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1. INTRODUCTION

Decision theory (Raiffa, 1968) is a means of analysing which of a series
of options should be taken when it is uncertain exactly what the result
of taking the option will be. Decision theory concentrates on identifying
the “best” decision option, where the notion of “best” is allowed to
have a number of different meanings, of which the most common is
that which maximises the expected benefit to the decision maker. Since
self-interested entities are assumed to be acting best when maximising
expected benefits, decision theory is often claimed to be able to make
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the most rational choice. Overall, decision theory provides a powerful
tool with which to analyse scenarios in which a decision must be made.

Now, it is widely believed that the crucial issue in designing au-
tonomous agents is how to provide those agents with the ability to select
the best action from a range of possible actions. Frequently the agents
in question are operating in an unpredicatble, and hence uncertain, en-
vironment, and therefore decision theory seems a natural tool to use to
analyse their behaviour.

Game theory (Binmore, 1992) is a close relative of decision theory,
which studies interactions between self-interested entities. In particular,
it studies the problems of how interaction strategies can be designed that
will maximise the welfare of an entity in an encounter, and how protocols
or mechanisms can be designed that have certain desirable properties.
In the same way that decision theory can be claimed to provide a means
of making rational decisions under uncertainty, so game theory can be
claimed to provide a rational means of analysing interactions. Notice
that decision theory can be considered to be the study of games against
nature, where nature is an opponent that does not seek to gain the best
payout, but rather acts randomly.

In multi-agent systems, the issue of designing interaction strategies
and mechanisms is very important, and so it comes as no surprise to learn
that game theory has been widely applied. Many of these applications
have been to analyse negotiation and co-ordination mechanisms.

2. DECISION THEORY

Classical decision theory, so called to distinguish it from a number of
non-classical theories which have grown up in the last few years, is a set
of mathematical techniques for making decisions about what action to
take when the outcomes of the various actions are not known. Although
the area grew up long before the concept of an intelligent agent was
conceived, such agents are canonical examples of the decision makers
which can usefully employ classical decision theory.

2.1. PROBABILITY THEORY

An agent operating in a complex environment is inherently uncertain
about that environment; it simply does not have enough information
about the enviroment to know either the precise current state of its
environments, nor how that environment will evolve. Thus, for every
variable X; which captures some aspect of the current state of the envi-
ronment, all the agent typically knows is that each possible value z;; of
each X; has some probability Pr(z;) of being the current value of X;.
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Writing x for the set of all z;;, we have:
Pr:z exw—[0,1]

and

Z Pr(z;) =1
J

In other words, the probability Pr(z;) is a number between 0 and 1 and
the sum of the probabilities of all the possible values of X; is 1. If X; is
known to have value z; then Pr(z;) =1 and if it is known not to have
value z;; then Pr(z;) = 0.

While this mathematical definition of probability is rather straightfor-
ward, the same cannot be said of the semantics of probability. Indeed,
there is no universal agreement on what probabilities mean. Of the var-
ious conflicting schools of thought (Shafer, 1992), there are two main
positions. The first, historically, interprets a probability as a frequency
of occurrence. This frequentistic approach takes that fact that an event
a has a probability of 0.356 to mean that 0.356 of the time it will oc-
cur. This sounds like a very straightforward interpretation until you
consider in more detail how such a probability can be measured' The
second, Bayesian, position suggests that a probability is related to the
odds that a rational person will bet on the event in question. Thus the
probability of a being 0.356 means that a rational person will pay $0.356
to bet on a happening if they win $1 if a occurs. This approach solves
some of the problems of the frequentistic interpretation (especially when
estimating the probability of unique events) but has its own problems?.
We will say no more about semantics here—all we say applies whatever
semantics one chooses to use.

Given two of these variables, X; and X, then the probabilities of the
various values of X; and X5 may be related to one another. If they are
not related, a case we distinguish be referring to X; and X, as being
independent, then for any two values 71, and zy;, we have:

Pr(z; A x;) = Pr(m,) Pr(my;)
If the variables are not independent, then:
Pr(z; A xp;) = Pr(m,|m2;) Pr(m;)

where Pr(z,|2p;) is the probability of X; having value z;, given that X
is known to take value zp;. Such conditional probabilities capture the
relationship between X; and X, representing, for instance, the fact that
71, (the value “wet”, say, of the variable “state of clothes”) becomes
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battery alternator
old ok
battery battery
good charging
battery
ok
radio lrghts
ok ok

Figure 1.1.  An example Bayesian network.

much more likely when 1y, (the value “raining” of the variable “weather
condition”) is known to be true.

If we take the set of these X; of which the agent is aware, the set X,
then for each pair of variables in X we can establish whether the pair
are independent or not. We can then build up a graph in which each
node corresponds to a variable in X and an arc joins two nodes if the
variables represented by those nodes are not independent of each other.
The resulting graph is known as a Bayesian network® (Pearl, 1988), and
the graphical structure provides a convenient computational framework
in which to calculate the probabilities of interest to the agent. In general,
the agent will have some set of variables whose values it can observe,
and once these observations have been taken, will want to calculate the
probabilities of the various values of some other set of variables.

Figure 1.1 is an example of a fragment of a Bayesian network for
diagnosing faults in cars. It represents the fact that the age of the battery
(represented by the node battery old) has a probabilistic influence on
how good the battery is, and that this in turn has an influence on whether
the battery is operational (battery ok), the latter being affected also by
whether the alternator is working and, as a result, whether the battery
is recharged when the car moves. The operational state of the battery
affects whether the radio and lights will work. In this network it is
expected that the observations that can be carried out are those relating
to the lights and the radio (and possibly the age of the battery), and that
the result of these observations can be propagated through the network
to establish the probability of the alternator being okay and the battery
being good. In this case these latter variables are the ones which we are
interested in since they relate to fixing the car.
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Typically the variables an agent will be interested in are those that
relate to its goals. For instance, the agent may be interested in choos-
ing an action that will allow it to achieve a goal, and might therefore
be interested in choosing that action which has the greatest chance of
succeeding in achieving that goal. When the agent has many goals it
could achieve, this strategy could be extended to make the agent choose
to achieve the goal which has the greatest chance of being achieved, and
to do this by applying the action which gives this greatest chance.

However, building an agent which follows this strategy is somewhat
shortsighted since the agent will not consider the value of the goals, and
will therefore choose a goal which is easy to achieve, but worthless, over
a goal which is hard to achieve but very valuable. To take account of
this problem, decision theory ke account of an agent’s preferences. To
do this, it makes use of the idea of utility.

2.2, UTILITY THEORY

We start from the assumption that each agent (or decision maker)
has its own preferences and desires about how the world is. For the
moment, we will not be concerned with where these preferences come
from?; we will just assume that they are the preferences of the agent’s
user or owner. Next, we will assume that there is a set Q = {w,w2,...}
of “outcomes” or “states” that the agents have preferences over.

We will formally capture the preferences that an agent has by means
of a wutility function, which assigns to every outcome a real number,
indicating how “good” the outcome is. The larger the number the better
from the point of view of the agent with the utility function. Thus the
preferences of an agent ¢ will be captured by a function

u; : 2 —> R

It is not difficult to see that such a utility function leads to a preference
ordering over outcomes. For example, if w and w’ are both possible
outcomes in Q, and u;(w) > wu;(w'), then outcome w is preferred by
agent i at least as much as w’. We can introduce a bit more notation to
capture this preference ordering. We write

!
w i w

as an abbreviation for

ui (w) > ui(w')

Similarly, if u; (w) > u;(w'), then outcome w is strictly preferred by agent
i over w'. We write
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!
W W

as an abbreviation for

ui(w) > ui(w').

In other words,

w =; W' iff ui(w) > u;(w') and not u;(w) = u;(w').

We can see that the relation >; really is a (partial) ordering, in that
it has the following properties:

Reflexivity: For all w € 2, we have that w =; w.

Transitivity: If w =; w, and &' >=; W”, then &' >=; W".
Comparability: For all w € Q, and w’' € Q we have that either w =; &’
or w =; w.

The strict preference relation will satisfy the second and third of these
properties, but will clearly not be reflexive.

Undoubtedly the simplest way to think about utilities is as money;
the more money, the better. However, it is deceptive to think that this
is all that utilities are. Utility functions are a way of representing an
agent’s preferences. They do not simply equate to money.

To see why this is the case, suppose (and this really is a supposition)
that the authors have US$500 million in the bank, while you, the reader,
are absolutely penniless. A generous and rich benefactor appears, with
one million dollars, which he generously wishes to donate to one or more
of us. If the benefactor gives the dollar to the authors, what will the
increase in the utility of our situation be? Well, we will have more money,
so there will clearly be some increase in our utility. But there will not be
much: after all, there is not much that you can do with US$501 million
that you cannot do with US$500 million. In contrast, if the benefactor
gave the money to you, the increase in your utility would be enormous;
you would go from having no money at all to being a millionaire. That
is a big difference’.

This works the other way as well. Suppose the authors are in debt to
the tune of US$500 million; well, there is frankly not that much difference
in utility between owing US$500 million and owing US$499 million; they
are both pretty bad. In contrast, there is a very big difference between
being US$1 million in debt and not being in debt at all. A graph of the
relationship between utility and money is shown in Figure 1.2.
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utility

money

Figure 1.2.  The relationship between money and utility.

So, to summarise, a utility is a value which is associated with a state
of the world, and which represents the value that the agent places on
that state of the world. Utilities provide a convenient means of encod-
ing the preferences of an agent; as von Neumann and Morgenstern (von
Neumann and Morgenstern, 1944) showed, it is possible to define utility
functions that faithfully encode preferences such that a state §; is pre-
ferred to §j, if and only if it has a higher utility for the agent exactly as
described above.

2.3. EXPECTED UTILITY

Now, we can consider that our agent has a set of possible actions
A, each member A; of which has a range of possible outcomes since the
actions are not deterministic. The value of taking a particular action will
depend upon what the state of the world is—it is of little value carrying
a surfboard when taking a trip across the Sahara, but it is extremely
valuable carrying a surfboard when taking a trip across Bondi Beach—
and so in choosing which action to undertake, our agent will need to
look at the value of U(S;) where S; is the state it is in after the action.
Doing this for each possible action, the agent can then choose the action
which leads to the state it values most. We can certainly build an agent
which works in this way, and it would unerringly choose to achieve the
goal with the highest value as encoded by its utility function. However
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it would be just as flawed as an agent which only tried to achieve the
most likely goal, trying to achieve the most valuable goal irrespective of
the difficulty of that goal.

To build more sensible agents we combine probability and utility cal-
culations for each action and calculate the expected utility of each. This
amounts to calculating a weighted average of the utility of each out-
come, where the weight is the probability of that outcome given the
action being performed. Since each outcome is itself a state, we have:

EU(Ai) =Y Pr(S;|4:)U(S))
S; €S

where S is the set of all states. The agent then selects action A* where:

A* = arg g}gﬁéPr(Slei) U(S;)
J

Now, these states which are being considered here are just particular
instantiations of the set of state variables X. Thus the probabilities
in this calculation are just the probabilities of the X; having particular
values given the actions.

Harking back to the discussion of Bayesian networks above, we can
think of the X; as being structured as a graph, dropping the distinction
between variables and the nodes in the graph which represent them.
The A; can be brought into the graph as well, as a different kind of node
(square, perhaps, in contrast to the usual round ones relating to the X;)
linked to the X; whose values they influence. We can also incorporate
utilities. This time we only require a single node (a hexagon, to keep it
distinct from the others), and this is linked to those X; which affect its
value. Such a graphical structure neatly captures all the dependencies
in an expected utility calculation, and is known as an influence diagram
(Howard and Matheson, 1984).

Figure 1.3 is an example of a small influence diagram capturing a
decision problem which a company has to make about its research and
development budget. Since the budget is the thing the decision is being
made about, it is represented by a square decision node. This is linked
to the factors it directly effects, namely the technical success of the com-
pany’s products and their overall profitability, that latter being captured
by the hexagonal value node. The remaining nodes are chance nodes and
represent the other factors which relate to the decision. These are just
like nodes in a Bayesian network. Given a particular instantiation of the
decision node, the relevant values can be propagated through the net-
work, using an algorithm such as Shacter’s graph reduction algorithm
(Shachter, 1986) to establish the expected utility of the decision.
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Figure 1.3.  An example influence diagram.

2.4. DECISION THEORY AND AGENTS

Given that the basic mechanisms of decision theory fit so neatly into
the context of intelligent agents, it is perhaps surprising that they have
not been more widely employed in the field. However, agent systems
which use decision theory seriously (that is adopting the notions of prob-
ability and utility) are rather scarce. One sub-area of decision theory is,
however, becoming popular and that is the field of Markov decision pro-
cesses (MDPs), discussed in detail in (Boutilier et al., 1999). In essence
an MDP is an iterative set of classical decision problems. Consider a
state of the world as a node in a graph. Carrying out an action in that
state will result in a transition to one of a number of states, each con-
nected to the first state by an arc, with some probability, and incur some
cost. After a series of transitions a goal state may be reached, and the
sequence of actions executed to do this is known as a policy. Solving an
MDP amounts to finding a minimal cost policy for moving from some
initial state to a goal state.

MDPs capture many of the facets of real world problems, but unre-
alistically assume that whatever system is solving the MDP knows at
every point what state it is in. This amounts to assuming that it is pos-
sible to measure some aspect of the world and from this measurement
tell precisely what state the world is in. This is rarely the case; it is far
more likely is that from the measurement something can be uncertainly
inferred about the world. In such a situation, the states of an MDP are
replaced by beliefs about those states, and we have a partially observ-
able Markov decision process (POMDP). Because they can capture so
many real situations, POMDPs are currently a hot topic in agent re-
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search, despite the fact that they are intractable for all but the smallest
problems.

3. GAME THEORY

Game theory is a branch of economics that studies interactions be-
tween self-interested agents. Like decision theory, with which it shares
many concepts, game theory has its roots in the work of von Neumann
and Morgenstern (von Neumann and Morgenstern, 1944). As its name
suggests, the basic concepts of game theory arose from the study of
games such as chess and checkers. However, it rapidly became clear that
the techniques and results of game theory can equally be applied to all
interactions that occur between self-interested agents.

The classic game theoretic question asked of any particular multi-
agent encounter is: What is the best — most rational — thing an agent
can do? In most multi-agent encounters, the overall outcome all depend
critically on the choices made by all agents in the scenario. This implies
that in order for an agent to make the choice that optimises its outcome,
it must reason strategically. That is, it must take into account the de-
cisions that other agent may make, and must assume that they will act
so0 as to optimise their own outcome. Game theory gives us a way of
formalising and analysing such concerns.

3.1. MULTIAGENT ENCOUNTERS

First, let us simplify things by assuming that we have just two agents;
things tend to be much more complicated when we have more than two.
Call these agents i and j respectively. Each of the agents is assumed
to be self-interested. That is, each agent has its own preferences and
desires about how the world is, and these are encoded as utilities. We
also need to introduce a model of the environment in which these agents
will act. The idea is that out two agents will simultaneously choose an
action to perform in the environment, and as a result of the actions they
select, an outcome in €2 will result. The actual outcome that will result
will depend on the particular combination of actions performed. We will
also assume that the agents have no choice about whether to perform an
action — they have to simply go ahead and perform one. Further, it is
assumed that they cannot see the action performed by the other agent.

To make the analysis a bit easier, we will assume that each agent has
just two possible actions that it can perform. We will call these two
actions C, for “cooperate”, and “D”, for “defect”. (The rationale for
this terminology will become clear below.) Let Ac = {C, D} the set of
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these actions. The way the environment behaves is then determined by
a function

Env : Ac X Ac —Q
N~ N~

agent i’s action agent j’s action

In other words, on the basis of the action (either C' or D) selected by
agent i, and the action (also either C' or D) chosen by agent j.
Here is an example of an environment function:

Env(D,D) = w; Env(D, C) = ws (1)
Env(C,D) = ws Env(C,C) = wy

This environment maps each combination of actions to a different out-
come. This environment is thus sensitive to the actions that each agent
performs. At the other extreme, we can consider an environment that
maps each combination of actions to the same outcome.

Env(D,D) = w; Env(D, C) = w; (2)
Env(C,D) =w; Env(C,C) =uw

In this environment, it does not matter what the agents do: the outcome
will be the same. Neither agent has any influence in such a scenario. We
can also consider an environment that is only sensitive to the actions
performed by one of the agents.

Env(D,D) = w; Env(D, C) = wo 3)
Env(C,D) =uw; Env(C, C) = we

In this environment, it does not matter what agent ¢ does: the outcome
depends solely on the action performed by j. If 7 chooses to defect, then
outcome wy will result; if 7 chooses to cooperate, then outcome wy will
result.

The interesting story begins when we put an environment together
with the preferences that agents have. To see what we mean by this,
suppose we have the most general case, characterised by (1), where both
agents are able to exert some influence over the environment. Now let
us suppose that the agents have utility functions defined as follows:

ui(wl) =1 ui(wQ) =1 ui((,U3) =4 ui(w4) =4
uj(wi) =1 wjw2) =4 w(ws) =1 uj(ws) =4

(4)

Since we know that every different combination of choices by the agents
are mapped to a different outcome, we can abuse notation somewhat by
writing the following:
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ui(D,D)=1 wui(D,C)=1 w(C,D)=4 u(C,C)=4 5
uj(D,D)=1 wuj(D,C)=4 wuj(C,D)=1 wui(C,C)=4 (5)

We can then characterise agent +’s preferences over the possible outcomes
in the following way:

Now, consider the following question:

If you were agent 7 in this scenario, what would you choose to do —
cooperate or defect?

In this case, the answer is pretty unambiguous. Agent i prefers all the
outcomes in which it cooperates over all the outcomes in which it defects.
Agent i’s choice is thus clear: it should cooperate. It does not matter
what agent j chooses to do.

For agent j, the story is the same: we can write j’s preferences as
follows.

(0’ 0) tz (D,C) i (C7D) tz (DaD)

In just the same way, agent j prefers all the outcomes in which it co-
operates over all the outcomes in which it defects. Notice that in this
scenario, neither agent has to expend any effort worrying about what
the other agent will do: the action it should perform does not depend
in any way on what the other does.

If both agents in this scenario act rationally, that is, they both choose
to perform the action that will lead to their preferred outcomes, then
the “joint” action selected will be (C, C'): both agents will cooperate.

Now suppose that, for the same environment, the agents’ utility func-
tions were as follows:

ui(D,D)=4 wui(D,C)=4 w(C,D)=1 u(C,C)=1 7
uj(D,D)=4 wuj(D,C)=1 uj(C,D)=4 uj(C,C)=1 (M)

Agent ¢’s preferences over the possible outcomes are thus as follows:

(D,D) =; (D,C) =; (C,D) =; (C,C)
Agent j’s preferences are:

(DvD) =i (CvD) ~i (D,C) =i (Oa O)

In this scenario, agent ¢ can do no better than to defect. The agent
prefers all the outcomes in which it defects over all the outcomes in
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1 defects | ¢ cooperates
. 4 0
j defects 4 5
) cooperates 1 3
J p 1 3

Table 1.1 . A payoff matrix with dominant strategies.

which it cooperates. Similarly, agent j can do no better than defect: it
also prefers all the outcomes in which it defects over all the outcomes
in which it cooperates. Once again, the agents do not need to engage
in strategic thinking (worrying about what the other agent will do): the
best action to perform is entirely independent of the other agent’s choice.
I emphasise that in most multiagent scenarios, the choice an agent should
make is not so clear cut; indeed, most are much more difficult.

We can neatly summarise the previous interaction scenario by making
use of a standard game theoretic notation known as a payoff matriz, as
in Table 1.1. The way to read such a payoff matrix is as follows. Each
of the four cells in the matrix corresponds to one of the four possible
outcomes. For example, the top-right cell corresponds to the outcome
in which 7 cooperates and j defects; the bottom-left cell corresponds to
the outcome in which ¢ defects and 7 cooperates. The payoffs received
by the two agents are written in the cell. The value in the top-right of
each cell is the payoff received by player i (the column player), while
the value in the bottom left of each cell is the payoff received by agent j
(the row player). Thus in Table 1.1, if ¢ cooperates and j defects, j gets
5 and 7 gets 0. As payoff matrices are standard in the literature, and are
a much more succinct notation than the alternatives, we will use them
as standard in the remainder of this chapter.

Before proceeding to consider any specific examples of multiagent en-
counter, let us introduce some of the theory that underpins the kind of
analysis we have informally discussed above.

3.2. DOMINANT STRATEGIES AND NASH
EQUILIBRIA

Given a particular multiagent encounter involving two agents ¢ and
J, there is one critically important question that both agents want an-
swered: What should I do? We have already seen some multiagent en-
counters, and informally argued what the best possible outcome should
be. In this section, we will define some of the concepts that are used in
answering this question.
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The first concept we will introduce is that of dominance. To under-
stand what is meant by dominance, suppose we have two subsets of
Q, which we refer to as ; and 2y respectively. We will say that
dominates Qg for agent ¢ if every outcome in 2 is preferred over every
outcome in {25. For example, suppose that:

Q= {wi,ws,ws,wal;
B Wy Wy W3 g W
n Q) ={wp,ws}; and

n Oy = {ws, w4}

Then €2, strongly dominates 2o since wy »=; w3, wy »=; wq, wa >; w3, and
wo =; wy. However, )y does not strongly dominate €2, since (for exam-
ple), it is not the case that ws »=; w;. Formally, Q; strongly dominates
Qg iff the following condition is true:

Ywi € Q1,Vwy € Q9, we have wy >; wo.

Now, in order to bring ourselves in line with the game theory literature,
we will start referring to actions (members of the set Ac) as strategies.
Given any particular strategy s for an agent 7 in a multiagent interaction
scenario, there will be a number of possible outcomes. Let us denote by
s* the outcomes that may arise by ¢ playing strategy s. For example,
referring to the example environment in equation (1), from agent i’s
point of view we have C* = {ws, w4}, while D* = {w;, w2 }.

Now, we will say a strategy s; dominates a strategy so if the set of
outcomes possible by playing s; dominates the set possible by playing
s9, that is, if s; dominates s;. Again, referring back to the example of
(6), it should be clear that, for agent i, “cooperate” strongly dominates
“defect”. Indeed, as there are only two strategies available, the coop-
erate strategy is dominant: it is not dominated by any other strategy.
The presence of a dominant strategy makes the decision about what to
do extremely easy: the agent guarantees its best outcome by perform-
ing the dominant strategy. In following a dominant strategy, an agent
guarantees itself the best possible payoff.

Another way of looking at dominance is that if a strategy s is domi-
nated by another strategy s’, then a rational agent will not follow s (be-
cause it can guarantee to do better with s’). When considering what to
do, this allows us to delete dominated strategies from our consideration,
simplifying the analysis considerably. The idea is to iteratively consider
each strategy s in turn, and if there is another remaining strategy that
strongly dominates it, then to delete strategy s from consideration. If we
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end up with a single strategy remaining, then this will be the dominant
strategy, and is clearly the rational choice. Unfortunately, for many in-
teraction scenarios, there will not be a strongly dominant strategy; after
deleting strongly dominated strategies, we may find more than one strat-
egy remaining. What to do then? Well, we can start to delete weakly
dominated strategies. A strategy s; is said to weakly dominate strategy
sy if every outcome si is preferred at least as much as every outcome
s5. The problem is that if a strategy is only weakly dominated, then
it is not necessarily irrational to use it; in deleting weakly dominated
strategies, we may therefore “throw away” a strategy that would in fact
have been useful to use.

The next notion we shall discuss is one of the most important concepts
in the game theory literature, and in turn is one of the most important
concepts in analysing multiagent systems. The notion is that of equi-
librium, and more specifically, Nash equilibrium. The intuition behind
equilibrium is perhaps best explained by example. Every time you drive
a car, you need to decide which side of the road to drive on. The choice is
not a very hard one: if you are in the UK, for example, you will probably
choose to drive on the left; if you are in the US or continental Furope,
you will drive on the right. The reason the choice is not hard is that
it is a Nash equilibrium strategy. Assuming everyone else is driving on
the left, you can do no better than drive on the left also. From everyone
else’s point of view, assuming you are driving on the left then everyone
else can do no better than drive on the left also.

In general, we will say that two strategies s; and so are in Nash equi-
librium if:

1 under the assumption that agent ¢ plays s;, agent 7 can do no
better than play sy; and

2 under the assumption that agent j plays se, agent ¢+ can do no
better than play s;.

The mutual form of an Equilibrium is important because it “locks the
agents in” to a pair of strategies. Neither agent has any incentive to
deviate from a Nash equilibrium. To see why, suppose s1, $3 are a pair of
strategies in Nash equilibrium for agents ¢ and j respectively, and that
agent j chooses to play some other strategy: s3 say. Then by definition,
¢+ will do no better, and may possibly do worse than it would have done
by playing s;.

The presence of a Nash equilibrium pair of strategies in a game might
appear to be the definitive answer to the question of what to do in any
given scenario. Unfortunately, there are two important results in the
game theory literature which serve to make life difficult:
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1 Not every interaction scenario has a Nash equilibrium.

If there is no Nash equilibrium, then it may be possible to look for
a mized equilibrium as described in the next section.

2 Some interaction scenarios have more than one Nash equilibrium.

Despite these negative results, the notion of a Nash equilibrium is an
extremely important concept, and will be useful in the analysis that
follows.

3.3. COMPETITIVE AND ZERO-SUM
INTERACTIONS

Suppose we have some scenario in which an outcome w € Q is preferred
by agent i over an outcome «’ if, and only if, w' is preferred over w by
agent j. Formally,

w>;w ifand only if ' >; w.

The preferences of the players are thus diametrically opposed to one-
another: one agent can only improve its lot (i.e., get a more preferred
outcome) at the expense of the other. An interaction scenario that
satisfies this property is said to be strictly competitive, for hopefully
obvious reasons.

Zero-sum encounters are those in which, for any particular outcome,
the utilities of the two agents sum to zero. Formally a scenario is said
to be zero sum if the following condition is satisfied:

ui(w) + uj(w) =0 for all w € Q.

It should be easy to see that any zero sum scenario is strictly competitive.
Zero sum encounters are important because they are the most “vicious”
types of encounter conceivable, allowing for no possibility of cooperative
behaviour. If you allow your opponent positive utility, then this means
that you get negative utility — intuitively, you are worse off than you
were before the interaction.

Games such as chess and chequers are the most obvious examples of
strictly competitive interactions. Indeed, any game in which the pos-
sible outcomes are win or lose will be strictly competitive. Outside
these rather abstract settings, however, it is hard to think of real-world
examples of zero-sum encounters. War might be cited as a zero sum
interaction between nations, but even in the most extreme wars, there
will usually be at least some common interest between the participants
(e.g., in ensuring that the planet survives).
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1 defects | 4 cooperates
. -3 1
j defects 3 1
. 0 -1
J cooperates 0 1
Table 1.2 . A payoff matrix for a game with no pure equilibrium.

For these reasons, some social scientists are sceptical about whether
zero-sum games exist in real-world scenarios (Zagare, 1984, p.22). Inter-
estingly, however, people interacting in many scenarios have a tendency
to treat them as if they were zero-sum. Below, we will see that in some
scenarios — where there is the possibility of mutually beneficial cooper-
ation — this type of behaviour can be damaging.

3.4. MIXED EQUILIBRIA

All the scenarios we have considered up to now have had solutions
in which the agents pick a single outcome, a single row or column in
the payoff matrix6. As discussed above, there are scenarios in which
agents that choose such pure strategies can arrive at Nash equilibrium
or other stable solutions. However, there are some situations in which
pure strategies will not give a stable solution. As an example, consider
the game decribed by the payoff matrix in Table 1.2.

This payoff matrix describes a zero sum game. If both 7 and j defect,
then 7 loses 3 and 5 wins 3. If 7 defects and j cooperates, then both get
a zero payoff. If 7 cooperates and j defects, ¢+ wins 1 and j loses 1, while
if both cooperate then the payoff is reversed. Thus neither agent has
one move it can make which is definitely better than the other—it all
depends on what the other agent does. The result of this arrangement
of payoffs is that neither agent can make a choice which holds up if the
other agent somehow finds out what the first agent is intending to do (a
situation that is sometimes referred to as having a spyproof strategy).

To see this, consider what each agent will chose to do. If ¢+ knew that
j would defect, then ¢ would choose to cooperate. However, if j knew
that ¢ would co-operate, then 5 would choose to cooperate. Similarly, if
¢ knew that j would cooperate, then it would choose to defect, while if
j knew that ¢ was planning to defect, then j would defect as well. So
any piece of information about what the other is intending (which, of
course, could be established by either agent by thinking about what it
would do in the other agent’s shoes) will cause an agent to change its
strategy.
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1 j defects 1

j cooperates

Figure 1.4. Determining a mixed strategy for Agent ¢.

So, rather than adopt a pure strategy, agents adopt a mized strategy
in which they take a random choice across a set of pure strategies. More
formally, agent 7 picks a vector of probabilities over the columns in the
payoff matrix that relate to the pure strategies it might choose. In
general, where agent ¢ has n possible strategies, it needs a vector:

C:(Clac27"'7cn)

chzl
k

where

and
c, >0

Agent ¢ then picks strategy k with probability ¢;. Any vector of prob-
abilities gives a mixed strategy. The question is how to obtain a good
mixed strategy. Clearly, for the 2 x 2 game we have here, 7 needs to
compute the best values of ¢; and co—the probabilities of defecting and
cooperating respectively. These will be the values which give ¢ the high-
est expected payoff for its mixed strategy. The diagram in Figure 1.4
is one way of thinking about solving the problem of picking a mixed
strategy for agent 7, which is fundamentally a problem of determining
the values of ¢; and ¢, which will maximise the agent’s expected utility.

The diagram plots expected utility on the vertical axis(axes), and the
probabilities ¢; and ¢y across the horizontal axis. If 7 chooses to play
the first row, in other words to defect, then i will get either —3 or 1
depending on its choice of column. When this choice is made randomly,
the expected payoff to i is the weighted sum:

y=—3c1+ c
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3 3
2 i defects 2
1 1
0 i cooperates 0
-1 -1
0 r 1
1 ry 0

Figure 1.5.  Determining a mixed strategy for Agent j.

which is the equation of the line joining 1 and —3 in Figure 1.4 (since
¢1 = 1 — ¢y). Similarly, if j chooses to play the second row, then the
expected payoff to i is between 0 and —1, depending on the probability
with which the two options available to i are selected, and is plotted by
the other line in Figure 1.4. The intersection of the two lines gives the
value of ¢; and ¢y (which is just 1 — ¢1) at which ¢ is indifferent as to
what j plays—whichever j chooses, the expected payoff to ¢ is the same.
This, then, yields a form of stability and the resulting values of ¢; and
co give the mixed strategy for i.
Agent j can analayse the problem in terms of a probability vector

r=(ry,n)

and come up with a similar picture (Figure 1.5).

Now, let’s consider the payoff’s the players will expect. With 7 having
mixed strategy (ci,c2) and j having (r, ), then the loss that i will
expect to make will be:

L = 3017‘1+0(1—7‘1)61
— 7‘1(1 — Cl) + (1 — Cl)(l — 7‘1)
= 561T1—2T‘1—Cl+1

Now, assuming that 7 uses c; = 0.4 as calculated above. Then:

L = 504r)—2m —c +1
= 0.6
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and ¢ will have an expected loss of 0.6. Similarly, we can calculate the
gain that j will expect to make as:

G = 3 +0(1—c¢)n
— 61(1 — 7‘1) + (1 — Cl)(l — ’I“1)
= beyrp —r1 —2c¢1+1

If j picks r{ = 0.2 then:
G =0.6

The neat thing is that the expected gain or loss for one agent does not
depend upon the strategy of the other agent—once the correct mixed
strategy has been determined, it no longer matters what the other agent
is going to do, the first agent still has the same expected outcome. This
result generalises to more general games, and Von Neumann’s Minimax
Theorem shows that you can always find a pair of mixed strategies z*
and y* which result in ¢ and j having the same expected value for the
game.

This theory is sufficient background for the rest of the book, but before
we leave the topic, it is worth considering the best-known multi-agent
scenario: the prisoner’s dilemma.

4. THE PRISONER’S DILEMMA

Consider the following scenario:

Two men are collectively charged with a crime and held in separate
cells. They have no way of communicating with each other or making
any kind of agreement. The two men are told that:

1 if one of them confesses to the crime and the other does not, the
confessor will be freed, and the other will be jailed for three years;
and

2 if both confess to the crime, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will each be
jailed for one year.

We refer to confessing as defection, and not confessing as cooperat-
ing, because we are viewing the problem from the point of view of the
prisoners—from the point of view of one of them, the best, most cooop-
erative, thing the other can do is to not confess.

There are four possible outcomes to the prisoner’s dilemma, depending
on whether the agents cooperate or defect, and so the environment is of
type (1). Abstracting from the scenario above, we can write down the
utility functions for each agent in the payoff matrix of Table 4. Note
that the numbers in the payoff matrix are not the length of the jail term.
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1 defects | ¢ cooperates
. 2 1
j defects 9 5
) cooperates 5 3
J p 1 3

Table 1.3 . A payoff matrix for the Prisoner’s Dilemma.

In other words, the utilities are as follows:

u,'(C',D)zl Ul(C,C):?)
)=1 u(C,D)=5 u;(C,C)=3

?

And the preferences are:

(D,C)=; (C,C) =i (D,D)=; (C,D)
(C,D) = (C,C) =; (D, D) =; (D, C)

So, what should a prisoner do? The answer is not as clear cut as the pre-
vious pure strategy examples we looked at. It is not the case a prisoner
prefers all the outcomes in which it cooperates over all the outcomes
in which it defects. Similarly, it is not the case that a prisoner prefers
all the outcomes in which it defects over all the outcomes in which it
cooperates.

The “standard” approach to this problem is to put yourself in the
place of a prisoner, ¢ say, and reason as follows:

Suppose I cooperate. Then if j cooperates, we will both get a payoff of
3. But if 5 defects, then I will get a payoff of one. So the best payoff I
can be guaranteed to get if I cooperate is 1.

Suppose I defect. Then if j cooperates, then I get a payoff of 5, whereas
if j defects, then I will get a payoff of 2. So the best payoff I can be
guaranteed to get if I defect is 2.

So, if I cooperate, the worst case is I will get a payoff of 1, whereas if I
defect, the worst case is that I will get 2.

Since I would prefer a payoff of 2 to a payoff of 1, I should defect.

Since the scenario is symmetric (i.e., both agents reason the same way),
then the outcome that will emerge — if both agents reason “rationally”
— is that both agents will defect, giving them each a payoff off 2.
Notice that neither strategy dominates in this scenario, so our first
route to finding a choice of strategy is not going to work. Turning to
Nash equilibria, there is a single Nash equilibrium of D, D. Thus under
the assumption that ¢ will play D, 7 can do no better than play D, and
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under the assumption that j will play D, ¢ can also do no better than
play D.

But is this the best they can do? Naive intuition says not. Surely if
they both cooperated, then they could do better — they would receive
a payoff of 3. But if you assume the other agent will cooperate, then
the rational thing to do — the thing that maximises your utility — is to
defect. The conclusion seems inescapable: the rational thing to do in the
prisoners dilemma is defect, even though this appears to “waste” some
utility. (The fact that our naive intuition tells us that utility appears
to be wasted here, and that the agents could do better by cooperating,
even though the rational thing to do is to defect, is why this is referred
to as a dilemma.)

The prisoners dilemma may seem an abstract problem, but it turns
out to be very common indeed. In the real world, the prisoners dilemma
appears in situations ranging from nuclear weapons treaty compliance
to negotiating with one’s children. Consider the problem of nuclear
weapons treaty compliance. Two countries ¢ and 7 have signed a treaty
to dispose of their nuclear weapons. Each country can then either co-
operate (= get rid of their weapons), or defect (= keep their weapons).
But if you get rid of your weapons, you run the risk that the other side
keeps theirs, making them very well off while you suffer what is called
the “suckers payoff”. In contrast, if you keep yours, then the possible
outcomes are that you will have nuclear weapons while the other country
does not (a very good outcome for you), or else at worst that you both
retain your weapons. This may not be the best possible outcome, but is
certainly better than you giving up your weapons while your opponent
kept theirs, which is what you risk if your give up your weapons.

Many people find the conclusion of this analysis — that the rational
thing to do in the prisoner’s dilemma is defect — deeply upsetting. For
the result seems to imply that cooperation can only arise as a result or
irrational behaviour, and that cooperative behaviour can be exploited
by those who behave rationally. The apparent conclusion is that nature
really is “red in tooth and claw”. Particularly for those who are in-
clined to a liberal view of the world, this is unsettling and perhaps even
distasteful. As civilized beings, we tend to pride ourselves on somehow
“rising above” the other animals in the world, and believe that we are
capable of nobler behaviour: to argue in favour of such an analysis is
therefore somehow immoral, and even demeaning to the entire human
race.

Naturally enough, there have been several attempts to respond to
this analysis of the prisoners dilemma, in order to “recover” coopera-
tion (Binmore, 1992, p.355-382).
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We Are Not All Machiavelli! The first approach is to argue that
we are not all such “hard boiled” individuals as the prisoner’s dilemma
(and more generally, this kind of game theoretic analysis) implies. We
are not seeking to constantly maximise our own welfare, possibly at the
expense of others. Proponents of this kind of argument typically point
to real-world examples of altruism and spontaneous, mutually-beneficial
cooperative behaviour in order to justify their claim.

There is some strength to this argument: we do not, (or at least, most
of us do not), constantly deliberate about how to maximise our welfare
without any consideration for the welfare of our peers. Similarly, in many
scenarios, we would be happy to trust our peers to recognise the value
of a cooperative outcome without even mentioning it to them, being no
more than mildly annoyed if we get the “sucker’s payoft”.

There are several counter responses to this. First, it is pointed out
that many real-world examples of spontaneous cooperative behaviour
are not really the prisoner’s dilemma. Frequently, there is some built in
mechanism that makes it in the interests of participants to cooperate.
For example, consider the problem of giving up your seat on the bus. We
will frequently give up our seat on the bus to an older person, mother
with children, etc., apparently at some discomfort (= loss of utility) to
ourselves. But it could be argued that in such scenarios, society has
ways of punishing non-cooperative behaviour: suffering the hard and
unforgiving stares of fellow passengers when we do not give up our seat,
or worse, being accused in public of being uncouth!

Second, it is argued that many “counter examples” of cooperative
behaviour arising do not stand up to inspection. For example, consider
a public transport system, which relies on everyone cooperating and
honestly paying their fare every time they travel, even though whether
or not they have paid is not verified. The fact that such a system works
(the buses turn up on time) would appear to be some evidence that
relying on spontaneous cooperative can work. But the fact that such
a system functions does not mean that the system is not exploited: it
will be, and if there is no means of checking whether or not someone
has paid their fare and punishing non-compliance, then all other things
being equal, those individuals that do exploit the system will be better
off. Unpalatable, perhaps, but true nevertheless.

The Other Prisoner is My Twin! A second line of attack is to argue
that two prisoner’s will “think alike”, and recognise that cooperation is
the best outcome. For example, suppose the two prisoners are twins,
inseparable since birth; then, it is argued, if their though processes are
sufficiently aligned, they will both recognise the benefits of cooperation,
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and behave accordingly. The answer to this is that it implies there
are not actually two prisoner’s playing the game. If I can make my twin
select a course of action simply by “thinking it”, then we are not playing
the prisoner’s dilemma at all.

This “fallacy of the twins” argument often takes the form “what if
everyone were to behave like that” (Binmore, 1992, p311). The answer,
as Yossarian pointed out in Joseph Heller’s Catch 22, is that if everyone
else behaved like that, you would be a damn fool to behave any other
way.

People Are Not Rational! Some would argue’, that we might in-
deed be happy to risk cooperation as opposed to defection when faced
with situations where the sucker’s payoff really does matter very much.
For example, paying a bus fare that amounts to a few pennies does not
really hurt us much, even if everybody else is defecting and hence ex-
ploiting the system. But, it is argued, when we are faced with situations
where the sucker’s payoff really hurts us — life or death situations and
the like — we will choose the “rational” course of action that maximises
our welfare, and defect.

The Shadow of the Future Lest the discussion so far prove too
depressing, it should be emphasised that there are quite natural variants
of the prisoner’s dilemma in which cooperation #s the rational thing
to do. One idea is to play the game more than once. In the iterated
prisoner’s dilemma, the “game” of the prisoner’s dilemma is played a
number of times. Each play is referred to as a “round”. Critically, it is
assumed that each agent can see what the opponent did on the previous
round: player i can see whether j defected or not, and j can see whether
i defected or not.

Now, for the sake of argument, assume that the agents will continue
to play the game forever: every round will be followed by another round.
Now, under these assumptions, what is the rational thing to do? If you
know that you will be meeting the same opponent in future rounds,
the incentive to defect appears to be considerably diminished, for two
reasons:

m  If you defect now, your opponent can punish you by also defecting.
Punishment is not possible in the one-shot prisoner’s dilemma.

s If you “test the water” by cooperating initially, and receive the
sucker’s payoff on the first round, then because you are playing the
game indefinitely, this loss of utility (one util) can be “amortized”
over the future rounds. When taken into the context of an infinite
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(or at least very long) run, then the loss of a single unit of utility
will represent a small percentage of the overall utility gained.

So, if you play the prisoner’s dilemma game indefinitely, then coopera-
tion is a rational outcome (Binmore, 1992, p358). The “shadow of the
future” encourages us to cooperate in the infinitely repeated prisoner’s
dilemma game.

This seems to be very good news indeed, as truly one-shot games
are comparatively scarce in real life. When we interact with someone,
then there is often a good chance that we will interact with them in the
future, and rational cooperation begins to look possible. However, there
is a catch.

Suppose you agree to play the iterated prisoner’s dilemma a fized
number of times, (say 100). You need to decide (presumably in advance)
what your strategy for playing the game will be. Consider the last round
(i.e., the 100th game). Now, on this round, you know — as does your
opponent — that you will not be interacting again. In other words,
the last round is in effect a one-shot prisoner’s dilemma game. As we
know from the analysis above, the rational thing to do in a one-shot
prisoner’s dilemma game is defect. Your opponent, as a rational agent,
will presumably reason likewise, and will also defect. On the 100th
round, therefore, you will both defect. But this means that the last
“real” round, is 99. But similar reasoning leads us to the conclusion that
this round will also be treated in effect like a one-shot prisoner’s dilemma,
and so on. Continuing this backwards induction leads inevitably to the
conclusion that, in the iterated prisoner’s dilemma with a fixed, pre-
determined number of rounds, defection is the dominant strategy, as in
the one-shot version (Binmore, 1992, p.354).

Whereas it seemed to be very good news that rational cooperation
is possible in the iterated prisoner’s dilemma with an infinite number
of rounds, it seems to be very bad news that this possibility appears to
evaporate if we restrict ourselves to repeating the game a pre-determined,
fixed number of times. Returning to the real-world, we know that in
reality, we will only interact with our opponents a finite number of times
(after all, one day the world will end). We appear to be back where we
started.

The story is actually better than it might at first appear, for several
reasons. The first is that actually playing the game an infinite num-
ber of times is not necessary. As long as the “shadow of the future”
looms sufficiently large, then it can encourage cooperation. So, rational
cooperation can become possible if both players know, with sufficient
probability, that they will meet and play the game again in the future.
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The second reason is that, even though a cooperative agent can suffer
when playing against a defecting opponent, it can do well overall pro-
vided it gets sufficient opportunity to interact with other cooperative
agents.

5. SUMMARY

In this chapter we have discussed some of the basic concepts in deci-
sion theory and game theory. Our intention was simply to make the rest
of the book comprehensible even for those who have not come across
either decision theory, or game theory, or both, in the past, and this
brief discussion stops short of being anything like a comprehensive in-
troduction to the topics. To do the latter would take a book as long as
this whole work (at the very least). However, for this who want to know
more then there are a number of places to look.

For information on game theory, one of the best places to start is
(Binmore, 1992). This is a very readable introduction from a leading
expert, and, being intended as a textbook, starts at the very beginning
and covers much of the game theory one is ever likely to need to know.
From a more specifically agent-oriented perspective, (Rosenschein and
Zlotkin, 1994) is a seminal work in the application of game theory to
multi-agent encounters, and (Kraus, 2001) is a deep and rigorous inves-
tigation of similar matters. In addition, (Sandholm, 1999) gives a good
general discussion of the use of game theory in designing multi-agent
systems, as well as related topics such as auction theory. Initial work
on the iterated prisoner’s dilemma was carried out by Axelrod (Axelrod,
1984), and this is recommended as a point of departure for further read-
ing on the topic. (Mor and Rosenschein, 1995) provides pointers into
recent prisoner’s dilemma literature. An non-mathematical introduction
to game theory, with an emphasis on the applications of game theory
in the social sciences, is (Zagare, 1984), and some of the early work in
game theory is surveyed in (Schwalbe and Walker, 2001)%.

The seminal introduction to decision theory is (Raiffa, 1968), and a
good, if slightly dogmatic, alternative is (Lindley, 1975). (Smith, 1999)
is not quite as detailed, but covers much of the relevant material and
is very easy to read. Bayesian networks are covered in detail by (Pearl,
1988), the first book on the subject, and by (Castillo et al., 1997; Cowell
et al., 1999; Jensen, 2001). The last two also cover influence diagrams
and so deal with network models for the whole of decision theory (in
contrast Pearl and Castillo et al. deal only with probability). Finally,
(Puterman, 1994) is a comprehensive introduction to Markov decision
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processes, but for work in this area much of the most relevant material
has only yet appeared in journal and conference papers.

Notes

1. You can calculate it as a ration of occurrence to the total number of events, but what
counts as an occurrence? It is clear when calculating the probability of getting heads when
tossing a coin, but much less obvious when, for example, estimating the probability of a
particualr disease giving certain symptoms. Even trickier is the question of how many events
you have to sum over. Typical definitions claim that you only truly know the probability if
you sum over an infinite number of events which presents obvious practical diffculties.

2. The key step in the argument as to why betting rates are a suitable way of determing
probabilities is that if the bettor misestimates the probability and so proposes a different
bet—say paying $0.4 for the chance of winning $1 when a occurs—then the person they are
betting with can exploit them. In particular, this second person can construct a Dutch book,
a set of bets which can win an arbitrarily large amount of money from the bettor. Thus, the
argument runs, the bettor will be motivated to get the probability right. The main problem
with this argument is that it places a considerable cognitive burden on whoever is establishing
the probability.

3. The notion of independence captured in the arcs of a Bayesian network is somewhat
more complex than that described here, but the difference is not relevant for the purposes of
this article. For full details, see (Pearl, 1988).

4. Indeed, in economics as a whole, very little thought is given to the question of where
preferences come from.

5. To misquote Martin Amis, the difference is clear—a cool million dollars.

6. How might an agent choose more than one row in the kind of framework we have been
considering? Well, as we will see in a very short while, it doesn’t, but at the same time it
doesn’t choose a single row either...

7. Ken Binmore certainly did at the UKMAS workshop in December 1998.

8. They also provide the first English translation of what is generally regarded as the first
paper on game theory.
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