
A Review of Unertainty Handling FormalismsSimon Parsons1 and Anthony Hunter21 Department of Eletroni Engineering, Queen Mary and West�eld College,University of London, London, E1 4NS, United Kingdom.2 Department of Computer Siene, University College London,Gower Street, London, WC1E 6BT, United Kingdom.Abstrat. Many di�erent formal tehniques, both numerial and sym-boli, have been developed over the past two deades for dealing withinomplete and unertain information. In this paper we review some ofthe most important of these formalisms, desribing how they work, andin what ways they di�er from one another. We also onsider heteroge-neous approahes whih inorporate two or more approximate reasoningmehanisms within a single reasoning system. These have been proposedto address limitations in the use of individual formalisms.1 IntrodutionPratial AI systems are onstrained to deal with imperfet knowledge, and arethus said to reason approximately under onditions of ignorane. Attempts todeal with ignorane, [45, 91℄ for example, often attempt to form general tax-onomies relating di�erent types and auses of ignorane suh as unertainty,inompleteness, dissonane, ambiguity, and onfusion. A taxonomy, taken fromSmithson [91℄, that is perhaps typial, is given in Figure 1. The importane ofsuh taxonomies is not so muh that they aurately haraterise the nature ofignorane that those who build pratial AI systems have to deal with|theyare far too open to debate for that|but more that they allow distintions tobe drawn between di�erent types of ignorane. This has motivated the develop-ment of a multitude of diverse formalisms eah intended to apture a partiularnuane of ignorane, eah nuane being a partiular leaf in Smithson's taxon-omy tree. The most important distintion is that made between what Smithsonalls unertainty and absene, though this may be onfused by a tendeny inthe literature to refer to \absene" as \inompleteness". Unertainty is gener-ally onsidered to be a subjetive measure of the ertainty of something and isthus modelled using a numerial value, typially between 0 and 1 with 0 de-noting falsity and 1 denoting truth. Absene is the ourrene of missing fats,and is usually dealt with by essentially logial methods. The wide aeptane ofthe suggestion that unertainty and absene are essentially di�erent, and musttherefore be handled by di�erent tehniques has lead to a shism in approximatereasoning between the \symboli amp" who use logial methods to deal withabsene and the \numerial amp" who use quantitative measures to deal withunertainty.



Untopiality Taboo UndeidabilityError Ignorane
Confusion Inauray Inompleteness IrrelevaneDistortion Unertainty AbseneProbabilityVagueness AmbiguityFuzziness Nonspei�ityFig. 1. Smithson's taxonomy of di�erent types of ignorane.This void between symboli and numerial tehniques, whih remained unad-dressed for many years as researhers onentrated on the �ner tehnial detailsof their partiular formalism, an be seen as symptomati of the way in whih re-searh into approximate reasoning has been pursued. For many years researhersindulged in ideologial slanging mathes of almost religious fervour in whih theformalism that they hampioned was ompared with its \ompetitors" and foundto exhibit superior performane. Examples of this behaviour abound, partiu-larly notable are [10, 12, 42, 66, 88, 105℄. It is only reently that a more moderateeleti view has emerged, [13, 32, 48, 78℄ for example, whih aknowledges thatall formalisms are useful for the solution of di�erent problems. A general re-alisation of the strength of this eleti position has motivated researh bothinto ways in whih di�erent formalisms may be used in ombination to solveinteresting pratial problems, and into establishing the formal di�erenes andsimilarities between di�erent systems.In this paper we disuss some of the best established and widely used for-malisms from both the symboli and numerial sides of the great divide. Wesuggest reasons for the introdution of the more novel tehniques, and skethin the tehnial di�erenes between the approahes. With this bakground wellestablished, we then onsider work on bringing tehniques together.2 Numerial ApproahesOver the last two deades, numerous formal and informal systems have been in-trodued for reasoning under onditions of ignorane and unertainty. The �rstunertainty management tehnique to be introdued was probability theory. Thiswas not only developed many years before the �rst omputer, but was also usedin omputer deision aids before the advent of Arti�ial Intelligene as a dis-ipline. Arthur Dempster generalised Bayes' theorem in 1967 [17, 18℄, though



his work remained on�ned to the �eld of statistis until Glenn Shafer reformu-lated the theory and published it as \A Mathematial Theory of Evidene" in1976 [82℄. This body of work, often referred to as Dempster-Shafer theory, hasseveral interpretations inluding the transferable belief model [87, 90℄. Anothermuh studied approah is possibility theory [26, 103℄ whih grew out of workon fuzzy sets [102℄. There are numerous other numerial tehniques for dealingwith unertainty often developed from pragmati onsiderations. These inludeertainty fators [86℄, probabilisti logi [63℄, and belief intervals [21℄ to namebut a few.2.1 OverviewThe methods that we shall onsider in the following setions are the main formaltheories introdued to handle unertainty|probability theory, possibility theory,and evidene theory. For theories that have traditionally been seen as rivals, onemight expet that they would appear radially di�erent, but this is not so.Indeed, they are remarkably similar, di�ering largely in subtleties of meaning orappliation, though this is not entirely surprising sine they are intended to domuh the same thing.The basi problem is how to weigh up the degree to whih several unertainevents are believed to our so that the most believed may be unambiguouslyidenti�ed. The basis on whih the \belief" is assigned is a ontentious issue,though all the theories that we shall onsider assume alloation by an assignmentfuntion that distributes belief to possible events under onsideration. Belief maybe distributed on the basis of statistial information [81, 92℄, physial possibility[103℄, or purely subjetive assessment [12℄ by an expert or otherwise. The beliefassigned is a number between 0 and 1, with 0 being the belief assigned to a fatthat is known to be false, and 1 the belief assigned to a fat known to be de�nitelytrue. The in�nite number of degrees of belief between the limits represent variousshades of unertainty. Now, some formalisms restrit the amount of belief thatmay be assigned. Both probability theory and evidene theory, whih is after allderived from probability theory, limit the total belief that may be assigned by apartiular distribution funtion by onstraining the sum of all the beliefs to be 1.This may be interpreted as meaning that one partiular observer annot believein a set of unertain events more than she would have believed in a partiularevent of total ertainty. There is no suh restrition on a possibility distribution,sine one may oneive of several alternative events that are perfetly possible,and so have a possibility of 1. Probability theory, unlike the other theories, alsointrodues a restrition on the belief that may be applied to a hypothesis basedon the belief assigned to its negation. If we have an event A, thenPr(A) = 1� Pr(:A)Given the result of a belief distribution, we are interested in how the assignedbeliefs may be manipulated. Given our belief in two events, what is our belief ineither of them ourring (our belief in their union), and what is our belief that



both will our (our belief in their intersetion)? More importantly perhaps,espeially for arti�ial intelligene appliations where we often wish to assessthe ombined belief that results from several di�erent piees of information, weare interested in ombining the e�ets of two or more belief distributions overthe same set of hypotheses. Eah distribution will, in general, assign di�erentbeliefs to a given hypothesis, and we require some means of assessing a �nalbelief that takes aount of all the di�erent assignations. The way in whih thisis done is based upon the interpretation that the theory gives to the belief itassigns, and thus it is not surprising that eah theory should \pool the evidene"in a di�erent way.2.2 Probability theoryProbability theory has existed in one form or another for several hundred years.During this time various alternative formulations have been introdued, and itis now diÆult to say where the de�nitive aount may be found. This is inontrast to the other methods desribed in this paper where the desriptions aredrawn from the original paper on the subjet. The introdution presented hereis drawn from the disussion of probability theory in Lindley's exellent book\Making Deisions" [53℄. Lindley asserts that probability theory is built on threeaxioms or laws that de�ne the behaviour of a probability measure, whih may beused as an estimate of the degree to whih an unertain event is likely to our.The measure may be assessed by referene to a standard, suh as the likelihoodof drawing a blak ball out of an urn ontaining �ve blak balls and ten redballs. The �rst law of probability theory is the onvexity law whih states thatthe probability measure for an event A given information H is suh that:0 � Pr(AjH) � 1The seond law is the addition law, whih relates the probabilities of two eventsto the probability of their union. For two exlusive events A and B, that is twoevents that annot both our, we have:Pr(A [ BjH) = Pr(AjH) + Pr(BjH)whih is ommonly writtenPr(A [ B) = Pr(A) + Pr(B)without expliit referene to the information H , sine the information is thesame in all ases. If the events are not exlusive we have, instead:Pr(A [B) = Pr(A) + Pr(B) � Pr(A \ B)Furthermore, the sum of the probabilities of a set of mutually exlusive andexhaustive events, the latter meaning that they are the only possible events thatmay our, are onstrained to sum to 1 so that:Pr(A) + Pr(:A) = 1



or, more generally for a set of n suh events Ai:Xi=1;:::;nPr(Ai) = 1The �nal law is the multipliation law, whih gives us the probability of twoevents ourring together; the probability of the intersetion of A and B:Pr(A \ BjH) = Pr(AjH):Pr(BjA \H)Again this may be written asPr(A \B) = Pr(A):Pr(BjA)without expliit referene to H . Note that Pr(A\B) is often written as Pr(A;B).The probability measure Pr(BjA) is the onditional probability of B given A,the probability that B will our, given that A is known to have ourred. Fromthese laws we an derive two further results whih are ruial from the point ofview of arti�ial intelligene. The �rst of these is Je�rey's rule:Pr(A) = Xi=1;:::;nPr(AjBi) Pr(Bi)The seond is Bayes' theorem, named after an eighteenth entury non-onformistEnglish lergyman. This states that:Pr(AjB) = Pr(BjA):Pr(A)Pr(B)and thus gives a means of omputing one onditional probability relating twoevents from another onditional probability.Under the assumption that the events in whih we are interested are mutu-ally exlusive and exhaustive, and following some manipulation, we an obtaina version of Bayes' rule [14℄ that is suitable for assessing the probability ofa hypothesis hi that is a member of the set h1; : : : ; hn given a set of pieesof evidene e1; : : : ; em, a set of probabilities of ourrene of the hypothesesPr(h1); : : : ;Pr(hn), and a set of onditional probabilities for eah piee of evi-dene given eah hypothesis Pr(e1jh1), Pr(e1jh2); : : : ;Pr(emjhn):Pr(hije1; e2; : : : ; em) = Pr(e1jhi) Pr(e2jhi) : : :Pr(emjhi) Pr(hi)Pj=1;:::;n Pr(hj) Pr(e1jhj) Pr(e2jhj) : : :Pr(emjhj)This may be used, say, to reason about the likelihood of a partiular disease (hi),from a set of possible diseases fh1; : : : ; hng, given a set of reorded symptomsfe1; :::; emg.There have been several adaptations of probability theory within the liter-ature of arti�ial intelligene inluding the odds-likelihood formulation used byProspetor [28℄, and the autious approah adopted by Inferno [74℄. Another is
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Fig. 2. Part of a probabilisti network for diagnosing faults in a ar.the use of probability theory by Taw�k and Neufeld [93℄ in their hapter in thisvolume where they onsider the probability of failure of omponents over timeand use this to guide diagnosis. Nilsson [63℄ provided an interesting variationwith his probabilisti logi, an attempt to ombine propositional alulus witha numerial unertainty handling formalism by assoiating probability measureswith logial sentenes. Perhaps the most important feature of the formalism isit handles inompletely spei�ed probabilisti models by omputing the allowedbounds on the derived onsequents.An inreasing important approah to using probability theory in omputingis probabilisti networks, also alled Bayesian networks or ausal networks [39,67, 68℄. By augmenting the use of onditional probabilities with extra struturalinformation, they an be used to represent and reason more eÆiently with prob-abilisti information. In partiular they inorporate assumptions about whihpropositions are independent of other propositions, thereby dereasing the di-mensionality and number of onditional probability statements, and simplifyingthe omputations. Essentially, probabilisti networks are a set of nodes withdireted ars (arrows) providing onnetions between nodes. Every node is on-neted to another node, but eah node is not neessarily onneted to every othernode. Eah node denotes a random variable, whih is a variable that an be in-stantiated with an element from the sample spae for the variable. They are usedto model situations in whih ausality, or inuene is prevalent, but in whih weonly have a partial understanding, hene the need to model probabilistially.As an example, onsider the network in Figure 2 whih is part of a proba-bilisti network for diagnosing faults in a ar (this example is drawn from [41℄).This aptures the fat that the age of the battery (the node battery old) has aninuene on whether or not the battery is good (battery good), and that whetheror not the alternator is good (alternator ok) has an e�et on whether or not thebattery is harging (battery harging), together the quality of the battery andwhether or not the battery is harging a�et whether the battery is working (bat-



tery ok), and this has an e�et on the radio (radio ok) and the lights (lights ok).All the random variables in this example are either \true" or \false" so thatthe random variable battery old, an be instantiated with the event battery oldmeaning that the battery is old, or the event :battery old meaning that thebattery is not old.Eah of the links in the network is quanti�ed by giving the relevant ondi-tional probabilities, whih in this ase will inlude:Pr(battery good jbattery old ) = 0:1Pr(battery good j:battery old) = 0:8Pr(battery ok jbattery good ; battery harging) = 0:9Pr(battery ok jbattery good ;:battery harging) = 0:2Pr(battery ok j:battery good ; battery harging) = 0:6Pr(battery ok j:battery good ;:battery harging) = 0:05Note that the onditional probabilities reet the diretion of the arrows. Both,broadly speaking, apture a notion of ausality (whih is why probabilisti net-works are also known as \ausal networks")|if the battery is old it ausesthe battery to be less likely to be good, and it is therefore easier to assessPr(battery good jbattery old) than Pr(battery old jbattery good ) though the twoprobabilities may eah be omputed from the other using Bayes' theorem.Now, given the network and the prior probabilities of the battery being old,Pr(battery old), and the alternator being ok, Pr(alternator ok), it is possible toompute the probability of eah state of eah random variable in the network (forinstane Pr(battery good) = 0:58 if Pr(battery old) = 0:4) by simple appliationof Je�rey's rule. It is also possible to take aount of evidene that, for instane,the radio is not ok (whih means that Pr(:radio ok) = 1) and to use Bayes'theorem to revise the probabilities.Muh attention has been given to the problem of propagating probabilitiesthrough probabilisti networks eÆiently. Pearl [69℄ provides a omprehensiveintrodution to the use of probabilisti ausal networks, along with an eÆientsheme for the propagation of probabilities in singly-onneted networks1 be-tween every that is based on autonomous message passing. Another network-based method that has reeived wide attention is that of Lauritzen and Spiegel-halter [52℄ whih has been used as the basis of the expert system shell HUGIN[1℄, and the paper in this volume by Magni et al. [56℄ makes use of a graphialrepresentation similar to that disussed above.2.3 Evidene theoryEvidene theory is the term ommonly used to refer to the body of work arriedout by Arthur Dempster [17, 18℄ and Glenn Shafer [82℄ to remedy some of what1 Singly-onneted networks are those in whih for every pair of nodes there is at mostone path along ars whih joins them. When assessing onnetedness, ars may betraversed both diretions, but any ar may only be traversed one.



they saw as the limitations of probability theory, in partiular [19℄ disposingwith the \ompleteness" axiom of probability theory [42℄. The theory deals withthe so-alled frame of disernment, the set of base elements � = f�1; :::; �ng inwhih we are interested, and its power set 2�, whih is the set of all subsets ofthe interesting elements. The basis of the measure of unertainty is a probabilitymass funtion m(�) that assigns zero mass to the empty set, m(;) = 0, and avalue in [0; 1℄ to eah element of 2�, the total mass distributed being 1 so that:XA��m(A) = 1Sine we deal with all possible subsets of the set of all base propositions, ratherthan the propositions themselves as in probability theory, we an apportion theprobability mass exatly as we wish, ignoring assignments to those levels ofdetail that we know nothing about. This allows us to model ignorane, m(�)being the probability mass we are unable, through lak of knowledge, to assignto any partiular subset of �. We an de�ne our belief in a subset A of theset of all propositions as the sum of all the probability masses that support itsonstituents: Bel(A) = XB�Am(B)and the plausibility of A may be de�ned as the probability mass not supporting:A: Pl(A) = XB\A6=;m(B)whih may also be written as:Pl(A) = 1� Bel(:A)The interval [Bel(A);Pl(A)℄ an be onsidered to be a measure of our ignoraneabout A, and an vary from zero when we have the same degree of belief inA as would be generated by probability theory, to 1 when A has belief 0 andplausibility 1. This means that no mass is assigned to A or any of its subsets,but equally no mass is assigned to :A.Evidene is ombined by Dempster's rule of ombination. This omputes theprobability mass assigned to C � � from the probability mass assigned to Aand B where both A and B are also subsets of �. If the distribution funtionassigning probability mass to A is m1(�) and the funtion distributing probabilitymass to B is m2(�), then the mass assigned to C is de�ned by:m12(C) = XA\B=Cm1(A)m2(B)1� XA\B=;m1(A)m2(B)where the division normalises the new distribution by re-assigning any proba-bility mass whih is assigned to the empty set, ;, by the ombination. To larify



fToyota;GM;Chryslerg �0.8 0.2fNissan; Toyotag fToyotag fNissan; Toyotag0.4 0.32 0.08� fToyota;GM;Chryslerg �0.6 0.48 0.12Table 1. Applying Dempster's rule.what is going on here we will onsider a simple example of the use of Dempster'srule in ombining evidene.Consider a world [14℄ with only four ar manufaturers, Nissan, Toyota, GMand Chrysler, all trying to break into a new ar market. We are interested inwho will dominate the market. There are four singleton hypotheses orrespond-ing to the assertions that eah of the four manufaturers will dominate themarket. Consider the ase in whih there are two mass funtions m1 and m2stemming from the opinions of two independent experts. Now, m1 assigns 0.4 tofNissan; Toyotag, the hypothesis that Japanese manufaturers dominate, andthe remaining 0:6 to the set fNissan; Toyota;GM;Chryslerg modelling igno-rane about the behaviour of Amerian manufaturers. Similarly, m2 assigns 0.8to the set fToyota;GM;Chryslerg and 0.2 to �, and Dempster's rule of om-bination assigns the produt of the two belief masses to the intersetion of thesets to whih they are assigned. Table 1 explains the alulation.The masses after ombination are as follows:m12(fToyotag) = 0:32m12(fNissan; Toyotag) = 0:08m12(fToyota;GM;Chryslerg) = 0:48m12(�) = 0:12The belief that a Japanese manufaturer will dominate is omputed from thesum of the belief masses of all the subsets of the hypothesis. Thus:Bel12(fNissan; Toyotag) = m12(fToyotag) +m12(fNissan; Toyotag)+m12(fNissang)= 0:32 + 0:08 + 0= 0:4For this simple example, no normalisation is required.The problems of the omputational omplexity of Dempster's rule have beendisussed by several authors. Barnett [2℄ showed that the apparent exponentialtime requirement of the theory ould be redued to simple polynomial time if thetheory was applied to single hypotheses, rather than sets of hypotheses, and theevidene ombined in an orderly fashion. Gordon and Shortli�e [37℄ extendedBarnett's approah to ompute approximate beliefs in a spae of hierarhially



organised sets of hypotheses in linear time. This approah was then subsumedby that of Shafer and Logan [84℄, who provided an exat algorithm for hier-arhially organised sets of hypotheses that is also linear in time whilst beingslightly more general than that of Gordon and Shortli�e. More reently, Shenoyand Shafer[85℄ have introdued a method for the eÆient propagation of belieffuntions in networks by means of loal omputations, and Ni Wilson [100℄ hasproposed a method in whih the expliit use of Dempster's rule of ombinationis avoided. This permits an exat alulation of belief to be performed in worsethan polynomial but better than exponential time even when the hypotheses arenot hierarhially strutured. Wilson has also proposed an approximate alula-tion, based on a Monte-Carlo simulation, whih gives results that are arbitrarilylose to the exat solution, and whih an be performed in linear time. Morereent advanes are explored in [61, 101℄.The appliation of evidene theory is the subjet of three papers in thisvolume. Lalmas [50℄ uses it as a means of deiding whih doument to retrieve,van Dam [96℄ uses it to ontrol a radio ommuniation system, and DunanWilson [98℄ onsiders how to apply it to the lassi�ation of faults in automatedinspetion.2.4 Possibility theoryA formal theory of possibilities, based on the notion of a fuzzy set [102℄, was �rstintrodued by Zadeh [103℄. However, the onept of using the notion of possibil-ities as an alternative to probabilities was mooted muh earlier. The eonomistG. L. S. Shakle [81℄, unhappy with the use of subjetive probability for han-dling unertainty, proposed an alternative formalism. This formalism was thealulus of potential surprise where unertainty about an event is haraterisedby a subjetive measure of the degree to whih the observer in question would besurprised by its ourrene. Potential surprise is learly linked to the intuitivenotion of possibility. If an event is entirely possible, then there is no surpriseattahed to its ourrene. If an event is wholly impossible, or is believed to beso, then if it ours it will be aompanied by the maximum degree of surprise.In this setion we present a simple overview of Zadeh's theory, demonstratingits similarity to and di�erenes from probability theory, and briey disuss howpossibility theory may be ombined with logi.Firstly we need the onept of a fuzzy set [102℄. A fuzzy set is a set whosemembership is not absolute, but a matter of degree, suh as the set of tall people.A fuzzy set F is haraterised by a membership funtion �F whih spei�es thedegree to whih eah objet in the universe U is a member of F . One way ofonsidering F is as a fuzzy restrition on X , a variable whih takes values in U ,in that it ats as an elasti onstraint upon the values that may be assigned toX . The assignment of a value u to X has the formX = u : �F (u)



where �F (u) is the degree to whih the onstraint F is satis�ed when u is assignedto X . To denote the fat that F is a fuzzy restrition on X we write:R(X) = FNow, the proposition \X is F", whih translates into \R(X) = F", assoiates apossibility distribution �X with X and this distribution is taken to be equal toR(X): �X = R(X)Along with this we have a possibility distribution funtion �X whih is de�nedto be equal to the membership funtion of F :�X = �FThus �X(u), the possibility that X = u, is taken to be equal to �F (u). As anexample, let U be the set of positive integers, and F be the fuzzy set of smallintegers. This set is desribed by the following set of pairs eah of the form(u; �F (u)): F = f(1; 1); (2; 1); (3; 0:8); (4; 0:6); (5; 0:4); (6; 0:2)gGiven this, the proposition \X is a small integer" assoiates the possibility dis-tribution �X with X where �X is written as a set of pairs (u; �X(u)):�X = f(1; 1); (2; 1); (3; 0:8); (4; 0:6); (5; 0:4); (6; 0:2)gThus, the possibility that X takes the value 3, given that X is a small integer,is 0.8. We an use possibility distributions to de�ne possibility measures. If A isfuzzy subset of U , then the possibility measure �(A) of A is de�ned byPoss(X is A) = �(A)= supu2U min (�A(u); �X (u))When A is a strit subset of U , this redues to:�(A) = supu2U �X(u)Possibility measures larify the omparison between possibility and probabilitytheory. We an establish that:�(A [ B) = max(�(A); �(B)) (1)�(A \ B) = min(�(A); �(B)) (2)whih ontrast with the orresponding results for probability theory2. Zadehstresses the fat that possibility and probability are di�erent onepts with the2 The use of maximum and minimum is not ompulsory. For further disussion of thispoint, see [26℄.



example of Hans' breakfast. Consider the statement \Hans ate X eggs for break-fast" with X 2 f1; : : : ; 8g. We an assoiate both a possibility distribution (basedon our view of the ease with whih Hans an eat eggs) and a probability distribu-tion (based on our observations of Hans at breakfast) with X , giving somethingof the form: u 1 2 3 4 5 6 7 8�X(u) 1 1 1 1 0.8 0.6 0.4 0.2PrX(u) 0.1 0.8 0.1 0 0 0 0 0So that, while it is perfetly possible that Hans an eat three eggs for breakfast,he is unlikely to do so. There is a heuristi onnetion between possibility andprobability, sine if some thing is impossible, it is likely to be improbable, but (asthe previous example shows) a high degree of possibility does not imply a highdegree of probability, nor does a low degree of probability reet a low degree ofpossibility. Dubois and Prade [25℄ point out that a weak theoretial onnetionexists sine for all A, N(A) � Pr(A) � �(A)where N(A) is the neessity of A, de�ned by:N(A) = 1��(:A)It is possible to extend these ideas to possibility distributions that depend onmore than one attribute, and marginal possibility distributions. Explanations ofthese onepts will be omitted in the interests of saving spae (but see [103℄),but it should be noted that the kind of graphial strutures disussed above inrelation to probability theory an be adapted for use with possibility theory aswell [35℄.Possibility has been applied to reasoning with vague statements [27, 104℄. Forexample, suppose we have the following statement.If the lothes are dirty then wash them in hot waterBoth the onepts \dirty" and \hot" are vague or fuzzy in this ontext. Fora given olletion of lothes, we are interested in using this general statementto determine whether to wash them in hot water. In other words, we wish todetermine whether for some fuzzy value for dirty, we should derive the instrutionto wash the lothes in hot water.Now, in lassial logi we would perform this kind of reasoning using modusponens, a rule for reasoning whih formalises the argument that if � is trueand � � � is true, then � is true. For reasoning with fuzzy statements suhas the one above about dirty lothes, we need to develop a notion of modusponens whih an handle fuzzy onepts. Generalized modus ponens is suh adevelopment [57℄. For example, suppose the lothes are \not very dirty", then\not very dirty" does not diretly math with \dirty". We need to adapt thestatement to allow the data \not very dirty" to apply. This means hanging the



onsequene in some way, perhaps to \warm water". Sine \dirty lothes" and\hot water" an be modelled by fuzzy sets, the manipulations an be done onthe fuzzy sets. For this, we represent propositions as:X is ASo for example, \lothes are dirty" is a a proposition, where X is \lothes", andA is \dirty". Generalized modus ponens is then of the following form.X is A�If X is A; then Y is BY is B�Here, B� is alulated from the possibility distribution of A�, and of A given B.The possibility distribution for B provides an upper bound on the possibilitydistribution for B�. This alulation dereases the possibility that Y is B� istrue, the further A� is from A. This ombination of possibility theory and logiinto possibilisti logi has been investigated at length by Dubois and Prade [23,24℄. Possibilisti logi is one of the tehniques explored by Bigham in his paperin this volume [6℄, and both the ontributions of Ramalho [75℄ and SaÆotti [79℄make use of fuzzy inferene of the kind disussed above, while Bos et al. [7℄onsider the appliation of fuzzy tehniques to databases.2.5 Other approahesThere are a number of other numerial tehniques whih, although we do nothave spae to onsider them in any detail, are worth mentioning for their par-tiular historial or theoretial interest. Certainty fators [86℄, perhaps beauseof their simpliity and intuitive appeal, have been widely used to handle uner-tainty. The ertainty fator approah assigns a numerial weight, the ertaintyfator, to the onsequent of everyIf hevidenei then hhypothesisirule in a rule-based system. The value of the ertainty fator, whih lies in theinterval [-1, 1℄, is assessed by the domain expert from the degree, between 0and 1, to whih a given piee of evidene auses her belief and disbelief in thehypothesis to be inreased. The ertainty fator is then the di�erene of thedegree of belief, MB and the degree of disbelief, MD:CF = MB �MDThe ertainty fators of rules �red during inferene are then ombined to give anoverall ertainty for the support given to a partiular hypothesis by the knownevidene. Reently several people have hallenged the validity of the ertaintyfator model. For instane, Hekerman [40℄ has shown that the original de�ni-tion of the model is awed sine the belief in a hypothesis given two piees of



evidene will depend upon the order in whih the e�et of the piees of evideneis omputed.Smets has adapted evidene theory as introdued by Dempster and Shaferin two important ways [87, 90℄. The �rst was to relax the assumption that allhypotheses have been identi�ed before the evidene is onsidered. Instead Smetsmakes an open-world assumption that the frame of disernment does not nees-sarily ontain an exhaustive set of hypotheses. Under this assumption there isno normalisation in Dempster's rule of ombination sine the mass pertainingto the empty set is taken to indiate belief in a hypothesis outside the frame ofdisernment. The open world assumption requires a modi�ation of the de�ni-tions given earlier for the alulation of belief and plausibility from probabilitymass distributions (whih are just alled \mass funtions" by Smets). Belief isde�ned as: Bel(A) = XB�A;B 6=;m(B)while plausibility is de�ned as:Pl(A) = XB\A6=;m(B)= 1� (m(;) + Bel(:A))Dempster's rule of ombination beomes:m12(C) = XA\B=Cm1(A)m2(B)Smets' other innovation was to introdue an alternative interpretation of thetheory of evidene alled the transferable belief model. The transferable beliefmodel rejets any suggestion that the numbers manipulated by the theory areprobabilities. Instead they are taken to be pure expressions of belief suitable forreasoning at an abstrat redal level and are transformed into probabilities atthe pignisti level when deisions are neessary. In the model, the basi beliefmass m(A) in any subset A of a frame of disernment � is the amount of beliefsupporting A, that, due to ignorane, does not support any strit subset of A.If we have new evidene that exludes some of our original hypotheses, andso points to the truth being in �0 � �, then the basi belief mass m(A) nowsupports A � �0. Thus the belief originally attributed to A is transfered to thatpart of A not eliminated by the new evidene, thus giving the system its name.Another interesting proposal is due to Driankov [21℄. In Driankov's system,we have degrees of belief and plausibility, related, as in the original theory ofevidene, by: Bel(A) = 1� Pl(:A)However the system also allows ontraditory beliefs so that it is possible that:Bel(A) + Bel(:A) > 1



These ideas lead to the de�nition of a alulus of belief intervals, where a beliefinterval for A is [Bel(A);Pl(A)℄, in whih ombination is arried out by a fam-ily of general funtions alled triangular norms and onorms [80℄, and expliitreasoning about the degree to whih a proposition is believed and disbelieved ispossible.2.6 Limitations of numerial tehniquesAs one might expet, none of the systems mentioned in preeding setions isperfet, and there are a number of problems ommon to all numerial formalisms.The �rst is perhaps the simplest. When Cohen [14℄ ritiises possibility theorysaying:\relatively little has been made of the idea of fuzzy sets and possibilitytheory . . . (this) may be beause the idea does not improve on any of thediÆult methodologial problems that beset probability theory, suh asthe assessment of prior probabilities"he is restating an argument that has been made time and again, perhaps mosttersely by Cheeseman [11℄ who asked:\where are all the numbers oming from?"Obtaining the \numbers", be they probabilities, possibilities, or mass distribu-tions does seem to be a major problem. Clearly, without good numerial as-sessments sophistiated omputational mehanisms are of little value. It is alsotrue that there are domains in whih it is not possible to obtain the kind ofstrong statistial data neessary to apply probability theory in its \frequentist"interpretation, where the probability of an event is the value to whih the ra-tio of ourrenes to non-ourrenes onverges after a large number of trials.This has been used by many (see for example [32℄) to argue against the use ofprobability theory for dealing with unertainty. However, the personalist andneessarian [83℄ shools of probabilists argue that probabilities may always beobtained, either from rational human reasoning, or beause they exist as a mea-sure of the degree to whih sets of propositions on�rm one another. It seems,then, as though there is no lear ut winner in this argument; the moral appearsto be:\if you an obtain the numbers to your satisfation, then use them."As a �nal word, it is worth mentioning that it has also been onviningly arguedin several plaes (see for example [9, 71℄) that even if the numbers are available,they make little di�erene to the business of weighing up the evidene. This,however, is a di�erent argument altogether, and we will say no more about it.A seond problem stems from the use of numbers; the interpretation of theresults of applying a numerial formalism given the notorious irrationality thathuman beings exhibit when dealing with numbers [95℄. All the tehniques gen-erate results as numerial values. These values, however, have been generated in



di�erent ways, and thus measure di�erent things, although they are just num-bers and may be ompared and ontrasted by the uninitiated as though theyrepresented the same thing. Indeed, to interpret them orretly, it is perhapsneessary to label them with the type of belief that they measure to prevent aprobability of 0.5 being ompared unfavourably with a possibility of 0.8. In ad-dition, there is the problem of ranking di�erent solutions. A ommon argumentfor inluding numbers is in order to hoose the best of several ourses of ationthat must be di�erentiated between using unertain knowledge, and of oursenumerial results an be used to do this. However, using the ordinal value ofthe results alone to do this an obsure important information onealed in theratio of the results; namely how lose the seond largest value is to the largest.If they are lose, but separated by a wide margin from the third, then, ratherthan hoosing the �rst, it might be pro�table to review the riteria upon whihthe assessment was made in the hope that some telling di�erene between thealternatives might be found.Finally, there are the problems assoiated with omputational expense. Themassive amount of time needed to apply the full formal methods to realistiallylarge problems was one of the main reasons that suh ad ho methods as ertaintyfators were introdued. Whilst, as outlined in earlier setions, there have beenseveral reent attempts to �nd omputationally eÆient methods of alulatingthe results of applying probability and evidene theories in partiular situations,the general problem of ineÆieny remains.3 Symboli approahesNonmonotoni logis were introdued in order to allow programs to deal withinompleteness by exhibiting \ommonsense" reasoning, thus avoiding the needto state every possible exeption to a general rule. Two key approahes are Re-iter's default logi [76℄ and MCarthy's irumsription [60℄. In this setion westart with a disussion of the limitations of �rst order logi as a basis for pra-tial reasoning systems, introduing the notions of retration, monotoniity anddefeasibility. Then we onsider the family of default logi in more detail|as it isprobably the most developed approah for non-monotoni reasoning. In the sub-sequent two setions, we onsider the logi-based approahes of argumentationand truth maintenane systems.3.1 OverviewThe ommon motivation behind all of the systems of nonmonotoni logi thatwe will disuss below is the attempt to devise sound formal mehanisms forreasoning that overome the limitations of �rst order logi. At �rst sight, �rstorder logi seems to be a panaea for all the problems of knowledge representationand dedution for AI systems. This is unfortunately a naive impression, andthere are many problems that beset the use of lassial logi, espeially whenattempting to model the kind of \ommonsense" reasoning whih human beings



exel at. Israel [44℄ redits Minsky with being the �rst to onsider the matter,pointing out that there are two partiular properties of �rst order logi thatare at odds with ommonsense human behaviour. The �rst results in the soalled quali�ation problem. Say, to take the lassi example, we are interestedin building a system that reasons about animals and their athleti abilities. Oneof the fats that we want to enode is the fat that generally birds an y.Unfortunately, there is no \generally" quanti�er in �rst order logi, so we mustapproximate this by asserting that all birds y:8x; bird(x ) � ies(x ) (3)This seems �ne until we reall that penguins don't y, and so we have to augmentthe rule. This may be done in several ways, we will hoose to write:8x; bird(x ) ^ :penguin(x ) � ies(x ) (4)However, this formulation beomes problemati when we want to reason aboutostrihes, kiwis, and birds whose feet have been set in onrete. For any generalrule of this kind, we an think up an arbitrarily large number of exeptions,and it is the provision of a ompat means of handling all of these exeptionsthat is the quali�ation problem. The seond troublesome property is that ofmonotoniity. In �rst order logi there is no mehanism for retrating inferenesone they have been made, or fats one they have been added to the database.If a sentene S is a logial onsequene of a theory A then it is still a onsequeneof any theory that inludes A, suh as the theory A [ �. This is true even if wehave � = :S, though in this latter ase adding � leads to inonsisteny (sine wean derive both S and its negation). Monotoniity is partiularly troublesomewhen, in attempting to solve the quali�ation problem, we allow systems tomake \guesses" about the state of the world whih are used in the absene ofmore detailed information. For instane onsider making the assumption that apartiular bird, Joe, ies when nothing is known to the ontrary. In a monotonisystem, when it is learnt that Joe has been nailed to his perh there is no meansof retrating the inferene that Joe an y. To solve suh problems researhersturned to nonmonotoni logial systems that allow for plausible inferenes to bemade to defeat the quali�ation problem, and then allow those inferenes to bewithdrawn if their falsity beomes apparent.There are three main ways in whih a solution to these problems have beenattempted; losed world reasoning, prototypial reasoning, and reasoning aboutbeliefs. These methods may be summarised as follows. Closed world reasoningmakes the assumption that all relevant positive knowledge has been expliitlystated. Working on this assumption, systems are permitted to dedue any nega-tive fats that they desire in order to reason about the state of the world. Thusa system reasoning about onneting ights whih has no knowledge of a ightbetween London and Ankara is allowed to dedue that there is no suh ight,and is only allowed to postulate the existene of a ight joining London andParis if suh a ight is expliitly reorded in its database. Prototypial, or de-fault, reasoning proeeds from rules relating to typial individuals of some lass



to make plausible assumptions about partiular individuals. If and when spei�information about the individual that ontravenes the plausible dedution omesto light, the assumptions are retrated. Our example about ying is of this kind.We know that birds y in general, so that when we hear of a bird Opus weassume that he an y. Later we learn that Opus is a penguin, and knowing thatpenguins don't y allows us to retrat our assumption that Opus is apable ofying. Finally, reasoning about beliefs allows a system to make sound dedutionsbased on what it believes to be true. Assuming rationality, the system is allowedto logially dedue fats from what it knows and what it believes to be true, andwhat it believes to be false, whih is everything that it does not believe to betrue. Thus a system reasoning about its siblings an dedue that it is an onlyhild beause if it wasn't, it would know about a brother or sister.In addition to the distintion between losed world reasoning, prototypialreasoning, and reasoning about beliefs, there is another distintion between sys-tems of nonmonotoni logi whih it is worth making. This is between bravesystems and autious systems (also known as redulous and skeptial systems,respetively). Brave systems are those whih are prepared to aept any onlu-sion whih they an hypothesise. As a result they typially su�er from being ableto derive two ontraditory onlusions, both of whih they deem to be aept-able but are unable to hoose between. Cautious systems on the other hand areonly prepared to aept onlusions whih annot be ontradited. As a resultif they an hypothesise both � and :�, they onlude neither, even though onemust be true.3.2 Default logiDefault logi, introdued by Reiter in [76℄, models prototypial reasoning byallowing speial inferene rules, known as default rules, to be added to a standard�rst order logi. These rules di�er from �rst order rules of the form:8A(x) � B(x)in that they inlude an expliit onsisteny hek that prevents the rule beingapplied in inappropriate situations and allow the expression of rules suh as:Bird(x) : F lies(x)F lies(x)whih is read as \if x is a bird, and it is onsistent to believe that x ies, thenonlude that x ies". Default rules an be onsidered as meta-rules that tellus how to omplete �rst order theories that are inompletely spei�ed. Now, adefault theory (W;D), is a set of �rst order axioms W , and a set of default rulesD of the form: �(~x) : �1(~x) : : : �m(~x)(~x)Where �(~x), �i(~x) and (~x) are all formulae whose free variables are among thosein ~x = x1; : : : ; xn. �(~x) is termed the preondition or prerequisite, the �i(~x) are



known as the gating fats or justi�ations, and (~x) is alled the onsequent.Given a set of default rules D and a �rst order theory W , it is possible tode�ne an extension of the default theory as the losure of W plus a maximalonsistent set of onsequenes of D. It is possible to distinguish several lassesof suh default rules, some of whih have attrative properties suh as alwayshaving extensions. Chief among these are those with a single justi�ation �(~x)whih divide into normal defaults, the set of defaults suh that �(~x) = (~x), andsemi-normal defaults where �(~x) = (~x) ^ !(~x) for some !(~x).An extension E of a default theory is a minimal set of beliefs that ontain Ware dedutively losed, and maximally onsistent with the rules in D. Thus E isan extension for (W;D) if � (E) = E where for any set of sentenes S, � (S) isa minimal set suh that: W � � (S)Th(� (S)) = � (S)where Th(T ) is the dedutive losure of T , and if D ontains:�(~x) : �1(~x) : : : �m(~x)(~x)and both �(~x) 2 � (S) and :�i(~x) 62 � (S) for all i, then it is the ase that(x) 2 � (S).Reiter proved some interesting results for normal default theories that inludeno free variables. Firstly every losed normal default theory has an extension, sosomething an always be onjetured about suh a theory. Seondly, if a losednormal default has two extensions, then the union of these are inonsistent, sothat multiple extensions are only generated if the default rules have inonsistentonsequents. Finally, Reiter showed that losed normal default theories are semi-monotoni. This means that if we have two default theories where the sets ofdefault rules of one are a subset of the default rules of the other, then an exten-sion of the theory with the smaller set of defaults will be a subset of an extensionof the other. Thus adding default rules to a theory does not ause its extensionsto need revision, instead new default inferenes are simply added to the existingextensions (they may of ourse ause new extensions to arise). There are alsosome more general results, appliable to all losed default theories, the most im-portant of whih are that if suh a theory (D;W ) has an inonsistent extension,then it is its only extension, and it is inonsistent beause W is inonsistent.Thus default rules alone do not generate inonsistent extensions.Many authors have worked on default logi in the years sine it was �rstintrodued. One those whose work is worth onsidering is  Lukaszewiz, whoproposed two important extensions to the original formulation. The �rst of these[54℄ takes the form of translations between di�erent types of default, in partiularto replae the general default: �(~x) : �(~x)(~x)



by the semi-normal default: �(~x) : �(~x) ^ (~x)(~x)and to replae the semi-normal default:�(~x) : �(~x) ^ (~x)(~x)by the normal default: �(~x) : �(~x) ^ (~x)�(~x) ^ (~x)The �rst is non-ontroversial, but the seond, despite being appliable for a largerange of pratially ourring defaults, has some rather alarming exeptions [30℄.By using both translations sequentially, we an replae the eminently sensible:has motive(x ) : guilty(x )suspet(x )by the rather unreasonable:has motive(x ) : suspet(x ) ^ guilty(x )suspet(x ) ^ guilty(x )In a further paper,  Lukaszewiz [55℄ generalises default logi, providing an al-ternative formalisation of an extension, and proving that semi-normal defaulttheories are guaranteed suh extensions. He also shows that semi-normal defaulttheories are semi-monotoni, that is monotoni with respet to default rules.Despite the maturity of the theoretial work on default logi, there are asyet few appliations, partly beause there has been less attention paid to pro-viding prospetive appliation builders with useful tools for using default logithan has been paid to providing tools for using approahes suh as probability.However this situation is beginning to hange. This volume inludes a paper byNiolas and Shaub [62℄ whih desribes a system on whih to build default logiappliations, while Brazier et al. [8℄ have applied default logi to a problem fromeology.3.3 ArgumentationArgumentation is the proess by whih arguments are onstruted and ompared.Following Toulmin [94℄, an argument an be strutured so that from fats aquali�ed laim (a onlusion) an be argued (inferred) if and only if:1. there is some warrant (some further assumptions) that an be used with thefats to logially derive the laim, and2. there is no other argument that would at as a rebuttal of the laim (aounter-argument).



Argumentation an be further developed with the notion of an underuttingargument, whih is an argument that ats as a rebuttal for one of the assumptionsof an argument.An argument an be modelled by a pair (�; �), where � is a set of formu-lae, and � is a formula derived as a onlusion from the assumptions �. Theseassumptions are also known as the grounds of the argument. For an argument(�; �), a rebutting argument is an argument (	;:�), and an underutting argu-ment is an argument (�;:), where  2 �. For a set of arguments f�1; :::; �ng,let � denote the union of the set of assumptions, ie. � = �1 [ :: [ �n. Often inargumentation� will be inonsistent, and it may inorporate more than one min-imally inonsistent subset3. Now, we an identify some arguments as safer thanothers aording to the nature of the arguments and ounter-arguments (bothrebutting arguments and underutting arguments). For example, an argumentwith no ounter arguments is safer than an argument with ounterarguments.As a result, we an rank onlusions on the basis of how safe the argumentsfor it are. As an example, suppose all maximally onsistent subsets of � imply�, and so all arguments for � are relatively safe, yet a more preferred onlu-sion is a formula that follows from the intersetion of the maximally onsistentsubsets of �. This approah to argumentation has been developed in [3, 29℄. Anumber of other approahes to argumentation, inluding [70, 72, 97℄, fous ondefault reasoning by inorporating default onnetives (whih an be used tobuild up default statements similar to the default rules in default logi) intotheir languages together with assoiated mahinery.Argumentation an also be used to handle unertain information by extend-ing the pair (�; �) to a triple (�; �; Æ) in whih Æ is a measure of the degree towhih � is believed to be true on the basis of �. In this way, argumentationan be used as a framework whih an apture a number of di�erent formalismsfor handling unertainty, with di�erent formalisms entailing di�erent meaningsfor Æ (often alled the \sign" of the argument) and di�erent ways of handlingthe signs. This approah is desribed in more detail in this volume [33℄, andelsewhere [46℄, and its historial development is harted in [65℄. It also forms thebasis for one of the appliations ase studies in this book [47℄.3.4 Truth maintenane systemsWhen reasoning with inonsistent information, questions of belief in assumptionsand belief in onlusions arise. These questions inlude [58℄:Inferenes from beliefs. How do new beliefs follow from existing beliefs?Default beliefs. How do we reord that a belief depends on the absene ofother beliefs?Dependeny reording. How do we reord that one belief depends on anotherbelief?3 A minimally inonsistent set is a set of propositions whih is inonsistent in the sensethat p^:p an be derived from it for some p, and whih is suh that the removal ofany one proposition from it will mean that the resulting set is not inonsistent.



Disbelief propagation. How do we withdraw belief in the onsequenes of aproposition that is disbelieved?Revision of beliefs. How do we hange beliefs in order to remove a ontradi-tion?These kinds of question led to approahes for truth maintenane4. A truth main-tenane system (TMS) reords information about eah inferene that is gener-ated from a set of assumptions. The two main types of truth maintenane sys-tem are the justi�ation-based truth maintenane system (JTMS) [20℄ and theassumption-based truth maintenane system (ATMS) [15℄. A JTMS reords asingle set of onsistent fats and all the inferene whih may be proved formthem. When an inonsisteny is deteted some external system (whih may bethe user) is invoked to resolve the inonsisteny and the JTMS then retratsthe neessary inferenes. In its simplest form, an ATMS maintains all the on-sistent subsets of the set of known fats and all the inferenes whih may bedrawn from eah. Inonsisteny is handled by reating new onsistent subsetsand identifying whih inferenes may be made from them. Both types of systemmake it possible to identify onsistent sets of beliefs and so make it possible toisolate inonsisteny and avoid trivialization.Truth maintenane an be onsidered to be onerned with lemma storagefor non-monotoni reasoning. Thinking in terms of default logi, a JTMS an beonsidered to be a means of establishing a single extension and an ATMS as ameans of establishing all the possible extensions. In a JTMS the disovery of anew fat whih ontradits something in the existing extension will prompt therevisions neessary to establish a single new extension (if any exists). In an ATMSthe introdution of a piee of ontraditing information will generate a new set ofextensions (if suh extensions exist). The question of omputational viability isthen dependent upon the balane between on inferening (onsisteny-hekingand theorem proving) versus storage requirements (onsistent subsets of dataand inferential interdependenies). The aim of a TMS is to �nd the most parsi-monious hoie. A number of di�erent implementations are given in [31℄, and apartiular approah to assumption-based reasoning is desribed by Haenni [38℄.In addition, more sophistiated truth maintenane systems will emerge from ad-vaned theoretial frameworks suh as that desribed by Benferhat and Garia[4℄. The notion of arguments disussed above provides useful onepts for formal-ising truth maintenane: For eah expliit argument (�; �) there is lassial proofof � from � so addressing the question of inferenes from beliefs, and for thebelief �, � is dependent on � so addressing the question of dependeny reord-ing. Let us assume that (�; �) follows from some assumptions �. To disbelievesome ontraditory inferenes from � requires a minimally inonsistent subset,� of � to be removed. Furthermore, � needs to be removed from the assump-tions of all the argument, so all arguments (	; �) beome (	 � �; �). This ofourse may involve withdrawing some arguments sine the revised assumptions4 Now often referred to as \reason maintenane".



no longer imply the onlusion. In this way it is possible to address the questionsof disbelief propagation and the revision of beliefs.Truth maintenane systems have proved to be of partiular interest for inor-poration in diagnosti systems. Given some set of observations, suh as symp-toms, diagnosis involves determining the ause of those observation by seletingan appropriate onsistent set of hypotheses from whih the observations an belogially derived. So diagnosis an be viewed as onstruting an argument. Fur-thermore, sine the diagnosti proess an take plae over time, new observationsan be obtained that an be inonsistent with the urrent diagnosis, so foringthe need for revision of beliefs. Diagnosis an therefore bene�t from appropriatetruth maintenane.4 Combining approahesMost of the researh into unertainty handling formalisms whih has been men-tioned so far has dealt with the use of single formalisms in isolation. However, ifone aepts, as we do, that the eleti position outlined in Setion 1 is orret,then the following argument may be made. If di�erent formalisms are good forrepresenting di�erent aspets of ignorane, then it follows that there are someproblems whih require the modelling of aspets of ignorane whih are bestovered by two or more di�erent formalisms. Thus there is merit in investigat-ing both the use of several formalisms in ombination, and on determining thedi�erenes between di�erent formalisms, and there is a growing body of work onthis subjet (though it should be noted that not all researhers working on suhmatters would expliitly aknowledge the validity of the eleti position).Possibly the most interesting strand of this kind of work is that whih om-bines essentially logial tehniques with numerial measures. This is ommonlydone by using a logial tehnique to establish a set of possible hypotheses froma larger initial set of exhaustive hypotheses, and then using a numerial teh-niques to rank the plausible set. Typial of suh systems are those of Provan[73℄, Bigham [5℄ and Laskey and Lehner [51℄. In all three of these systems, thesemanti equivalene of the ATMS [15℄ and the Dempster-Shafer method, provedby Provan, is exploited ensuring that no information is lost in the initial roundof inferene. Bigham's system is partiularly interesting in that it inludes anextension of the lause based approah of MAllester's logi-based truth main-tenane system (LTMS) [59℄ as a symboli inferene engine, and also permitsbeliefs based on possibility theory to be propagated. A similar system is deKleer and Williams' [16℄ GDE for fault diagnosis. In GDE all inferene diretedat disovering the fault is arried out by symboli methods, with probabilitiesinvoked, not to determine the most likely of several solutions in a stati analysis,but to suggest the next measurement to be taken by the user of the system.This measurement leads to new information whih, when entered, leads to fur-ther symboli omputation. Thus the numerial omputation sparks o� anotherround of symboli inferene, and the yle ontinues until the fault is found.



In ontrast to these ATMS-based approahes, van Dam [96℄ uses a JTMS inombination with Dempster-Shafer theory.It is also possible to use possibility measures with an assumption-based truthmaintenane system instead of belief funtions or probabilities. This is exatlythe ourse followed by Dubois, Lang and Prade in their possibilisti ATMS [22℄.A possibilisti ATMS is an ATMS in whih both assumptions and justi�ationsmay be assoiated with a possibility weight, and, sine the propagation of theweights is arried out for every lause in the ATMS, there is no separation of themanagement of unertainty from the usual funtionality of an ATMS. Bigham[6℄ has extended this work by adapting the possibilisti ATMS to take aount oftemporal information. Furthermore, the possibilisti ATMS allows inonsistentknowledge bases to be revised using the priniples of epistemi entrenhment[34℄.Another set of interesting developments whih bridge the gap between sym-boli and numerial tehniques is the disovery of relationships between defaultlogi and evidene theory. Wilson [99℄ onsiders the similarities between belieffuntions and default logi. He shows that, despite their initial dissimilaritiesthey are, in fat, losely related. Indeed, in  Lukaszewiz's [55℄ modi�ation ofdefault logi, the extensions of general losed default theories orrespond to thesets of formulae whose beliefs, alulated by the theory of evidene, tend to 1when the reliability of the soures of evidene tend to 1. The existene of astrong relationship between default logi and the theory of evidene is borneout by Smets and Hsia [89℄ who demonstrate how to represent normal defaults(both with and without prerequisites) using the transferable belief model. Bothof these papers an be seen as an extension of the work of Rih [77℄ and Ginsberg[36℄, who onsidered ways of applying numerial ertainty measures to logialinferene rules.It is also possible to use argumentation to ombine symboli and numerialreasoning. For instane, Fox and Krause [49℄ disuss a simple inferene meha-nism, based on argumentation, whih is suitable for joint symboli and numerialreasoning. Nonmonotoni reasoning about Tweety's ability to y is handled inthe following way. The result of applying the default rule that \typially birdsy" is marked as supported by a \possible" argument, thus expliitly reord-ing the fat that the onlusion need not be true. A ertain inferene of theform that Tweety doesn't y beause she is an ostrih is supported by a trueargument. When two fats are in onit, reasoning that a default fat is a lesspowerful argument than a true one resolves the situation. Similarly, numerialtehniques generate arguments quanti�ed by numerial degrees of belief, whihan be ompared to order hypotheses. However, this method is more than justa fany method for quantifying propositions. The quanti�er also allows the rea-soning mehanism to refer to the grounds of the argument, identifying why theargument was generated. This provides the vital onnetion between the degreeof belief and the underlying unertainty that is missing from most methods ofapproximate reasoning. From the grounds, we an establish the reasons for theunertainty, and the nature of the unertainty, and reasoning about this allows
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