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Abstract. Decision making under uncertainty is central to reasoning by
practical intelligent systems, and attracts great controversy. The most
widely accepted approach is to represent uncertainty in terms of prior
and conditional probabilities of events and the utilities of consequences of
actions, and to apply standard decision theory to calculate degrees of be-
lief and expected utilities of actions. Unfortunately, as has been observed
many times, reliable probabilities are often not easily available. Further-
more the benefits of a quantitative probabilistic representation can be
small by comparison with the restrictions imposed by the formalism. In
this paper we summarise an approach to reasoning under uncertainty
by constructing arguments for and against particular options and then
describe an extension of this approach to reasoning about the expected
values of actions.

1 Introduction

Standard decision theory [35] builds on the probabilistic view of uncertainty in
reasoning about actions. The costs and benefits of possible outcomes of actions
are weighted with their probabilities, yielding a preference ordering on the “ex-
pected utility” of alternative actions. However, as Tan and Pearl [40], amongst
others, have pointed out, the specification of the complete sets of probabilities
and utilities required by standard decision theory make the theory impractical
in complex tasks which involve common sense knowledge. This realisation has
prompted work on qualitative approaches to decision making which attempt to
reduce the amount of numerical information required.

Work on such qualitative decision making techniques has been an established
topic of research at the Imperial Cancer Research Fund since the early 80s (see
[31] for a review). Our early work was partly concerned with the description
of human decision processes [12] and partly with the practical development of



decision systems for use in medicine [13]. Whilst the qualitative decision proce-
dures we developed proved to have considerable descriptive value and practical
promise, our desire to build decision support systems for safety-critical fields
such as medicine raised the concern that our early applications were ad hoc. In
particular we were concerned that they, in common with all other expert sys-
tems being built at the time, were not based on a rigorously defined decision
theory. As a result we have put considerable effort into developing a theoretical
framework for qualitative decision making. The best developed part of this is
an approach to uncertainty and belief based on the idea of argumentation. This
approach emphasizes the construction and aggregation of symbolic arguments
based on the non-standard logic LA [18,22]. This provides rules for construct-
ing reasons to believe in and doubt hypotheses, and reasons to believe or doubt
arguments.

The generality of the everyday idea of argumentation suggests that a similar
approach could be taken to reasoning about actions, for instance in deciding
on medical treatments or investigations. We might hope to construct arguments
for and against alternative actions in the usual way, avoiding issues about the
elicitation and use of numerical utilities by representing the desirability and
undesirability of actions symbolically. This suggestion immediately raises two
questions:

— How well does our formalisation of support and opposition transfer to rea-
soning about action?

— Is LA directly applicable to arguments about action or will different logics
be required?

This paper attempts to provide some answers to these questions. In particular it
argues that while there are similarities between arguments for and against beliefs
and arguments for and against actions, there are also significant differences which
amount to a requirement for additional rules for assigning values to the outcomes
of actions, and for arguing the expected benefits of alternative actions. The paper
then makes an initial attempt to suggest a framework for handling such rules,
as well as summarising some of the applications developed using argumentation,
and discussing one set of tools that are available for building such applications.

However, before starting this work, the paper first sets the discussion in
context by recalling the logic of argumentation about beliefs, LA, and its relation
to argumentation in general.

2 The logic of argument LA

Our approach to decision making was to seek a rapprochement between the
purely quantitative and purely logical traditions, seeking a form of uncertainty
management which people find natural, yet one which can be shown to be math-
ematically sound and general. This approach was based on argumentation, the
familiar form of reasoning which is based on everyday patterns of debate. It
turned out, however, that this approach was not new.
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Fig. 1. The Toulmin argument schema

2.1 The nature of arguments

The philosopher Stephen Toulmin explored the question of why traditional for-
mal models of reasoning have apparently little relevance to everyday dispute
and debate, concluding that argumentation is a human form of reasoning dis-
tinct from both probabilistic reasoning and classical deduction. Toulmin char-
acterised argumentation by means of the informal schema in Figure 1. This can
be illustrated by the example (the italics are ours):

in support of the claim that Harry is a British subject, we appeal to
the datum that he was born in Bermuda, and ... (the claim is warranted
by a sentence such as) ...“A man born in Bermuda may be taken to
be a British subject”: since, however, questions of nationality are always
subject to qualifications and conditions we shall have to insert a qualify-
ing “presumably” in front of the conclusion and note the possibility that
our conclusion may be rebutted in case it turns out that both his parents
were aliens or he has since become a naturalised American. Finally, in
case the warrant itself is challenged, its backing can be put in: this will
record the terms and the dates of enactment of the Acts of Parliament
and other legal provisions governing the nationality of persons born in
the British colonies ([42] p 104).

Two points are prominent here; the idea that in general conclusions are not
certain, hence the qualifier “presumably”, and that practical reasoning frequently
involves contradictions among arguments (the notion of rebuttal). This is in
contrast, as we have seen, to the usual approach to modeling uncertainty with
a quantitative measure; Toulmin’s approach anticipated the interest in symbolic
representations of uncertainty in artificial intelligence and logic. Toulmin also
anticipated another recent development in artificial intelligence, the desire to
get to grips with the concept of contradiction. In classical logic and probability
contradiction is eschewed; something cannot be both true and false nor have a
probability of 0 and 1.

In attempting to address the practical problems of decision making in medical
domains we faced similar problems to those identified by Toulmin. First, we have
to make decisions in the face of uncertainty in situations where it is impractical
to state the degree of uncertainty. Second, it is common in practical settings
to have to deal with apparent contra-indications where from one point of view



something is definitely the case whereas from another point of view it is definitely
not the case, or at one time something is held to be true while at another it is
considered false.

2.2 Arguments about beliefs

Toulmin’s analysis was perceptive but from our point of view it is clearly in-
adequate since it is entirely informal. What we need is a formalisation which
preserves the basic ideas while giving it sound mathematical foundations. In this
section we work towards such a formalisation by providing an informal account
of what our formal system, LA, provides.

We start with the notion of an argument in a standard logic such as propo-
sitional logic, first-order predicate calculus, or a modal logic such as T', S4 or
S5 [21]. In such a logic, L, an argument is a sequence of inferences leading to a
conclusion. If the argument is correct, then the conclusion is true. An argument:

Gy...G, St

is correct in the logic L if St may be derived using the rules of inference and
axioms of L augmented with G ...G,,. Therefore a correct argument simply
yields a proposition St. This can be paraphrased as

St is true (in the context G ...Gy)

In the approach we take, this traditional form of logic based argumentation is
extended in two important ways:

1. to allow arguments not only to prove propositions but also to merely indicate
support for, or even doubt in, them; and
2. by explictly recording the context in which the deduction holds.

The way we do this is by borrowing from the idea of a labelled deduction system
[20].

A labelled deductive system is essentially an enriched logical system, where
formulae can be labelled, thereby adding structure to logical theories (usually
called databases). Both formulas and labels can be manipulated independently;
the exact correspondence is made explicit in the way labelled formulae are con-
structed by inference rules. To see how this helps, consider a situation in which
we have the following pieces of information:

lost_weight : aq

lost_weight — cancer : 1

where cancer is an abbreviation for “the patient has cancer”, and lost_weight is
an abbreviation for “the patient has lost weight”. In a labelled deductive system
we can derive the proposition cancer and denote this by:

cancer : (ay,71)



so the label (al,71) is a label which represents the proof of cancer by identifying
the database items used in the proof. This takes care of recording the context of
the proof; it is contained in the label.

The other thing that we need to do is to allow arguments to just indicate
support for, or doubt in, propositions. Here we just use a second label which des-
ignates the confidence warranted by the arguments for their conclusions. There is
nothing in the theory of labelled deductive systems which precludes the use of a
number of labels, and this simple mechanism allows confidences to be expressed
in a variety of representations without modifying the underlying inference sys-
tem. Thus the result of a derivation is an argument of the form:

(St:G: Sg)

Each argument consists of a triple consisting of a Sentence (St), which is the
claim in Toulmin’s terminology, Grounds (G), which are the formulae used to
justify the argument, and a Sign (Sg), which is a number or a symbol which
indicates the confidence warranted in the conclusion. The idea of argumentation
from a database may thus be summarised by the following schema:

Database F4cr (Sentence : Grounds : Sign)

In this schema, F 4R is a consequence relation which defines the inference rules
by which we may construct arguments for claims using the information in the
database.

The use of confidences rather than logical proofs introduces a slight compli-
cation. In classical logic, if we can construct an argument (proof) for St then
any further arguments for St are of no interest since St is known to be true. If,
however, we only have an indication of support for St then it may be the case
that additional information casts doubt on St. Thus we need to consider every
distinct argument concerning St and then carry out a process of aggregation to
combine them. This process is also known as flattening since it has the effect of
mapping a number of distinct arguments into a single measure. One intuitively
plausible way of doing this aggregation is to assume that the more independent
grounds we have for St, the greater our confidence in St may reasonably be,
and so we assess the strength of confidence in St in some applications of LA by
simply summing the number of arguments for St. Ambler [2] gives a rigorous
justification for this procedure in category theoretic terms.

2.3 Formalising argumentation about beliefs

Having spoken informally about what LA is attempting to do, we present a
formal description of LA. This is broadly the same system as that discussed
n [22], but this version is less influenced by Ambler’s work on the category
theoretic basis of argumentation, and is more influenced by labelled deductive
systems and the style of presentation used in recent work on argumentation [27,
28]. However, the differences between the two versions of the system are largely
cosmetic.



We start with a set of atomic propositions £ including T and L, the ever
true and ever false propositions. We also have the set of connectives {—, —, A},
and the following set of rules for building the well-formed formulae (wffs) of the
language:

If I € £ then [ is a well-formed formula (wff).

If I is a wff then —l is a wff.

If I and m are wffs then | - m and [ A m are wffs.
Nothing else is a wff.

The set of all wffs that may be defined using £, may then be used to build
up a database A where every item d € A is a triple (St : G : Sg) in which
St is a wff, Sg represents confidence in St, and G are the grounds on which
the assertion is made. With this formal system, we can take a database and
use the argumentation consequence relation 4o g defined in Figure 2 to build
arguments for propositions that we are interested in. This consequence relation
is defined in terms of rules for building new arguments from old. The rules are
written in a style similar to standard Gentzen proof rules, with the antecedents
of the rule above the line and the consequent below. Thus if the arguments above
the line may be made, then the argument below the line may also be made. In
detail the rules are as follows:

— The rule Ax says that if the triple (St : G : Sg) is in the database, then it
is possible to build the argument (St : G : Sg) from the database. The rule
thus allows the construction of arguments from database items.

— The rule A-I says that if the arguments (St : G : Sg) and (St' : G' : Sg')
may be built from a database, then an argument for St A St’ may also be
built. The rule thus says how to introduce arguments about conjunctions.

— The rule A-E1 says that if it is possible to build an argument for St A St'
from a database, then it is also possible to build an argument for St. Thus
the rule allows the elimination of one conjunct from an argument.

— The rule A-E2 is analogous to A-E1 but allows the elimination of the other
conjunct.

— The rule —-I says that if on adding (St,0, Sg), 0 indicating that the triple
has no grounds, to a database it is possible to conclude St', then there is
an argument for St — St'. The rule thus allows the introduction of — into
arguments.

— The rule —-E says that from an argument for St and an argument for
St — St' it is possible to build an argument for S¢'. The rule thus allows
the elimination of — from arguments and is analogous to modus ponens in
standard propositional logic.

We use the term “ dictionary” to describe a set of symbols which can be used
to label a proposition. If we define dictionary D by:

D =ger {S1,.--Sn}

then we may write:

(St:G:S;)
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Fig. 2. Argumentation Consequence Relation

where §; is any symbol drawn from D. Where there is the possibility of confusion
between dictionaries we write SP to denote the symbol S; from dictionary D.
Among the obvious dictionaries we may consider are sets of numbers. Dictionar-
ies for probabilities, possibilities [8], certainty factors [39], belief functions [37]
are thus straightforwardly defined. They are, respectively:

Dprobability =def {5 : S € [0,1]}
Dpossibility =def {5 : S € [0,1]}
€[0,1]}
€[-1

Dbelief functions —def {S

AL}

Systems of argumentation which are based on LA and have semantics in terms
of both quantitative probability and possibility values have been defined [22].
However, there is no requirement that we should restrict dictionaries to sets of
numbers. For example we have frequently adopted one of a number of simple
symbolic dictionaries. The four simplest such dictionaries are described below.

Dcertainty factors —def {S

Generic dictionary In a standard logical proof the value “true” is assigned to
a sentence if it is possible to construct a proof for it from facts which are held
to be “true”. However, in practical situations, prior facts, and consequently any
conclusions that can be deduced from them, can be in error. To capture this
idea, we therefore substitute the sign + for “true” giving the simple dictionary:

Dgeneric —def {+}



We refer to arguments with sign + as supporting arguments. The argument:
(cancer : lost_weight : +)

simply says “the fact that the patient has lost weight increases my confidence in
her having cancer, but I cannot say by how much”. Using the generic dictionary
thus means that the “force” of different arguments cannot be distinguished.
Suppose we have a number of arguments whose signs are drawn from the generic
dictionary. Given we cannot distinguish between the force of the arguments, it
seems reasonable to assume that:

Assumption Al If Args is any set of arguments concerning St, then!:
|[Args U{(St: G : +)}| > |Args|

where |Args| indicates the force of the set of arguments Args. The simple ag-
gregation procedure mentioned above, in which we just count arguments for a
proposition to assess our confidence in that proposition, conforms to this as-
sumption.

Bounded generic dictionary With a large database, it will often be possible
to construct a large number of arguments for a proposition. Intuitively, however,
some arguments are conclusive, that is they leave no room for doubt with respect
to their grounds (they may be rebutted on other grounds). To represent this we
may define a more specialised dictionary, introducing an additional sign ++:

Drounded generic —def {+7 ++}

We refer to arguments with sign ++ as confirming. Informally, if we have a
conclusive argument for some proposition then this argument will dominate the
aggregation procedure. Thus a confirming argument is more forceful than any
set of supporting arguments, and a set of confirming and supporting arguments
is exactly as forceful as a single confirming argument. Thus the aggregation
function is restricted by:

Assumption A2 Let Args be any set of supporting arguments concerning St,
and Args' be any set of supporting and confirming arguments concerning St,
then:

{(St:G:++)}| > |Args|
{(St:G:++)} = |Args'|

as well as Al. This assumption is, of course, consistent with many quantitative
calculi including probability and belief functions.

! The non-strict inequality allows for limits to the force of a set of arguments, as is
the case when using the bounded dictionary introduced below.



Delta dictionary The dictionaries discussed so far have had signs which rep-
resent belief values. At times we may also wish to reason about changes in these
values. Doing this it is natural to consider both increases and decreases in value,
and so the simplest delta dictionary which we make use of is:

Ddelta =def {"‘7 _}

in which sentences (St : G : +) and (St : G : —) can be interpreted as indicating,
respectively, an increase or decrease in confidence in the proposition St, without
indicating the degree of the increase or decrease. The use of these signs is similar
to their use in qualitative probabilistic networks [44], and qualitative certainty
networks [30]. We call arguments with sign — opposing arguments.

It is possible to justify a number of aggregation procedures for arguments
which use the delta dictionary. Some of these honour A12%, and it makes sense
for such procedures to also make the following assumption:

Assumption A3 Let Args be any set of arguments concerning St, then:
|Args U{(St: G : —)}| < |Args|

At times when using the delta dictionary, the following rules of inference may
also be used:

(St:G:—) & (=St:G:+) (1)
(St:G:4) & (=St:G:—) (2)

where —St is the negation of St. The first of these is read as “if you have
(St : G : —) you may infer =(St : G : +) and if you have =(St : G : +)
you may infer (St : G : —)”. Using this rule means that if we have a negative
argument (for instance (cancer : young : —), “the young age of the patient
argues against her having cancer”) then this increases our overall confidence in
the negated conclusion. The second rule is analogous, and together they take
account of the fact that there is no rule in F4¢g for handling negation. Taken
together, the rules are akin to the rule of the excluded middle, and this explains
why they are not included in F40gr. We don’t include them since we want to be
able to build systems whose signs do not use the rule of the excluded middle.

Bounded delta dictionary We can also extend the delta calculus with symbols
which denote increases to a maximum and decreases to a minimum value:

Dhounded delta =def {++,+,—, ——}

We call arguments with sign —— excluding arguments. As with the bounded
generic dictionary, the fact that the dictionary is bounded suggests that any
flattening function should operate under the assumption:

% Note that this involves overloading the assumption by making it apply to arguments
about value and arguments about changes in value. However, this seems reasonable
since exactly what kind of sign is being used is always clear from the context.



Assumption A4 Let Args be any set of supporting or opposing arguments
concerning St, and Args’ be any set of supporting, opposing and excluding
arguments concerning St, then:

{(St:G:—-)}| < |Args|
[{(St:G:—=)}| = |Args|

Under this assumption, it is inconsistent to have both (St : G : ++4) and (St :
G' : ——) for any St. Furthermore, when using the bounded delta dictionary, if
(1) and (2) hold, then so do the following:

(St:G:++) & (=St:G: ——) (3)
(St:G:——) & (=St:G: ++) (4)

This completes the description of the four simplest dictionaries.

The reason that the generic dictionary is called “generic” is that it can be
viewed as an abstraction of a number of quantitative uncertainty handling for-
malisms. Thus the “+” in the dictionary can be viewed, for instance, as either a
probability, possibility or belief value, but one which is not precisely specified. A
similar interpretation may be used for the delta dictionary; we can look at the
“—” used there as a decrease in probability, possibility or belief without saying
how much of a decrease it is. Clearly there is a limit to what can be done with-
out identifying what kind of value is being manipulated, since the theories from
which the values are taken will place some constraints on which assumptions
may be valid and under what conditions they are valid.

For example, if we give a probabilistic semantics to the delta dictionary so
that + represents an increase in probability [27, 28], then we get a system of ar-
gumentation which is similar in many ways to qualitative probabilistic networks
[44]. With this probabilistic semantics, (1)—(4) are valid, and it is possible to
determine the precise conditions under which the simple aggregation procedure
of adding up arguments is reasonable [28]. Furthermore, there are delta forms
for any quantitative uncertainty representation [30], and it is straightforward to
show that in some of these, most notably when the signs are given a semantics
in terms of possibility theory or belief functions, (1) and (4) are not valid.

As noted above, we will typically be able to build several arguments for a
given proposition, and so to find out something about the overall validity of
the proposition, we will flatten the different arguments to get a single sign.
We can describe this in terms of a function Flat?(:) which maps from a set of
arguments A for a proposition St from a particular database A to the pair of
that proposition and some overall measure of validity:

Flat : A — (St,v)
where A is the set of all arguments which are concerned with St, that is:

A={(St:G;:Sg;)) | AFacr (St:G;:Sg;)}



Comb?onj intro ++ + Combﬁnp elim ++ + Combﬁnp intro ++ +

++ + + ++  [+++ ++ [+ +
+ + + + + + + +

Fig. 3. Combinator tables for LA using the bounded generic dictionary.

and v is the result of a suitable combination of the Sg that takes into account the
structure of the arguments. Thus v is the result of applying a flattening function
to the grounds and signs of all the arguments in A:

v = flat®({(Gs, Sg;) | (St: G : Sg;) € A})

Often the signs Sg; and the overall validity v will be drawn from the same dictio-
nary, but it is perfectly feasible for them to be drawn from different dictionaries
(so, for example, a set of arguments with numerical weights may be flattened to
give a degree of support drawn from the dictionary {high, medium, low}).

Thus, if we have a set of arguments A for a proposition St, then the result
of flattening is:

FlatA(A) = (St, flat? ({(Gi, Sgi) | (St:G;: Sg;) € A}))

Together £, the rules for building the formulae, the connectives, and F-4¢c g define
a formal system of argumentation LA3. In fact, LA is really the basis of a family
of systems of argumentation, because one can define a number of variants of LA
by using different meanings for the connectives, different dictionaries of signs,
different meanings for the dictionaries, different functions for combining signs
comb? - cjim» and implication combfy .. and combyy . ., and different means
of flattening arguments, flat*. Given the number of possible choices, it is possible
to define a bewildering variety of different versions of LA*. We now describe a
couple of the best understood.

The way we go about defining a new version of LA is to decide three things.
First, which dictionary to use. Second, how the signs within that dictionary are
to be interpreted. Third, how the connectives are to be interpreted. It should
be stressed that these choices are separate; it is possible to use the same dictio-
nary with different meanings for the signs and with different meanings for the
connectives. Once the choices are made it is possible to identify how to combine
the signs correctly, and to identify which additional rules of inference (such as
(1)) hold. Then it is possible to determine how to flatten arguments, and under
what conditions the various assumptions about flattening are reasonable.

We start by considering the use of the bounded generic dictionary in which
the signs are interpreted using probability theory. In particular, we take + to

® The name stands for Logic of Argument [17].

* And we can complicate the picture further by defining other systems of argumenta-
tion which use different underlying logics, and so have different consequence relations
Facr. An example of such a system may be found in [26]



denote a probability of some unknown value, and ++ to denote certainty (a
probability of 1). We take A to be logical conjunction, and — to be material im-
plication. With this interpretation, the combination functions required by LA are
those of Figure 3. These require a little explanation. The table for combcAonj intro
gives the sign of the sentence St A St' from the signs of the sentences St and St'.
Thus, whatever the signs of St and St’, the sign of St A St is +. The table for
combi‘:‘np elim 8ives the sign of the sentence St' from the signs of the sentences St
and St — St'. Thus if both the signs of St and St — St' are ++ so is that of
St', and otherwise the sign of St is +. The table for combfy _ ;. follows directly
from that for combi‘:‘np «lim Since it gives the sign of St — St' from that of St and
St’. In the table, St is the value in the leftmost column and St is the value
in the top row. This time the table includes a space, since it is impossible for
St' to have sign ++ when St has sign +. Furthermore, it should be noted that
when St and St both have sign +, then the sign of St — St' could be either
+ or ++. Since + includes ++ (since a probability of 1 is also a probability of
some value), we give the result as +. This forgiving nature of the signs allows
combf‘onj eim tO be stated as follows:

CombcAonj eIim(Sg) =Sg.

It is straightforward to verify that these functions are correct for this interpre-
tation of the signs.

Since these are the only rules of inference we need to consider, we can then
proceed to identifying aggregation procedures. Two obvious ones spring to mind.
In the first, the function flat® examines the signs Sg; and returns ++ if any of
the Sg; is ++, and otherwise returns +. Thus, formally:

_ | ++if Sg; = ++ for some i
| + otherwise

This flattening function conforms to assumptions Al and A2 while making no
additional assumptions about the strength of arguments which are not implicit
in the meaning of the signs. Note that this flattening function, in common with
the others detailed in this paper, ignores the grounds. This is possible because of
the use of qualitative dictionaries—at this coarse level of granularity, the inter-
actions between arguments captured by the grounds can be ignored. However,
when quantitative dictionaries are used, the grounds play an important part in
flattening.

The system of argumentation described here, with the combination functions
of Figure 3 and the flattening function described above, is basically that discussed
in [17], though in the latter paper the meaning of the signs is less explicit than
here, and the presentation is slightly different.

The second obvious aggregation procedure is slightly more complex. In this
function, the Sg; come from Dyounded generic; While v is just a positive number
which we can consider coming from the dictionary:

Daggregation —def {0: L,2,.. }



combliy efim|[++ + — —— combl o] t+ + — ——
++ [+ +-— T+  |++ 7 7 ——
+ + +- - + A S J——
- - -+ + — ?7 0?7 7 ——
— |- -+ + SR
Combﬁnp intro +++ - —
+ [+ - —
+ + -
- -+
- -+

Fig. 4. Combinator tables for LA using the bounded delta dictionary.

All the procedure does is to count the number of arguments, again taking into
account the fact that once one has one argument with sign ++ in favour of a
sentence, all other arguments are irrelevant.

pod X if Sg; = ++ for some ¢
~ | |A] otherwise

where | X| gives the cardinality of the set X. This flattening function also con-
forms to assumptions Al and A2 but in addition assumes that all arguments
with sign + have equal strength®. Using the second aggregation function we get
a version of LA which is essentially that used in the system Proforma described
in Section 5.

The other system we consider uses the bounded delta dictionary in which, for
a formula which does not contain an implication, the sign + denotes an increase
in probability, — denotes a decrease in probability, ++4 denotes an increase in
probability to 1 and —— denotes a decrease in probability to 0. We also have to
consider what an implication means in this system, and we take a sign of ++
for St — St’ to mean that if the probability of St increases to 1 so does that of
St'. We also take a sign of 4+ for St — St' to mean that if the probability of St
increases so does the probability of St', a sign of — for St — St' to mean that if
the probability of St increases the probability of St' decreases, and a sign of ——
for St — St' to mean that if the probability of St increases to 1 the probability
of St' decreases to zero.

With this semantics, the combinator tables are those in Figure 4, and these
can, once again, easily be proved to be correct for changes in probability [25,
28]. There are a couple of things that should be noted. First, the table for
combf‘onj intro iitroduces the sign ? to stand for “++ or + or — or ——". This is a
usual feature of qualitative systems—when you deal with abstractions, you find
that eventually you need new composite abstractions because it becomes unclear

® This additional assumption is taken to be reasonable when there is no knowledge
about the comparative strength of arguments.



flatl+4+ + — ——
++ [++ ++ ++

+++ + 7 -
- ++ 7 - —=

Fig. 5. Flattening function for LA using the bounded delta dictionary.

which abstraction is the right one. Second, the table for combi‘:‘np elim should be
read with the sign of the antecedent being picked from the leftmost column and
the sign of the implication being picked from the top column, and the table for
combﬁ‘np intro Should be read with the sign of the antecedent being picked from
the leftmost column and the sign of the consequent being picked from the top
row. Third, that the spaces in the latter table reflect impossible situations, and
fourth that the sign given in this table is always the least specific possible, so
when the implication could have sign + or ++, the table gives +.

As before, there are a number of different ways in which one can flatten
arguments. One possible flattening function is one which conforms to all the
assumptions introduced so far, but makes no additional assumptions. This gives
the table of Figure 5, and once again this can be shown to be correct for probabil-
ity theory. Here, as with the remainder of the systems discussed in this paper we
define the flattening function to be binary—to generate v we apply it recursively.

With these combination and flattening functions, the system we have de-
scribed is essentially the system AN A" described in [28], and similar systems
which uses the delta dictionary are N'A; and N' A in [27]. The notation used
by these three systems is slightly different from that presented here because the
overloading of +4, 4+, — and —— is overcome by the use of additional symbols
to represent changes in probability.

2.4 Argumentation and defeasibility

The main focus of this paper is on reasoning under uncertainty in the context of
making decisions. However, it is worth making a few remarks about the ways in
which LA may be related to systems such as default logic and standard modal
logic.

Default logic Suppose we can construct an argument for St on the basis of a
default rule. By definition a default is not guaranteed to be correct, so in this
calculus the argument has the form:

(St : default : +)
If we later identify reasons to reject St, because we obtain an argument:

(=St:G: ++)



then aggregation will yield the conclusion =St by A4 and (4). Argumentation
therefore permits behaviour much like that of standard default logic, but it
may also illuminate the relationship between default reasoning and quantitative
uncertainty. Suppose we have a reason to doubt St but not to reject it (because
we can construct the argument (—St : G : +)) then, using the flattening function
that counts arguments, this balances the default argument, and we are equivocal
about whether St or —St. If we have further arguments against St then the
balance of argument turns against it (3) but we can still hold both St and =St
as possibilities, a behaviour similar to the normal behaviour of probabilistic,
possibilistic, belief function and other quantitative calculi.

Modal logic The bounded delta calculus may also accommodate ideas akin
to those of of modal logic. Informally, possible(St) holds if we can construct an
argument for St, and necessary(St) if we can construct a bounding argument

for St:

possible(St) < (St: G : +)
necessary(St) < (St : G : ++)

Suppose we have an argument:
(St:G:+)

which means that possible(St) holds. Then, if we introduce an additional argu-
ment:

(=St:G: ++)

which means that necessary(—St) holds, and if we aggregate these arguments
constraints, A4 and (4) entail that necessary(—St) dominates possible(St). Turn-
ing this around if we hold possible(St) then we cannot hold necessary(—St),
therefore:

possible(St) < —necessary(—St)

An analogous argument can be followed for the dual rule of modal logic:
necessary(St) < —possible(—St)

Equating modality to provability in this way echoes work on classifying argu-
ments on the basis of the the arguments which my be built against their grounds
[10,11].

2.5 Soundness and completeness

So far we have neglected to say much about what it means to have an argument
for a proposition beyond the fact that an argument is a tentative proof of the
proposition and so is a proof which can fail if suitably strong arguments against
the proposition can be found. However, as with any formal model of reasoning,



what we would like to do is to prove that argumentation is in some sense correct,
that is it generates all and only correct inferences. In other words, we would like
to show that argumentation is complete and sound. To do this, however, we need
to say precisely what an argument is. There are a number of ways of doing this,
and three different approaches have been taken.

The first approach was based upon the commonalities between argumenta-
tion as introduced here and intuitionistic logic first pointed out by Ambler [3].
The idea was that since it is possible to give intuitionistic logic a proof-theoretic
semantics in terms of category theory, this should also be possible for argumen-
tation. Indeed this turned out to be the case. The first steps in providing this
semantics are detailed in [3] which identifies the structure of the space of ar-
guments, along with the kind of operations possible over them. The rest of the
formalisation is provided in [2], which also highlights the link between argumen-
tation and Dempster-Shafer theory [37].

The second approach was to give argumentation a model theoretic semantics.
In particular, standard Kripke semantics for modal logic have been adapted by
Das [7] to give a possible worlds interpretation for what it means for an argument
to support a proposition to some degree.

The final semantics developed so far [27, 28] relates certain types of argumen-
tation to probability theory by taking an argument in favour of a proposition to
mean that there is evidence that the probability of the proposition increases (so
the proposition becomes more likely to be true). With this interpretation, and
using the bounded delta dictionary, it is possible to show that argumentation
is sound and complete. Thus argumentation can capture probabilistic reason-
ing if required, and so it is possible to claim that, under particular conditions,
argumentation is a normative theory for handling uncertainty. The probabilis-
tic semantics has another advantage. Because it ties the notion of an argument
securely to well-understood ideas about qualitative probability, it is possible to
harness a number of useful results concerning qualitative probability [25,29].
In particular, it is possible to develop a finer-grained representation of what it
means to have an argument for a proposition which allows arguments of different
strengths to be accommodated [27].

3 Towards arguments about actions

Having described the logic of argumentation LA for reasoning with uncertain in-
formation, we now consider some steps towards extending it to deal with actions
in order to build a more complete decision theory. As in the previous section we
begin with an informal discussion of the kinds of things we are trying to achieve.

3.1 An overview

At an informal level there appears to be a clear isomorphism between arguments
for beliefs and arguments for actions. Suppose we wish to construct an argument
in favour of treating a patient with cancer by means of chemotherapy. This might
run as follows:



Cancer is an intolerable condition and should be eradicated if it occurs. It
is a disease consisting of uncontrolled cell proliferation. Certain chemical
agents kill cancer cells and/or reduce proliferation. Therefore we should
treat cancer patients with such agents.

The steps in this argument are warranted® by some generalised (and probably
complex) theory of the pathophysiological processes involved in cancer, and a
value system which defines what kinds of things are tolerable, desirable and
so on. The argument is not conclusive, however, since the conclusion might be
rebutted by counter-arguments, as when chemotherapy is contra-indicated if a
patient is frail or pregnant.

Such arguments appear compatible with LA and consequently we might con-
sider using LA to construct such arguments. Suppose we summarise the above
example in the notation of LA:

(St:G:+)

where St is the sentence “the patient should be treated with chemotherapy”,
G denotes the grounds of the argument (the sequence of steps given), and +
indicates that the grounds support action St. However this conceals some sig-
nificant complexities. The notion of “support” seems somewhat different from
the interpretation we have previously assigned to it. For LA we have adopted
the interpretation that an argument is a conventional proof, albeit one which it
is acknowledged cannot in practice be guaranteed to be correct. An argument
in support of some proposition is, in other words, a proof of the proposition
which we accept could be wrong. This analysis of “support” does not seem to
be entirely satisfactory when reasoning about what we ought to do as opposed
to what is the case. Consider the following simple argument, which is embedded
in the above example:

cancer is an intolerable condition, therefore it should be eradicated

There is a possibility that this argument is mistaken, which would justify signing
it with 4+ (a “supporting” argument in LA) but the sense of support seems to be
different from that which is intended when we say that the intolerable character
of cancer gives support to any action that will eradicate it. In other words when
we say “these symptoms support a diagnosis of cancer”, and “these conditions
support use of chemotherapy” we are using the term “supports” in quite distinct
ways. The latter case involves no uncertainty, but depends only upon some sort of
statement that intolerable states of affairs ought not to be allowed to continue.
If this is correct then it implies that arguing from “value axioms” is not the
same thing as arguing under uncertainty and so is it inappropriate to use LA for
constructing such arguments.

3.2 The logics of value LV and expected value LEV

How might we accommodate arguments about value within our existing frame-
work? One possibility might be to keep the standard form and elaborate the

® The terminology harking back to Toulmin.



The patient has colonic polyps (cp: G1: ++) el
polyps may lead to cancer (cp = ca:G2:+) e2
cancer may lead to loss of life (ca = 1l:G3:+4) e3
loss of life is intolerable (=l :av:++) vl
surgery preempts malignancy (su— =(cp = ca) : G4 : ++) ed
argument for surgery (su: (el,e2,e3,ed,vl) : +) evl
surgery has side-effect se (su— se: G5 ++) eb
—se is desirable (—se:av:+) v2
argument against surgery (—su: (e5,v2) : +) ev2
se is preferable to loss of life (pref (se,ll) : (v1,v2) : ++4) pl
no arguments to veto surgery (safe(su) : cir : ++) cl
surgery is preferable to — surgery (pref (su, —su) : (evl, ev2,pl) : ++) p2
commit to surgery (do(su) : (p2,cl) : ++) al

Fig. 6. An example argument

sentence we are arguing about to include a “value coefficient”:
((St:+):G:+)

Which might be glossed as “there is reason to believe that action St will have
a positively valued outcome”. This may allow us to take advantage of standard
LA for reasoning with sentences about the value of actions, but it does not, of
course, solve our problem since it says nothing about the way in which we should
assign or manipulate the value coefficients.

As a result, we currently prefer another approach, which is analogous to the
decision theoretic notion of expected value. In this approach we construct com-
pound arguments based on distinct steps of constructing and combining belief
arguments and value arguments. For example, consider the following argument:

Doing A will lead to the condition C' (A=>C:G:+4)
C has positive value (C:G :+4)
Doing A has positive expected value (A:GUG' : +)

We can think of this as being composed of three completely separate stages as
well as having three steps. The first stage is an argument in LA that C' will
occur if action A is taken, which could be glossed as “G is grounds for arguing
in support of C resulting from action A”. The second stage says nothing about
uncertainty; it simply requires some mechanism for assigning a value to C, call
this LV7. The final stage concludes that A has positive expected value; to make
this step we shall have to give some mechanism for deriving arguments over
sentences in LA and LV, call this LEVS,

The attraction of this scheme is that it appears to make explicit some infer-
ences which are hidden in the other argument forms. However, it has the ad-
ditional requirements that we define two new systems—LV and LEV. It seems

" The name stands for Logic of Value.
& The name stands for Logic of Expected Value.



to us that this is a price worth paying since making the assignment of values
and the calculation of expected value explicit gives much more flexibility and
so makes it possible to represent quite complex patterns of reasoning. As an
example of the kind of reasoning that should be possible consider the following:

(1) The patient is believed to have colonic polyps which, while presently
benign, could become cancerous.

(2) Since cancer is life-threatening we ought to take some action to pre-
empt this threat.

(3) Surgical excision is an effective procedure for removing polyps and
therefore this is an argument for carrying out surgery.

(4) Although surgery is unpleasant and has significant morbidity this is
preferable to loss of life, so surgery ought to be carried out.

Informally we can represent this argument as in Figure 6.

There are six different forms of argument in this example which has a simi-
lar scope to the examples considered by Tan and Pearl [40]. The first are those
labelled el-e5 which are standard arguments in LA. The second are value assign-
ments vl and v2 which represent information about what states are desirable
and undesirable. The third are expected value arguments evl and ev2 which
combine the information in standard and value arguments. The fourth are argu-
ments pl and p2 which express preferences between different decision options.
The fifth type of argument is the closure argument c1 which explicitly states that
all possible arguments have been considered, and this leads to the final type of
argument, the commitment argument al which explicitly records the taking of
the decision. The following sections discuss some features of these arguments, in
particular values and expected values.

4 Systems of argumentation for dealing with values and
expected values

Having discussed in general terms what is required from LV and LEV, we can
start moving towards an initial formal definition. We require some language for
representing values. Notwithstanding the common-sense simplicity of the idea of
value its formalisation is not likely to be easy. Value assignments are commonly
held to be fundamentally subjective—they are based on the preferences of a
decision maker rather than being grounded in some observable state of affairs.

4.1 Arguments about values

There are a number of possible formalisms we might consider. We might, for
instance, adopt some set of modal operators, such as desirable(St), where St
is some sentence such as “the patient is free of disease”. This is the approach
adopted by Bell and Huang [4]. Alternatively we might attach numerical coef-
ficients, as in the use of quantitative utilities in traditional decision theory. We



propose representing the value of a state or condition St by labelling a propo-
sition describing St with a sign drawn from some dictionary D just as we do
for beliefs. In this discussion we shall only consider qualitative value dictionar-
ies because, as with uncertainty, we can invariably judge whether some state
has positive or negative value, or is valueless, though we may not be able to
determine a precise point value or precise upper and lower bounds on the value.

Another similarity with our view of uncertainty is that we can frequently
assign different values to states from different points of view. For example the
use of opiates is bad since they lead to addiction, but good if they are being
used as an analgesic. We therefore propose to label value assignment expressions
with the grounds for the assignment, for instance St : G : V, giving us a “value
argument” analogous to the argument expressions of LA. This is not a new idea
of course. For example, multi-attribute utility theory also assumes the possibility
of multiple dimensions over which values can be assigned. However, the benefits
of this sort of formalisation is that it may allow us to cope with situations where
we cannot precisely quantify the value of a situation, and it permits explicit
representation of the justifications for particular value assignments making it
possible to take them into account when reasoning. The basic schema of value
assignment is analogous to the standard argumentation schema:

Database Fy¢r (Condition : Grounds : Value) (5)

A Basic Value Argument (BVA) is a triple defining some state, the value assigned
to it, and a justification for this particular assignment. The assertions “health is
good” might be represented in grounds-labelled form by:

(health : va : +)

where va is a label representing the justification for the BVA.

Traditionally there has been considerable discussion of the justifications for
value assignments. Any discussion has to face the difficulty that values seem to
be fundamentally subjective. In discussion of beliefs there is an analogous idea
of subjective probability but it is also possible to invoke the idea of long-run
frequency to provide an objective basis for probability theory. There has been
a similar attempt to identify an objective framework for values, in consensual
values (for example social mores and legal systems), but it seems inescapable
that values are grounded in opinion rather than some sort of objective estimation
analogous to the chances of events. We therefore accept that a value assignment
may in the end be warranted by sentences like “because I say so”, “because the
law says so”, and “because the church says so”.

In other words we have nothing new to say about the nature of the “value
theories” invoked in (5). We shall simply assume that the theory provides a set
of basic value assignments. Our task here is not to give or justify any particular
set of value assignment sentences (any more than probability theorists are re-
quired to provide particular collections of prior or conditional probabilities) but
to identify ways in which collections of such value sentences might be manipu-
lated, aiming to take some steps towards the definition of a system LV which is

4
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Fig. 7. Value Consequence Relation

analogous to LA but deals with values rather than beliefs. The assumption is
that the assignment of values in sentences like “health is good” depends upon
a derivation which bottoms out in some set of BVAs and that these will be
propagated in the grounds of the relevant arguments.

4.2 Formalising argumentation about values

Having spoken informally about what LV is attempting to do, we present an
initial attempt at formalizing it. This, as the observant reader will notice, is
virtually identical to the definition of LA. We start with another set of atomic
propositions M including T and L, the ever true and ever false propositions. We
also have a set of connectives {—, A}, and the following set of rules for building
the well-formed formulae (wffs) of the language.

If I € M then [ is a well-formed formula (wff).
If I is a wff then —l is a wff.

— If I and m are wffs then [ Am is a wff.

— Nothing else is a wff.

Note that currently LV does not make use of the connective — since it is unclear
to us what such a connective might mean. However, Shoham’s recent work [38]
suggests that some way of expressing conditional values may well be necessary.
The set of all wffs that may be defined using M, may then be used to build
up a database A where every item d € A is a triple (St : G : Sg) in which
St is a wff, Sg represents the value of St, and G are the grounds on which
the assertion is made. With this formal system, we can take a database and
use the argumentation consequence relation Fycg defined in Figure 7 to build
arguments for propositions that we are interested in. Given the explanation of
Facr the way this works should be clear.
Now, as before, we define dictionary D by:

D =ger {S1,.--Sn}



and so we may write:

(St:G:S;)
where S; is any symbol drawn from D. For values there are a couple of obvious
dictionary. The first is that of numerical value, measured in whatever currency
one chooses, another is that of utiles—the familiar measure of classical decision
theory:

Dmoney =def {S VS (—O0,00)}
Dytitity =det {5 : S € (—00,00)}

However, as was the case with beliefs, our interest is primarily with qualitative
dictionaries, so it is worth considering in more detail two value dictionaries which
are analogous to the simple qualitative dictionaries we considered for use with
LA.

Cost benefit dictionary The simplest useful dictionary of values allows us
to talk about states that are good or desirable and states which are bad or
undesirable.

Dcost benefit —def {+7 _}

As with beliefs there are two ways we could interpret these signs. We could take
+ to mean simply that the state has some absolute (point) positive value, but
that the precise value is unknown, or we could take it to mean that we have an
argument for the overall value of our goods being increased. For the moment we
restrict ourselves to using absolute values, but delta values for values may be
required at a later date. It would seem that good and bad states can be related
through complementation rules:

(St:G:4) & (=St:G:—) (6)
(St:G:—)& (=St:G:+) (7

analogous to (1) and (2) above.

Bounded cost benefit dictionary There also seems to be some benefit in
extending the cost benefit dictionary to allow us to talk about maximal amounts
of goodness (badness):

Dhounded cost benefit =def {++7 +,— __}

However, there seems to be a complication here. It seems straightforward to
claim that there is a lower bound on badness—we might gloss this by saying
certain conditions are “intolerable” such as death for instance—but an upper
bound on “goodness” (for example of a bank balance) is harder to conceive of.
However if we accept:

(St:G:++) e (=St:G: ——) (8)
(St:G:—-) & (=St:G: ++) (9)



by analogy with (3) and (4), then we can obtain a reasonable interpretation for
the idea of a condition which is maximally desirable as the complement of any
condition that is intolerable. Furthermore sentences like “human life is priceless”
are held, by their users at least, to have some meaning. From a pragmatic point
of view such statements can seem merely romantic, but if we accept the above
rules it is a direct consequence of asserting that loss of life is intolerable.

Since values are derived with respect to some value theory we can contemplate
different value arguments for the same sentence. In common with LA, such value
arguments can be aggregated. We can describe this aggregation, as for LA, in
terms of a function FlatV(-) which maps from a set of value arguments A for a
proposition St from a particular database A to the pair of that proposition and
some overall measure of validity:

FlatY : A — (St,v)
where A is the set of all arguments which are concerned with St, that is:
A={(St:G;:Sg;)) | Akvcer (St:G;:Sg;)}

and v is the result of a suitable combination of the Sg that takes into account
the structure of the arguments, that is v is the result of applying a flattening
function to the grounds and signs of all the arguments in A:

v= fIatV({(Gi, Sgi) | (St:Gi: Sg;) € A})

Often the signs Sg; and the overall validity v will be drawn from the same dictio-
nary, but it is perfectly feasible for them to be drawn from different dictionaries
(so that a set of arguments with numerical values might be flattened to a value
drawn from the dictionary {very ezpensive, expensive, cheap}).

There are, of course, a number of possible ways in which we might aggregate
values. Numerical values might be aggregated by summation, for instance, and
clearly the exact aggregation operation will depend upon the meaning of the
value signs. One obvious assumption we might wish to make when using the
cost benefit or bounded cost benefit dictionary is that:

Assumption A5 If Args is any set of arguments supporting and opposing
arguments, then:
|Args| < |ArgsU{(S:G: +)}|

Following previous usage we might refer to the set of arguments as the case
for S being positively valued, and |Args| as the force of these arguments. Now,
a condition may be desirable on some grounds and undesirable on others, for
instance if we have:

A l_VCR (St G +)
A l_VCR (St : GI : —)

This raises the question of how supporting and opposing arguments interact.
One possibility is to make the flattening function obey the assumption:



Assumption A6 If Args is any set of supporting and opposing arguments,
then:

|Args| > |Args U{(St: G : —=)}|
So that arguments with negative value bring the overall weight of a set of argu-
ments down. In addition, we might want to assume that:

Assumption AT If Args is any set of supporting and opposing arguments,
then:
|Args| = |Args U{(St: G : =), (St: G' : +)}|

so that positive and negative arguments cancel one another. This latter assump-
tion is exactly the same as the one encoded in the flattening function for LA
which counts the number of arguments. An alternative flattening, which is more
in agreement with qualitative versions of classical decision theory [1,44], is to
have complementary value arguments lead to indeterminacy.

This picture is complicated slightly by the use of the bounded cost-benefit
dictionary, where we have limits to values. Using this dictionary suggests the
adoption of an additional assumption similar to A2 and A4:

Assumption A8 let Args be any set of supporting and opposing arguments
concerning St, and Args’ be any set of supporting, opposing and confirming
arguments concerning St, then:

{(St:G:++)}| > |Args|
{(St:G:++)} = |Args'|

let Args” be any set of supporting and opposing arguments concerning St, and
Args"' be any set of supporting, opposing and excluding arguments concerning
St, then:

{(St: G : —=)} < |Args"|
{(St: G : =—)}| = |Args"|

so that an argument with maximal strength is not affected by additional infor-
mation. Of course, as with A4, this means that it is inconsistent to have both
(St:G:++) and (St : G' : ——) for any St.

Having discussed things in abstract terms, let’s make things concrete by
discussing one possible semantics for the bounded cost-benefit dictionary. In
particular, we take + to be some unknown positive value, and ++ denotes some
limiting unknown value (but not infinity”). Similarly, — is some unknown nega-
tive value, and —— is a limiting negative value. If it helps, these can be taken to
be qualitative abstractions of monetary value, with + being any credit, — any
debit and ++ the amount of money which if one had it, one would no longer have
to worry about working for a living. We take A to be logical conjunction. With

this interpretation, the combination function combl’onj intro 18 that of Figure 8.
This again uses 7 as an abbreviation for “one of ++, +, — and ——" (though

it would probably suffice to make it just an abbreviation for “+ or —”). The

® We could use infinity, but that would make the combinator tables slightly different.



Comb):/onj intro| ++ + — ——
++ |+t ++ 7
+ + +7 -
— + 7 - —

J— ? - -

Fig. 8. The combinator table for LV using the bounded cost benefit dictionary.

flat/[++ + — ——
++[++++ C
|+ +? -
— + 7 - —
——|lc ————

Fig. 9. The flattening function for LV using the bounded cost benefit dictionary.

function combé’onj elim oI this interpretation is:
Combconj elim (Sg) = {7 otherwi;{e }

It is straightforward to verify that these functions are correct for this interpre-
tation of the signs, and the interested reader is encouraged to do so.

We also need to define a function to flatten value arguments with this in-
terpretation. The binary version of this flattening function is that of Figure 9.
This is very similar to the table for combl’onj eiim» but differs in that it introduces
another new symbol, C. This symbol represents a contradiction, and is at the
heart of the difference between the flattening function and combl’onj alim - I we
have two arguments (St : G : ++) and (St : G' : ——) then we can build an ar-
gument for StASt'. This represents a state of affairs has one component which is
completely desirable and another which is completely undesirable, and it seems
reasonable to give it a value which is, roughly speaking, the sum of ++ and
——, and is therefore somewhere in between. We therefore use the value 7. The
intuition here is that the conjunction of a sentence with maximum positive value
and one with maximum negative value has some intermediate value. Thus I may
find it completely desirable to not have to work, and completely undesirable to
have no income but I can put some value on the state in which I don’t work and
have no income.

However, if St and St' are the same sentence, then the two arguments con-
tradict each other—they say that St is both completely desirable and completely
undesirable—mno overall value for St can be agreed. The intuition here is that we
cannot simply cancel an argument that a condition is absolutely desirable with
an argument that the same condition is absolutely undesirable. For example, in
discussions of euthanasia we may have an absolute prohibition on killing; this
cannot simply be cancelled out by arguing that a loved one’s pain is intolerable.



There are, of course, no simple decision rules for such situations and that is
why we choose to flag the situation with C rather than reduce the conflict to
some arbitrary value. What we need is to be able to recognise that a conflict has
occurred, and then resolve it by means of some form of meta-logical reasoning,
something like the opposite of circumscription, in which we introduce new as-
sumptions or theories whose specific role is to overcome such deadlocks. In the
euthanasia example, we may appeal to societal “thin end of the wedge” theories
for instance in which “society’s needs” were not included in the framing of the
original decision.

4.3 Formalising argumentation about expected values

The previous section dealt with the problem of aggregation of value arguments.
It remains to provide rules for deriving sentences from combinations of belief
arguments and value arguments (that is arguments in LA and LV respectively).
As an example of this kind of derivation, consider the following argument in LA:

(St:G:S)

meaning that we can argue for St with sign S. Assume further that we also have
the following argument in LV:

(St:G":V)

which means that the value of St is V. From these two arguments we wish to
derive an expected value argument in LEV:

(St:GUG' : E)

meaning that the expected value of St is E. Now, from a decision making point
of view, arguments about expected value of states are of little interest, except in
the situation where they are the outcomes of actions that we can choose to take
or not take. As an example of the kind of thing we would like to reason about,
consider combining a sentence about belief with one about action:

—cancer :vl:V
surgery = —cancer :el : S
surgery :vlUel : E

where = is a connective which captures the notion of applying an action so
that the sentence surgery = —cancer is read “the action of surgery leads to
the condition of —cancer” This pattern of reasoning is exactly the same as the
previous one, combining a statement about beliefs (that surgery is a means of
eradicating cancer, believed to degree S) with a statement about value (that
a lack of cancer is a state with value V) to come up with a statement about
expected value (that surgery in this case has some expected value E). However, to
deal with this kind of reasoning we need to be able to talk about actions and to be
able to reason backwards from the effects of actions to their causes. In particular,
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Fig. 10. Expected Value Consequence Relation

from a formal point of view, we need to be able to handle the connective =.
Given the well-known difficulties of building formal systems to reason about
action, we will leave this for future work and only deal with combining values
and beliefs about states.

With this simplification we can once again start the process of formalising
the system of argumentation. We start with a third set of atomic propositions N
including T and L, the ever true and ever false propositions. We also have the
connectives {—, A}, and the following set of rules for building the well-formed
formulae (wffs) of the language.

— If I € M then [ is a well-formed formula (wff).
If I is a wff then -l is a wff.

— If I and m are wffs then [ Am is a wff.
Nothing else is a wff.

The set of all wffs that may be defined using N then defines a legal set of triples
(St : G : Sg) in which St is a wffof LEV, Sg represents the expected value of St,
and G are the grounds on which the assertion is made. However, LEV differs from
LA and LV in that we don’t build up a database of triples and build arguments
from them, but build triples from existing arguments in LA and LV using the
consequence relation Fppy defined in Figure 10. Note that the consequence
relation of Figure 10 differs from 40 and Fyopg in that the “bootstrap” rule,
which allows the creation of an LEV argument from something other than an
LEV argument, does not directly involve a tuple from some database. Instead
it involves an argument in LA and an argument in LV. This captures the fact
that any expected value argument is formed from a belief argument and a value
argument.

With the consequence relation fixed, we can move on to identify suitable
dictionaries. Now, our choice of dictionary is a little restricted since expected
value arguments are based on both belief arguments and value arguments. Thus
the meanings of the signs of expected value arguments are completely determined
by the meanings of signs of their constituent belief and value arguments. Let
us consider a suitable dictionary for expected value arguments built using belief



L
Conﬂoconj intro| ++ + — ——

combl[++ + — —— ++ [+ ++ 7
=+ [+ +-— + ++7 -
+ |+ +- - — + 7 - -

— ?

Fig. 11. The combinator tables for LEV using the bounded expectation dictionary.

arguments whose signs are drawn from the bounded generic dictionary, and value
arguments whose signs are drawn from the bounded cost benefit dictionary. This
gives what we might call the bounded expectation dictionary:

Dbounded expectation —def {++7 +,—, __}

If the belief dictionary in question is taken to be the probabilistic one discussed
earlier, then the signs in the bounded expectation dictionary become qualita-
tive abstractions of expectations (and hence the name). Suitable combinations
functions are those of Figure 11. That for combl, reflects the multiplication
of a belief (in the leftmost column) with a value (in the top row), while that
for comb'c-onj intro 15 identical to the analogous function for LV. The function for
eliminating conjunctions is:

combeyp; clim ? otherwise

L (Sg) = {Sgif Sge{++,——}

reflecting the indeterminacies in conjunction introduction. Once again, it is rea-
sonably straightforward to show that these functions are correct.

In many cases a collection of qualitative expected value arguments can be
aggregated under assumptions similar to those suggested for LV, and so we can
again define a flattening function. As before we do this in terms of a function
Flat"(-) which maps from a set of expected value arguments A for a proposition
St from a particular database A to the pair of that proposition and some overall
measure of validity:

Flat" : A — (St,v)

where A is the set of all arguments which are concerned with St, that is:
A= {(St : Gz : ng) | A '_LEV (St . Gl . Sgl)}

and v is the result of a suitable combination of the Sg that takes into account the
structure of the set of arguments, that is v is the result of applying a flattening
function to the grounds and signs of all the arguments in A:

v = flatt ({(G,-, Sgi) | (St: Gy : Sg;) € A})

As ever, the signs Sg; and the overall validity v can be drawn from the same
dictionary or from different dictionaries. A flattening function suitable for the



flat" [++ + — ——

Fig.12. The flattening function for LEV using the bounded expectation dictionary.

bounded expectation dictionary is given in Figure 12. Once again, if we have
expected value arguments based on conflicting values, for instance if we have
(St:G:++) and (=St : G' : ++4) then such conflicts cannot be resolved within
the system and as before are denoted C.

The flattening function for LEV completes the definition of LV and LEV and
we can turn to providing an example of their use.

4.4 Example

As an example of the kind of reasoning which LA, LV and LEV can capture,
consider the following example adapted from [28]. The following database rep-
resents a career choice faced by the second author who needs to decide whether
or not to concentrate his efforts on research or teaching:

(concentrate_on_research : f1:++) Ay
(concentrate_on_teaching : f2: ++)
(concentrate_on_research — good_research : rl : +)
(good_research — job-in_industry : r2 : ++)
(concentrate_on_teaching — good_tutor : r3 : ++)
(good_tutor — senior_university_job : rd : ++)

The facts f1 and f2 represent the possible choices, and the rules r1-r4 represent
a subjective assessment of the relevant causal relations. These are expressed in
LA using the bounded generic dictionary, using the probabilistic interpretation.
From this information we can build the following arguments in LA by applying
Ax and —-E from Figure 2:

A1 Facr (joblinindustry, { f1,72,72}, +)
Ay Facr (senior_university_job,{f2,r3,r4}, ++)

which identify what the outcomes of the different career choices are, and how
likely these are to come about; choosing to concentrate on teaching means a
senior university job for sure, while concentrating on research means the chance
of a job in industry. Now, consider we have the following value assignments in
LV:
(jobin_industry : f3: +) Ay
(senior_university_job : f4 : ++)



which represent subjective assessments of the value of the possible outcomes
expressed using the bounded cost benefit dictionary. From these we can build
the arguments by applying Ax from Figure 7:

Ay Fyeor (joboin_industry, {f3}, ++)
Ay Fyer (senior_university_job, { f4}, ++)

which tell us that both a senior university job and a job in industry are judged to
be is totally desirable. The two related pairs of arguments can then be combined
by applying Ax from Figure 10 :

Ay U Ay Frpy (joboindindustry, {f1, f3,r1,r2},+)
Ay U Ay Frpy (senior_university_job,{f2, f4,r3,r4}, ++)

These values are expressed in the bounded expectation dictionary. From these
arguments it is clear that the option to concentrate on teaching is the best since
it will lead to the maximum expected value.

While this is clearly a very straightforward example to formalise, it does show
why we feel the argumentation approach has some advantages. The use of the
three separate systems makes it possible to separate out the belief elements from
the value elements, and identify what reasoning is carried out with both. When
belief and value arguments have been combined in LEV it is still clear which
elements have been brought to bear. This makes it possible, for instance, to see
that the reason that the option to concentrate on research loses out is because of
the uncategorical relation r1 between concentrating on research and doing good
research. This, in turn, gives the approach considerable explanatory power.

4.5 Soundness and completeness

As is the case for arguments about belief in the logic LA, it makes sense to ask
what formal guarantees there are for arguments about values and expected values
in the logics LV and LEV. The answer to this question is that there are none
at the moment, and the investigation of such matters is one of the main foci of
our future work on these systems. However, as remarked above, it is reasonably
straightforward to obtain at least soundness proofs for both LV and LEV for
the dictionaries discussed since all this involves is showing that the combination
functions are correct. Furthermore, completeness proofs for systems such as LV
and LEV are usually easy to obtain since they follow quite quickly from the
inclusion of introduction and elimination rules for each of the connectives used.

4.6 Preferences and commitments

A complete decision theory is generally held to require some means of choosing
between alternative actions. Despite the work outlined above the combined sys-
tem LA/LV/LEV does not have such a mechanism. However, it is possible to
extend the idea of arguments about values and expected values to provide one.
In particular, we could use expected values to construct a preference ordering
over a set of alternative actions as follows:



Condition St is preferred to condition St', pref (St, St'), if:

[{(St:Gi:Sgi) | Arrpyv (St:Gi:Sgi)}| >
[{(St": G : Sg;) | Arpev (St':Gj: Sg;)}

In other words, St is preferred to St' if the overall force of all the expected
value arguments for it is at least as great as the force of all the expected value
arguments for St'. Transitivity of preferences is implicit in this inequality, and
it is also possible to take into account the number of opposing arguments.

However we have a problem of potential instability. We could choose to act
on a preference, but this preference could be transitory; wait a little longer and
we might find that we can construct an argument to the effect that taking the
currently preferred action could be disastrous. What is needed is some stronger
condition than simply a preference for such and such an action. We would like
to be able to prove that the ordering is, in fact, stable or that the benefits
of achieving greater stability are outweighed by the costs. Thus we need some
closure condition that says, essentially, there are no further arguments that could
alter our main preference, a condition which parallels Pollock’s [33] idea of a
practical warrant for taking an action. Abstractly we can think of this as a
“safety argument” of the form:

best(A) : G : ++
safe(A) : cir : ++
commit(A) : (G, cir) : ++

where best(A) means that aggregation of the arguments for an action A has
greater force than the arguments for any alternative action, and commit(A)
represents a non-reversible commitment for executing action A, for example by
executing it. Informally such safety arguments might include:

— Demonstrating that there are no sources of information that could lead to
arguments which would result in a different best action.

— Demonstrating that the expected costs of not committing to A exceed the
expected costs of seeking further information.

However, it is clear, as Pollock points out, that any system which is intended to
have practical uses should take seriously the computational problems inherent
in checking that no further relevant arguments can be built.

5 Argumentation in practice

While the work on arguments about values and expected values reported in
Sections 4.2 and 4.3 is still rather preliminary, this paper being a first attempt
at formalising the proposal made in [19], the work on arguments about beliefs has
been applied quite widely in projects at the Imperial Cancer Research Fund. The
systems to which this model has been applied include a decision support system
for general medical practitioners [15], a system for interpreting medical images
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Fig. 13. A example consultation from CAPSULE

[41], and a system to advise on the management of acute asthma. More detail on
these and other medical applications may be found in [14]. The model is also the
basis for the system of argumentation used to analyse the risk of carcinogenicity
of chemical compounds which is described elsewhere in this volume [23].

One recent application built using argumentation is the CAPSULE system
which supports general practitioners in drug prescription. The system works in
the classic expert system manner. It is equipped with information about which
drugs treat which conditions and what constitutes best practice, and it is fed
with information about patients. When a specific patient presents with a specific
set of symptoms, CAPSULE identifies a range of drugs which are suitable, identi-
fying for each the arguments for and against its use. The doctor can then choose
the most appropriate. Figure 13 shows a typical consultation. The patient, who
has a history which includes asthma, hypercholesterolaemia, impetigo, and vari-
cose eczema has presented with mild osteoarthritis (a recurring condition). The
system has identified a list of possible treatments, one of which is Naproxen.
Examining the arguments for it, we find that it is a recommended treatment
for four reasons. First, it is a generic drug, meaning it is not the trademarked
product of a single drug company. Second, it is the treatment recommended by
the BNF (the BNF being the British National Formulary, a list of drugs and the
conditions they treat, which is the usual basis for prescribing decisions). Third,
it has proved effective in the past (when the patient previously came to the doc-
tor suffering from osteoarthritis). Fourth, the patient actually has a preference



for it over other treatments he has tried in the past. There is also an argument
against Naproxen—that it should be used with caution because of the associated
problem of “chronic airways obstruction” which the patient is known to suffer
from.

An evaluation of CAPSULE [43] suggests that this kind of support is ex-
tremely useful. A study was carried out in which 42 general practitioners each
prescribed for 36 records based on real cases. The doctors were given 3 levels of
support, a list of drugs in alphabetical order, a list of preferred drugs (decided
upon by the argumentation engine), and the list of preferred drugs along with
the arguments for and against. As the level of support increased, the proportion
of times that the doctors agreed with a panel of experts rose from 25% to 42%,
the proportion of time the doctors ignored a cheaper drug that was as effective
as the one they chose fell from 50% to 35%, and the mean score (which measured
how closely doctors agreed with the experts) rose from 6 (out of 8) to 6.7.

The version of CAPSULE from which Figure 13 is taken was developed us-
ing a system called Proforma [16]. Proforma is a generic technology for building
decision support applications. It consists of the Proforma language, a formal
specification language in the sense used in software engineering, and a knowl-
edge representation language. The technology also includes a number of software
tools, for designing and “enacting” Proforma applications. In particular, these
include an editor which makes it possible to rapidly build applications from a
set of standard components—plans, decisions, actions and enquiries. The use
of argumentation is embedded in Proforma’s decision component. All decisions
are reached by building arguments for and against the decision options, and
then aggregating these arguments to identify how good options are. Thus in the
Proforma version of CAPSULE, the system builds arguments for and against all
the relevant drugs (which are precisely those for which arguments may be built)
and uses an aggregation function which counts the number of supporting and
opposing arguments, subtracts the second from the first, and ranks the decision
options using the resulting score. This may appear to be a trivial procedure, but
it does appear to be effective.

6 Conclusions and discussion

In order to take, or commit to, a decision we must combine or aggregate ar-
guments in order to establish relative preferences among options. Perhaps sur-
prisingly there is now considerable evidence that such simple decision functions
are highly effective for many clinical applications (for instance [5,24]). The most
definitive study to date is that by Pradhan et al. who have rigorously assessed
the impact of various evidence aggregation methods in medical decision making
[34]. This study replicates the earlier findings cited, concluding that the correct
qualitative representation of the decision has much more influence on the quality
of decision making than the precision of quantitative parameters such as proba-
bilities. We feel that this is strong evidence for the validity of argumentation as
a decision making method.



This paper has built on our previous work on using argumentation to reason
about beliefs towards making argumentation the basis of a complete decision
theory. We identified a number of different types of argument that can participate
in making decisions by reasoning about the outcome of possible actions and have
suggested some ways in which these arguments may be built and combined. We
believe that the framework we have outlined has the potential to integrate the
best parts of traditional planning mechanisms and decision theory in the way
suggested by Pollock [33] and Wellman and Doyle [45].

Furthermore, the theory seems to be capable of allowing meta-level reasoning
about the structure of the decision as well as providing some means for coping
with contradictory beliefs and conflicting values and for explicitly including stop-
ping rules and commitment to particular courses of action. In addition to the
obvious task of continuing the development of the foundations of this approach,
there are a number of areas in which we are working. The first is to refine the set
of values and expected values which may be used in order to make the system
as expressive as, say, the systems proposed by Pearl [32] and Wilson [46]. The
second is to investigate alternative semantics for values and expected values as,
for instance, Dubois and Prade [9] have done. The third is to investigate the
connections between the model we are proposing and existing means of combin-
ing plans and beliefs including the BDI framework [36] and the Domino model
[6].

Much remains to be done to provide a secure foundation for this approach to
reasoning and decision making but it appears to have potential merit for covering
a comparable range of decisions to that addressed by classical decision theory. If
this is the case, then the complete theory will provide a basis for implementing
sound methods for decision making in the absence of quantitative information
and the dynamic construction of the structure of the decision.
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