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t. Many di�erent formal te
hniques, both numeri
al and sym-boli
, have been developed over the past two de
ades for dealing within
omplete and un
ertain information. In this paper we review some ofthe most important of these formalisms, des
ribing how they work, andin what ways they di�er from one another. We also 
onsider heteroge-neous approa
hes whi
h in
orporate two or more approximate reasoningme
hanisms within a single reasoning system. These have been proposedto address limitations in the use of individual formalisms.1 Introdu
tionPra
ti
al AI systems are 
onstrained to deal with imperfe
t knowledge, and arethus said to reason approximately under 
onditions of ignoran
e. Attempts todeal with ignoran
e, [45, 91℄ for example, often attempt to form general tax-onomies relating di�erent types and 
auses of ignoran
e su
h as un
ertainty,in
ompleteness, dissonan
e, ambiguity, and 
onfusion. A taxonomy, taken fromSmithson [91℄, that is perhaps typi
al, is given in Figure 1. The importan
e ofsu
h taxonomies is not so mu
h that they a

urately 
hara
terise the nature ofignoran
e that those who build pra
ti
al AI systems have to deal with|theyare far too open to debate for that|but more that they allow distin
tions tobe drawn between di�erent types of ignoran
e. This has motivated the develop-ment of a multitude of diverse formalisms ea
h intended to 
apture a parti
ularnuan
e of ignoran
e, ea
h nuan
e being a parti
ular leaf in Smithson's taxon-omy tree. The most important distin
tion is that made between what Smithson
alls un
ertainty and absen
e, though this may be 
onfused by a tenden
y inthe literature to refer to \absen
e" as \in
ompleteness". Un
ertainty is gener-ally 
onsidered to be a subje
tive measure of the 
ertainty of something and isthus modelled using a numeri
al value, typi
ally between 0 and 1 with 0 de-noting falsity and 1 denoting truth. Absen
e is the o

urren
e of missing fa
ts,and is usually dealt with by essentially logi
al methods. The wide a

eptan
e ofthe suggestion that un
ertainty and absen
e are essentially di�erent, and musttherefore be handled by di�erent te
hniques has lead to a s
hism in approximatereasoning between the \symboli
 
amp" who use logi
al methods to deal withabsen
e and the \numeri
al 
amp" who use quantitative measures to deal withun
ertainty.
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e.This void between symboli
 and numeri
al te
hniques, whi
h remained unad-dressed for many years as resear
hers 
on
entrated on the �ner te
hni
al detailsof their parti
ular formalism, 
an be seen as symptomati
 of the way in whi
h re-sear
h into approximate reasoning has been pursued. For many years resear
hersindulged in ideologi
al slanging mat
hes of almost religious fervour in whi
h theformalism that they 
hampioned was 
ompared with its \
ompetitors" and foundto exhibit superior performan
e. Examples of this behaviour abound, parti
u-larly notable are [10, 12, 42, 66, 88, 105℄. It is only re
ently that a more moderatee
le
ti
 view has emerged, [13, 32, 48, 78℄ for example, whi
h a
knowledges thatall formalisms are useful for the solution of di�erent problems. A general re-alisation of the strength of this e
le
ti
 position has motivated resear
h bothinto ways in whi
h di�erent formalisms may be used in 
ombination to solveinteresting pra
ti
al problems, and into establishing the formal di�eren
es andsimilarities between di�erent systems.In this paper we dis
uss some of the best established and widely used for-malisms from both the symboli
 and numeri
al sides of the great divide. Wesuggest reasons for the introdu
tion of the more novel te
hniques, and sket
hin the te
hni
al di�eren
es between the approa
hes. With this ba
kground wellestablished, we then 
onsider work on bringing te
hniques together.2 Numeri
al Approa
hesOver the last two de
ades, numerous formal and informal systems have been in-trodu
ed for reasoning under 
onditions of ignoran
e and un
ertainty. The �rstun
ertainty management te
hnique to be introdu
ed was probability theory. Thiswas not only developed many years before the �rst 
omputer, but was also usedin 
omputer de
ision aids before the advent of Arti�
ial Intelligen
e as a dis-
ipline. Arthur Dempster generalised Bayes' theorem in 1967 [17, 18℄, though



his work remained 
on�ned to the �eld of statisti
s until Glenn Shafer reformu-lated the theory and published it as \A Mathemati
al Theory of Eviden
e" in1976 [82℄. This body of work, often referred to as Dempster-Shafer theory, hasseveral interpretations in
luding the transferable belief model [87, 90℄. Anothermu
h studied approa
h is possibility theory [26, 103℄ whi
h grew out of workon fuzzy sets [102℄. There are numerous other numeri
al te
hniques for dealingwith un
ertainty often developed from pragmati
 
onsiderations. These in
lude
ertainty fa
tors [86℄, probabilisti
 logi
 [63℄, and belief intervals [21℄ to namebut a few.2.1 OverviewThe methods that we shall 
onsider in the following se
tions are the main formaltheories introdu
ed to handle un
ertainty|probability theory, possibility theory,and eviden
e theory. For theories that have traditionally been seen as rivals, onemight expe
t that they would appear radi
ally di�erent, but this is not so.Indeed, they are remarkably similar, di�ering largely in subtleties of meaning orappli
ation, though this is not entirely surprising sin
e they are intended to domu
h the same thing.The basi
 problem is how to weigh up the degree to whi
h several un
ertainevents are believed to o

ur so that the most believed may be unambiguouslyidenti�ed. The basis on whi
h the \belief" is assigned is a 
ontentious issue,though all the theories that we shall 
onsider assume allo
ation by an assignmentfun
tion that distributes belief to possible events under 
onsideration. Belief maybe distributed on the basis of statisti
al information [81, 92℄, physi
al possibility[103℄, or purely subje
tive assessment [12℄ by an expert or otherwise. The beliefassigned is a number between 0 and 1, with 0 being the belief assigned to a fa
tthat is known to be false, and 1 the belief assigned to a fa
t known to be de�nitelytrue. The in�nite number of degrees of belief between the limits represent variousshades of un
ertainty. Now, some formalisms restri
t the amount of belief thatmay be assigned. Both probability theory and eviden
e theory, whi
h is after allderived from probability theory, limit the total belief that may be assigned by aparti
ular distribution fun
tion by 
onstraining the sum of all the beliefs to be 1.This may be interpreted as meaning that one parti
ular observer 
annot believein a set of un
ertain events more than she would have believed in a parti
ularevent of total 
ertainty. There is no su
h restri
tion on a possibility distribution,sin
e one may 
on
eive of several alternative events that are perfe
tly possible,and so have a possibility of 1. Probability theory, unlike the other theories, alsointrodu
es a restri
tion on the belief that may be applied to a hypothesis basedon the belief assigned to its negation. If we have an event A, thenPr(A) = 1� Pr(:A)Given the result of a belief distribution, we are interested in how the assignedbeliefs may be manipulated. Given our belief in two events, what is our belief ineither of them o

urring (our belief in their union), and what is our belief that



both will o

ur (our belief in their interse
tion)? More importantly perhaps,espe
ially for arti�
ial intelligen
e appli
ations where we often wish to assessthe 
ombined belief that results from several di�erent pie
es of information, weare interested in 
ombining the e�e
ts of two or more belief distributions overthe same set of hypotheses. Ea
h distribution will, in general, assign di�erentbeliefs to a given hypothesis, and we require some means of assessing a �nalbelief that takes a

ount of all the di�erent assignations. The way in whi
h thisis done is based upon the interpretation that the theory gives to the belief itassigns, and thus it is not surprising that ea
h theory should \pool the eviden
e"in a di�erent way.2.2 Probability theoryProbability theory has existed in one form or another for several hundred years.During this time various alternative formulations have been introdu
ed, and itis now diÆ
ult to say where the de�nitive a

ount may be found. This is in
ontrast to the other methods des
ribed in this paper where the des
riptions aredrawn from the original paper on the subje
t. The introdu
tion presented hereis drawn from the dis
ussion of probability theory in Lindley's ex
ellent book\Making De
isions" [53℄. Lindley asserts that probability theory is built on threeaxioms or laws that de�ne the behaviour of a probability measure, whi
h may beused as an estimate of the degree to whi
h an un
ertain event is likely to o

ur.The measure may be assessed by referen
e to a standard, su
h as the likelihoodof drawing a bla
k ball out of an urn 
ontaining �ve bla
k balls and ten redballs. The �rst law of probability theory is the 
onvexity law whi
h states thatthe probability measure for an event A given information H is su
h that:0 � Pr(AjH) � 1The se
ond law is the addition law, whi
h relates the probabilities of two eventsto the probability of their union. For two ex
lusive events A and B, that is twoevents that 
annot both o

ur, we have:Pr(A [ BjH) = Pr(AjH) + Pr(BjH)whi
h is 
ommonly writtenPr(A [ B) = Pr(A) + Pr(B)without expli
it referen
e to the information H , sin
e the information is thesame in all 
ases. If the events are not ex
lusive we have, instead:Pr(A [B) = Pr(A) + Pr(B) � Pr(A \ B)Furthermore, the sum of the probabilities of a set of mutually ex
lusive andexhaustive events, the latter meaning that they are the only possible events thatmay o

ur, are 
onstrained to sum to 1 so that:Pr(A) + Pr(:A) = 1



or, more generally for a set of n su
h events Ai:Xi=1;:::;nPr(Ai) = 1The �nal law is the multipli
ation law, whi
h gives us the probability of twoevents o

urring together; the probability of the interse
tion of A and B:Pr(A \ BjH) = Pr(AjH):Pr(BjA \H)Again this may be written asPr(A \B) = Pr(A):Pr(BjA)without expli
it referen
e to H . Note that Pr(A\B) is often written as Pr(A;B).The probability measure Pr(BjA) is the 
onditional probability of B given A,the probability that B will o

ur, given that A is known to have o

urred. Fromthese laws we 
an derive two further results whi
h are 
ru
ial from the point ofview of arti�
ial intelligen
e. The �rst of these is Je�rey's rule:Pr(A) = Xi=1;:::;nPr(AjBi) Pr(Bi)The se
ond is Bayes' theorem, named after an eighteenth 
entury non-
onformistEnglish 
lergyman. This states that:Pr(AjB) = Pr(BjA):Pr(A)Pr(B)and thus gives a means of 
omputing one 
onditional probability relating twoevents from another 
onditional probability.Under the assumption that the events in whi
h we are interested are mutu-ally ex
lusive and exhaustive, and following some manipulation, we 
an obtaina version of Bayes' rule [14℄ that is suitable for assessing the probability ofa hypothesis hi that is a member of the set h1; : : : ; hn given a set of pie
esof eviden
e e1; : : : ; em, a set of probabilities of o

urren
e of the hypothesesPr(h1); : : : ;Pr(hn), and a set of 
onditional probabilities for ea
h pie
e of evi-den
e given ea
h hypothesis Pr(e1jh1), Pr(e1jh2); : : : ;Pr(emjhn):Pr(hije1; e2; : : : ; em) = Pr(e1jhi) Pr(e2jhi) : : :Pr(emjhi) Pr(hi)Pj=1;:::;n Pr(hj) Pr(e1jhj) Pr(e2jhj) : : :Pr(emjhj)This may be used, say, to reason about the likelihood of a parti
ular disease (hi),from a set of possible diseases fh1; : : : ; hng, given a set of re
orded symptomsfe1; :::; emg.There have been several adaptations of probability theory within the liter-ature of arti�
ial intelligen
e in
luding the odds-likelihood formulation used byProspe
tor [28℄, and the 
autious approa
h adopted by Inferno [74℄. Another is
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Fig. 2. Part of a probabilisti
 network for diagnosing faults in a 
ar.the use of probability theory by Taw�k and Neufeld [93℄ in their 
hapter in thisvolume where they 
onsider the probability of failure of 
omponents over timeand use this to guide diagnosis. Nilsson [63℄ provided an interesting variationwith his probabilisti
 logi
, an attempt to 
ombine propositional 
al
ulus witha numeri
al un
ertainty handling formalism by asso
iating probability measureswith logi
al senten
es. Perhaps the most important feature of the formalism isit handles in
ompletely spe
i�ed probabilisti
 models by 
omputing the allowedbounds on the derived 
onsequents.An in
reasing important approa
h to using probability theory in 
omputingis probabilisti
 networks, also 
alled Bayesian networks or 
ausal networks [39,67, 68℄. By augmenting the use of 
onditional probabilities with extra stru
turalinformation, they 
an be used to represent and reason more eÆ
iently with prob-abilisti
 information. In parti
ular they in
orporate assumptions about whi
hpropositions are independent of other propositions, thereby de
reasing the di-mensionality and number of 
onditional probability statements, and simplifyingthe 
omputations. Essentially, probabilisti
 networks are a set of nodes withdire
ted ar
s (arrows) providing 
onne
tions between nodes. Every node is 
on-ne
ted to another node, but ea
h node is not ne
essarily 
onne
ted to every othernode. Ea
h node denotes a random variable, whi
h is a variable that 
an be in-stantiated with an element from the sample spa
e for the variable. They are usedto model situations in whi
h 
ausality, or in
uen
e is prevalent, but in whi
h weonly have a partial understanding, hen
e the need to model probabilisti
ally.As an example, 
onsider the network in Figure 2 whi
h is part of a proba-bilisti
 network for diagnosing faults in a 
ar (this example is drawn from [41℄).This 
aptures the fa
t that the age of the battery (the node battery old) has anin
uen
e on whether or not the battery is good (battery good), and that whetheror not the alternator is good (alternator ok) has an e�e
t on whether or not thebattery is 
harging (battery 
harging), together the quality of the battery andwhether or not the battery is 
harging a�e
t whether the battery is working (bat-



tery ok), and this has an e�e
t on the radio (radio ok) and the lights (lights ok).All the random variables in this example are either \true" or \false" so thatthe random variable battery old, 
an be instantiated with the event battery oldmeaning that the battery is old, or the event :battery old meaning that thebattery is not old.Ea
h of the links in the network is quanti�ed by giving the relevant 
ondi-tional probabilities, whi
h in this 
ase will in
lude:Pr(battery good jbattery old ) = 0:1Pr(battery good j:battery old) = 0:8Pr(battery ok jbattery good ; battery 
harging) = 0:9Pr(battery ok jbattery good ;:battery 
harging) = 0:2Pr(battery ok j:battery good ; battery 
harging) = 0:6Pr(battery ok j:battery good ;:battery 
harging) = 0:05Note that the 
onditional probabilities re
e
t the dire
tion of the arrows. Both,broadly speaking, 
apture a notion of 
ausality (whi
h is why probabilisti
 net-works are also known as \
ausal networks")|if the battery is old it 
ausesthe battery to be less likely to be good, and it is therefore easier to assessPr(battery good jbattery old) than Pr(battery old jbattery good ) though the twoprobabilities may ea
h be 
omputed from the other using Bayes' theorem.Now, given the network and the prior probabilities of the battery being old,Pr(battery old), and the alternator being ok, Pr(alternator ok), it is possible to
ompute the probability of ea
h state of ea
h random variable in the network (forinstan
e Pr(battery good) = 0:58 if Pr(battery old) = 0:4) by simple appli
ationof Je�rey's rule. It is also possible to take a

ount of eviden
e that, for instan
e,the radio is not ok (whi
h means that Pr(:radio ok) = 1) and to use Bayes'theorem to revise the probabilities.Mu
h attention has been given to the problem of propagating probabilitiesthrough probabilisti
 networks eÆ
iently. Pearl [69℄ provides a 
omprehensiveintrodu
tion to the use of probabilisti
 
ausal networks, along with an eÆ
ients
heme for the propagation of probabilities in singly-
onne
ted networks1 be-tween every that is based on autonomous message passing. Another network-based method that has re
eived wide attention is that of Lauritzen and Spiegel-halter [52℄ whi
h has been used as the basis of the expert system shell HUGIN[1℄, and the paper in this volume by Magni et al. [56℄ makes use of a graphi
alrepresentation similar to that dis
ussed above.2.3 Eviden
e theoryEviden
e theory is the term 
ommonly used to refer to the body of work 
arriedout by Arthur Dempster [17, 18℄ and Glenn Shafer [82℄ to remedy some of what1 Singly-
onne
ted networks are those in whi
h for every pair of nodes there is at mostone path along ar
s whi
h joins them. When assessing 
onne
tedness, ar
s may betraversed both dire
tions, but any ar
 may only be traversed on
e.



they saw as the limitations of probability theory, in parti
ular [19℄ disposingwith the \
ompleteness" axiom of probability theory [42℄. The theory deals withthe so-
alled frame of dis
ernment, the set of base elements � = f�1; :::; �ng inwhi
h we are interested, and its power set 2�, whi
h is the set of all subsets ofthe interesting elements. The basis of the measure of un
ertainty is a probabilitymass fun
tion m(�) that assigns zero mass to the empty set, m(;) = 0, and avalue in [0; 1℄ to ea
h element of 2�, the total mass distributed being 1 so that:XA��m(A) = 1Sin
e we deal with all possible subsets of the set of all base propositions, ratherthan the propositions themselves as in probability theory, we 
an apportion theprobability mass exa
tly as we wish, ignoring assignments to those levels ofdetail that we know nothing about. This allows us to model ignoran
e, m(�)being the probability mass we are unable, through la
k of knowledge, to assignto any parti
ular subset of �. We 
an de�ne our belief in a subset A of theset of all propositions as the sum of all the probability masses that support its
onstituents: Bel(A) = XB�Am(B)and the plausibility of A may be de�ned as the probability mass not supporting:A: Pl(A) = XB\A6=;m(B)whi
h may also be written as:Pl(A) = 1� Bel(:A)The interval [Bel(A);Pl(A)℄ 
an be 
onsidered to be a measure of our ignoran
eabout A, and 
an vary from zero when we have the same degree of belief inA as would be generated by probability theory, to 1 when A has belief 0 andplausibility 1. This means that no mass is assigned to A or any of its subsets,but equally no mass is assigned to :A.Eviden
e is 
ombined by Dempster's rule of 
ombination. This 
omputes theprobability mass assigned to C � � from the probability mass assigned to Aand B where both A and B are also subsets of �. If the distribution fun
tionassigning probability mass to A is m1(�) and the fun
tion distributing probabilitymass to B is m2(�), then the mass assigned to C is de�ned by:m12(C) = XA\B=Cm1(A)m2(B)1� XA\B=;m1(A)m2(B)where the division normalises the new distribution by re-assigning any proba-bility mass whi
h is assigned to the empty set, ;, by the 
ombination. To 
larify



fToyota;GM;Chryslerg �0.8 0.2fNissan; Toyotag fToyotag fNissan; Toyotag0.4 0.32 0.08� fToyota;GM;Chryslerg �0.6 0.48 0.12Table 1. Applying Dempster's rule.what is going on here we will 
onsider a simple example of the use of Dempster'srule in 
ombining eviden
e.Consider a world [14℄ with only four 
ar manufa
turers, Nissan, Toyota, GMand Chrysler, all trying to break into a new 
ar market. We are interested inwho will dominate the market. There are four singleton hypotheses 
orrespond-ing to the assertions that ea
h of the four manufa
turers will dominate themarket. Consider the 
ase in whi
h there are two mass fun
tions m1 and m2stemming from the opinions of two independent experts. Now, m1 assigns 0.4 tofNissan; Toyotag, the hypothesis that Japanese manufa
turers dominate, andthe remaining 0:6 to the set fNissan; Toyota;GM;Chryslerg modelling igno-ran
e about the behaviour of Ameri
an manufa
turers. Similarly, m2 assigns 0.8to the set fToyota;GM;Chryslerg and 0.2 to �, and Dempster's rule of 
om-bination assigns the produ
t of the two belief masses to the interse
tion of thesets to whi
h they are assigned. Table 1 explains the 
al
ulation.The masses after 
ombination are as follows:m12(fToyotag) = 0:32m12(fNissan; Toyotag) = 0:08m12(fToyota;GM;Chryslerg) = 0:48m12(�) = 0:12The belief that a Japanese manufa
turer will dominate is 
omputed from thesum of the belief masses of all the subsets of the hypothesis. Thus:Bel12(fNissan; Toyotag) = m12(fToyotag) +m12(fNissan; Toyotag)+m12(fNissang)= 0:32 + 0:08 + 0= 0:4For this simple example, no normalisation is required.The problems of the 
omputational 
omplexity of Dempster's rule have beendis
ussed by several authors. Barnett [2℄ showed that the apparent exponentialtime requirement of the theory 
ould be redu
ed to simple polynomial time if thetheory was applied to single hypotheses, rather than sets of hypotheses, and theeviden
e 
ombined in an orderly fashion. Gordon and Shortli�e [37℄ extendedBarnett's approa
h to 
ompute approximate beliefs in a spa
e of hierar
hi
ally



organised sets of hypotheses in linear time. This approa
h was then subsumedby that of Shafer and Logan [84℄, who provided an exa
t algorithm for hier-ar
hi
ally organised sets of hypotheses that is also linear in time whilst beingslightly more general than that of Gordon and Shortli�e. More re
ently, Shenoyand Shafer[85℄ have introdu
ed a method for the eÆ
ient propagation of belieffun
tions in networks by means of lo
al 
omputations, and Ni
 Wilson [100℄ hasproposed a method in whi
h the expli
it use of Dempster's rule of 
ombinationis avoided. This permits an exa
t 
al
ulation of belief to be performed in worsethan polynomial but better than exponential time even when the hypotheses arenot hierar
hi
ally stru
tured. Wilson has also proposed an approximate 
al
ula-tion, based on a Monte-Carlo simulation, whi
h gives results that are arbitrarily
lose to the exa
t solution, and whi
h 
an be performed in linear time. Morere
ent advan
es are explored in [61, 101℄.The appli
ation of eviden
e theory is the subje
t of three papers in thisvolume. Lalmas [50℄ uses it as a means of de
iding whi
h do
ument to retrieve,van Dam [96℄ uses it to 
ontrol a radio 
ommuni
ation system, and Dun
anWilson [98℄ 
onsiders how to apply it to the 
lassi�
ation of faults in automatedinspe
tion.2.4 Possibility theoryA formal theory of possibilities, based on the notion of a fuzzy set [102℄, was �rstintrodu
ed by Zadeh [103℄. However, the 
on
ept of using the notion of possibil-ities as an alternative to probabilities was mooted mu
h earlier. The e
onomistG. L. S. Sha
kle [81℄, unhappy with the use of subje
tive probability for han-dling un
ertainty, proposed an alternative formalism. This formalism was the
al
ulus of potential surprise where un
ertainty about an event is 
hara
terisedby a subje
tive measure of the degree to whi
h the observer in question would besurprised by its o

urren
e. Potential surprise is 
learly linked to the intuitivenotion of possibility. If an event is entirely possible, then there is no surpriseatta
hed to its o

urren
e. If an event is wholly impossible, or is believed to beso, then if it o

urs it will be a

ompanied by the maximum degree of surprise.In this se
tion we present a simple overview of Zadeh's theory, demonstratingits similarity to and di�eren
es from probability theory, and brie
y dis
uss howpossibility theory may be 
ombined with logi
.Firstly we need the 
on
ept of a fuzzy set [102℄. A fuzzy set is a set whosemembership is not absolute, but a matter of degree, su
h as the set of tall people.A fuzzy set F is 
hara
terised by a membership fun
tion �F whi
h spe
i�es thedegree to whi
h ea
h obje
t in the universe U is a member of F . One way of
onsidering F is as a fuzzy restri
tion on X , a variable whi
h takes values in U ,in that it a
ts as an elasti
 
onstraint upon the values that may be assigned toX . The assignment of a value u to X has the formX = u : �F (u)



where �F (u) is the degree to whi
h the 
onstraint F is satis�ed when u is assignedto X . To denote the fa
t that F is a fuzzy restri
tion on X we write:R(X) = FNow, the proposition \X is F", whi
h translates into \R(X) = F", asso
iates apossibility distribution �X with X and this distribution is taken to be equal toR(X): �X = R(X)Along with this we have a possibility distribution fun
tion �X whi
h is de�nedto be equal to the membership fun
tion of F :�X = �FThus �X(u), the possibility that X = u, is taken to be equal to �F (u). As anexample, let U be the set of positive integers, and F be the fuzzy set of smallintegers. This set is des
ribed by the following set of pairs ea
h of the form(u; �F (u)): F = f(1; 1); (2; 1); (3; 0:8); (4; 0:6); (5; 0:4); (6; 0:2)gGiven this, the proposition \X is a small integer" asso
iates the possibility dis-tribution �X with X where �X is written as a set of pairs (u; �X(u)):�X = f(1; 1); (2; 1); (3; 0:8); (4; 0:6); (5; 0:4); (6; 0:2)gThus, the possibility that X takes the value 3, given that X is a small integer,is 0.8. We 
an use possibility distributions to de�ne possibility measures. If A isfuzzy subset of U , then the possibility measure �(A) of A is de�ned byPoss(X is A) = �(A)= supu2U min (�A(u); �X (u))When A is a stri
t subset of U , this redu
es to:�(A) = supu2U �X(u)Possibility measures 
larify the 
omparison between possibility and probabilitytheory. We 
an establish that:�(A [ B) = max(�(A); �(B)) (1)�(A \ B) = min(�(A); �(B)) (2)whi
h 
ontrast with the 
orresponding results for probability theory2. Zadehstresses the fa
t that possibility and probability are di�erent 
on
epts with the2 The use of maximum and minimum is not 
ompulsory. For further dis
ussion of thispoint, see [26℄.



example of Hans' breakfast. Consider the statement \Hans ate X eggs for break-fast" with X 2 f1; : : : ; 8g. We 
an asso
iate both a possibility distribution (basedon our view of the ease with whi
h Hans 
an eat eggs) and a probability distribu-tion (based on our observations of Hans at breakfast) with X , giving somethingof the form: u 1 2 3 4 5 6 7 8�X(u) 1 1 1 1 0.8 0.6 0.4 0.2PrX(u) 0.1 0.8 0.1 0 0 0 0 0So that, while it is perfe
tly possible that Hans 
an eat three eggs for breakfast,he is unlikely to do so. There is a heuristi
 
onne
tion between possibility andprobability, sin
e if some thing is impossible, it is likely to be improbable, but (asthe previous example shows) a high degree of possibility does not imply a highdegree of probability, nor does a low degree of probability re
e
t a low degree ofpossibility. Dubois and Prade [25℄ point out that a weak theoreti
al 
onne
tionexists sin
e for all A, N(A) � Pr(A) � �(A)where N(A) is the ne
essity of A, de�ned by:N(A) = 1��(:A)It is possible to extend these ideas to possibility distributions that depend onmore than one attribute, and marginal possibility distributions. Explanations ofthese 
on
epts will be omitted in the interests of saving spa
e (but see [103℄),but it should be noted that the kind of graphi
al stru
tures dis
ussed above inrelation to probability theory 
an be adapted for use with possibility theory aswell [35℄.Possibility has been applied to reasoning with vague statements [27, 104℄. Forexample, suppose we have the following statement.If the 
lothes are dirty then wash them in hot waterBoth the 
on
epts \dirty" and \hot" are vague or fuzzy in this 
ontext. Fora given 
olle
tion of 
lothes, we are interested in using this general statementto determine whether to wash them in hot water. In other words, we wish todetermine whether for some fuzzy value for dirty, we should derive the instru
tionto wash the 
lothes in hot water.Now, in 
lassi
al logi
 we would perform this kind of reasoning using modusponens, a rule for reasoning whi
h formalises the argument that if � is trueand � � � is true, then � is true. For reasoning with fuzzy statements su
has the one above about dirty 
lothes, we need to develop a notion of modusponens whi
h 
an handle fuzzy 
on
epts. Generalized modus ponens is su
h adevelopment [57℄. For example, suppose the 
lothes are \not very dirty", then\not very dirty" does not dire
tly mat
h with \dirty". We need to adapt thestatement to allow the data \not very dirty" to apply. This means 
hanging the




onsequen
e in some way, perhaps to \warm water". Sin
e \dirty 
lothes" and\hot water" 
an be modelled by fuzzy sets, the manipulations 
an be done onthe fuzzy sets. For this, we represent propositions as:X is ASo for example, \
lothes are dirty" is a a proposition, where X is \
lothes", andA is \dirty". Generalized modus ponens is then of the following form.X is A�If X is A; then Y is BY is B�Here, B� is 
al
ulated from the possibility distribution of A�, and of A given B.The possibility distribution for B provides an upper bound on the possibilitydistribution for B�. This 
al
ulation de
reases the possibility that Y is B� istrue, the further A� is from A. This 
ombination of possibility theory and logi
into possibilisti
 logi
 has been investigated at length by Dubois and Prade [23,24℄. Possibilisti
 logi
 is one of the te
hniques explored by Bigham in his paperin this volume [6℄, and both the 
ontributions of Ramalho [75℄ and SaÆotti [79℄make use of fuzzy inferen
e of the kind dis
ussed above, while Bos
 et al. [7℄
onsider the appli
ation of fuzzy te
hniques to databases.2.5 Other approa
hesThere are a number of other numeri
al te
hniques whi
h, although we do nothave spa
e to 
onsider them in any detail, are worth mentioning for their par-ti
ular histori
al or theoreti
al interest. Certainty fa
tors [86℄, perhaps be
auseof their simpli
ity and intuitive appeal, have been widely used to handle un
er-tainty. The 
ertainty fa
tor approa
h assigns a numeri
al weight, the 
ertaintyfa
tor, to the 
onsequent of everyIf heviden
ei then hhypothesisirule in a rule-based system. The value of the 
ertainty fa
tor, whi
h lies in theinterval [-1, 1℄, is assessed by the domain expert from the degree, between 0and 1, to whi
h a given pie
e of eviden
e 
auses her belief and disbelief in thehypothesis to be in
reased. The 
ertainty fa
tor is then the di�eren
e of thedegree of belief, MB and the degree of disbelief, MD:CF = MB �MDThe 
ertainty fa
tors of rules �red during inferen
e are then 
ombined to give anoverall 
ertainty for the support given to a parti
ular hypothesis by the knowneviden
e. Re
ently several people have 
hallenged the validity of the 
ertaintyfa
tor model. For instan
e, He
kerman [40℄ has shown that the original de�ni-tion of the model is 
awed sin
e the belief in a hypothesis given two pie
es of



eviden
e will depend upon the order in whi
h the e�e
t of the pie
es of eviden
eis 
omputed.Smets has adapted eviden
e theory as introdu
ed by Dempster and Shaferin two important ways [87, 90℄. The �rst was to relax the assumption that allhypotheses have been identi�ed before the eviden
e is 
onsidered. Instead Smetsmakes an open-world assumption that the frame of dis
ernment does not ne
es-sarily 
ontain an exhaustive set of hypotheses. Under this assumption there isno normalisation in Dempster's rule of 
ombination sin
e the mass pertainingto the empty set is taken to indi
ate belief in a hypothesis outside the frame ofdis
ernment. The open world assumption requires a modi�
ation of the de�ni-tions given earlier for the 
al
ulation of belief and plausibility from probabilitymass distributions (whi
h are just 
alled \mass fun
tions" by Smets). Belief isde�ned as: Bel(A) = XB�A;B 6=;m(B)while plausibility is de�ned as:Pl(A) = XB\A6=;m(B)= 1� (m(;) + Bel(:A))Dempster's rule of 
ombination be
omes:m12(C) = XA\B=Cm1(A)m2(B)Smets' other innovation was to introdu
e an alternative interpretation of thetheory of eviden
e 
alled the transferable belief model. The transferable beliefmodel reje
ts any suggestion that the numbers manipulated by the theory areprobabilities. Instead they are taken to be pure expressions of belief suitable forreasoning at an abstra
t 
redal level and are transformed into probabilities atthe pignisti
 level when de
isions are ne
essary. In the model, the basi
 beliefmass m(A) in any subset A of a frame of dis
ernment � is the amount of beliefsupporting A, that, due to ignoran
e, does not support any stri
t subset of A.If we have new eviden
e that ex
ludes some of our original hypotheses, andso points to the truth being in �0 � �, then the basi
 belief mass m(A) nowsupports A � �0. Thus the belief originally attributed to A is transfered to thatpart of A not eliminated by the new eviden
e, thus giving the system its name.Another interesting proposal is due to Driankov [21℄. In Driankov's system,we have degrees of belief and plausibility, related, as in the original theory ofeviden
e, by: Bel(A) = 1� Pl(:A)However the system also allows 
ontradi
tory beliefs so that it is possible that:Bel(A) + Bel(:A) > 1



These ideas lead to the de�nition of a 
al
ulus of belief intervals, where a beliefinterval for A is [Bel(A);Pl(A)℄, in whi
h 
ombination is 
arried out by a fam-ily of general fun
tions 
alled triangular norms and 
onorms [80℄, and expli
itreasoning about the degree to whi
h a proposition is believed and disbelieved ispossible.2.6 Limitations of numeri
al te
hniquesAs one might expe
t, none of the systems mentioned in pre
eding se
tions isperfe
t, and there are a number of problems 
ommon to all numeri
al formalisms.The �rst is perhaps the simplest. When Cohen [14℄ 
riti
ises possibility theorysaying:\relatively little has been made of the idea of fuzzy sets and possibilitytheory . . . (this) may be be
ause the idea does not improve on any of thediÆ
ult methodologi
al problems that beset probability theory, su
h asthe assessment of prior probabilities"he is restating an argument that has been made time and again, perhaps mosttersely by Cheeseman [11℄ who asked:\where are all the numbers 
oming from?"Obtaining the \numbers", be they probabilities, possibilities, or mass distribu-tions does seem to be a major problem. Clearly, without good numeri
al as-sessments sophisti
ated 
omputational me
hanisms are of little value. It is alsotrue that there are domains in whi
h it is not possible to obtain the kind ofstrong statisti
al data ne
essary to apply probability theory in its \frequentist"interpretation, where the probability of an event is the value to whi
h the ra-tio of o

urren
es to non-o

urren
es 
onverges after a large number of trials.This has been used by many (see for example [32℄) to argue against the use ofprobability theory for dealing with un
ertainty. However, the personalist andne
essarian [83℄ s
hools of probabilists argue that probabilities may always beobtained, either from rational human reasoning, or be
ause they exist as a mea-sure of the degree to whi
h sets of propositions 
on�rm one another. It seems,then, as though there is no 
lear 
ut winner in this argument; the moral appearsto be:\if you 
an obtain the numbers to your satisfa
tion, then use them."As a �nal word, it is worth mentioning that it has also been 
onvin
ingly arguedin several pla
es (see for example [9, 71℄) that even if the numbers are available,they make little di�eren
e to the business of weighing up the eviden
e. This,however, is a di�erent argument altogether, and we will say no more about it.A se
ond problem stems from the use of numbers; the interpretation of theresults of applying a numeri
al formalism given the notorious irrationality thathuman beings exhibit when dealing with numbers [95℄. All the te
hniques gen-erate results as numeri
al values. These values, however, have been generated in



di�erent ways, and thus measure di�erent things, although they are just num-bers and may be 
ompared and 
ontrasted by the uninitiated as though theyrepresented the same thing. Indeed, to interpret them 
orre
tly, it is perhapsne
essary to label them with the type of belief that they measure to prevent aprobability of 0.5 being 
ompared unfavourably with a possibility of 0.8. In ad-dition, there is the problem of ranking di�erent solutions. A 
ommon argumentfor in
luding numbers is in order to 
hoose the best of several 
ourses of a
tionthat must be di�erentiated between using un
ertain knowledge, and of 
oursenumeri
al results 
an be used to do this. However, using the ordinal value ofthe results alone to do this 
an obs
ure important information 
on
ealed in theratio of the results; namely how 
lose the se
ond largest value is to the largest.If they are 
lose, but separated by a wide margin from the third, then, ratherthan 
hoosing the �rst, it might be pro�table to review the 
riteria upon whi
hthe assessment was made in the hope that some telling di�eren
e between thealternatives might be found.Finally, there are the problems asso
iated with 
omputational expense. Themassive amount of time needed to apply the full formal methods to realisti
allylarge problems was one of the main reasons that su
h ad ho
 methods as 
ertaintyfa
tors were introdu
ed. Whilst, as outlined in earlier se
tions, there have beenseveral re
ent attempts to �nd 
omputationally eÆ
ient methods of 
al
ulatingthe results of applying probability and eviden
e theories in parti
ular situations,the general problem of ineÆ
ien
y remains.3 Symboli
 approa
hesNonmonotoni
 logi
s were introdu
ed in order to allow programs to deal within
ompleteness by exhibiting \
ommonsense" reasoning, thus avoiding the needto state every possible ex
eption to a general rule. Two key approa
hes are Re-iter's default logi
 [76℄ and M
Carthy's 
ir
ums
ription [60℄. In this se
tion westart with a dis
ussion of the limitations of �rst order logi
 as a basis for pra
-ti
al reasoning systems, introdu
ing the notions of retra
tion, monotoni
ity anddefeasibility. Then we 
onsider the family of default logi
 in more detail|as it isprobably the most developed approa
h for non-monotoni
 reasoning. In the sub-sequent two se
tions, we 
onsider the logi
-based approa
hes of argumentationand truth maintenan
e systems.3.1 OverviewThe 
ommon motivation behind all of the systems of nonmonotoni
 logi
 thatwe will dis
uss below is the attempt to devise sound formal me
hanisms forreasoning that over
ome the limitations of �rst order logi
. At �rst sight, �rstorder logi
 seems to be a pana
ea for all the problems of knowledge representationand dedu
tion for AI systems. This is unfortunately a naive impression, andthere are many problems that beset the use of 
lassi
al logi
, espe
ially whenattempting to model the kind of \
ommonsense" reasoning whi
h human beings



ex
el at. Israel [44℄ 
redits Minsky with being the �rst to 
onsider the matter,pointing out that there are two parti
ular properties of �rst order logi
 thatare at odds with 
ommonsense human behaviour. The �rst results in the so
alled quali�
ation problem. Say, to take the 
lassi
 example, we are interestedin building a system that reasons about animals and their athleti
 abilities. Oneof the fa
ts that we want to en
ode is the fa
t that generally birds 
an 
y.Unfortunately, there is no \generally" quanti�er in �rst order logi
, so we mustapproximate this by asserting that all birds 
y:8x; bird(x ) � 
ies(x ) (3)This seems �ne until we re
all that penguins don't 
y, and so we have to augmentthe rule. This may be done in several ways, we will 
hoose to write:8x; bird(x ) ^ :penguin(x ) � 
ies(x ) (4)However, this formulation be
omes problemati
 when we want to reason aboutostri
hes, kiwis, and birds whose feet have been set in 
on
rete. For any generalrule of this kind, we 
an think up an arbitrarily large number of ex
eptions,and it is the provision of a 
ompa
t means of handling all of these ex
eptionsthat is the quali�
ation problem. The se
ond troublesome property is that ofmonotoni
ity. In �rst order logi
 there is no me
hanism for retra
ting inferen
eson
e they have been made, or fa
ts on
e they have been added to the database.If a senten
e S is a logi
al 
onsequen
e of a theory A then it is still a 
onsequen
eof any theory that in
ludes A, su
h as the theory A [ �. This is true even if wehave � = :S, though in this latter 
ase adding � leads to in
onsisten
y (sin
e we
an derive both S and its negation). Monotoni
ity is parti
ularly troublesomewhen, in attempting to solve the quali�
ation problem, we allow systems tomake \guesses" about the state of the world whi
h are used in the absen
e ofmore detailed information. For instan
e 
onsider making the assumption that aparti
ular bird, Joe, 
ies when nothing is known to the 
ontrary. In a monotoni
system, when it is learnt that Joe has been nailed to his per
h there is no meansof retra
ting the inferen
e that Joe 
an 
y. To solve su
h problems resear
hersturned to nonmonotoni
 logi
al systems that allow for plausible inferen
es to bemade to defeat the quali�
ation problem, and then allow those inferen
es to bewithdrawn if their falsity be
omes apparent.There are three main ways in whi
h a solution to these problems have beenattempted; 
losed world reasoning, prototypi
al reasoning, and reasoning aboutbeliefs. These methods may be summarised as follows. Closed world reasoningmakes the assumption that all relevant positive knowledge has been expli
itlystated. Working on this assumption, systems are permitted to dedu
e any nega-tive fa
ts that they desire in order to reason about the state of the world. Thusa system reasoning about 
onne
ting 
ights whi
h has no knowledge of a 
ightbetween London and Ankara is allowed to dedu
e that there is no su
h 
ight,and is only allowed to postulate the existen
e of a 
ight joining London andParis if su
h a 
ight is expli
itly re
orded in its database. Prototypi
al, or de-fault, reasoning pro
eeds from rules relating to typi
al individuals of some 
lass



to make plausible assumptions about parti
ular individuals. If and when spe
i�
information about the individual that 
ontravenes the plausible dedu
tion 
omesto light, the assumptions are retra
ted. Our example about 
ying is of this kind.We know that birds 
y in general, so that when we hear of a bird Opus weassume that he 
an 
y. Later we learn that Opus is a penguin, and knowing thatpenguins don't 
y allows us to retra
t our assumption that Opus is 
apable of
ying. Finally, reasoning about beliefs allows a system to make sound dedu
tionsbased on what it believes to be true. Assuming rationality, the system is allowedto logi
ally dedu
e fa
ts from what it knows and what it believes to be true, andwhat it believes to be false, whi
h is everything that it does not believe to betrue. Thus a system reasoning about its siblings 
an dedu
e that it is an only
hild be
ause if it wasn't, it would know about a brother or sister.In addition to the distin
tion between 
losed world reasoning, prototypi
alreasoning, and reasoning about beliefs, there is another distin
tion between sys-tems of nonmonotoni
 logi
 whi
h it is worth making. This is between bravesystems and 
autious systems (also known as 
redulous and skepti
al systems,respe
tively). Brave systems are those whi
h are prepared to a

ept any 
on
lu-sion whi
h they 
an hypothesise. As a result they typi
ally su�er from being ableto derive two 
ontradi
tory 
on
lusions, both of whi
h they deem to be a

ept-able but are unable to 
hoose between. Cautious systems on the other hand areonly prepared to a

ept 
on
lusions whi
h 
annot be 
ontradi
ted. As a resultif they 
an hypothesise both � and :�, they 
on
lude neither, even though onemust be true.3.2 Default logi
Default logi
, introdu
ed by Reiter in [76℄, models prototypi
al reasoning byallowing spe
ial inferen
e rules, known as default rules, to be added to a standard�rst order logi
. These rules di�er from �rst order rules of the form:8A(x) � B(x)in that they in
lude an expli
it 
onsisten
y 
he
k that prevents the rule beingapplied in inappropriate situations and allow the expression of rules su
h as:Bird(x) : F lies(x)F lies(x)whi
h is read as \if x is a bird, and it is 
onsistent to believe that x 
ies, then
on
lude that x 
ies". Default rules 
an be 
onsidered as meta-rules that tellus how to 
omplete �rst order theories that are in
ompletely spe
i�ed. Now, adefault theory (W;D), is a set of �rst order axioms W , and a set of default rulesD of the form: �(~x) : �1(~x) : : : �m(~x)
(~x)Where �(~x), �i(~x) and 
(~x) are all formulae whose free variables are among thosein ~x = x1; : : : ; xn. �(~x) is termed the pre
ondition or prerequisite, the �i(~x) are



known as the gating fa
ts or justi�
ations, and 
(~x) is 
alled the 
onsequent.Given a set of default rules D and a �rst order theory W , it is possible tode�ne an extension of the default theory as the 
losure of W plus a maximal
onsistent set of 
onsequen
es of D. It is possible to distinguish several 
lassesof su
h default rules, some of whi
h have attra
tive properties su
h as alwayshaving extensions. Chief among these are those with a single justi�
ation �(~x)whi
h divide into normal defaults, the set of defaults su
h that �(~x) = 
(~x), andsemi-normal defaults where �(~x) = 
(~x) ^ !(~x) for some !(~x).An extension E of a default theory is a minimal set of beliefs that 
ontain Ware dedu
tively 
losed, and maximally 
onsistent with the rules in D. Thus E isan extension for (W;D) if � (E) = E where for any set of senten
es S, � (S) isa minimal set su
h that: W � � (S)Th(� (S)) = � (S)where Th(T ) is the dedu
tive 
losure of T , and if D 
ontains:�(~x) : �1(~x) : : : �m(~x)
(~x)and both �(~x) 2 � (S) and :�i(~x) 62 � (S) for all i, then it is the 
ase that
(x) 2 � (S).Reiter proved some interesting results for normal default theories that in
ludeno free variables. Firstly every 
losed normal default theory has an extension, sosomething 
an always be 
onje
tured about su
h a theory. Se
ondly, if a 
losednormal default has two extensions, then the union of these are in
onsistent, sothat multiple extensions are only generated if the default rules have in
onsistent
onsequents. Finally, Reiter showed that 
losed normal default theories are semi-monotoni
. This means that if we have two default theories where the sets ofdefault rules of one are a subset of the default rules of the other, then an exten-sion of the theory with the smaller set of defaults will be a subset of an extensionof the other. Thus adding default rules to a theory does not 
ause its extensionsto need revision, instead new default inferen
es are simply added to the existingextensions (they may of 
ourse 
ause new extensions to arise). There are alsosome more general results, appli
able to all 
losed default theories, the most im-portant of whi
h are that if su
h a theory (D;W ) has an in
onsistent extension,then it is its only extension, and it is in
onsistent be
ause W is in
onsistent.Thus default rules alone do not generate in
onsistent extensions.Many authors have worked on default logi
 in the years sin
e it was �rstintrodu
ed. One those whose work is worth 
onsidering is  Lukaszewi
z, whoproposed two important extensions to the original formulation. The �rst of these[54℄ takes the form of translations between di�erent types of default, in parti
ularto repla
e the general default: �(~x) : �(~x)
(~x)



by the semi-normal default: �(~x) : �(~x) ^ 
(~x)
(~x)and to repla
e the semi-normal default:�(~x) : �(~x) ^ 
(~x)
(~x)by the normal default: �(~x) : �(~x) ^ 
(~x)�(~x) ^ 
(~x)The �rst is non-
ontroversial, but the se
ond, despite being appli
able for a largerange of pra
ti
ally o

urring defaults, has some rather alarming ex
eptions [30℄.By using both translations sequentially, we 
an repla
e the eminently sensible:has motive(x ) : guilty(x )suspe
t(x )by the rather unreasonable:has motive(x ) : suspe
t(x ) ^ guilty(x )suspe
t(x ) ^ guilty(x )In a further paper,  Lukaszewi
z [55℄ generalises default logi
, providing an al-ternative formalisation of an extension, and proving that semi-normal defaulttheories are guaranteed su
h extensions. He also shows that semi-normal defaulttheories are semi-monotoni
, that is monotoni
 with respe
t to default rules.Despite the maturity of the theoreti
al work on default logi
, there are asyet few appli
ations, partly be
ause there has been less attention paid to pro-viding prospe
tive appli
ation builders with useful tools for using default logi
than has been paid to providing tools for using approa
hes su
h as probability.However this situation is beginning to 
hange. This volume in
ludes a paper byNi
olas and S
haub [62℄ whi
h des
ribes a system on whi
h to build default logi
appli
ations, while Brazier et al. [8℄ have applied default logi
 to a problem frome
ology.3.3 ArgumentationArgumentation is the pro
ess by whi
h arguments are 
onstru
ted and 
ompared.Following Toulmin [94℄, an argument 
an be stru
tured so that from fa
ts aquali�ed 
laim (a 
on
lusion) 
an be argued (inferred) if and only if:1. there is some warrant (some further assumptions) that 
an be used with thefa
ts to logi
ally derive the 
laim, and2. there is no other argument that would a
t as a rebuttal of the 
laim (a
ounter-argument).



Argumentation 
an be further developed with the notion of an under
uttingargument, whi
h is an argument that a
ts as a rebuttal for one of the assumptionsof an argument.An argument 
an be modelled by a pair (�; �), where � is a set of formu-lae, and � is a formula derived as a 
on
lusion from the assumptions �. Theseassumptions are also known as the grounds of the argument. For an argument(�; �), a rebutting argument is an argument (	;:�), and an under
utting argu-ment is an argument (�;:
), where 
 2 �. For a set of arguments f�1; :::; �ng,let � denote the union of the set of assumptions, ie. � = �1 [ :: [ �n. Often inargumentation� will be in
onsistent, and it may in
orporate more than one min-imally in
onsistent subset3. Now, we 
an identify some arguments as safer thanothers a

ording to the nature of the arguments and 
ounter-arguments (bothrebutting arguments and under
utting arguments). For example, an argumentwith no 
ounter arguments is safer than an argument with 
ounterarguments.As a result, we 
an rank 
on
lusions on the basis of how safe the argumentsfor it are. As an example, suppose all maximally 
onsistent subsets of � imply�, and so all arguments for � are relatively safe, yet a more preferred 
on
lu-sion is a formula that follows from the interse
tion of the maximally 
onsistentsubsets of �. This approa
h to argumentation has been developed in [3, 29℄. Anumber of other approa
hes to argumentation, in
luding [70, 72, 97℄, fo
us ondefault reasoning by in
orporating default 
onne
tives (whi
h 
an be used tobuild up default statements similar to the default rules in default logi
) intotheir languages together with asso
iated ma
hinery.Argumentation 
an also be used to handle un
ertain information by extend-ing the pair (�; �) to a triple (�; �; Æ) in whi
h Æ is a measure of the degree towhi
h � is believed to be true on the basis of �. In this way, argumentation
an be used as a framework whi
h 
an 
apture a number of di�erent formalismsfor handling un
ertainty, with di�erent formalisms entailing di�erent meaningsfor Æ (often 
alled the \sign" of the argument) and di�erent ways of handlingthe signs. This approa
h is des
ribed in more detail in this volume [33℄, andelsewhere [46℄, and its histori
al development is 
harted in [65℄. It also forms thebasis for one of the appli
ations 
ase studies in this book [47℄.3.4 Truth maintenan
e systemsWhen reasoning with in
onsistent information, questions of belief in assumptionsand belief in 
on
lusions arise. These questions in
lude [58℄:Inferen
es from beliefs. How do new beliefs follow from existing beliefs?Default beliefs. How do we re
ord that a belief depends on the absen
e ofother beliefs?Dependen
y re
ording. How do we re
ord that one belief depends on anotherbelief?3 A minimally in
onsistent set is a set of propositions whi
h is in
onsistent in the sensethat p^:p 
an be derived from it for some p, and whi
h is su
h that the removal ofany one proposition from it will mean that the resulting set is not in
onsistent.



Disbelief propagation. How do we withdraw belief in the 
onsequen
es of aproposition that is disbelieved?Revision of beliefs. How do we 
hange beliefs in order to remove a 
ontradi
-tion?These kinds of question led to approa
hes for truth maintenan
e4. A truth main-tenan
e system (TMS) re
ords information about ea
h inferen
e that is gener-ated from a set of assumptions. The two main types of truth maintenan
e sys-tem are the justi�
ation-based truth maintenan
e system (JTMS) [20℄ and theassumption-based truth maintenan
e system (ATMS) [15℄. A JTMS re
ords asingle set of 
onsistent fa
ts and all the inferen
e whi
h may be proved formthem. When an in
onsisten
y is dete
ted some external system (whi
h may bethe user) is invoked to resolve the in
onsisten
y and the JTMS then retra
tsthe ne
essary inferen
es. In its simplest form, an ATMS maintains all the 
on-sistent subsets of the set of known fa
ts and all the inferen
es whi
h may bedrawn from ea
h. In
onsisten
y is handled by 
reating new 
onsistent subsetsand identifying whi
h inferen
es may be made from them. Both types of systemmake it possible to identify 
onsistent sets of beliefs and so make it possible toisolate in
onsisten
y and avoid trivialization.Truth maintenan
e 
an be 
onsidered to be 
on
erned with lemma storagefor non-monotoni
 reasoning. Thinking in terms of default logi
, a JTMS 
an be
onsidered to be a means of establishing a single extension and an ATMS as ameans of establishing all the possible extensions. In a JTMS the dis
overy of anew fa
t whi
h 
ontradi
ts something in the existing extension will prompt therevisions ne
essary to establish a single new extension (if any exists). In an ATMSthe introdu
tion of a pie
e of 
ontradi
ting information will generate a new set ofextensions (if su
h extensions exist). The question of 
omputational viability isthen dependent upon the balan
e between on inferen
ing (
onsisten
y-
he
kingand theorem proving) versus storage requirements (
onsistent subsets of dataand inferential interdependen
ies). The aim of a TMS is to �nd the most parsi-monious 
hoi
e. A number of di�erent implementations are given in [31℄, and aparti
ular approa
h to assumption-based reasoning is des
ribed by Haenni [38℄.In addition, more sophisti
ated truth maintenan
e systems will emerge from ad-van
ed theoreti
al frameworks su
h as that des
ribed by Benferhat and Gar
ia[4℄. The notion of arguments dis
ussed above provides useful 
on
epts for formal-ising truth maintenan
e: For ea
h expli
it argument (�; �) there is 
lassi
al proofof � from � so addressing the question of inferen
es from beliefs, and for thebelief �, � is dependent on � so addressing the question of dependen
y re
ord-ing. Let us assume that (�; �) follows from some assumptions �. To disbelievesome 
ontradi
tory inferen
es from � requires a minimally in
onsistent subset,� of � to be removed. Furthermore, � needs to be removed from the assump-tions of all the argument, so all arguments (	; �) be
ome (	 � �; �). This of
ourse may involve withdrawing some arguments sin
e the revised assumptions4 Now often referred to as \reason maintenan
e".



no longer imply the 
on
lusion. In this way it is possible to address the questionsof disbelief propagation and the revision of beliefs.Truth maintenan
e systems have proved to be of parti
ular interest for in
or-poration in diagnosti
 systems. Given some set of observations, su
h as symp-toms, diagnosis involves determining the 
ause of those observation by sele
tingan appropriate 
onsistent set of hypotheses from whi
h the observations 
an belogi
ally derived. So diagnosis 
an be viewed as 
onstru
ting an argument. Fur-thermore, sin
e the diagnosti
 pro
ess 
an take pla
e over time, new observations
an be obtained that 
an be in
onsistent with the 
urrent diagnosis, so for
ingthe need for revision of beliefs. Diagnosis 
an therefore bene�t from appropriatetruth maintenan
e.4 Combining approa
hesMost of the resear
h into un
ertainty handling formalisms whi
h has been men-tioned so far has dealt with the use of single formalisms in isolation. However, ifone a

epts, as we do, that the e
le
ti
 position outlined in Se
tion 1 is 
orre
t,then the following argument may be made. If di�erent formalisms are good forrepresenting di�erent aspe
ts of ignoran
e, then it follows that there are someproblems whi
h require the modelling of aspe
ts of ignoran
e whi
h are best
overed by two or more di�erent formalisms. Thus there is merit in investigat-ing both the use of several formalisms in 
ombination, and on determining thedi�eren
es between di�erent formalisms, and there is a growing body of work onthis subje
t (though it should be noted that not all resear
hers working on su
hmatters would expli
itly a
knowledge the validity of the e
le
ti
 position).Possibly the most interesting strand of this kind of work is that whi
h 
om-bines essentially logi
al te
hniques with numeri
al measures. This is 
ommonlydone by using a logi
al te
hnique to establish a set of possible hypotheses froma larger initial set of exhaustive hypotheses, and then using a numeri
al te
h-niques to rank the plausible set. Typi
al of su
h systems are those of Provan[73℄, Bigham [5℄ and Laskey and Lehner [51℄. In all three of these systems, thesemanti
 equivalen
e of the ATMS [15℄ and the Dempster-Shafer method, provedby Provan, is exploited ensuring that no information is lost in the initial roundof inferen
e. Bigham's system is parti
ularly interesting in that it in
ludes anextension of the 
lause based approa
h of M
Allester's logi
-based truth main-tenan
e system (LTMS) [59℄ as a symboli
 inferen
e engine, and also permitsbeliefs based on possibility theory to be propagated. A similar system is deKleer and Williams' [16℄ GDE for fault diagnosis. In GDE all inferen
e dire
tedat dis
overing the fault is 
arried out by symboli
 methods, with probabilitiesinvoked, not to determine the most likely of several solutions in a stati
 analysis,but to suggest the next measurement to be taken by the user of the system.This measurement leads to new information whi
h, when entered, leads to fur-ther symboli
 
omputation. Thus the numeri
al 
omputation sparks o� anotherround of symboli
 inferen
e, and the 
y
le 
ontinues until the fault is found.



In 
ontrast to these ATMS-based approa
hes, van Dam [96℄ uses a JTMS in
ombination with Dempster-Shafer theory.It is also possible to use possibility measures with an assumption-based truthmaintenan
e system instead of belief fun
tions or probabilities. This is exa
tlythe 
ourse followed by Dubois, Lang and Prade in their possibilisti
 ATMS [22℄.A possibilisti
 ATMS is an ATMS in whi
h both assumptions and justi�
ationsmay be asso
iated with a possibility weight, and, sin
e the propagation of theweights is 
arried out for every 
lause in the ATMS, there is no separation of themanagement of un
ertainty from the usual fun
tionality of an ATMS. Bigham[6℄ has extended this work by adapting the possibilisti
 ATMS to take a

ount oftemporal information. Furthermore, the possibilisti
 ATMS allows in
onsistentknowledge bases to be revised using the prin
iples of epistemi
 entren
hment[34℄.Another set of interesting developments whi
h bridge the gap between sym-boli
 and numeri
al te
hniques is the dis
overy of relationships between defaultlogi
 and eviden
e theory. Wilson [99℄ 
onsiders the similarities between belieffun
tions and default logi
. He shows that, despite their initial dissimilaritiesthey are, in fa
t, 
losely related. Indeed, in  Lukaszewi
z's [55℄ modi�
ation ofdefault logi
, the extensions of general 
losed default theories 
orrespond to thesets of formulae whose beliefs, 
al
ulated by the theory of eviden
e, tend to 1when the reliability of the sour
es of eviden
e tend to 1. The existen
e of astrong relationship between default logi
 and the theory of eviden
e is borneout by Smets and Hsia [89℄ who demonstrate how to represent normal defaults(both with and without prerequisites) using the transferable belief model. Bothof these papers 
an be seen as an extension of the work of Ri
h [77℄ and Ginsberg[36℄, who 
onsidered ways of applying numeri
al 
ertainty measures to logi
alinferen
e rules.It is also possible to use argumentation to 
ombine symboli
 and numeri
alreasoning. For instan
e, Fox and Krause [49℄ dis
uss a simple inferen
e me
ha-nism, based on argumentation, whi
h is suitable for joint symboli
 and numeri
alreasoning. Nonmonotoni
 reasoning about Tweety's ability to 
y is handled inthe following way. The result of applying the default rule that \typi
ally birds
y" is marked as supported by a \possible" argument, thus expli
itly re
ord-ing the fa
t that the 
on
lusion need not be true. A 
ertain inferen
e of theform that Tweety doesn't 
y be
ause she is an ostri
h is supported by a trueargument. When two fa
ts are in 
on
i
t, reasoning that a default fa
t is a lesspowerful argument than a true one resolves the situation. Similarly, numeri
alte
hniques generate arguments quanti�ed by numeri
al degrees of belief, whi
h
an be 
ompared to order hypotheses. However, this method is more than justa fan
y method for quantifying propositions. The quanti�er also allows the rea-soning me
hanism to refer to the grounds of the argument, identifying why theargument was generated. This provides the vital 
onne
tion between the degreeof belief and the underlying un
ertainty that is missing from most methods ofapproximate reasoning. From the grounds, we 
an establish the reasons for theun
ertainty, and the nature of the un
ertainty, and reasoning about this allows



us to pro
eed when we would otherwise be held up by the in
omparability of thedegrees of belief with whi
h the propositions we are dealing with are quanti�ed.5 SummaryIn this introdu
tion to un
ertainty formalisms we have only been able to brie
y
over some of the many un
ertainty formalisms whi
h have been proposed overthe years5. However, despite this diversity, we strongly believe that no singleapproa
h is appropriate for all un
ertainty handling problems. Furthermore, forsome un
ertainty handling problems, we believe that a mixture of approa
hesis required. While this statement is still 
ontroversial in some quarters, thereseems to be a growing realisation that the position it represents has some merit,and so there are 
lear arguments for the development of a range of un
ertaintyformalisms. In parti
ular, there is still more work to be done in developing therange of un
ertainty formalisms and in learning more about how to use theme�e
tively in a wider range of un
ertainty problems.Referen
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