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Abstract
We argue for renewed attention to the problem of the selection of Type I and Type
II error bounds in statistical tests undertaken as part of environmental risk decision-
making. Because of the challenges involved in quantifying likelihoods and valu-
ations (or utilities) for the consequences of these errors,default error bounds are
typically used. However, while these may be appropriate forscientific domains,
their uniform use for risk regulation is not necessarily rational. Recent work in Ar-
tificial Intelligence, particularly Computational Dialectics and qualitative decision
theory, may provide a way to formalize deliberations regarding the appropriate
levels for the error bounds on a case-by-case basis. This would make explicit the
anticipated consequences of errors and the trade-offs involved in decisions, thus as-
sisting regulatory decision-makers. We outline a researchagenda to develop such
a formalization and report on progress to date towards its achievement.

KEYWORDS: Argumentation, Computational Dialectics, Hypothesis Tests, Pre-
cautionary Principle, Risk Assessment.

1 Introduction: The Problem

Statistical inference is not deductively valid: the truth of a statement made about a sam-
ple (for example, that the mean of the sample lies within a certain range) provides us
with no guarantees of the truth of the same statement when made about the population
from which the sample was drawn. This is the case even when we know that the sample
was selected randomly from the population. An achievement —perhaps the supreme
achievement — of mathematical statistics in the twentieth century was to place bounds
on the possibility of error when we infer from sample to population. We still cannot
say that statements about the population are true; however,under certain assumptions
about the distribution of the variables of interest in the population and about the sam-
pling procedures used, we can say that such statements, whenmade repeatedly, will
only be false at most an estimated percentage of times.
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Thus, in the terminology of Jerzy Neyman and Egon Pearson [54], the probability
of a Type I error, that of wrongly rejecting an hypothesis of no effect, can be guaranteed
(under suitable assumptions) to be less than some pre-determined level�, while that of
a Type II error, that of wrongly accepting an hypothesis of noeffect, can be guaranteed
to be less than another pre-determined level�. Thus,� is the proportion of “false
positive” results, and� the proportion of “false negative” results. The challenge is
that for any given sample size, the values of� and� are inversely-related: we cannot
reduce both values simultaneously without an increase in the sample size,n.

So, at what levels should we set� and�? A rational determination of these two
error bounds would take into account the consequences of each type of error, relative
to the costs of undertaking samples of different sizes. Indeed, Neyman and Pearson
in their original paper [53] refer explicitly to determining the error bounds based on
formal consideration of error consequences. This idea was taken up most prominently
in the statistical decision theory of Abraham Wald [75], andapplied to industrial qual-
ity control applications, where quantification of the consequences of inference errors
is usually straightforward. However, the primary application considered by Neyman
and Pearson was not industrial quality control, but scientific experiments, and here the
approach they adopted we might term aninformal consideration of the consequences
of inference errors: If the null hypothesis is the hypothesis of no scientific effect, then
it is more important (they argued) not to reject it wrongly than to accept it falsely, i.e.
better to err on the side of knowledge-revision-caution than to wrongly assert evidence
for the presence of scientific causal mechanisms where thereare none. Such an ap-
proach leads to the setting of� at low levels (typically 5% or 1%), and, for a given
sample size, choosing an hypothesis-testing procedure which minimizes�. This can
result in� being much greater than�. Due its dominance across the sciences in the
70 years since then, we might call this thestandard approachto determining the error
bounds, and the resulting levels of� and� thestandard levels.

The main application of statistical hypothesis testing in the 1920s and 1930s was
for agricultural experiments testing new crop varieties following the post-Great War
famines [38], and for these applications, Neyman and Pearson’s informal reasoning
seems applicable. Indeed, one can view the error bounds froman information-theoretic
perspective as acting to control the extent of noise in a scientific communications net-
work [12]: the level of� is an upper bound on the proportion of falsely positive re-
ports circulated by scientists to each other across the network. From this perspective,
the standard levels of� and� are set appropriately. Although many scientists now
present their work withp-values and many scientific publications require this [64],our
experience is that most biomedical scientists still think of the values of 5% and 1%
as decision-thresholds, both for publication decisions and for the revision of the cor-
pus of scientific knowledge. Irwin Bross [12] presents a compelling case why such
decision-thresholds are desirable for a scientific communications network, by describ-
ing practice in pharmacology before the widespread use of standard hypothesis testing
procedures in clinical trials.

However, these decision thresholds are not necessarily appropriate for other deci-
sions, such as deciding regulatory policies, because they ignore other consequences.
As Talbot Page [55] argued a quarter-century ago, in assessing the impacts of chem-
icals on human health or the environment the consequences ofthe two types of error
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may be markedly asymmetric: they may differ in their nature,incidence, location, ex-
tent, timings, duration, impact and intensity. Moreover, not all the error consequences
may be negative for those people impacted, as for example when a chemical is banned
and the manufacturers of substitute products enjoy an increase in demand. Even were
the consequences to be symmetric and equal, those people affected by each may differ
greatly in their relative political, economic or social power and society may therefore,
or for other reasons, place different value on the impacts falling on the different groups.
Using the standard values uniformly across all cases ignores such case-specific detail.

Indeed, dissatisfaction with the use of the standard levelsin risk regulation decision-
making may be seen as motivating much of the recent debate on the Precautionary Prin-
ciple [10, 66]: it is precisely because scientists and risk regulators havenot adequately
considered the consequences of falsely negative results, proponents argue, that we have
suffered serious health and environmental effects from newchemicals and substances.
Some (e.g., [39, 67]) have even argued that the consequencesof regulation based on
false positive results (e.g. imposition of a regulatory burden on an industry when none
was required) are invariably far less serious than the consequences of regulation based
on false negative results (e.g. illness or death due to use ofa chemical wrongly thought
to be safe). Such a view argues for a direct reversal of the standard approach, namely
for setting� first and at a low level, while accepting possibly much greater levels of�. Proponents of an extreme version of the Precautionary Principle would ban all new
technologies unless and until proven safe, thus setting� theoretically at zero.

Both this approach and the standard approach, however, are mistaken in believing
that one determination of the critical values is appropriate for all risk decisions. As
Frank Cross [16], among others, has argued, even regulations outlawing chemicals or
technologies so as to protect public health may have adversepublic health impacts. The
mistaken belief that one set of decision thresholds is appropriate to all circumstances
might be viewed analogously tokurdaitcha,1 the traditional Australian Aboriginal prac-
tice of “pointing the bone” at someone as part of a spell to make them ill or die. By
using a certain set of error bounds (this belief implies), weeliminate the problem of
the consequences of inference errors by a uniform set of thresholds, in the same way
perhaps that pointing the bone solves all inter-personal problems.

A rational approach — rational in the sense of seeking to maximize society’s over-
all welfare — would decide the critical values, and hence thedecision thresholds, for
risk regulation decisions on a case-by-case basis. Good statistical practice may involve,
prior to each hypothesis test, a deliberation over the errorbounds and the judicious bal-
ancing of levels of� against levels of�, as described for example in [74], but such
deliberation, if it occurs at all, rarely takes into accountall the consequences of the
errors. There are several reasons for this. One is the challenge of identifying all the
consequential outcomes. Clinical trials were conducted, for example, on both human
and animals subjects prior to the commercial release of Thalidomide, but none of these
trials involved pregnant subjects [70], presumably because no one thought of the pos-
sibility that there may be adverse effects specific to such subjects. The challenge of
identifying all possible consequences of proposed actionshas received some attention
in the Artificial Intelligence community, under the names ofpossibilistic risk assess-

1from the Aranda wordgwerdaje.
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ment[21, 42] andchance discovery[46], although this work is still very preliminary.
The second challenge to case-by-case determination of error bounds is quantification:
assessing the likelihoods of different outcomes, assessing their positive and negative
impacts, and assessing the valuations (or utilities) that those affected and society would
place on these impacts. For most new substances and activities, evidence to support an
objective assignment of quantitative values to these variables is scarce or non-existent.
Subjective quantification (e.g. assignment of subjective probabilities) is always possi-
ble, but that simply magnifies the third challenge, that of reaching agreement between
the different parties involved. Finally, making regulatory decisions means striking a
balance between the different interests involved and thus any decision is ultimately a
political one [71].

Recent work in Artificial Intelligence in developing qualitative decision theory
[24, 56] may provide techniques to meet these challenges. Itmay be easier, for ex-
ample, for different stakeholders to reach agreement when likelihoods are represented
by labels from a qualitative dictionary such as“Very Likely,” “Likely,” etc, than when
they are represented as probabilities. Although this work is also only preliminary, in the
next Section we outline an approach we believe could from thebasis for a structure in
which formal consideration of consequences and determination of error bounds could
be undertaken. It is important to note that we are not proposing that different error
bounds be used by scientists, where Bross’s arguments [12] about the information-
theoretic role of the standard values are persuasive. In addition, as Sven Hansson has
argued [33], the web of science is by now such a thickly-woventapestry that pulling at
the thread of the error bounds in one area of science may have complex implications
far beyond that area and so unravel science’s many interconnected parts. Rather, we
are arguing that possibly different error bounds be used fordecisions in risk regula-
tion, and that these be decided on a case-by-case basis. As will be seen in the next
section, we may view the scientific question (What to Believe?) as being distinct from
the regulatory question (What to Do?).

2 Towards a Solution?

2.1 A list of requirements

In this Section, we present a list of requirements for a structure which would permit
formal deliberation over the levels of� and� appropriate for risk regulation deci-
sions in the domain of environmental health; we refer to thisstructure as adeliberation
structure. Only an outline is presented here, because the work is still ongoing; we
are presenting it now so as to raise awareness in the risk regulation community of the
potential of these developments. Our deliberation structure builds on recent work in
Artificial Intelligence (AI), Philosophy and Linguistics,in particular an emerging dis-
cipline known as Computational Dialectics [26, 60]. Underlying this work is the theory
of argumentation, the formal study of argument [18], which has a history in Philoso-
phy dating back at least to Aristotle [6]. Argumentation theories have been applied
successfully for some time in Artificial Intelligence, for example in the design of ex-
pert systems for medical diagnosis and for personal health risk assessment [15, 41], in
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legal expert systems [7], and in the design of systems of autonomous software agents
[58]. A recent review of such applications is given in [13].

What would be required of a structure for formal deliberation of error bounds in the
risk domain? We believe there are a number of components. Firstly, an understanding
of the precise nature of the debate(s) being undertaken. In an influential typology,
philosophers Doug Walton and Erik Krabbe [76] identified several primary types of
dialogue, distinguished by their initial situations, the goals of each of their participants,
and the goals of the dialogue itself (which may differ from the individual goals of
the participants). The dialogue types were:Information-seeking dialogues, in which
one participant seeks the answer to some question from another participant;Inquiries,
in which all participants collaborate to answer some question to which none has the
answer;Persuasion dialogues, in which one participant seeks to convince others of
the truth of some proposition;Negotiations, in which participants jointly attempt to
divide a scarce resource;Deliberations, in which participants collaborate to decide
what actions to take in some situation; andEristic (strife-ridden) dialogues, in which
participants quarrel verbally as a substitute to physical fighting. While this typology is
quite rich, Walton and Krabbe do not claim it is comprehensive, and there are certainly
other types of dialogue.

In an idealized sense, one may view scientific dialogues as Inquiry dialogues, where
participants collaborate to prove or disprove some hypothesis of interest. In this sense,
a scientific dialogue concerns the question,What to Believe?However, this assumes an
hypothesis has already been explicitly stated, and prior work — involving data collec-
tion, data analysis, theory development and much thinking and discussion, especially
of a counterfactual nature — may be needed to induce or form anhypothesis. All these
activities may be undertaken or supported through dialogue, of types which are not
necessarily Inquiries. Moreover, once a scientist adopts aposition on an open issue,
the debate which then ensues is best described as a multi-wayPersuasion dialogue,
where both those in favour of a proposition and those againstit seek to convince others
to accept or reject the proposition at issue. These exchanges can be quite emotionally
charged, to the point where they may resemble Eristic dialogues. We may consider
these other dialogues as sub-dialogues embedded in the mainInquiry dialogue. Like-
wise, a similar analysis may be undertaken for regulatory decisions. Treated ideally,
these are Deliberations, i.e. deciding what course of action to take in specific circum-
stances, and so the question under consideration is,What to Do? However, in real-
ity there are also many embedded, sequential or parallel sub-dialogues: Information-
seeking, Persuasion and Negotiation dialogues and (again perhaps) Eristic dialogues.
Recent work in Artificial Intelligence has sought to model the embedding of one type
of dialogue in another, and in the next section we discuss some of this research.

A second requirement for the error bounds deliberation structure are formal mod-
els of the appropriate dialogue-types. Starting with the work of philosophers Charles
Hamblin [32] and Jim MacKenzie [44], formal dialogue-game models have been used
as a means of analysis of philosophical and logical questions, such as fallacies in argu-
ment. These models treat each dialogue as a game, with the permitted speech acts, or
locutions, of the players being the legal moves of the game. The rules of the game deter-
mine which combinations of locutions are possible and the circumstances under which
the dialogue ends. Walton and Krabbe [76], for example, developed formal dialogue
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game models for Persuasion dialogues. Researchers in AI have recently proposed for-
mal dialogue games as protocols for interaction between between autonomous software
entities, known asagents, as a means to enable automated dialogues. This research has
led to dialogue game models for various forms of Information-seeking dialogues [40],
Inquiries [51], Persuasion dialogues [2, 17], Negotiations [4, 40, 65] and Deliberation
dialogues [37].2 To apply dialogue game models to the error bounds selection problem,
we will first require formal models of the relevant scientificand regulatory discourses,
and then dialogue game models of each of the component discourses. In the next sec-
tion, we present some of our own recent work in dialogue game models for Inquiry and
Deliberation dialogues, which will be relevant for such an undertaking.

The third component of the deliberation structure is the qualitative representation
of uncertainty, for example of consequential outcomes of errors, of their likelihoods,
and of the values (utilities) assigned to these outcomes. Here again, our approach is to
use a form of argumentation, where the cases for and against various propositions can
be articulated, contrasted and possibly combined. This useof argumentation to model
uncertainty has also received attention in Artificial Intelligence [23, 31, 51]. How might
arguments be combined? A common approach is to define variousattack and defeat
relationships between arguments, and to assess which arguments survive all attempts
to defeat them. This approach is analogous to the conduct of legal proceedings, where
claims are accepted as “true” if and only if they survive attempts to defeat them in a
validly-constituted and appropriately-conducted court.3 In the next section, we give an
example of qualitative uncertainty labels defined in terms of argument relationships in
the modeling of scientific inquiry dialogues.

The next component of the deliberation structure is a decision calculus for for-
mal consideration of qualitative information. One approach to this could be to view
it as operating analogously to traditional quantitative decision theory [43]. For exam-
ple, quantitative decision theory assigns likelihoods to possible outcomes on the basis
of numeric probabilities, i.e. elements of the set[0; 1℄. A qualitative decision theory
could assign likelihoods from a qualitative dictionary, such as the linguistic set,fOpen,
Supported, Plausible, Probable, Acceptedg. Similarly, we can also imagine utilities be-
ing assigned to outcomes from a qualitative dictionary of utility-labels, such as the setf�; 0;+g. Here, assignment of the label “+” to an outcome may be understood to
mean that the outcome is perceived to have a net positive (beneficial) utility, the label
“�” a net negative utility and the label “0” that there is neither positive nor negative
utility. Clearly other qualitative dictionaries for both likelihoods and utilities are pos-
sible. A qualitative decision theory could seek to combine qualitative likelihoods with
qualitative utilities, in a manner similar to that in which quantitative decision theory
combines probabilities and utilities to obtain expected values. As mentioned earlier,
qualitative calculi for decision-making have been a focus of recent research in Artifi-
cial Intelligence [24, 56, 57, 77].

However, even with these modifications, approaches based onclassical decision
theory will still assume that utilities of different outcomes are comparable and may

2Dialogue games have also been applied to problems in legal reasoning [8, 59], in software specification
[20] and in automated software design [68].

3These are instances of a Game-Theoretic semantics in the sense of Jaako Hintikka [35].
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be partially ordered [25]. As our discussion in the section above made clear, these
assumptions are not necessarily appropriate in the domain of risk regulation. More-
over, classical decision theory, arising as it did within economics, has assumed that
participants to a decision commence with their preferencesfully-formed and known,
at least to themselves. However, as deliberative democracytheorists in political sci-
ence have noted, e.g., [14, 30], preferences may be altered or even formed in the very
process of making a decision. Indeed, the decision process may enable participants to
acquire agroupor social perspective on a problem, for example awareness ofthe wider
social consequences of individual actions, which may otherwise elude them [61]. In
the light of these considerations, it is clear that classical decision-theoretic models
are not adequate for the complexity of decisions in the risk regulation domain. This
does not mean, however, that adequate decision models cannot be formulated. Henry
Richardson, for example [63], has argued that it possible for different people to argue
rationally about final ends and values, and not merely about the most effective means
for achieving those ends. While much work would be needed to turn these ideas into
computational models of decision-making, we do not believethe task is impossible.
Given the interactive nature of stakeholder involvement inrisk assessment and regula-
tion decision-making, we would anticipate that any adequate model of decision-making
would draw on argumentation theory, as we have argued in [49].

Finally, the deliberation structure needs to coherently combine all the components
mentioned above. To achieve this, a formal model which specifies the different compo-
nents and their inter-relationships will be required. Having such a model would enable
the exploration of its properties in a systematic and rigorous way, in a manner which is
relevant for regulatory decision-making. For example, formalisation may better enable
determination of the salient differences between two decision-cases which otherwise
appear very similar, or, conversely, may reveal two different cases to be essentially
equivalent. One element of such a model may well be a theory ofscenarios, under
which alternative future courses of action could be identified and rigorously compared
with one another. In recent work [50], we have begun the development of a compu-
tational theory of scenarios in contexts of decision-making under uncertainty. In the
domain of risk regulation, the final decisions will always bemade by human beings,
taking account of all the scientific, political, cultural, social, economic and other factors
relevant to the decision. Because of the stakes involved, noformal calculus or intel-
ligent computer system will ever replace the final human decision-makers. However,
we see a role for such formal structures and systems in assisting the human decision-
makers in contemplating, making, communicating, recording and evaluating those de-
cisions. Elsewhere [62], we have referred to systems providing this type of assistance
to human decision-making as serving anorrery function, on the analogy of mechanical
models of the solar system. In addition to development of coherent, overall models
of the decision process and of associated support systems, research attention will also
be required for assessment criteria for such models and systems, an issue which has
received relatively little attention within AI thus far [28].
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2.2 Progress to date

In this section, we present the progress to date in specifying systems which meet the re-
quirements just listed for the error bounds deliberation structure. As mentioned earlier,
this work draws on recent developments in Artificial Intelligence and Argumentation
Theory in an original way.

First, we have recently defined a logic-based formalism for representing complex
dialogues of multiple types [48, 52]. This formalism is hierarchical, with three levels of
representation, and is computational. At the highest levelis a control dialogue in which
participants discuss whether or not to engage in particulartypes of dialogues over spec-
ified topics of discussion. At the second level are dialogue-types themselves; here, the
representation is modular and thus permits incorporation not only of the various types
articulated by Walton and Krabbe [76], but also other types of dialogues, including
types not yet defined. At the third and lowest level are the dialogue-game rules of
each specific dialogue-type. Drawing on a species of modal logic known as propo-
sitional dynamic logic [34] developed to model formally theoperations of computer
programs, this three-level representation permits the combination of dialogue-types in
complex ways; for example, dialogues may be repeated; they may be undertaken in
sequence or in parallel; they may be embedded within one another; and they may be
interrupted at any time. In this way, the formalism enables representation of complex
human dialogues in a single, unifying framework. We have also been shown [52] that
the formalism is potentially generative: that is, it may be used to generate arguments
automatically when used for dialogues between suitably-programmed software enti-
ties. This is important for applications seeking automaticidentification and resolution
of any differences between participants, and has not previously been a feature of hier-
archical dialogue models in Artificial Intelligence.

The second requirement for the error bounds deliberation structure listed in the
previous section involved formal models of the appropriatedialogue-types, namely
Deliberation and Inquiry dialogues. Once completed, such models can be incorporated
readily at the third level of the hierarchical structure just described. Such formal mod-
els are currently under development, building on various principles for the conduct of
these dialogues due to philosophers Robert Alexy [1] and David Hitchcock [36]. For
instance, we have defined [51] a dialogue game for scientific discourses with locutions
allowing a debate participantPi to assert a claim� with a degree of supportd�, as
follows: assert(Pi : (�; d�)):
The degree of support labeld� is taken from a dictionary of labels agreed between the
participants, and may be quantitative or qualitative. Onceasserted, the claim� may
be questioned by another participant, which move then obliges the first participant to
present an argument for the assertion; our locution syntax enables such arguments to
be presented to the forum. As in a real debate, participants may also query or contest
assertions, premises, arguments, rules of inference and degrees of support, via specific
locutions. The dialogue game definitions specify the preconditions required for each
locution to be validly executed, for example, a participantmay not assert a claim�
and then assert the contradictory claim:�, without in the interim retracting the first
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assertion. Likewise, post-conditions are specified, as when a dialogue move imposes a
burden of proof on a participant.

Together with David Hitchcock, we have also recently developed the first formal
model for Deliberation dialogues [37], building on work in the philosophy of argumen-
tation undertaken by Harald Wohlrapp [78]. This model of a deliberation comprises
eight elements:

Open: Opening of the deliberation dialogue.

Inform: Discussion of the goal(s) of the deliberation dialogue (i.e. for what purpose
is action being considered), of any constraints on the possible actions which may
be considered, of the perspectives by which proposals may beevaluated, and of
any premises (facts) relevant to this evaluation.

Propose: Suggesting of possible action-options to achieve the agreed goal.

Consider: Commenting on proposals from various perspectives.

Revise: Revising discussion goal, constraints and/or action-options in the light of the
comments presented.

Recommend: Recommending an option for action, and acceptance or non-acceptance
of this recommendation by the participants.

Confirm: Confirming acceptance.

Close: Closing of the deliberation dialogue.

These eight elements may be undertaken in any order, subjectonly to a small num-
ber of constraints (e.g. that theConfirm stage always follows theRecommendstage).
As with the scientific dialogue example, appropriate locutions for participants in each
of the eight elements, along with rules for their use, have been articulated. These spec-
ifications are quite general; to be applied to debates over error bounds, will require
domain-specific locutions and dialogue rules, an issue we have given some attention
[47, 49]. For instance, drawing on the generic theory of Communicative Action of
philosopher Jürgen Habermas [29], we proposed the following types of locutions as
appropriate for debates in the domain of environmental and health risk assessment
[49]:

Factual Statements: These are statements which seek to represent the state of theex-
ternal world, such as claims about scientific reality, and the scientific, economic
or social consequences of particular actions. Contesting such a statement means
denying that it is a true description of objective, externalreality.

Value Statements: These are statements which seek to represent the state of thein-
ternal world of the speaker, i.e. they reveal publicly the speaker’s subjective
preferences or value assignments. Such statements may onlybe contested by
doubting the sincerity of the speaker.
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Connection Statements:These are statements which assert some ethical, social or
legal relationship between different parties, in the common world of the debate
participants. Contesting these statements means denying the existence, relevance
or importance of such relationships.

Inferential Statements: These are statements which refer to the content of earlier
statements made in a debate, drawing inferences from them ornoting impli-
cations. Once a scientific theory has been proposed, a specific risk assessment
model and the ensuing calculations based on the model fall into this category.
Contestation of such statements can take the form of questioning the appropri-
ateness or the validity of the inferences made.

Procedural Statements: These are statements about the activity of speaking itself,
such as the rules for participation and debate. In many real-life discourses, these
often become the focus of debate, overtaking issues of substance.4

Obligation Statements: These are statements which assert some obligation on the
participants, for example, that they must limit the commercial sale of a new
substance. Only the authorized regulator has the power to make such assertions,
and once made, they cannot be contested within the debating forum. In real-life,
they may of course be contested in the courts, and often are.

As can be seen, this typology is still very coarse, and more work will be required to
produce a finely-grained set of locutions, along with a full specification of the pre- and
post-conditions appropriate for each.

The third requirement of the error bounds deliberation structure listed was the qual-
itative representation of uncertainty. Recent work in AI has made explicit use of argu-
mentation to represent knowledge uncertainty, arising forexample from inconsistent,
contested or missing evidence [42, 51]. In this approach, a claim � is assigned an un-
certainty label from the qualitative linguistic dictionary fOpen, Supported, Plausible,
Probable, Acceptedg according to rules such as the following:� If � is a claim for which no argument has yet been provided by a participant, then� is assigned the valueOpen.� If � is a claim for which at least one argument has been provided bya participant,

then� is assigned the valueSupported.� If � is a claim for which a consistent argument has been provided by a participant,
then� is assigned the valuePlausible.� If � is a claim for which a consistent argument has been provided by a par-
ticipant, and for which neither rebutting nor undercuttingarguments have been
provided, then� is assigned the valueProbable. Rebutting arguments (rebuttals)

4For instance, in the scientific debate over Genetically-Modified Organisms in Britain during 1999, an
argument between the medical journalThe Lancetand The Royal Society ensued over whether the latter
was entitled to comment on a paper submitted to the journal before it had been accepted or rejected for
publication [5].
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are arguments for the negation of�, and undercutting arguments (undercutters)
are arguments for the negation of a premise of an argument for�. Rebuttals and
undercutters are together called attacking arguments.� If � is a claim for which a consistent argument has been provided by a participant,
and that argument is well-defended, then� is assigned the valueAccepted. A
well-defended argument is one for which counter-attackingarguments have been
presented for each attacking argument.

The labels are listed in order of increasing strength, and they are a property of the
debate as a whole, not of any one participating individual. Thus, the labels assigned by
these rules may differ from any labels assigned by the individual debate participants.

The uncertainty label applied to a claim may change as new arguments are pre-
sented, so this assignment of uncertainty labels is defeasible. If it is assumed that all
relevant arguments are eventually presented by one participant or another, then after a
finite (but possibly very long) time, the value of the uncertainty label should be stable.
We may refer to this stable value as theuncertainty label at infinity. Suppose we com-
mence a debate and then, after some finite timet, take a snap-shot of the uncertainty
label at that time, and learn that it is“Accepted”. Will the uncertainty label at infin-
ity also be“Accepted?” Under some reasonable assumptions about the timing of the
snapshot, it can be shown [51] that if the probability of new information arising after
the snapshot is taken is less than�, for some real number0 < � < 1, then the prob-
ability that the uncertainty label at infinity is also“Accepted” is at least1 � �. This
result demonstrates that assignment of qualitative uncertainty labels based on the argu-
ments presented for and against claims is well-behaved: As with statistical inference,
we cannot guarantee that inference from a finite snapshot of the uncertainty label to its
value at infinity is always valid, but we can place a probabilistic bound on the likeli-
hood of error in making this inference. This and the other formal properties proved in
[51] provide confidence in the use of dialogue and argumentation systems to represent
uncertainty in domains where the absence of scientific information precludes quantifi-
cation of uncertainties, or where agreement over such quantification is not achievable.
These features are typical of the environmental risk assessment domain.5

Work on the next element of the error bounds deliberation structure, namely an
appropriate qualitative decision calculus, is still too preliminary to report at this time.
Likewise with the development of a formal model which combines coherently all the
listed components. There is likely to be more than one way to combine these compo-
nents rigorously, and different combinations may result indifferent decision support
systems or even different decision outcomes. In that case, research will be needed to
assess the most appropriate formal model for deliberation over statistical error bounds.

How does this research on computational dialectics and qualitative decision-making
relate to the problems of determination of error-bounds in hypothesis testing for risk as-
sessment? Firstly, the work we have outlined on computational dialectics should, when
completed, enable the formal modeling and explicit representation of debates over the
consequences of inference errors, in all their glorious complexity. Arguments for and

5For an example, see the recent report on the issue of Genetically-Modified foodstuffs prepared for the
U.K. Economic and Social Research Council Global Environmental Change programme [72].
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against various error consequences, rebuttals and challenges to these arguments, along
with their various implications, valuations and degrees ofconfidence, will all be rep-
resentable in a suitable dialectical argumentation formalism. That such an application
to the error bounds problem is potentially feasible is shownby the applications of ar-
gumentation theory already to be found in deployed computersystems [13, 22, 27].
Secondly, the actual decision-making task involved in selecting non-default values of
error bounds will also be amenable, we believe, to formal modeling and representation.
Here the decisions involve making trade-offs between different sets of consequences,
in a context of competing views of their relative importanceand value. As we sug-
gest above, formalization of such decision-making may be possible in an appropriate
qualitative decision calculus; like argumentation, qualitative approaches to reasoning
under uncertainty developed in Artificial Intelligence have already proven themselves
in real-world applications [22, 56, 77].

2.3 Example

We now present a hypothetical example of a simple Inquiry dialogue regarding an
uncertain proposition. This example, adapted from [51], concerns a debate over the
possible carcinogenicity of a chemicalX , for which evidence is conflicting. The pur-
pose of this example is to show how the relationships betweenthe various arguments
uttered in a dialogue for and against a proposition can be used to generate qualitative
uncertainty labels for the proposition. In a real debate, participants would be free to
introduce supporting evidence and modes of inference at anytime. However, to aid
understanding, in this example we first list the assumptionsand modes of inference to
be used in assertions and proposals. The various assumptions — statements which can
be used as grounds for arguments — are numbered K1 through K4.

K1: X is produced by the human body naturally (i.e. it is endogenous).

K2: X is endogenous in rats.

K3: If X is an endogenous chemical then it is not carcinogenic.

K4: Bioassay experiments applyingX to rats result in significant carcinogenic effects.

The modes of inference used by participants in the dialogue are labeled R1 through R3:

R1 (And Introduction): Given a statement� and a statement�, we may infer the
statement(� ^ �).

R2 (Modus Ponens):Given a statement� and the statement(� ! �), we may infer
the statement�.

R3: If a chemical is found to be carcinogenic in an animal species, then we may infer
it to be carcinogenic in humans.

We now give an example of a dialogue concerning the statement: X is carcino-
genic to humans, which we denote by�. The dialogue utterances are numbered M1,
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M2,: : :, in sequence. The locutions used in this dialogue are those for the scientific In-
quiry dialogue protocol of [51], which also contains details of the locution syntax. We
assume that participants agree to use the following qualitative dictionary of labels to
express their degree of support for statements:fCertain, Confirmed, Probable, Plausi-
ble, Supported, Openg. Moreover, they agree to assign qualitative uncertainty labels to
statements on the basis of arguments presented in the debateaccording to the dictionary
defined in Section 2.2, namely:fAccepted, Probable, Plausible, Supported, Openg. To
assist understanding of the example, each utterance is followed by an annotation.

At the commencement of the dialogue, no arguments have been advanced for
either� or:�, and so both statements are assigned the uncertainty labelOpen.

M1: assert(P1 : (�;Con�rmed )).
ParticipantP1 asserts the claim�, thatX is carcinogenic to humans, which she
believes has strengthConfirmed.The uncertainty label assigned to� remains as
Open, because no argument has yet been presented for�.

M2: query(P2 : assert(P1 : (�;Con�rmed ))).
ParticipantP2 asksP1 for her argument for�.

M3: showarg(P1 : (K4; R3; �; (Con�rmed ;Valid ;Con�rmed))).
ParticipantP1 presents her argument for�, which rests on grounds that bioassay
experiments ofX have been shown to produce carcinogenic effects in rats (As-
sumption K4), and that one can infer from these results to humans, by means of
Inference Rule R3. ParticipantP1 assigns this rule a modality ofValid. Utter-
anceM3 has presented an argument for�, and so a new uncertainty label for this
statement is required. This label isProbable, because the argument presented is
consistent, and also because no rebuttals or undercutters have yet been presented
against�.

M4: contest(P2 :assert(P1 : (�;Con�rmed ))).
ParticipantP2 contests the assertion of� with modalityConfirmedbyP1.

M5: query(P3 :contest(P2 :assert(P1 : (�;Con�rmed))))
ParticipantP3 asksP2 for her reasons for the contestation in UtteranceM4.

M6: propose(P2 : (:�;Plausible)).
ParticipantP2 proposes the claim:�, i.e. thatX is not carcinogenic to humans,
and says she believes this isPlausible.

M7: query(P1 :propose(P2 : (:�;Plausible))).
ParticipantP1 asksP2 for her argument for:�.

M8: showarg(P2 : ((K1;K3); R2;:�; (Con�rmed ;Probable;Valid ;Plausible ))).
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ParticipantP2 presents her argument for:�. This argument starts from the
premises thatX is endogenous (K1) and that endogenous chemicals are not car-
cinogenic (K3), and then uses Modus Ponens (Rule R2) to conclude thatX is not
carcinogenic to humans. This utterance means that an argument against� has
been presented in the dialogue, and so the uncertainty labelapplied to� changes
from Probableto Plausible. Similarly, the uncertainty label for:� statement is
nowPlausible, since the argument of� in UtteranceM3 forms a rebuttal of:�.

M9: contestground(P4 : showarg(P2 : ((K1;K3); R2;:�; ( Con�rmed ;Probable;Valid ;Plausible ): (K3;Probable))).
ParticipantP4 contests a grounds of the argument presented byP2 in Utterance
M8, namely the premise K3, that an endogenous chemical is carcinogenic.

M10: showarg(P4 : ((K2;K4); R1;:K3; (Con�rmed ;Con�rmed ;Valid ;Con�rmed)))
ParticipantP4 immediately follows the contestation with a presentation of her
own argument for the negation of K3, i.e. an argument for the claim that it is not
the case that an endogenous chemical is carcinogenic. This argument usesAnd
Introduction(Rule R1) on the premises K2, thatX is endogenous in rats, and
K4, thatX has been shown to cause cancers in rats. This argument is an under-
cutter for the argument for:�, presented byP2 in UtteranceM8, since it attacks
an assumption of that argument. The uncertainty label assigned to:� does not
change, however, as a rebuttal already had been presented. However, the under-
cutter ofM10 attacks a rebuttal (that inM8) of �, and so is a counter-attacking
argument. This rebuttal is the only rebuttal or undercutterpresented which at-
tacks�. Thus, the argument for� presented inM3 is now well-defended. Hence,
the uncertainty label assigned to� changes fromPlausibleto Accepted.

This example, although hypothetical and simplified, shows how the arguments artic-
ulated for and against a proposition may be used to generate qualitative uncertainty
labels for that proposition. Thus a formalism for dialogue over an uncertain propo-
sition may incorporate representations of the arguments for and against it, and these
arguments may be resolved — and the debate summarized at any time — on the basis
of their formal relationships with one another. In this example, we have treated all
arguments equally, and not given some more weight than others. However, in most
real-world domains some arguments will be weighted more strongly than others, as,
for example, in the 1986 Guidelines for Carcinogen Risk Assessment of the USA En-
vironmental Protection Agency, where human evidence for carcinogenicity is afforded
priority over animal evidence [73, p. 34000]. Recent work inAI has developed formal
approaches to resolving arguments based on conflicting preferences, e.g., [3], and can
accommodate differential weighting of arguments.
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3 Discussion and Conclusion

In this paper, we have restated arguments long known to statisticians that the selection
of Type I and Type II error bounds should be decided on a case-by-case basis, taking
account of the consequences of each type of inference error.Indeed, as we mentioned,
informal considerations of this nature motivated the values now standard in the sciences
for these error bounds. We believe this is especially important in the regulation of
environmental and health risks, where such consequences may differ greatly in their
nature, dimensions and incidence. Such an approach is contrary to the uniform use
either of the values for� and� standardly used by scientists or of the diametrically-
contrary values implicit in applications of the Precautionary Principle.

A key challenge in deciding error bounds case-by-case is doing so in a rigorous and
formal manner, given the diversity of considerations appropriate to the decisions, the
diversity of interests, values and preferences of the stakeholders, and the difficulties of
quantification of many of the variables at issue. Recent workin Artificial Intelligence
in modeling dialogues in computational systems, in developing qualitative representa-
tions of uncertainty and in developing non-standard decision theories provide a basis,
we believe, for approaches to deal with this challenge. We have thus outlined a set
of requirements for a structure for deliberation over errorbounds, and presented the
current status of research work to develop the techniques needed to meet these require-
ments. When fully developed, this structure should providea rigorous and coherent
formal framework to assist debate and decision over these bounds on a case-by-case
basis. Such a framework could be seen as an example of a meta-statistical tool, in the
sense of Deborah Mayo [45].

We believe a number of benefits would arise from adopting sucha formal deliber-
ation structure. Firstly, it would make all assumptions, inferences and conclusions in
the decision-process explicit and transparent. It would also reveal the explicit trade-offs
necessary to the making of these decisions. Transparency inboth areas is especially
important in the domain of risk regulation, where matters ofwide public importance,
including life and death, may be involved. Secondly, the useof argumentation for-
malisms enables the reasons for and against conclusions to be represented alongside
those conclusions. Moreover, using a formalized argumentation and decision struc-
ture enables all stakeholders (whether participants in thedeliberation process or on-
lookers) to judge the arguments and procedures used in any case against the formal
structure, independent of the particular case. In both respects, formalization acts to
improve the decision-making process and to increase its transparency. Thirdly, the use
of a computer-based deliberation structure could enable greater public participation in
these decisions and thus potentially give effect, as we and others have argued [19, 49],
to ideas of deliberative democracy current in political theory [9, 11]. At present, risk
decision thresholds are those based on the standard values used in the scientific com-
munity, and which may be appropriate there. One could argue,as we have done above,
that they are inappropriate to the domain of public policy decision-making over poten-
tial environmental and health risks. Whatever the merits ofthat case, however, their
deployment in this domain has certainly not followed any public debate over their use;
indeed, the debate over the Precautionary Principle is the closest that western society
has come to a public discussion over error bounds in hypothesis test procedures, and to
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date error bounds issues have been implicit rather than explicit in that debate.
Finally, we believe it important to stress that there are no “kurdaitcha bones,” error-

bounds and thus decision-thresholds appropriate for everysituation; instead, rational
decision-making — at least within the limits of resource constraints on the decision-
making process itself — requires that the error bounds for each case be decided taking
account the consequences of inference errors in that particular case. The scientific,
economic and social issues involved in any debate over errorbounds will usually be
quite complex, and the values placed on the same outcomes by different participants
often very discordant; this can be seen from the public debate over almost any poten-
tial major environmental or health risk. There is no guarantee of agreed resolution of
such differences, as has been found in applying multi-criteria scoring techniques to the
issue of Genetically-Modified foods [69]. However, even without a guarantee of reso-
lution, representation of a debate within such a formalism would force greater clarity
in the statements articulated, and thus facilitate attempts at reaching trade-offs between
different regulatory alternatives. At the very least, explicit representation would make
everyone involved aware of the case-specific consequences of inference errors, aware-
ness which the unthinking use of uniform error bounds inhibits.
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