at most one route between any pair of nodes, but it failsfor networks su
h as those in Figure 1 in whi
h loops o

ur. However, there aremethods for handling su
h networks, the most 
elebrated of whi
h is that ofLauritzen and Spiegelhalter [78℄. It is also worth noting that, despite the fa
tthat their name suggests that these networks are limited to using subje
tiveprobabilities, there is nothing to prevent them being used with experimentallydetermined obje
tive probabilities as is done in the QUALQUANT [152℄ sys-tem. Indeed, as Neapolitan [100℄ has pointed out, most of the names for thesenetworks are misleading, and they should perhaps be renamed as independen
enetworks sin
e what they en
ode is expli
it 
onditional independen
ies betweenvariables.Sin
e they were originally proposed, the use of belief networks has be
omewidespread. There are numerous appli
ations that make use of them, for exam-ple [2, 6, 29, 99, 108℄. They have even been proposed as a means of establishingthe best do
ument to retrieve from a do
ument database [155℄, an information
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ation that 
learly has 
onne
tions with the needs of databaseusers.There are also a number of implementations of the various systems forperforming inferen
e with belief networks. For example, the 
ommeri
al sys-tem Hugin [5℄ implements the Lauritzen and Spiegelhalter algorithm, while theIDEAL system [149℄ implements a wide range of di�erent algorithms many ofwhi
h are spe
ialised for parti
ular types of network. Similar s
hemes have beenproposed for other methods of handling un
ertainty. In parti
ular, Shenoy andShafer [142℄ identi�ed a method for propagating belief fun
tions [141℄ based on aunderlying network representation that 
ould be generalised to propagate prob-abilities [144℄ and possibility values [38, 143℄. This work has been implementedas the Pul
inella system [136, 138℄.4.4.2 Dynami
 
onstru
tion of belief networksNow, there are a number of problems with applying belief networks in thekind of dynami
 environment that exists within a database. The �rst is thatto perform inferen
e with a belief network, one needs a network, and in adatabase environment the usual method of obtaining one, whi
h is to talk to adomain expert, is 
learly not appli
able. Instead, one has to provide a meansof 
onstru
ting the network automati
ally. In re
ent years there has been a
onsiderable amount of work on this question [157℄, and in this se
tion wedis
uss a number of relevant proposals.One of the earliest attempts to provide for automated 
onstru
tion wasthat of Srinivas et al. [150℄ who take a number of di�erent types of qualitativeinformation, su
h as \A is a 
ause of B" or \A is independent of B given C",and use these, along with a bla
k box that tests for independen
e, to 
reatenetworks. Clearly this approa
h �nesses one of the harder problems in ignoringthe test for independen
e, but it is nevertheless obvious that the algorithm thatthey provide 
ould be usefully linked with an automated reasoning system tobuild networks from logi
al statements. In addition, the system is implementedas part of the IDEAL [149℄ pa
kage.In 
ontrast with this \expert 
entered" approa
h, Cooper and Herskovits[26℄ have developed an algorithm that 
an dedu
e the most likely stru
ture ofa belief network linking a set of variables given a database of 
ases of the form\in Case 1, A is present, B is absent, and C is present". The derivation of thenetwork is based upon the assumptions that the database expli
itly mentions allthe relevant variables, the 
ases mentioned in the database are independent, andall the 
ases are 
omplete. This algorithm has been tested on a moderately sizeddatabase of 10; 000 
ases generated by an existing belief network. The algorithmtook around 15 minutes to generate a network that was nearly identi
al tothe original. This 
ompares favourably with their initial experiements with amethod based on �nding the maximum entropy distribution [65℄ for a networkbased on a set of 
ases whi
h took nearly 24 hours to handle the 10; 000 
asedatabase. The same authors [27℄ have also 
onsidered the problem of assessingthe 
onditional probability values ne
essary to perform probabilisti
 inferen
ein the belief network.
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Figure 2: The events surrounding Mr HolmesWen [159℄ takes a slightly di�erent approa
h, starting from a database whi
hre
ords statisti
al data of the form \D and E o

ur with A, B and C on 2048o

asions". Wen dis
usses how to redu
e sets of relations into fourth normalform, whi
h 
orrespond to the 
liques of the equivalent belief network, and fromwhi
h the ne
essary 
onditional probabilities may be learnt. He also dis
ussesmethods, based on the maximum entropy prin
iple [70℄ for 
ompleting sets of
onditional probabilities.The other major disadvantage with network based formalisms is the fa
tthat they are inherently propositional. Consider Pearl's [113℄ seminal exampleabout Mr Holmes and his burglar alarm. Either an earthquake or a burglarywould 
ause the alarm to sound, an earthquake would most likely result ina radio announ
ement, and the sounding of the alarm would 
ause Holmes'neighbour Mrs Gibbon to telephone him at work. This may be represented bya Bayesian network (see Figure 2) and the result used to predi
t the most likely
ause of the alarm sounding given that Mrs Gibbon 
alls.The problem with this model is how to extend it to 
over the 
ase, forinstan
e, in whi
h Dr. Watson, another neighbour who is more reliable than MrsGibbon, also telephones, and the 
ase when Inspe
tor Lestrade, who happens tobe passing, telephones to report a suspi
ious person hanging around the Holmesresiden
e, or even the 
ase when Watson rather than Gibbon is the only one to
all. The model as it stands does not allow universally quanti�ed statementssu
h as \a ringing alarm would 
ause a neighbour to telephone", restri
tingexpressiveness to statements to su
h as \the alarm would 
ause Mrs Gibbon totelephone".SaÆotti and Umkehrer [139℄ address the removal of this restri
tion, pre-senting a method for dynami
ally 
onstru
ting networks suitable for their toolPul
inella. Fa
ts and relations are represented in �rst order logi
, and reso-lution used to build a proof path from whi
h a network 
an be 
onstru
ted.The network may then be fed to Pul
inella for evaluation. The implementationdes
ribed is proven sound and 
omplete for the use of eviden
e theory [141℄ asa means of quantifying the un
ertainty in the fa
ts and relations, though it ispossible to extend the approa
h to other un
ertainty handling formalisms and
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h is adopted by Poole [118, 117℄ who uses �rst order horn
lause logi
 to represent the variables in a belief network and the relationshipsbetween them, atta
hing an asso
iated probability to ea
h. The logi
al 
lausesare then used to dedu
e various fa
ts su
h that the probability asso
iated withthe fa
ts is the probability that would be established for them using the equiv-alent network. Thus the network is never built, but is impli
it in the 
om-putation, and this di�erentiates the approa
h from the earlier work presentedby Hors
h and Poole [66℄ in whi
h horn 
lauses were used to provide generalstatements whi
h were then instantantiated at runtime and used to expli
itly
onstru
t Bayesian networks.Another related method is that of Goldman and Charniak [57℄, who are alsointerested in expli
itly building Bayesian networks in dynami
 environments.Their approa
h di�ers in that they use a spe
ialised network-
onstru
tion lan-guage rather than �rst order logi
, and, being motivated by understandingnatural language, is not goal dire
ted in the same way as the methods listedabove. Given that dedu
tive database appli
ations are likely to be somewhatgoal dire
ted, it seems that this approa
h is not ne
essarily the best, but its
lose relation to work on integrating probability values and truth-maintenan
esystems [77, 128℄ should be noted.Given the dynami
 nature of databases, it is important to remember thatall of the network 
onstru
tion te
hniques mentioned so far build networks thatare 
orre
t at a parti
ular instant in time, but do not allow for 
hanges in thenetwork. Provan [127℄ addresses this problem, using a sensitivity analysis todetermine when better de
isions would have been taken using a di�erent model,and gives an algorithm for performing the updating. The need to update net-works is often due to the fa
t that the problem being diagnosed 
hanges overtime, and so the history of the problem be
omes important. This time depen-den
y is handled in Provan's system Dynasty, whi
h also allows di�erent levelsof granularity of problem des
ription to be 
onsidered during the diganosis.Similar issues are addressed by Dagum et al. [29℄ who synthesize belief net-works with time-series analysis to 
reate dynami
 network models for use infore
asting.Another fa
tor that has been disregarded in all the systems 
onsidered sofar is the problem of seperating model 
onstru
tion from evaluation. In a re-sour
e bound environment this 
ould lead to the query-driven 
onstru
tion of anetwork that 
ould not be evaluated in reasonable time. Goldman and Breese[56℄ 
onsider how to alleviate this diÆ
ulty by integrating the two stages togive an \anytime algorithm" for query evaluation whi
h gives su

essively bet-ter approximations of the answer. In addition to always providing a solution,the method allows useless solutions to be identi�ed at an early stage, and itsdedu
tive style brings the use of numeri
al methods almost full 
ir
le and ba
kto the logi
al methods dis
ussed above.
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 networks and in relational databases.Pittarelli [114℄ pointed out that his probabilisti
 databases allow the 
omputa-tion of the same probability distributions as belief networks given informationabout the dependen
ies between di�erent data. In other words, if the graphi
alstru
ture is known, then the probabilisti
 information that is stored in his sys-tem is suÆ
ient to establish a unique joint probability distribution for all thepie
es of data in the database.Similar �ndings were reported by Studeny [151℄ in his attempt to 
hara
-terise the nature of 
onditionally independent pie
es of information. Despite
oming from a 
ompletely di�erent dire
tion, Studeny spotted a 
lose analogybetween his de�nition of 
onditional independen
e and the idea of embeddedmulti-valued dependen
ies whi
h are a means of des
ribing relational databases.However, he also showed that there were some di�eren
es between the ideas.Finally, in a re
ent paper, Wong et al. [163℄ have shown that bayesian net-works 
an be represented as relational databases. Rather as one might expe
tgiven the work dis
ussed above by Poole [118, 117℄, and the 
lose 
orrespon-dan
e between predi
ates and the tuples in a relational table, it seems that ifa probability distribution is given over a set of relational tables, it is possibleto perform 
orre
t probabilisti
 inferen
e using just the proje
t and join opera-tions that one would expe
t of a relational database. Thus when new eviden
eis obtained its e�e
ts may be propagated through the database in a manner
onsistent with the underlying dependen
ies but without building a network.However, the method does rely upon the prior stru
turing of the relations inorder to represent the 
onditional independen
ies.4.5 ArgumentationAn approa
h that is somewhat related to the 
onstru
tion of belief networks isthat of argumentation, whi
h is dis
ussed in detail by Krause et al. [75℄. Thisapproa
h also has important di�eren
es from most other methods for handlingun
ertainty. The basi
 idea behind argumentation is that it should be possibleto say more about the 
ertainty of a parti
ular fa
t than may be expressedby quantifying it with a number between 0 and 1. In parti
ular, it shouldbe possible to assess the reason why a fa
t is thought to hold, and use thisargument for the fa
t as its quanti�
ation.An argument is thus rather like an endorsement [24℄, though it is morea

urate to think of it as a tentative proof|the proof is tentative be
ause ar-gumentation allows the proof of a fa
t being true to 
o-exist with the proofof it being false, a state of a�airs that is be
oming a

eptable amongst logi-
ians [53℄. The advantage of 
onstru
ting arguments for fa
ts, and using thesearguments as quanti�ers of the 
ertainty of the fa
ts is that it is possible toreason about the arguments themselves. This reasoning about arguments 
anbe used to determine whi
h fa
ts are most a

eptable, and this in turn �rmlysets argumentation apart from the theory of endorsements.
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 of argumentation LA to 
ombine di�erent argumentstogether. Thus it is possible to 
ombine an argument for a proposition A withone for B to get an argument for A and B, or to establish an argument for Bfrom one for A and one for A implies B. Se
ondly it is possible to aggregatearguments together, so that a number of arguments for A 
an be 
ombinedto get a single argument with a suitable strength, for instan
e by applying animproper linear model [30℄ or by 
ounting the number of steps in the argument.The result of the 
ombination 
an then be used to rate A against 
ompeteinghypotheses.Finally, and most interestingly, the stru
ture of arguments 
an be analysed.In this pro
ess, an argument is 
lassi�ed into one of six 
lasses based uponits \a

eptability", whi
h is determined by examining the arguments for andagainst given proposition to see whether any of the steps in the argumentsthemselves have any arguments against them. The advantage of this approa
his that the degree of 
on�den
e of the proposition is determined by the stru
tureof the reasoning rather than being imposed by the assignment of a numeri
almeasure.A number of other authors have proposed systems of argumentation, oftenas a way of formalising default reasoning, whi
h have strong relations to thesystem des
ribed above.Loui [85℄ des
ribes just su
h a system. He in
orporates rules that are expli
-itly denoted as being defeatable, and dis
usses ways of 
onstru
ting argumentsfrom su
h rules, along with 
riteria for resolving 
on
i
ts between argumentsbased on preferen
es between premises and the amount of eviden
e used bythe arguments. These meta-level reasons for preferring one argument over an-other are interesting be
ause they 
ombine rules of thumb su
h as the shortestpath heuristi
 equally with better founded notions of arguments atta
king ea
hother's premises.A method that is more 
losely related to 
lassi
al �rst order logi
 is thatof Poole [119℄ who builds his system on top of earlier work on the Theorist[121℄ system whi
h 
arries out default reasoning and diagnosis by identifyinghypotheses whi
h are 
onsistent with what is known. This method of pro
eed-ing has been shown [120℄ to be equivalent to default logi
. Poole 
onsiders whatshould be predi
ted when 
lassi
ally in
onsistent information, su
h as the fa
tthat both A and :A are true, is dedu
ed, and 
onsiders a number of di�er-ent ways of interpreting the 
ontradi
tion. Thus it is possible to say that the
ontradi
tion indi
ates that either A or :A may be true, or that neither is de�-nitely true. It is also possible to argue that even though there is a 
ontradi
tion,some things may be still be predi
table, for instan
e be
ause B follows from Aand C follows from :A while D is true if B or C is true. These 
onsiderationsprodu
e a number of 
riteria for sele
ting parti
ular predi
tions based on howmu
h one is prepared to dedu
e from the 
ontradi
tions, and these 
riteria are
learly 
lose to the a

eptability 
lasses mentioned above.In addition, Lin and Shoham [83℄ present a system whi
h is also very similarto that of Krause at al., de�ning arguments as 
hains of inferen
es, and showingthat their framework 
an 
apture more spe
i�
 forms of nonmonotoni
 inferen
e
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h as defualt logi
, autoepistemi
 logi
, and 
ir
ums
ription, as well as thekind of hypothesis formation found in Theorist. The use of argumentation as anintegrating framework is also the theme taken up by Dung [44℄ who shows thathis system 
an 
apture default logi
 and logi
 programming. Finally, Polla
k[116℄ has introdu
ed a system for suppositional reasoning, that is hypothesisingsomething and then seeing if it 
an be justi�ed from what is known. His systemdeals with the intera
tions between arguments, delving into the stru
ture toidentify whi
h arguments are good and whi
h are rebutted by others.4.6 SummaryAs with the handling of imperfe
t information in databases, there are four basi
ways in whi
h we 
an represent and reason with imperfe
t data. We 
an: (1)use a number or symbol to give the strength with whi
h an attribute is knownto take a given value, (2) use a number or symbol to indi
ate the strength of therelation between attribute values, (3) use a number or symbol to indi
ate thestrength of inheritan
e between two obje
ts, or (4) des
ribe how to derive thenumber or symbol appropriate to a given attribute value from that known to beasso
iated with some other attribute value. Thus, a probabilsiti
 logi
 providesa me
hanism for implementing three out of the four ways|the �rst by asso-
iating probabilities with propositions, the se
ond by asso
iating probabilitieswith impli
ations, and the last by spe
ifying how to determine the probabilityof the 
onsequent of an impli
ation from the probabilities of its ante
edent andthe impli
ation itself. Similarly, the use of a nonmonotoni
 logi
 provides ameans of spe
ifying (as true or false) the strength with whi
h propositions andexpressions relating propositions are known to hold, and given a set of formulaeprovides a means of determining whether or not various 
on
lusions are true orfalse.5 Dis
ussionNow, the distin
tion between the database view of un
ertainty and the arti�
alintelligen
e view of un
ertainty, and the use of the 
lassi�
ation of di�erenttypes of imperfe
tion are not the only ways of obtaining some kind of perpse
tiveon handling imperfe
t information. Other perspe
tives may be useful, andsome of these are dis
ussed in this se
tion, along with some of the 
ommonthemes from the di�erent approa
hes. This se
tion also mentions some othersuggestions that have been made both in the database and arti�
ial intelligen
e
ommunities and whi
h do not �t into the previous se
tions. Finally, a generalapproa
h to handling imperfe
t information is suggested.5.1 Di�erent perspe
tivesThe survey 
arried out above was stru
tured along two axes. Firstly a dis-tin
tion was made between work 
arried out in the database 
ommunity andwork 
arried out in the arti�
ial intelligen
e 
ommunity in order to stress the
ontribution of both 
amps to the problem of representing and reasoning with
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t information. The two bodies of work were then 
lassi�ed a

ordingto the kind of imperfe
tion that was dealt with, splitting the 
ontributions a
-
ording to a heira
hy of di�erent types of imperfe
tion that was synthesizedfrom several that have been proposed in the literature.The advantage of this approa
h is that, in general, it allows a 
lear distin
-tion to be made between the di�erent approa
hes sin
e they are usually aimedat solving one parti
ular problem 
aused by a parti
ular form of imperfe
tion.Thus null values [23, 81, 169℄ are intended to solve the problem of in
ompleteinformation, and probabilisti
 networks [113℄ are intended to handle informa-tion that is un
ertain. Where it is possible to make this distin
tion, it is 
learwhi
h methods are appli
able to whi
h problems, and thus whi
h should beemployed in given situations.However, there are some approa
hes that do not easily fall into one 
ategory.For instan
e, 
onsider the s
heme proposed by Barbara et al. [11℄. Although
lassi�ed above as a s
heme for handling un
ertain information be
ause of itsbasis in probability theory, the method is intended to model 
ases where theun
ertainty is 
ompli
ated by ignoran
e about the probabilties of 
ertain at-tribute values. Thus it 
ould be argued that the s
heme should be 
lassi�edas a system for handling ignoran
e. Given this kind of diÆ
ulty in makinga 
lean 
lassi�
ation, it is worth 
onsidering other perspe
tives that may beinformative.One obvious distin
tion that 
an be made is between approa
hes from thedatabase side is between those intended for relational databases and those in-tended for obje
t-oriented databases. Given the respe
tive ages of the para-digms it is not surprising that the majority of the approa
hes are aimed at therelational model. However, those that use the obje
t-oriented model raise someinteresting points. For instan
e, as George et al. [54℄ point out, moving from toan obje
t-oriented model involves more than just 
onsidering how to representthe imperfe
tion in the values of the attributes in obje
ts|it also involves 
on-sidering imperfe
tion in the inheritan
e hiera
hy, and that opens up a wholearea of potential problems [52℄. Thinking about imperfe
tion in inheritan
ealso highlights the fa
t that work on the relational model has failed to 
overproblems su
h as in
ompleteness of relations or the fa
t that data might not �tinto the relations [170℄.Another possible distin
tion is one that is based on the type of solutionthat is suggested for handling imperfe
tion, rather than the kind of problem(whether it is handling in
ompleteness in a relational database or impre
ision inan obje
t-oriented database) that the solution is proposed for. Thus one 
oulddistinguish between fuzzy approa
hes and probabilisti
 approa
hes regardless ofwhether they were proposed to deal with impre
ision or un
ertainty or whetherthey were proposed in the 
ontext of work on databases, logi
 programming, oras part of some intelligent system.5.2 Common themesAs well as suggesting these alternative perspe
tives, it is also possible to pi
k upon some of the themes that are 
ommon to a number of approa
hes. Perhaps the
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t that some of the approa
hes are simply re-iterations ofprevious work. Thus, to take a prominent and well known example, Nilsson'sprobabilisti
 logi
 re-established results originally due to Smith [147℄ and deFinetti [48℄. In many ways this is not surprising sin
e the original resultswere buried deep in the statisti
s literature, and the idea in question was aninherently sensible one. However, it is notable that the study of imperfe
tinformation in databases throws up as many instan
es of repetition as it does.This is espe
ially noti
ible in the wide use of the 
on
ept of the `possible'and `ne
essary' values of attributes. The essential notion that when in
ompleteinformation is used to answer queries, it is possible to distinguish between thoseattributes that may satisfy the query and are thus possible and those that mustsatisfy the query and are thus ne
essary is invoked by a whole host of authors.The interpretations range from Lipski [84℄ with his totally symboli
 approa
h,through the similar work of Williams et al. [161℄ and Morrissey [95℄ to thewholly numeri
al work of Prade [122℄.This then points to another 
ommon theme, and one that was mentioned inpassing in the previous se
tion. This is the rather limited view of imperfe
tionthat almost every author has 
onsidered. Throughout the work on the subje
tthere is an almost universal 
on
entration on the problem of how to deal withimperfe
tions in value, due to in
ompleteness, impre
ision and un
ertainty andan almost universal ignoran
e (in the sense of \a de
ision to ignore") of deeperissues su
h data that does not �t into tables, or data that has in
ompletelyspe
i�ed s
hemas. As has been remarked in the 
ontext of de
ision making[49℄, there is more to handling imperfe
t data than just manipulating numbers,and it is to be hoped that in the future some resear
h will be dire
ted at someof these other areas.5.3 Other ideasThe dis
ussion so far has been restri
ted to the work surveyed in the previousse
tions, but it is worth making some remarks on broader issues. The �rstextends the point about dealing with issues other than the value of attributesto dealing with issues other than those dire
tly to do with the informationsystem whose imperfe
t information is being dealt with. To e
ho the quotefrom Motro with whi
h this paper opened, the reason for studying imperfe
tinformation is to build systems that deal with the real world. Thus it would beboth interesting and useful to study the imperfe
tions in data that real systems
ome up against from the perspe
tive of a
tually building su
h a real systemrather than studying the problems of imperfe
t data in a theoreti
al va
uum.The se
ond, somewhat related, point is that it seems worth 
onsidering howthe imperfe
t data will be used. Just as Al-Zobaidie and Grimson [3℄ dis
usshow databases of perfe
t information and expert systems should be 
oupledtogether, there is plenty of room for dis
ussion on the ways in whi
h databasesand knowledge-based systems 
an be used together when information is notperfe
t. For instan
e, as George et al. [54℄ point out, there is a 
hoi
e as towhether to deal with un
ertainty at the level of the database or at the level of theknowledge-based system, a question that to some degree has been addressed by
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ertainty representations [135℄.The third and �nal idea is that the di�erent approa
hes to representing im-perfe
t information that have been dis
ussed above should not be 
onsideredas mutually ex
lusive. In the last few years as number of resear
hers workingin the area of representing un
ertainty [50, 109, 136℄ have made the suggestionthat the many di�erent approa
hes are 
omplementary. Thus the approa
hesshould be used in 
ombination [110℄, or at least should all be 
onsidered to seewhi
h best �ts the problem [137, 138℄. Thus several di�erent approa
hes maybe used in a single database either by having di�erent parts of the databasequanti�ed using di�erent methods, or by 
ombining di�erent methods as Zadeh[164℄ suggests. In this vein Umano [156℄ proposes the 
ombined use of possi-bilisti
 and fuzzy models, with possibility distributions being used to model theun
ertainty in the value of an attribute, and fuzzy degrees of membership beingused to model the degree of asso
iation between values.6 Con
lusionTo 
omplete this trawl through the literature a few words are in order. Firstly,it is 
lear that a large amount of work has been done on the problem of han-dling imperfe
tion in information systems. This work has 
ome from both thedatabase 
ommunity and the arti�
ial intelligen
e 
ommunity, and both 
amps
an bene�t from the su

esses and failures of the other, though at the momentthey don't always seem to be aware that the other exists. Hopefully this paperwill 
ontribute to an in
reased awareness. Se
ondly, is also 
lear that we are stilla long way from having a uni�ed theory of imperfe
tion, and that a lot of workremains to be done if su
h a theory is to be obtained. It 
an be argued that su
ha theory might not be ne
essary, sin
e a signi�
ant amount 
an be a
hieved bythe individual approa
hes that have been developed, but I believe it is desirableand I hope that the plea for an e
le
ti
 approa
h is heeded, at least in somequarters. Finally, and relatedly, I hope that the elements in 
ommon betweenthe di�erent approa
hes to handling imperfe
t information, as well as the areasthat have not yet been addressed, are illuminated by this paper and that itthus 
ontributes towards the eventual development of a general framework forhandling imperfe
tion.A
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