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Abstract

We argue for renewed attention to the problem of the selectidype | and Type
Il error bounds in statistical tests undertaken as partafemmental risk decision-
making. Because of the challenges involved in quantifyikglihoods and valu-
ations (or utilities) for the consequences of these erdefault error bounds are
typically used. However, while these may be appropriatesédentific domains,
their uniform use for risk regulation is not necessarilymaal. Recent work in Ar-
tificial Intelligence, particularly Computational Diakézs and qualitative decision
theory, may provide a way to formalize deliberations regaydhe appropriate
levels for the error bounds on a case-by-case basis. Thiklwaake explicit the
anticipated consequences of errors and the trade-offtvetv@n decisions, thus as-
sisting regulatory decision-makers. We outline a reseagenda to develop such
a formalization and report on progress to date towards hiegement.

KEYWORDS: Argumentation, Computational Dialectics, Hiipesis Tests, Pre-
cautionary Principle, Risk Assessment.

1 Introduction: The Problem

Statistical inference is not deductively valid: the truflactatement made about a sam-
ple (for example, that the mean of the sample lies within tagerange) provides us
with no guarantees of the truth of the same statement whee ataalit the population
from which the sample was drawn. This is the case even whemaw that the sample
was selected randomly from the population. An achievememerhaps the supreme
achievement — of mathematical statistics in the twentietitery was to place bounds
on the possibility of error when we infer from sample to paian. We still cannot
say that statements about the population are true; howaweer certain assumptions
about the distribution of the variables of interest in th@ylation and about the sam-
pling procedures used, we can say that such statements, waee repeatedly, will
only be false at most an estimated percentage of times.
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Thus, in the terminology of Jerzy Neyman and Egon Pearsap tfa probability
of a Type | error, that of wrongly rejecting an hypothesisofffect, can be guaranteed
(under suitable assumptions) to be less than some premtatat leveky, while that of
a Type Il error, that of wrongly accepting an hypothesis oéffect, can be guaranteed
to be less than another pre-determined Ig¥elThus, « is the proportion of “false
positive” results, and? the proportion of “false negative” results. The challenge i
that for any given sample size, the valuesxadnd 5 are inversely-related: we cannot
reduce both values simultaneously without an increasesisdmple size;.

So, at what levels should we setand3? A rational determination of these two
error bounds would take into account the consequences bftgpe of error, relative
to the costs of undertaking samples of different sizes. ddd&leyman and Pearson
in their original paper [53] refer explicitly to determimjrthe error bounds based on
formal consideration of error consequences. This idea ak@ntup most prominently
in the statistical decision theory of Abraham Wald [75], apglied to industrial qual-
ity control applications, where quantification of the casences of inference errors
is usually straightforward. However, the primary applicatconsidered by Neyman
and Pearson was not industrial quality control, but sdiergxperiments, and here the
approach they adopted we might termiaformal consideration of the consequences
of inference errors: If the null hypothesis is the hypote@dino scientific effect, then
it is more important (they argued) not to reject it wronglarthto accept it falsely, i.e.
better to err on the side of knowledge-revision-cautiomtieawrongly assert evidence
for the presence of scientific causal mechanisms where #reraone. Such an ap-
proach leads to the setting afat low levels (typically 5% or 1%), and, for a given
sample size, choosing an hypothesis-testing procedurehwhinimizess. This can
result ins being much greater tham. Due its dominance across the sciences in the
70 years since then, we might call this #tandard approacho determining the error
bounds, and the resulting levels@fnd g the standard levels

The main application of statistical hypothesis testinghi@ 1920s and 1930s was
for agricultural experiments testing new crop varietiefofeing the post-Great War
famines [38], and for these applications, Neyman and Paargaformal reasoning
seems applicable. Indeed, one can view the error boundsaindnformation-theoretic
perspective as acting to control the extent of noise in anfifiecommunications net-
work [12]: the level ofa is an upper bound on the proportion of falsely positive re-
ports circulated by scientists to each other across theankiviFrom this perspective,
the standard levels af and g are set appropriately. Although many scientists now
present their work withp-values and many scientific publications require this [64i,
experience is that most biomedical scientists still thifkhe values of 5% and 1%
as decision-thresholds, both for publication decisiorts fan the revision of the cor-
pus of scientific knowledge. Irwin Bross [12] presents a celiijg case why such
decision-thresholds are desirable for a scientific comoatitins network, by describ-
ing practice in pharmacology before the widespread useaafisird hypothesis testing
procedures in clinical trials.

However, these decision thresholds are not necessarilpppate for other deci-
sions, such as deciding regulatory policies, because tireyré other consequences.
As Talbot Page [55] argued a quarter-century ago, in asgefis¢ impacts of chem-
icals on human health or the environment the consequendeg divo types of error
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may be markedly asymmetric: they may differ in their natimeidence, location, ex-
tent, timings, duration, impact and intensity. Moreovert all the error consequences
may be negative for those people impacted, as for exampla wichemical is banned
and the manufacturers of substitute products enjoy anaseran demand. Even were
the consequences to be symmetric and equal, those peagdteafby each may differ
greatly in their relative political, economic or social pemand society may therefore,
or for other reasons, place different value on the impatitadeon the different groups.
Using the standard values uniformly across all cases igrgwreh case-specific detail.

Indeed, dissatisfaction with the use of the standard léweisk regulation decision-
making may be seen as motivating much of the recent debatedrécautionary Prin-
ciple [10, 66]: it is precisely because scientists and regjutators havaeot adequately
considered the consequences of falsely negative restdfsopents argue, that we have
suffered serious health and environmental effects from e¢teemicals and substances.
Some (e.g., [39, 67]) have even argued that the consequehoegulation based on
false positive results (e.g. imposition of a regulatorydaur on an industry when none
was required) are invariably far less serious than the acpreseces of regulation based
on false negative results (e.g. iliness or death due to uaseloémical wrongly thought
to be safe). Such a view argues for a direct reversal of thelatad approach, namely
for settings first and at a low level, while accepting possibly much grebgeels of
«. Proponents of an extreme version of the Precautionargiptéwould ban all new
technologies unless and until proven safe, thus settitigeoretically at zero.

Both this approach and the standard approach, however,iataken in believing
that one determination of the critical values is appropriat all risk decisions. As
Frank Cross [16], among others, has argued, even reguatisthawing chemicals or
technologies so as to protect public health may have adpetsi health impacts. The
mistaken belief that one set of decision thresholds is gpate to all circumstances
might be viewed analogously knrdaitcha?! the traditional Australian Aboriginal prac-
tice of “pointing the bone” at someone as part of a spell to erthalem ill or die. By
using a certain set of error bounds (this belief implies),elminate the problem of
the consequences of inference errors by a uniform set céhiblds, in the same way
perhaps that pointing the bone solves all inter-persorwddipms.

A rational approach — rational in the sense of seeking to meed society’s over-
all welfare — would decide the critical values, and hencedéeision thresholds, for
risk regulation decisions on a case-by-case basis. Gotigtist@ practice may involve,
prior to each hypothesis test, a deliberation over the @wands and the judicious bal-
ancing of levels ofx against levels of}, as described for example in [74], but such
deliberation, if it occurs at all, rarely takes into accoaiitthe consequences of the
errors. There are several reasons for this. One is the dgallef identifying all the
consequential outcomes. Clinical trials were conductedekample, on both human
and animals subjects prior to the commercial release ofiddmide, but none of these
trials involved pregnant subjects [70], presumably beeawsone thought of the pos-
sibility that there may be adverse effects specific to sudijests. The challenge of
identifying all possible consequences of proposed actiassreceived some attention
in the Atrtificial Intelligence community, under the namespoksibilistic risk assess-

lfrom the Aranda word¥ erdaje.
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ment[21, 42] andchance discoverj46], although this work is still very preliminary.
The second challenge to case-by-case determination aftetmds is quantification:
assessing the likelihoods of different outcomes, assgdbiir positive and negative
impacts, and assessing the valuations (or utilities) tiege affected and society would
place on these impacts. For most new substances and astjetiidence to support an
objective assignment of quantitative values to these bbasas scarce or non-existent.
Subjective quantification (e.g. assignment of subjectiadabilities) is always possi-
ble, but that simply magnifies the third challenge, that ehéng agreement between
the different parties involved. Finally, making regulatatecisions means striking a
balance between the different interests involved and thysdacision is ultimately a
political one [71].

Recent work in Artificial Intelligence in developing qualitve decision theory
[24, 56] may provide techniques to meet these challengemait be easier, for ex-
ample, for different stakeholders to reach agreement wikelihoods are represented
by labels from a qualitative dictionary such‘&&ry Likely,” “Likely,” etc, than when
they are represented as probabilities. Although this weekso only preliminary, in the
next Section we outline an approach we believe could fronb#sis for a structure in
which formal consideration of consequences and deteriamaf error bounds could
be undertaken. It is important to note that we are not proppgiat different error
bounds be used by scientists, where Bross’s arguments fiR]tdahe information-
theoretic role of the standard values are persuasive. liti@tdas Sven Hansson has
argued [33], the web of science is by now such a thickly-wdepestry that pulling at
the thread of the error bounds in one area of science may femplex implications
far beyond that area and so unravel science’s many inteembea parts. Rather, we
are arguing that possibly different error bounds be usediéaisions in risk regula-
tion, and that these be decided on a case-by-case basis. lIAsevgeen in the next
section, we may view the scientific questidilfat to Believel?as being distinct from
the regulatory questioWhat to Do?.

2 Towards a Solution?

2.1 Alist of requirements

In this Section, we present a list of requirements for a stimecwhich would permit
formal deliberation over the levels of and 5 appropriate for risk regulation deci-
sions in the domain of environmental health; we refer tostrigcture as deliberation
structure. Only an outline is presented here, because the work is stijbimg; we
are presenting it now so as to raise awareness in the riskategucommunity of the
potential of these developments. Our deliberation stredtwilds on recent work in
Artificial Intelligence (Al), Philosophy and Linguistic#) particular an emerging dis-
cipline known as Computational Dialectics [26, 60]. Unglar) this work is the theory
of argumentation, the formal study of argument [18], whiels la history in Philoso-
phy dating back at least to Aristotle [6]. Argumentationdhies have been applied
successfully for some time in Artificial Intelligence, faxample in the design of ex-
pert systems for medical diagnosis and for personal heaktassessment [15, 41], in
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legal expert systems [7], and in the design of systems ofhaumous software agents
[58]. A recent review of such applications is given in [13].

What would be required of a structure for formal delibenatiderror bounds in the
risk domain? We believe there are a number of componentstlyfian understanding
of the precise nature of the debate(s) being undertaken.n linfeuential typology,
philosophers Doug Walton and Erik Krabbe [76] identifiedesal primary types of
dialogue, distinguished by their initial situations, thaats of each of their participants,
and the goals of the dialogue itself (which may differ frone tindividual goals of
the participants). The dialogue types weheformation-seeking dialogues which
one participant seeks the answer to some question from emodinticipantjnquiries
in which all participants collaborate to answer some qoestib which none has the
answer;Persuasion dialoguesn which one participant seeks to convince others of
the truth of some propositioijegotiations in which participants jointly attempt to
divide a scarce resourc®eliberations in which participants collaborate to decide
what actions to take in some situation; aadstic (strife-ridden) dialogues, in which
participants quarrel verbally as a substitute to physigaiting. While this typology is
quite rich, Walton and Krabbe do not claim it is comprehesasand there are certainly
other types of dialogue.

In anidealized sense, one may view scientific dialoguesqsyndialogues, where
participants collaborate to prove or disprove some hysistedf interest. In this sense,
a scientific dialogue concerns the questi#inat to Believe However, this assumes an
hypothesis has already been explicitly stated, and priokwe involving data collec-
tion, data analysis, theory development and much thinkimdiscussion, especially
of a counterfactual nature — may be needed to induce or fornypathesis. All these
activities may be undertaken or supported through dialpgtigypes which are not
necessarily Inquiries. Moreover, once a scientist adogussition on an open issue,
the debate which then ensues is best described as a multPesyasion dialogue,
where both those in favour of a proposition and those agaissek to convince others
to accept or reject the proposition at issue. These exclsaragebe quite emotionally
charged, to the point where they may resemble Eristic disdeg We may consider
these other dialogues as sub-dialogues embedded in thelmgaiiny dialogue. Like-
wise, a similar analysis may be undertaken for regulatogysitens. Treated ideally,
these are Deliberations, i.e. deciding what course of adtidake in specific circum-
stances, and so the question under consideratioVlgt to Do? However, in real-
ity there are also many embedded, sequential or paralleti®ibgues: Information-
seeking, Persuasion and Negotiation dialogues and (agalvaps) Eristic dialogues.
Recent work in Artificial Intelligence has sought to moded #mbedding of one type
of dialogue in another, and in the next section we discus®sufithis research.

A second requirement for the error bounds deliberatiorcaire are formal mod-
els of the appropriate dialogue-types. Starting with thekwad philosophers Charles
Hamblin [32] and Jim MacKenzie [44], formal dialogue-gameduals have been used
as a means of analysis of philosophical and logical questigurch as fallacies in argu-
ment. These models treat each dialogue as a game, with timtieer speech acts, or
locutions, of the players being the legal moves of the garhe.rtiles of the game deter-
mine which combinations of locutions are possible and trmionstances under which
the dialogue ends. Walton and Krabbe [76], for example, ldgesl formal dialogue
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game models for Persuasion dialogues. Researchers in Alreaently proposed for-

mal dialogue games as protocols for interaction betweemdsat autonomous software
entities, known aagentsas a means to enable automated dialogues. This research has
led to dialogue game models for various forms of Informateeking dialogues [40],
Inquiries [51], Persuasion dialogues [2, 17], Negotiaiph 40, 65] and Deliberation
dialogues [37F To apply dialogue game models to the error bounds selectiuirigm,

we will first require formal models of the relevant scientdied regulatory discourses,

and then dialogue game models of each of the component d&goun the next sec-

tion, we present some of our own recent work in dialogue gawaats for Inquiry and
Deliberation dialogues, which will be relevant for such awdertaking.

The third component of the deliberation structure is theitaieve representation
of uncertainty, for example of consequential outcomes adrer of their likelihoods,
and of the values (utilities) assigned to these outcomere Bigain, our approach is to
use a form of argumentation, where the cases for and agairisui¢ propositions can
be articulated, contrasted and possibly combined. Thi®fiaggumentation to model
uncertainty has also received attention in Artificial Ifitggdnce [23, 31, 51]. How might
arguments be combined? A common approach is to define vaattarck and defeat
relationships between arguments, and to assess which angsisurvive all attempts
to defeat them. This approach is analogous to the conduegef proceedings, where
claims are accepted as “true” if and only if they survive raiiés to defeat them in a
validly-constituted and appropriately-conducted cduri.the next section, we give an
example of qualitative uncertainty labels defined in terfrsrgument relationships in
the modeling of scientific inquiry dialogues.

The next component of the deliberation structure is a datisalculus for for-
mal consideration of qualitative information. One appio&e this could be to view
it as operating analogously to traditional quantitativeisien theory [43]. For exam-
ple, quantitative decision theory assigns likelihoodsdsgible outcomes on the basis
of numeric probabilities, i.e. elements of the H&tl]. A qualitative decision theory
could assign likelihoods from a qualitative dictionaryckas the linguistic se{Open,
Supported, Plausible, Probable, Accepte8imilarly, we can also imagine utilities be-
ing assigned to outcomes from a qualitative dictionary ditydlabels, such as the set
{—,0,+}. Here, assignment of the label" to an outcome may be understood to
mean that the outcome is perceived to have a net positiveefioe) utility, the label
“—" a net negative utility and the labed™ that there is neither positive nor negative
utility. Clearly other qualitative dictionaries for bottkélihoods and utilities are pos-
sible. A qualitative decision theory could seek to combinaliative likelihoods with
qualitative utilities, in a manner similar to that in whichantitative decision theory
combines probabilities and utilities to obtain expectellie#s. As mentioned earlier,
qualitative calculi for decision-making have been a foctissoent research in Artifi-
cial Intelligence [24, 56, 57, 77].

However, even with these modifications, approaches basediagsical decision
theory will still assume that utilities of different outc@® are comparable and may

?Dialogue games have also been applied to problems in legsbning [8, 59], in software specification
[20] and in automated software design [68].
3These are instances of a Game-Theoretic semantics in the sdaako Hintikka [35].
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be partially ordered [25]. As our discussion in the sectibbwe made clear, these
assumptions are not necessarily appropriate in the donfaiskoregulation. More-
over, classical decision theory, arising as it did withimmemics, has assumed that
participants to a decision commence with their preferefadsformed and known,
at least to themselves. However, as deliberative democ¢haoyists in political sci-
ence have noted, e.qg., [14, 30], preferences may be altemcbn formed in the very
process of making a decision. Indeed, the decision procagsemable participants to
acquire agroupor social perspective on a problem, for example awarendbg efider
social consequences of individual actions, which may ottser elude them [61]. In
the light of these considerations, it is clear that clasdgiezision-theoretic models
are not adequate for the complexity of decisions in the rglulation domain. This
does not mean, however, that adequate decision modelstdamfiarmulated. Henry
Richardson, for example [63], has argued that it possibielifferent people to argue
rationally about final ends and values, and not merely atbmuirtost effective means
for achieving those ends. While much work would be neededriothese ideas into
computational models of decision-making, we do not beligneetask is impossible.
Given the interactive nature of stakeholder involvemenmish assessment and regula-
tion decision-making, we would anticipate that any adeguaidel of decision-making
would draw on argumentation theory, as we have argued in [49]

Finally, the deliberation structure needs to coherentiyloime all the components
mentioned above. To achieve this, a formal model which §ipsdhe different compo-
nents and their inter-relationships will be required. avwsuch a model would enable
the exploration of its properties in a systematic and rigsn@ay, in a manner which is
relevant for regulatory decision-making. For examplenfalisation may better enable
determination of the salient differences between two dmtisases which otherwise
appear very similar, or, conversely, may reveal two différeases to be essentially
equivalent. One element of such a model may well be a theosg@fharios under
which alternative future courses of action could be idesdifind rigorously compared
with one another. In recent work [50], we have begun the dgreknt of a compu-
tational theory of scenarios in contexts of decision-mgkinder uncertainty. In the
domain of risk regulation, the final decisions will alwaysrade by human beings,
taking account of all the scientific, political, culturabcal, economic and other factors
relevant to the decision. Because of the stakes involvedomoal calculus or intel-
ligent computer system will ever replace the final humanslesimakers. However,
we see a role for such formal structures and systems in iagstee human decision-
makers in contemplating, making, communicating, recay@ind evaluating those de-
cisions. Elsewhere [62], we have referred to systems pimyithis type of assistance
to human decision-making as servingarery function, on the analogy of mechanical
models of the solar system. In addition to development otoetit, overall models
of the decision process and of associated support systeseanch attention will also
be required for assessment criteria for such models andmgstan issue which has
received relatively little attention within Al thus far [R8
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2.2 Progress to date

In this section, we present the progress to date in spegifystems which meet the re-
quirements just listed for the error bounds deliberatiomcstire. As mentioned earlier,
this work draws on recent developments in Artificial Ingdihce and Argumentation
Theory in an original way.

First, we have recently defined a logic-based formalism épresenting complex
dialogues of multiple types [48, 52]. This formalism is lasigghical, with three levels of
representation, and is computational. At the highest isvetontrol dialogue in which
participants discuss whether or not to engage in parti¢ytes of dialogues over spec-
ified topics of discussion. At the second level are dialogyes themselves; here, the
representation is modular and thus permits incorporataronly of the various types
articulated by Walton and Krabbe [76], but also other typkdialogues, including
types not yet defined. At the third and lowest level are théodize-game rules of
each specific dialogue-type. Drawing on a species of modgt lonown as propo-
sitional dynamic logic [34] developed to model formally theerations of computer
programs, this three-level representation permits thebtmation of dialogue-types in
complex ways; for example, dialogues may be repeated; thegybe undertaken in
sequence or in parallel; they may be embedded within onéhanaind they may be
interrupted at any time. In this way, the formalism enabggesentation of complex
human dialogues in a single, unifying framework. We have bksen shown [52] that
the formalism is potentially generative: that is, it may [sed to generate arguments
automatically when used for dialogues between suitabbgi@ammed software enti-
ties. This is important for applications seeking automaintification and resolution
of any differences between participants, and has not puslyideen a feature of hier-
archical dialogue models in Artificial Intelligence.

The second requirement for the error bounds deliberatiuttsire listed in the
previous section involved formal models of the appropri@itdogue-types, namely
Deliberation and Inquiry dialogues. Once completed, suotiets can be incorporated
readily at the third level of the hierarchical structuretjdescribed. Such formal mod-
els are currently under development, building on varioursgples for the conduct of
these dialogues due to philosophers Robert Alexy [1] anddiditchcock [36]. For
instance, we have defined [51] a dialogue game for scientgaodrses with locutions
allowing a debate participar®; to assert a clain® with a degree of supporty, as
follows:

assert(P; : (8,dp)).

The degree of support labéj is taken from a dictionary of labels agreed between the
participants, and may be quantitative or qualitative. Oasserted, the clairfh may

be questioned by another participant, which move then ebltge first participant to
present an argument for the assertion; our locution symakles such arguments to
be presented to the forum. As in a real debate, participaajsaiso query or contest
assertions, premises, arguments, rules of inference agrdaeteof support, via specific
locutions. The dialogue game definitions specify the prditams required for each
locution to be validly executed, for example, a participaraty not assert a clairt
and then assert the contradictory claiifi, without in the interim retracting the first
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assertion. Likewise, post-conditions are specified, agwvehdialogue move imposes a
burden of proof on a participant.

Together with David Hitchcock, we have also recently depetbthe first formal
model for Deliberation dialogues [37], building on work iretphilosophy of argumen-
tation undertaken by Harald Wohlrapp [78]. This model of &ibdeation comprises
eight elements:

Open: Opening of the deliberation dialogue.

Inform: Discussion of the goal(s) of the deliberation dialogue (ice what purpose
is action being considered), of any constraints on the plesactions which may
be considered, of the perspectives by which proposals mayddaated, and of
any premises (facts) relevant to this evaluation.

Propose: Suggesting of possible action-options to achieve the agyeal.
Consider: Commenting on proposals from various perspectives.

Revise: Revising discussion goal, constraints and/or actionemgtin the light of the
comments presented.

Recommend: Recommending an option for action, and acceptance or nogptance
of this recommendation by the participants.

Confirm: Confirming acceptance.

Close: Closing of the deliberation dialogue.

These eight elements may be undertaken in any order, sulsjlyco a small num-
ber of constraints (e.g. that ti@onfirm stage always follows thRecommendstage).
As with the scientific dialogue example, appropriate lamosifor participants in each
of the eight elements, along with rules for their use, haventzgticulated. These spec-
ifications are quite general; to be applied to debates over bounds, will require
domain-specific locutions and dialogue rules, an issue we gaven some attention
[47, 49]. For instance, drawing on the generic theory of Camicative Action of
philosopher Jiurgen Habermas [29], we proposed the fatigwypes of locutions as
appropriate for debates in the domain of environmental agalth risk assessment
[49]:

Factual Statements: These are statements which seek to represent the stateet-the
ternal world, such as claims about scientific reality, areddtientific, economic
or social consequences of particular actions. Contestioly a statement means
denying that it is a true description of objective, extemaallity.

Value Statements: These are statements which seek to represent the state iof the
ternal world of the speaker, i.e. they reveal publicly thead@r's subjective
preferences or value assignments. Such statements mayerdgntested by
doubting the sincerity of the speaker.
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Connection Statements:These are statements which assert some ethical, social or
legal relationship between different parties, in the commworld of the debate
participants. Contesting these statements means demgrxistence, relevance
or importance of such relationships.

Inferential Statements: These are statements which refer to the content of earlier
statements made in a debate, drawing inferences from themotorg impli-
cations. Once a scientific theory has been proposed, a spaskiassessment
model and the ensuing calculations based on the model falltiis category.
Contestation of such statements can take the form of qustiashe appropri-
ateness or the validity of the inferences made.

Procedural Statements: These are statements about the activity of speaking itself,
such as the rules for participation and debate. In manylifeadiscourses, these
often become the focus of debate, overtaking issues of st

Obligation Statements: These are statements which assert some obligation on the
participants, for example, that they must limit the comnadrsale of a new
substance. Only the authorized regulator has the power ke swch assertions,
and once made, they cannot be contested within the debatiagf In real-life,
they may of course be contested in the courts, and often are.

As can be seen, this typology is still very coarse, and monkwall be required to
produce a finely-grained set of locutions, along with a fp#dafication of the pre- and
post-conditions appropriate for each.

The third requirement of the error bounds deliberationcste listed was the qual-
itative representation of uncertainty. Recent work in A$ haade explicit use of argu-
mentation to represent knowledge uncertainty, arisingekample from inconsistent,
contested or missing evidence [42, 51]. In this approachiend is assigned an un-
certainty label from the qualitative linguistic dictiolyafOpen, Supported, Plausible,
Probable, Acceptefdaccording to rules such as the following:

e If 6 is a claim for which no argument has yet been provided by agiyzeint, then
0 is assigned the valu@pen

e If #is a claim for which at least one argument has been provideddayticipant,
thend is assigned the valusupported

e If #is a claim for which a consistent argument has been provigediarticipant,
thend is assigned the valuelausible

e If 6 is a claim for which a consistent argument has been proviged par-
ticipant, and for which neither rebutting nor undercuttarguments have been
provided, ther is assigned the valut@robable Rebutting argumentsgbuttalg

“4For instance, in the scientific debate over Genetically-fiited Organisms in Britain during 1999, an
argument between the medical jourdle Lancetand The Royal Society ensued over whether the latter
was entitled to comment on a paper submitted to the journfardét had been accepted or rejected for
publication [5].
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are arguments for the negationfand undercutting argumentsndercuttery
are arguments for the negation of a premise of an argumefit Rebuttals and
undercutters are together called attacking arguments.

e If #is a claim for which a consistent argument has been provigediarticipant,
and that argument is well-defended, theis assigned the valuaccepted A
well-defended argument is one for which counter-attackiiggiments have been
presented for each attacking argument.

The labels are listed in order of increasing strength, aeg #re a property of the
debate as a whole, not of any one participating individubusT the labels assigned by
these rules may differ from any labels assigned by the idd&f debate participants.

The uncertainty label applied to a claim may change as newnaggts are pre-
sented, so this assignment of uncertainty labels is défieadf it is assumed that all
relevant arguments are eventually presented by one gaticor another, then after a
finite (but possibly very long) time, the value of the uncirtyalabel should be stable.
We may refer to this stable value as timecertainty label at infinitySuppose we com-
mence a debate and then, after some finite tintake a snap-shot of the uncertainty
label at that time, and learn that it‘iBccepted”. Will the uncertainty label at infin-
ity also be"Accepted?” Under some reasonable assumptions about the timing of the
snapshot, it can be shown [51] that if the probability of nefoimation arising after
the snapshot is taken is less tharfor some real number < € < 1, then the prob-
ability that the uncertainty label at infinity is al$8ccepted” is at leastl — €. This
result demonstrates that assignment of qualitative uaicgytlabels based on the argu-
ments presented for and against claims is well-behaved: ithsstatistical inference,
we cannot guarantee that inference from a finite snapshbeairncertainty label to its
value at infinity is always valid, but we can place a probabdibound on the likeli-
hood of error in making this inference. This and the othemf@rproperties proved in
[51] provide confidence in the use of dialogue and argumiemtal/stems to represent
uncertainty in domains where the absence of scientific inédion precludes quantifi-
cation of uncertainties, or where agreement over such gicatibn is not achievable.
These features are typical of the environmental risk assarssdomair?.

Work on the next element of the error bounds deliberationcsire, namely an
appropriate qualitative decision calculus, is still toelpninary to report at this time.
Likewise with the development of a formal model which congsrtoherently all the
listed components. There is likely to be more than one wayinhine these compo-
nents rigorously, and different combinations may resulllifferent decision support
systems or even different decision outcomes. In that casearch will be needed to
assess the most appropriate formal model for deliberatienstatistical error bounds.

How does this research on computational dialectics andtgtia¢ decision-making
relate to the problems of determination of error-boundyjpdthesis testing for risk as-
sessment? Firstly, the work we have outlined on computakidialectics should, when
completed, enable the formal modeling and explicit reprzg®n of debates over the
consequences of inference errors, in all their gloriousplerity. Arguments for and

SFor an example, see the recent report on the issue of GelyeMadified foodstuffs prepared for the
U.K. Economic and Social Research Council Global EnviromtaleChange programme [72].
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against various error consequences, rebuttals and cpalida these arguments, along
with their various implications, valuations and degreesaffidence, will all be rep-
resentable in a suitable dialectical argumentation foismal That such an application
to the error bounds problem is potentially feasible is shbwithe applications of ar-
gumentation theory already to be found in deployed compaystems [13, 22, 27].
Secondly, the actual decision-making task involved inc&lg non-default values of
error bounds will also be amenable, we believe, to formal@lind and representation.
Here the decisions involve making trade-offs between difiesets of consequences,
in a context of competing views of their relative importarzc® value. As we sug-
gest above, formalization of such decision-making may kesibte in an appropriate
qualitative decision calculus; like argumentation, ciadilre approaches to reasoning
under uncertainty developed in Artificial Intelligence balready proven themselves
in real-world applications [22, 56, 77].

2.3 Example

We now present a hypothetical example of a simple Inquirjodize regarding an
uncertain proposition. This example, adapted from [51hcesns a debate over the
possible carcinogenicity of a chemicd#l for which evidence is conflicting. The pur-
pose of this example is to show how the relationships betwleerarious arguments
uttered in a dialogue for and against a proposition can bd ttsgenerate qualitative
uncertainty labels for the proposition. In a real debatetigipants would be free to
introduce supporting evidence and modes of inference atiar®; However, to aid
understanding, in this example we first list the assumptismtsmodes of inference to
be used in assertions and proposals. The various assuspti@iatements which can
be used as grounds for arguments — are numbered K1 through K4.

K1: X is produced by the human body naturally (i.e. it is endogehou
K2: X is endogenous in rats.
K3: If X is an endogenous chemical then it is not carcinogenic.

K4: Bioassay experiments applyifdgto rats result in significant carcinogenic effects.
The modes of inference used by participants in the dialogrilabeled R1 through R3:

R1 (And Introduction): Given a statemend and a statemer#t, we may infer the
statemento A 6).

R2 (Modus Ponens): Given a statement and the statemerity — 6), we may infer
the statemert.

R3: If a chemical is found to be carcinogenic in an animal spetien we may infer
it to be carcinogenic in humans.

We now give an example of a dialogue concerning the statem®n$ carcino-
genic to humanswhich we denote by. The dialogue utterances are numbered M1,
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M2,.. ., in sequence. The locutions used in this dialogue are tluwsbéd scientific In-
quiry dialogue protocol of [51], which also contains detaif the locution syntax. We
assume that participants agree to use the following qtigétdictionary of labels to
express their degree of support for statemef@ertain, Confirmed, Probable, Plausi-
ble, Supported, Opén Moreover, they agree to assign qualitative uncertairiglsato
statements on the basis of arguments presented in the @eloateling to the dictionary
defined in Section 2.2, namelyAccepted, Probable, Plausible, Supported, Opéio
assist understanding of the example, each utterancedsvied by an annotation.

At the commencement of the dialogue, no arguments have lmhemeed for
either¢ or —¢, and so both statements are assigned the uncertaintyQqgplesl.

M1: assertP; : (¢, Confirmed)).

ParticipantP; asserts the claim, thatX” is carcinogenic to humans, which she
believes has strengtonfirmed.The uncertainty label assignedd¢aemains as
Open because no argument has yet been presentet for

M2: query(Ps : assert(Py : (¢, Confirmed))).
ParticipantP, asksP; for her argument fop.
M3: showarg(P; : (K4, R3, ¢, (Confirmed, Valid, Confirmed))).

ParticipantP; presents her argument for which rests on grounds that bioassay
experiments oft’ have been shown to produce carcinogenic effects in rats (As-
sumption K4), and that one can infer from these results todngyby means of
Inference Rule R3. Participaft, assigns this rule a modality afalid. Utter-
anceM3 has presented an argumentfgrand so a new uncertainty label for this
statement is required. This labelfsobable because the argument presented is
consistent, and also because no rebuttals or undercutezs/bt been presented
againstp.

M4: contestP, :assertP; : (¢, Confirmed))).

ParticipantP, contests the assertion ¢fwith modality Confirmedby P; .
M5: query(P; :contestP, :assertP; : (¢, Confirmed))))

ParticipantP; asksP- for her reasons for the contestation in Utteraktzk
M6: proposePs : (¢, Plausible)).

ParticipantP, proposes the claime, i.e. thatX is not carcinogenic to humans,
and says she believes thisH&usible.

M7: query(P; :proposePs : (¢, Plausible))).
ParticipantP; asksP- for her argument for¢.

M8: showarg(P: : ((K1, K3), R2, ¢, (Confirmed, Probable, Valid, Plausible))).
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ParticipantP, presents her argument forg. This argument starts from the
premises thakt’ is endogenous (K1) and that endogenous chemicals are Rot car
cinogenic (K3), and then uses Modus Ponens (Rule R2) to edathatY is not

carcinogenic to humans. This utterance means that an argwageinsty has
been presented in the dialogue, and so the uncertaintydpbpééd top changes
from Probableto Plausible Similarly, the uncertainty label for¢ statement is
now Plausible since the argument @f in UtteranceM3 forms a rebuttal of¢.

M9: contestground(P, : showarg(P, : (K1, K3),R2,—¢, ( Confirmed,
Probable, Valid, Plausible ): (K3, Probable))).

ParticipantP, contests a grounds of the argument presentebiy Utterance
M8, namely the premise K3, that an endogenous chemical isncayenic.

M10: showarg(P, : ((K2,K4), R1,-K3, (Confirmed, Confirmed, Valid,
Confirmed)))

ParticipantP, immediately follows the contestation with a presentatibmer
own argument for the negation of K3, i.e. an argument for thmrcthat it is not
the case that an endogenous chemical is carcinogenic. fighismant useé\nd
Introduction(Rule R1) on the premises K2, that is endogenous in rats, and
K4, thatX has been shown to cause cancers in rats. This argument iglan un
cutter for the argument fofip, presented b§- in UtteranceM8, since it attacks
an assumption of that argument. The uncertainty label aedigp—¢ does not
change, however, as a rebuttal already had been preserdedver, the under-
cutter ofM10 attacks a rebuttal (that iM8) of ¢, and so is a counter-attacking
argument. This rebuttal is the only rebuttal or undercyttesented which at-
tackse. Thus, the argument faf presented itM3 is now well-defended. Hence,
the uncertainty label assignedd¢ahanges fronfPlausibleto Accepted

This example, although hypothetical and simplified, shoms the arguments artic-
ulated for and against a proposition may be used to geneuatiéajive uncertainty
labels for that proposition. Thus a formalism for dialogweman uncertain propo-
sition may incorporate representations of the argumemtarid against it, and these
arguments may be resolved — and the debate summarized atren- on the basis
of their formal relationships with one another. In this exden we have treated all
arguments equally, and not given some more weight than thiéowever, in most
real-world domains some arguments will be weighted momngtlly than others, as,
for example, in the 1986 Guidelines for Carcinogen Risk Assent of the USA En-
vironmental Protection Agency, where human evidence farieagenicity is afforded
priority over animal evidence [73, p. 34000]. Recent worlAlrhas developed formal
approaches to resolving arguments based on conflictingemces, e.g., [3], and can
accommodate differential weighting of arguments.



Hypothesis Tests in Risk Assessment 15

3 Discussion and Conclusion

In this paper, we have restated arguments long known tatt#ins that the selection
of Type | and Type Il error bounds should be decided on a cgseabe basis, taking
account of the consequences of each type of inference érdwed, as we mentioned,
informal considerations of this nature motivated the valuaw standard in the sciences
for these error bounds. We believe this is especially ingtrin the regulation of
environmental and health risks, where such consequencesliffier greatly in their
nature, dimensions and incidence. Such an approach isacgntr the uniform use
either of the values fotr and 8 standardly used by scientists or of the diametrically-
contrary values implicit in applications of the PrecausiopnPrinciple.

A key challenge in deciding error bounds case-by-case isyk® in a rigorous and
formal manner, given the diversity of considerations appgde to the decisions, the
diversity of interests, values and preferences of the btalkers, and the difficulties of
quantification of many of the variables at issue. Recent vioértificial Intelligence
in modeling dialogues in computational systems, in devatpgualitative representa-
tions of uncertainty and in developing non-standard degithieories provide a basis,
we believe, for approaches to deal with this challenge. We ltlaus outlined a set
of requirements for a structure for deliberation over ebounds, and presented the
current status of research work to develop the techniquedatkto meet these require-
ments. When fully developed, this structure should proédé&orous and coherent
formal framework to assist debate and decision over thesad®on a case-by-case
basis. Such a framework could be seen as an example of a taésdisal tool, in the
sense of Deborah Mayo [45].

We believe a number of benefits would arise from adopting sufciimal deliber-
ation structure. Firstly, it would make all assumptionseiences and conclusions in
the decision-process explicit and transparent. It woldd edveal the explicit trade-offs
necessary to the making of these decisions. Transparermytiinareas is especially
important in the domain of risk regulation, where mattersvafe public importance,
including life and death, may be involved. Secondly, the afsargumentation for-
malisms enables the reasons for and against conclusiores tepbesented alongside
those conclusions. Moreover, using a formalized arguntientand decision struc-
ture enables all stakeholders (whether participants irdtiéeration process or on-
lookers) to judge the arguments and procedures used in aeyagminst the formal
structure, independent of the particular case. In bothe@sp formalization acts to
improve the decision-making process and to increase itsparency. Thirdly, the use
of a computer-based deliberation structure could enalelatgr public participation in
these decisions and thus potentially give effect, as we #mt®have argued [19, 49],
to ideas of deliberative democracy current in politicalaitye]9, 11]. At present, risk
decision thresholds are those based on the standard vaeésruthe scientific com-
munity, and which may be appropriate there. One could a@gie/e have done above,
that they are inappropriate to the domain of public policgisien-making over poten-
tial environmental and health risks. Whatever the meritthaf case, however, their
deploymentin this domain has certainly not followed anylmutiebate over their use;
indeed, the debate over the Precautionary Principle isltsest that western society
has come to a public discussion over error bounds in hypisttesst procedures, and to
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date error bounds issues have been implicit rather thamc@plthat debate.

Finally, we believe it important to stress that there arekodaitcha bones,” error-
bounds and thus decision-thresholds appropriate for esigrgtion; instead, rational
decision-making — at least within the limits of resource stoaints on the decision-
making process itself — requires that the error bounds foh ease be decided taking
account the consequences of inference errors in that platticase. The scientific,
economic and social issues involved in any debate over boonds will usually be
quite complex, and the values placed on the same outcomeiféredt participants
often very discordant; this can be seen from the public gebaér almost any poten-
tial major environmental or health risk. There is no guasanif agreed resolution of
such differences, as has been found in applying multit@aiseoring techniques to the
issue of Genetically-Modified foods [69]. However, evenhwiit a guarantee of reso-
lution, representation of a debate within such a formalisould force greater clarity
in the statements articulated, and thus facilitate attemijpteaching trade-offs between
different regulatory alternatives. At the very least, &iplepresentation would make
everyone involved aware of the case-specific consequehagfg@nce errors, aware-
ness which the unthinking use of uniform error bounds irthibi
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