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Abstract
Scenario analysis is often used to identify possible chanceevents. However,

no formal, computational theory yet exists for scenario analysis. In this paper, we

commence development of such a theory by defining a scenario in an argumentation

context, and by considering the question of when two scenarios are the same.

Keywords Argumentation, Chance Discovery, Ensembles, Forecasting, Sce-
narios.x1 Introduction

The new discipline of chance discovery is concerned with theidentification

and management of rare, but significant, events, such as potential risks or opportunities,
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in some domain or system of application.17, 10) In this paper, we focus attention on

chance identification rather than on chance management. Onemethod commonly used

to identify chance events is by considering possible futurevalues of some parameters of

interest, allowing them to vary according to the actions of causal mechanisms assumed

to operate. This approach yields a possible future state of the world, or a trajectory of

such states, called ascenario; comparing two or more these is called scenario analysis.19)

Scenario analysis has been applied extensively in businessand in public policy,

as well as in scientific domains, e.g.,8). Perhaps the most important recent application of

scenario analysis has been by the Intergovernmental Panel on Climate Change (IPCC),

the United Nations agency tasked with assessing the currentstate and possible futures

of the world’s ecosystem, and attempting to devise appropriate regulatory policies to

prevent or respond to global warming.3) In this domain, scenario analysis has been

used for scientific modeling and prediction, for the modeling of socio-economic vari-

ables, and for the comparison of environmental and other regulatory policies. Despite

their widespread use, however, there appears to be no formaltheory of scenarios. With-

out a formal theory of scenarios, many questions remain without rigorous answers, e.g.,

How should scenarios be constituted? How many scenarios should be considered? How

should individual scenarios be analysed? How should aggregation of outcomes across

scenarios be undertaken? How should the likelihood of occurrence of different sce-

narios be represented? How should such likelihoods be aggregated across scenarios?

What is the relationship between scenarios and the domain ofapplication? And with-

out a formal theory of scenarios, there can be no computational theory, thus limiting the

potential applicability of scenario analysis in intelligent systems.

The long-term aim of this research is a rigorous, formal, computational the-

ory of scenarios. This paper takes one step towards this aim,by considering one type

of scenario — those based on dialectical argumentation — applied to one problem —

that of chance discovery. In earlier work11), we showed how dialectical argumenta-

tion may be applied to the identification of chance events, and proposed a protocol for

distributed communications between agents jointly engaged in chance discovery. Ar-

gumentation methods are appropriate when relevant knowledge is distributed between

autonomous agents, or when the interests or values of such agents may diverge. In these

circumstances, methods based on fusion of different knowledge bases or analysis of all

the data held by the participating agents may be inappropriate, as participants may not

wish to share all their information with each other. In Section 2, we review a basic

model for dialectical argumentation about uncertain domains. Section 3 then defines

our notion of scenario, while Section 4 considers the question of when two scenarios
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may be considered the same or not. We present a decision rule for deciding if two

scenarios are distinct, based only on their initial premises and inference rules, and on

the estimated likelihoods of new new information being presented in either scenario.

Section 5 concludes with a brief discussion of applicationsto chance discovery, and

discussion of related research.x2 Dialectical Argumentation
In this section we briefly summarize the Agora framework for the qualitative

representation of uncertainty which we presented in earlier work.13) In this framework,

arguments for and against claims are articulated by participants in an electronic space,

called anAgora, with claims expressed as formulae in a propositional language. By

means of defined locutions, participants in the Agora can variously posit, assert, con-

test, justify, rebut, undercut, qualify and retract claims, just as happens in real discourse.

For example, a debate participantPi could demonstrate her argumentA(! �) support-

ing a claim�, an argument to which she was committed with strengthD, by means of

the locution:

show arg(Pi : A(! �;D)).

The rules governing the use of each permitted locution are expressed in terms of a for-

mal dialogue-game between the participants.6, 14) We assume that the Agora participants

begin a debate with a set of agreed facts, or assumptions, andan agreed set of inference

rules. Because we want to model many forms of reasoning, these rules need not be

deductive and may themselves, in our Agora formulation, be the subject of argument.

We demonstrated the use of this framework for the representation of uncer-

tainty by defining a set of uncertainty labels, which are assigned to claims on the basis

of the arguments presented for and against them in the Agora.Essentially, one could

say that claims have more credibility (and hence less uncertainty) the fewer and the

weaker are the arguments against them. While any set of labels could be so defined, we

drew on earlier work in argumentation9) and used the set:fAccepted, Probable, Plau-

sible, Supported, Openg, with the elements listed in decreasing order of certainty.For

example, a claim was regarded asProbableat a particular time if at least one consistent

argument had been presented for it in the Agora by that time, but no arguments for

its negation (rebuttals) nor for the negation of any of its assumptions (undercuts) had

been presented by then. We defined a claim aswell-defendedif there was an argument

for it and any rebuttals or undercuts were themselves subject to counter-rebuttals or to

undercuts.Acceptedclaims were defined as those which are well-defended.

We then defined the truth-valuation of a claim� at timet, denotedvt(�), to be1
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if � had the labelAcceptedat this time, otherwise it was0. Such a valuation summarizes

the knowledge of the community of participants at the particular time, since it incorpo-

rates, via the definitions of the labels, all the arguments for and against� articulated to

that time. Consequently, assessing the truth-status of a claim at a particular time can be

viewed as taking asnapshotof an Agora debate. Of course, because these definitions

are time-dependent, and arguments may be articulated in theAgora at any time, such

an assignment of uncertainty labels and truth valuation must be defeasible. Claims ac-

cepted at one time may be overturned at another, in the light of new information learnt

or arguments presented subsequently.

In using the Agora framework to represent uncertainty, attention will focus on

the truth valuation function over the long-run.�1 The sequence(vt(�) j t = 1; 2; : : :) may

or may not converge ast!1. Suppose that it does converge, and denote its limit value

by v1(�). What will the value of a snapshot taken at timet, namelyvt(�), tell us aboutv1(�)? Of course, any finite snapshot risks being overtaken by subsequent information

or arguments, we cannot infer with complete accuracy from the finite snapshot to the

infinite value. However, we have shown13) that, under certain conditions, we can place

a bound on the likelihood that such an inference is in error. The conditions essentially

require that: (a) the snapshot is taken at a time after commencement sufficient for all the

arguments using the initial information to have been presented, and (b) there is a bound

on the probability that new information arises following the snapshot. This result is

proved as Proposition 7 of13), which we reproduce here. For this, we first need some

definitions.

Definition 2.1

We write LE� for the statement:“The functionvt(�) converges to a finite limit ast!1.” We also writeXt;� for the statement:“New information relevant to� becomes

known to an Agora participant after timet.”
In general, at any times, we do not know whether new evidence will become available

to Agora participants at a later timet or not. Consequently, the variablesXt;�, for t not

in the past, represent uncertain events. Also uncertain forthe same reason are statements

concerning the future values ofvt(�) for any�. Because these events are uncertain, we

assume the existence of a probability function over them, i.e., a real-valued measure

function mapping such statements to[0; 1℄ which satisfies the axioms of probability.�1 Strictly, we are assuming throughout that time in the Agora is discrete, and can be represented by a
countably infinite set.
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Definition 2.2Pr(:) is a probability function defined over statements of the formXt;� and statements

concerning the values ofvt(�), for any formula�.

Theorem 2.1

[Proposition 7 of13)] Let � be a formula and suppose that all arguments pertaining to� and using the information available at commencement are articulated by participants

by some times > 0. Suppose further thatvtm(�) = 1 for sometm � s. Also, assume

thatPr(Xtm;�) � �, for some� 2 [0; 1℄. Then the following inequalities hold:Pr(LE� and v1(�) = 1 j vtm(�) = 1) � 1� �:P r(LE� and v1(�) = 0 j vtm(�) = 1) � �: 2
Like the standard (Neyman-Pearson) procedures for statistical hypothesis test-

ing, this proposition provides us with some confidence in ouruse of finite snapshots to

make inferences about the long-run truth-valuation function for a debate. While such

inference is not deductively valid, at least its likelihoodof error may be bounded.�2 In

the sections below, we will be comparing the results of debates in more than one Agora.

We therefore assume that we have a single probability functionPr defined across all the

relevant statements. We will also index symbols with superscripts (1,2, etc) to denote

the Agora to which they refer. We next define the concept of Scenario.x3 Scenarios
The framework we have just outlined provides a means to represent the diverse

arguments that may arise from a given set of assumptions, andusing a given set of

inference rules (deductive or otherwise). If we were to start with a different set of

assumptions, and/or permit the use of a different set of inference rules, the arguments

presented in the Agora may well be different. As a result, theuncertainty labels and

truth values assigned to formulae may well also be different, both when taken at finite

snapshots and in the limit. We define a scenario as follows:

Definition 3.1

A Scenariofor a given domain consists of a set of assumptions and a set ofinference

rules, with which participants are equipped at the commencement of an Agora debate

over formulae in that domain. We denote scenarios for a givendomain byS1;S2; : : :,�2 One may object that we can never know the value of�. While this is true, participants in a debate are
often quite willing to provide subjective estimates for such probability bounds. Scientists, for example,
will often estimate the chance that new information will arise which overturns an established theory.
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etc. For each scenario,Si, an Agora debate undertaken with the assumptions and infer-

ence rules of that scenario, is said to be theassociated Agora, denotedAi. We assume

only one Agora debate is conducted in association with any scenario.

In this paper, we will be assuming that all scenarios, and allthe resulting Agora

debates, relate to the same application domain. For this domain, suppose we are inter-

ested in a particular proposition�. We imagine we have a number of scenarios in

parallel, each with a different set of starting assumptionsand possibly also different

inference mechanisms. We now allow the associated Agora debates to proceed up to

a certain timet, when we take a finite snapshot of each debate. It would be expected

that the truth status of� would be different under different scenarios. Not only are the

assumptions and inference mechanisms different, but not all arguments may have been

presented to each Agora debate at the time of the snapshot. For chance discovery of

some claim� (for example, a possible risk) we are interested in whether there are any

scenarios in whichvt(�) has been assigned the value1. If so, there is a scenario in

which the claim� is well-defended. An immediate question would be how many such

scenarios are there? To answer this question accurately, weneed to ensure that each

distinct scenario is only counted once, i.e., that no “double-counting” of identical sce-

narios takes place. In other words, we need a rule to determine whether two scenarios

are the same or not. Such a decision rule is proposed in the next section.

An early use of scenario analysis was in nineteenth-centurystatistical mechan-

ics, where physicists studied the extent to which properties of a physical system, such

as its entropy at a given time, depended on the initial state of the system. Boltzmann
2) explored this question by comparing the given system to a collection of alternative,

imaginary systems, each having different initial conditions; doing this, enabled an as-

sessment of the extent to which the property of interest was independent of the initial

system state. Gibbs5) termed the collection of imaginary systems anensemble, and we

adopt this terminology also.

Definition 3.2

An EnsembleS is a finite collection of distinct ScenariosfS1; : : : ;Smg relating to a

common domain.x4 Comparing Scenarios

4.1 Comparing two long-run debates
When are two scenarios the same? Obviously, we may consider them to be
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the same when they have identical sets of assumptions and inference rules. But two

scenarios identical in this fashion may result in very different Agora debates, as differ-

ent arguments may be presented in each, or the same argumentsmay be presented at

different times. It is not clear, therefore, that identicalscenarios will lead to identical

assignments of truth-labels, even over the long-run; we show that, under certain con-

ditions, they will do so. Throughout this sectionS1 andS2 will be two scenarios of

interest, andA1 andA2 their associated Agora debates.

Theorem 4.1

Let� be a claim. Suppose thatS1 andS2 are identical scenarios, i.e., they have identical

sets of assumptions and identical sets of inference rules. Suppose that in the correspond-

ing Agora debates,A1 andA2, all possible arguments based on the initial assumptions

and using the inference rules are eventually articulated inthe Agora. Suppose further

that no new information is presented to either debate following commencement. Then,

the long-run truth status of� in each debate is the same.

Proof (Outline) Given the premises, the only way the two debates will potentially

differ will be in the order that arguments are articulated inthe Agora. But if all argu-

ments are eventually articulated, then after some finite time no further arguments will

be presented in either debate. It therefore follows that thelong-run truth status of a

claim does not depend upon the order of presentation of the arguments for and against

it.

If we relax the assumption that no new information arrives ineither debate our

conclusion acquires a probabilistic qualification. While this does not guarantee that two

identical scenarios always lead to identical long-run truth assignments, it does bound

the likelihood that this is not the case.

Theorem 4.2

Let �, S1 andS2 be as before. Suppose there exist upper bounds�i 2 [0; 1℄ for the

probability that new information arrives after commencement in debatei, i.e., thatPr(X i0;�) � �i, for i = 1; 2. Then we have:Pr(v11(�) = v21(�)) � 1� �1 � �2.
Proof (Outline) By the previous result, the two long-run assignments of truth to �
are only different if one or other debate receives new information. The probability that

this occurs is less than or equal to the sum of the probabilities that either debate receives

new information less the probability that they both do. Thislatter event has probability
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greater than or equal to zero, and the inequality follows by algebraic manipulation.

4.2 A decision rule for scenario comparison
We now provide a decision rule for determining if two scenariosS1 andS2 are

the same. This decision rule classifies scenarios into two classes, labeleddistinct and

non-distinct. The rule proposed for determination of distinctness of scenarios uses two

criteria (in order of application): (a) whether or not the two scenarios have identical

assumptions and inference rules; (b) in the case where they do, whether or not either

scenario is judged to have a high probability of receiving new information.

Case 1A: S1 = S2 andPr(X 10;�); P r(X 10;�) both small. In this case, the likelihood of

new information arising in either scenario is small and Theorem 4.2 allows

us to infer thatv11(�) = v21(�) with high probability. Conclude that the

two scenarios arenon-distinct.

Case 1B: S1 = S2 and one or both ofPr(X 10;�); P r(X 10;�) large. In this case, the

likelihood of new information arising in at least one scenario is large, and

thus, Theorem 4.2, it is unlikely thatv11(�) = v21(�). Conclude that the

two scenarios aredistinct.

Case 2: S1 6= S2. Conclude that the two scenarios aredistinct.

In the first two cases (Cases 1A and 1B), where the underlying assumptions and infer-

ence rules are the same in the two scenarios, Theorem 4.1 saysthat the long run truth

assignments for� in the corresponding Agora debates, if they exist, will be identical,

provided no new information is presented in either Agora debate following commence-

ment. If new information is presented, then Theorem 4.2 provides a bound for the

probability that the long-run truth assignments are the same, in terms of the probabili-

ties of new information being received. In the case (Case 1A)when these probabilities

are believed to be small, the two long-run truth assignmentsare most likely identical,

and we can classify the two scenarios as being the same. In theother case (Case 1B),

where one or both probabilities are large, we classify the two scenarios as not the same.

In the final case (Case 2), where the two scenarios have different premises and/or in-

ference rules, we also classify them as distinct. It may be, of course, that two such

distinct scenarios may result in the same arguments being presented in both scenarios

after some finite time.

Note that, although under Cases 1A and 1B we are making inferences about the

long run truth assignments,v11(�) andv21(�), these inferences are based only on the



Chance Discovery and Scenario Analysis 9

premises and inference rules used and assessments of the probability of new information

being received after commencement of the associated Agora debates. These inferences,

and hence this classification, do not depend on the progress or status of the debates

themselves. In other words, our classification of scenariosis not based on the output of

the debates conducted under the scenarios.x5 Discussion
In many domains chance events are identified by exploring possible scenarios

which are consistent descriptions of possible futures in some domain. Despite their

widespread use, there is as yet no formal, computational theory of scenarios and sce-

nario analysis. In this paper, we have commenced work on sucha theory for scenarios

which describe debates over uncertain propositions, for example future states of some

system. In our formalism a scenario is a debate in some domainwith pre-specified and

agreed premises and inference rules. The search for chance events becomes a matter

of varying these pre-specifications and allowing a number ofparallel debates to operate

simultaneously. If a claim� is assigned the truth-status oftrue in one of these debates,

then there is a possible future world state in which� is realized. To assess the likelihood

that� is realized in the actual world, we need to consider all the scenarios in which the

proposition� is assigned the valuetrue, and determine their combined likelihood of

occurrence. If this likelihood is small and� refers to an important event, then we have

identified a chance event.

The work presented here is novel. Although recent research in business strat-

egy has considered the use of multiple scenarios to identifychance events, e.g.16), that

work has not been formalized. The closest research to ours istheEntsmodel of belief

of Paris and Vencovska.18) In that model, an agent’s belief in a claim is determined by

imagining possible worlds (analogous to our scenarios) in which the claim is decided,

either true or false, and then setting the belief in the claimequal to the proportion of

possible worlds in which it is true. Our scenarios may be viewed as argumentation

analogs of these possible worlds, with the advantage that our argumentation system

provides an operational mechanism for assigning truth-status labels to propositions,13)

a mechanism absent from theEntsmodel. Both these approaches, as was mentioned

earlier, are conceptually similar to the Ensemble theory ofBoltzmann2) and Gibbs5) in

statistical mechanics.

In this paper, for simplicity, we have only considered thelikelihoodof events,

and not theirsignificance. Chance discovery is the identification of rare but important

events. However, our framework could be readily modified to accommodate signifi-
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cance, either by the explicit incorporation of values in thesearch for rare events, as

was done in our previous work11), or by the prioritization of arguments according to

preference-orderings, such as in1). Moreover, in this paper we have only considered

the identification of chance events, and not their management. We intend to pursue

both these issues in our future work applying argumentationapproaches to chance dis-

covery and management, drawing on our earlier work developing argumentation for-

malisms for decision-making, such as4, 7, 12). Finally, there could be connections be-

tween the approaches we have outlined here and the vast literature on default logics in

non-monotonic reasoning, which may be interesting to explore.�3

References

1) L. Amgoud and S. Parsons. Agent dialogues with conflictingpreferences. In J-J. Meyer
and M. Tambe, editors,Pre-Proceedings of the Eighth International Workshop on Agent
Theories, Architectures, and Languages (ATAL 2001), pages 1–14, Seattle, WA, USA,
2001.

2) L. Boltzmann. Weitere studien über das wärmegleichgewicht unter Gasmolekülen.Wis-
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