
Chapter 1AN INTRODUCTION TOGAMETHEORYANDDECISION THEORYSimon ParsonsDepartment of Computer Siene, University of Liverpool, Liverpool L69 7ZF, UnitedKingdom.s.d.parsons�s.liv.a.ukMihael WooldridgeDepartment of Computer Siene, University of Liverpool, Liverpool L69 7ZF, UnitedKingdom.m.j.wooldridge�s.liv.a.ukAbstrat In the last few years, there has been inreasing interest from the agentommunity in the use of tehniques from deision theory and gametheory. Our aim in this artile is to briey summarise the key oneptsof deision theory and game theory and explain why they are usefulwhen building agent-based systems.Keywords: Game theory, deision theory, multi-agent systems1. INTRODUCTIONDeision theory (Rai�a, 1968) is a means of analysing whih of a seriesof options should be taken when it is unertain exatly what the resultof taking the option will be. Deision theory onentrates on identifyingthe \best" deision option, where the notion of \best" is allowed tohave a number of di�erent meanings, of whih the most ommon isthat whih maximises the expeted bene�t to the deision maker. Sineself-interested entities are assumed to be ating best when maximisingexpeted bene�ts, deision theory is often laimed to be able to make1



2 Game Theory and Deision Theory in Agent-based Systemsthe most rational hoie. Overall, deision theory provides a powerfultool with whih to analyse senarios in whih a deision must be made.Now, it is widely believed that the ruial issue in designing au-tonomous agents is how to provide those agents with the ability to seletthe best ation from a range of possible ations. Frequently the agentsin question are operating in an unprediatble, and hene unertain, en-vironment, and therefore deision theory seems a natural tool to use toanalyse their behaviour.Game theory (Binmore, 1992) is a lose relative of deision theory,whih studies interations between self-interested entities. In partiular,it studies the problems of how interation strategies an be designed thatwill maximise the welfare of an entity in an enounter, and how protoolsor mehanisms an be designed that have ertain desirable properties.In the same way that deision theory an be laimed to provide a meansof making rational deisions under unertainty, so game theory an belaimed to provide a rational means of analysing interations. Notiethat deision theory an be onsidered to be the study of games againstnature, where nature is an opponent that does not seek to gain the bestpayout, but rather ats randomly.In multi-agent systems, the issue of designing interation strategiesand mehanisms is very important, and so it omes as no surprise to learnthat game theory has been widely applied. Many of these appliationshave been to analyse negotiation and o-ordination mehanisms.2. DECISION THEORYClassial deision theory, so alled to distinguish it from a number ofnon-lassial theories whih have grown up in the last few years, is a setof mathematial tehniques for making deisions about what ation totake when the outomes of the various ations are not known. Althoughthe area grew up long before the onept of an intelligent agent wasoneived, suh agents are anonial examples of the deision makerswhih an usefully employ lassial deision theory.2.1. PROBABILITY THEORYAn agent operating in a omplex environment is inherently unertainabout that environment; it simply does not have enough informationabout the enviroment to know either the preise urrent state of itsenvironments, nor how that environment will evolve. Thus, for everyvariable Xi whih aptures some aspet of the urrent state of the envi-ronment, all the agent typially knows is that eah possible value xij ofeah Xi has some probability Pr(xij ) of being the urrent value of Xi .



Game Theory and Deision Theory 3Writing x for the set of all xij , we have:Pr : x 2 x 7! [0; 1℄and Xj Pr(xij ) = 1In other words, the probability Pr(xij ) is a number between 0 and 1 andthe sum of the probabilities of all the possible values of Xi is 1. If Xi isknown to have value xij then Pr(xij ) = 1 and if it is known not to havevalue xij then Pr(xij ) = 0.While this mathematial de�nition of probability is rather straightfor-ward, the same annot be said of the semantis of probability. Indeed,there is no universal agreement on what probabilities mean. Of the var-ious oniting shools of thought (Shafer, 1992), there are two mainpositions. The �rst, historially, interprets a probability as a frequenyof ourrene. This frequentisti approah takes that fat that an eventa has a probability of 0.356 to mean that 0.356 of the time it will o-ur. This sounds like a very straightforward interpretation until youonsider in more detail how suh a probability an be measured1 Theseond, Bayesian, position suggests that a probability is related to theodds that a rational person will bet on the event in question. Thus theprobability of a being 0.356 means that a rational person will pay $0.356to bet on a happening if they win $1 if a ours. This approah solvessome of the problems of the frequentisti interpretation (espeially whenestimating the probability of unique events) but has its own problems2.We will say no more about semantis here|all we say applies whateversemantis one hooses to use.Given two of these variables, X1 and X2, then the probabilities of thevarious values of X1 and X2 may be related to one another. If they arenot related, a ase we distinguish be referring to X1 and X2 as beingindependent, then for any two values x1i and x2j , we have:Pr(x1i ^ x2j ) = Pr(x1i ) Pr(x2j )If the variables are not independent, then:Pr(x1i ^ x2j ) = Pr(x1i jx2j ) Pr(x2j )where Pr(x1i jx2j ) is the probability of X1 having value x1i given that X2is known to take value x2j . Suh onditional probabilities apture therelationship between X1 and X2, representing, for instane, the fat thatx1i (the value \wet", say, of the variable \state of lothes") beomes
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Figure 1.1. An example Bayesian network.muh more likely when x2j (the value \raining" of the variable \weatherondition") is known to be true.If we take the set of these Xi of whih the agent is aware, the set X,then for eah pair of variables in X we an establish whether the pairare independent or not. We an then build up a graph in whih eahnode orresponds to a variable in X and an ar joins two nodes if thevariables represented by those nodes are not independent of eah other.The resulting graph is known as a Bayesian network3 (Pearl, 1988), andthe graphial struture provides a onvenient omputational frameworkin whih to alulate the probabilities of interest to the agent. In general,the agent will have some set of variables whose values it an observe,and one these observations have been taken, will want to alulate theprobabilities of the various values of some other set of variables.Figure 1.1 is an example of a fragment of a Bayesian network fordiagnosing faults in ars. It represents the fat that the age of the battery(represented by the node battery old ) has a probabilisti inuene onhow good the battery is, and that this in turn has an inuene on whetherthe battery is operational (battery ok), the latter being a�eted also bywhether the alternator is working and, as a result, whether the batteryis reharged when the ar moves. The operational state of the batterya�ets whether the radio and lights will work. In this network it isexpeted that the observations that an be arried out are those relatingto the lights and the radio (and possibly the age of the battery), and thatthe result of these observations an be propagated through the networkto establish the probability of the alternator being okay and the batterybeing good. In this ase these latter variables are the ones whih we areinterested in sine they relate to �xing the ar.



Game Theory and Deision Theory 5Typially the variables an agent will be interested in are those thatrelate to its goals. For instane, the agent may be interested in hoos-ing an ation that will allow it to ahieve a goal, and might thereforebe interested in hoosing that ation whih has the greatest hane ofsueeding in ahieving that goal. When the agent has many goals itould ahieve, this strategy ould be extended to make the agent hooseto ahieve the goal whih has the greatest hane of being ahieved, andto do this by applying the ation whih gives this greatest hane.However, building an agent whih follows this strategy is somewhatshortsighted sine the agent will not onsider the value of the goals, andwill therefore hoose a goal whih is easy to ahieve, but worthless, overa goal whih is hard to ahieve but very valuable. To take aount ofthis problem, deision theory ke aount of an agent's preferenes. Todo this, it makes use of the idea of utility.2.2. UTILITY THEORYWe start from the assumption that eah agent (or deision maker)has its own preferenes and desires about how the world is. For themoment, we will not be onerned with where these preferenes omefrom4; we will just assume that they are the preferenes of the agent'suser or owner. Next, we will assume that there is a set 
 = f!1; !2; : : :gof \outomes" or \states" that the agents have preferenes over.We will formally apture the preferenes that an agent has by meansof a utility funtion, whih assigns to every outome a real number,indiating how \good" the outome is. The larger the number the betterfrom the point of view of the agent with the utility funtion. Thus thepreferenes of an agent i will be aptured by a funtionui : 
! <It is not diÆult to see that suh a utility funtion leads to a prefereneordering over outomes. For example, if ! and !0 are both possibleoutomes in 
, and ui(!) � ui(!0), then outome ! is preferred byagent i at least as muh as !0. We an introdue a bit more notation toapture this preferene ordering. We write! �i !0as an abbreviation for ui (!) � ui (!0)Similarly, if ui(!) > ui (!0), then outome ! is stritly preferred by agenti over !0. We write



6 Game Theory and Deision Theory in Agent-based Systems! �i !0as an abbreviation for ui(!) > ui(!0):In other words,! �i !0 i� ui (!) � ui (!0) and not ui(!) = ui(!0):We an see that the relation �i really is a (partial) ordering, in thatit has the following properties:Reexivity: For all ! 2 
, we have that ! �i !.Transitivity: If ! �i !, and !0 �i !00, then !0 �i !00.Comparability: For all ! 2 
, and !0 2 
 we have that either ! �i !0or !0 �i !.The strit preferene relation will satisfy the seond and third of theseproperties, but will learly not be reexive.Undoubtedly the simplest way to think about utilities is as money;the more money, the better. However, it is deeptive to think that thisis all that utilities are. Utility funtions are a way of representing anagent's preferenes. They do not simply equate to money.To see why this is the ase, suppose (and this really is a supposition)that the authors have US$500 million in the bank, while you, the reader,are absolutely penniless. A generous and rih benefator appears, withone million dollars, whih he generously wishes to donate to one or moreof us. If the benefator gives the dollar to the authors, what will theinrease in the utility of our situation be? Well, we will have more money,so there will learly be some inrease in our utility. But there will not bemuh: after all, there is not muh that you an do with US$501 millionthat you annot do with US$500 million. In ontrast, if the benefatorgave the money to you, the inrease in your utility would be enormous;you would go from having no money at all to being a millionaire. Thatis a big di�erene5.This works the other way as well. Suppose the authors are in debt tothe tune of US$500 million; well, there is frankly not that muh di�erenein utility between owing US$500 million and owing US$499 million; theyare both pretty bad. In ontrast, there is a very big di�erene betweenbeing US$1 million in debt and not being in debt at all. A graph of therelationship between utility and money is shown in Figure 1.2.
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Figure 1.2. The relationship between money and utility.So, to summarise, a utility is a value whih is assoiated with a stateof the world, and whih represents the value that the agent plaes onthat state of the world. Utilities provide a onvenient means of enod-ing the preferenes of an agent; as von Neumann and Morgenstern (vonNeumann and Morgenstern, 1944) showed, it is possible to de�ne utilityfuntions that faithfully enode preferenes suh that a state Si is pre-ferred to Sj , if and only if it has a higher utility for the agent exatly asdesribed above.2.3. EXPECTED UTILITYNow, we an onsider that our agent has a set of possible ationsA, eah member Ai of whih has a range of possible outomes sine theations are not deterministi. The value of taking a partiular ation willdepend upon what the state of the world is|it is of little value arryinga surfboard when taking a trip aross the Sahara, but it is extremelyvaluable arrying a surfboard when taking a trip aross Bondi Beah|and so in hoosing whih ation to undertake, our agent will need tolook at the value of U (Sj ) where Sj is the state it is in after the ation.Doing this for eah possible ation, the agent an then hoose the ationwhih leads to the state it values most. We an ertainly build an agentwhih works in this way, and it would unerringly hoose to ahieve thegoal with the highest value as enoded by its utility funtion. However



8 Game Theory and Deision Theory in Agent-based Systemsit would be just as awed as an agent whih only tried to ahieve themost likely goal, trying to ahieve the most valuable goal irrespetive ofthe diÆulty of that goal.To build more sensible agents we ombine probability and utility al-ulations for eah ation and alulate the expeted utility of eah. Thisamounts to alulating a weighted average of the utility of eah out-ome, where the weight is the probability of that outome given theation being performed. Sine eah outome is itself a state, we have:EU (Ai) = XSj2SPr(Sj jAi)U (Sj )where S is the set of all states. The agent then selets ation A� where:A� = arg maxAi2A XSj2SPr(Sj jAi)U (Sj )Now, these states whih are being onsidered here are just partiularinstantiations of the set of state variables X. Thus the probabilitiesin this alulation are just the probabilities of the Xi having partiularvalues given the ations.Harking bak to the disussion of Bayesian networks above, we anthink of the Xi as being strutured as a graph, dropping the distintionbetween variables and the nodes in the graph whih represent them.The Ai an be brought into the graph as well, as a di�erent kind of node(square, perhaps, in ontrast to the usual round ones relating to the Xi)linked to the Xi whose values they inuene. We an also inorporateutilities. This time we only require a single node (a hexagon, to keep itdistint from the others), and this is linked to those Xi whih a�et itsvalue. Suh a graphial struture neatly aptures all the dependeniesin an expeted utility alulation, and is known as an inuene diagram(Howard and Matheson, 1984).Figure 1.3 is an example of a small inuene diagram apturing adeision problem whih a ompany has to make about its researh anddevelopment budget. Sine the budget is the thing the deision is beingmade about, it is represented by a square deision node. This is linkedto the fators it diretly e�ets, namely the tehnial suess of the om-pany's produts and their overall pro�tability, that latter being apturedby the hexagonal value node. The remaining nodes are hane nodes andrepresent the other fators whih relate to the deision. These are justlike nodes in a Bayesian network. Given a partiular instantiation of thedeision node, the relevant values an be propagated through the net-work, using an algorithm suh as Shater's graph redution algorithm(Shahter, 1986) to establish the expeted utility of the deision.
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Figure 1.3. An example inuene diagram.2.4. DECISION THEORY AND AGENTSGiven that the basi mehanisms of deision theory �t so neatly intothe ontext of intelligent agents, it is perhaps surprising that they havenot been more widely employed in the �eld. However, agent systemswhih use deision theory seriously (that is adopting the notions of prob-ability and utility) are rather sare. One sub-area of deision theory is,however, beoming popular and that is the �eld of Markov deision pro-esses (MDPs), disussed in detail in (Boutilier et al., 1999). In essenean MDP is an iterative set of lassial deision problems. Consider astate of the world as a node in a graph. Carrying out an ation in thatstate will result in a transition to one of a number of states, eah on-neted to the �rst state by an ar, with some probability, and inur someost. After a series of transitions a goal state may be reahed, and thesequene of ations exeuted to do this is known as a poliy. Solving anMDP amounts to �nding a minimal ost poliy for moving from someinitial state to a goal state.MDPs apture many of the faets of real world problems, but unre-alistially assume that whatever system is solving the MDP knows atevery point what state it is in. This amounts to assuming that it is pos-sible to measure some aspet of the world and from this measurementtell preisely what state the world is in. This is rarely the ase; it is farmore likely is that from the measurement something an be unertainlyinferred about the world. In suh a situation, the states of an MDP arereplaed by beliefs about those states, and we have a partially observ-able Markov deision proess (POMDP). Beause they an apture somany real situations, POMDPs are urrently a hot topi in agent re-



10 Game Theory and Deision Theory in Agent-based Systemssearh, despite the fat that they are intratable for all but the smallestproblems.3. GAME THEORYGame theory is a branh of eonomis that studies interations be-tween self-interested agents. Like deision theory, with whih it sharesmany onepts, game theory has its roots in the work of von Neumannand Morgenstern (von Neumann and Morgenstern, 1944). As its namesuggests, the basi onepts of game theory arose from the study ofgames suh as hess and hekers. However, it rapidly beame lear thatthe tehniques and results of game theory an equally be applied to allinterations that our between self-interested agents.The lassi game theoreti question asked of any partiular multi-agent enounter is: What is the best | most rational | thing an agentan do? In most multi-agent enounters, the overall outome all dependritially on the hoies made by all agents in the senario. This impliesthat in order for an agent to make the hoie that optimises its outome,it must reason strategially. That is, it must take into aount the de-isions that other agent may make, and must assume that they will atso as to optimise their own outome. Game theory gives us a way offormalising and analysing suh onerns.3.1. MULTIAGENT ENCOUNTERSFirst, let us simplify things by assuming that we have just two agents;things tend to be muh more ompliated when we have more than two.Call these agents i and j respetively. Eah of the agents is assumedto be self-interested. That is, eah agent has its own preferenes anddesires about how the world is, and these are enoded as utilities. Wealso need to introdue a model of the environment in whih these agentswill at. The idea is that out two agents will simultaneously hoose anation to perform in the environment, and as a result of the ations theyselet, an outome in 
 will result. The atual outome that will resultwill depend on the partiular ombination of ations performed. We willalso assume that the agents have no hoie about whether to perform anation | they have to simply go ahead and perform one. Further, it isassumed that they annot see the ation performed by the other agent.To make the analysis a bit easier, we will assume that eah agent hasjust two possible ations that it an perform. We will all these twoations C , for \ooperate", and \D", for \defet". (The rationale forthis terminology will beome lear below.) Let A = fC ;Dg the set of



Game Theory and Deision Theory 11these ations. The way the environment behaves is then determined bya funtion Env : A|{z}agent i 's ation� A|{z}agent j 's ation! 
In other words, on the basis of the ation (either C or D) seleted byagent i , and the ation (also either C or D) hosen by agent j .Here is an example of an environment funtion:Env(D ;D) = !1 Env(D ;C ) = !2Env(C ;D) = !3 Env(C ;C ) = !4 (1)This environment maps eah ombination of ations to a di�erent out-ome. This environment is thus sensitive to the ations that eah agentperforms. At the other extreme, we an onsider an environment thatmaps eah ombination of ations to the same outome.Env(D ;D) = !1 Env(D ;C ) = !1Env(C ;D) = !1 Env(C ;C ) = !1 (2)In this environment, it does not matter what the agents do: the outomewill be the same. Neither agent has any inuene in suh a senario. Wean also onsider an environment that is only sensitive to the ationsperformed by one of the agents.Env(D ;D) = !1 Env(D ;C ) = !2Env(C ;D) = !1 Env(C ;C ) = !2 (3)In this environment, it does not matter what agent i does: the outomedepends solely on the ation performed by j . If j hooses to defet, thenoutome !1 will result; if j hooses to ooperate, then outome !2 willresult.The interesting story begins when we put an environment togetherwith the preferenes that agents have. To see what we mean by this,suppose we have the most general ase, haraterised by (1), where bothagents are able to exert some inuene over the environment. Now letus suppose that the agents have utility funtions de�ned as follows:ui(!1) = 1 ui (!2) = 1 ui(!3) = 4 ui (!4) = 4uj (!1) = 1 uj (!2) = 4 uj (!3) = 1 uj (!4) = 4 (4)Sine we know that every di�erent ombination of hoies by the agentsare mapped to a di�erent outome, we an abuse notation somewhat bywriting the following:



12 Game Theory and Deision Theory in Agent-based Systemsui (D ;D) = 1 ui(D ;C ) = 1 ui(C ;D) = 4 ui(C ;C ) = 4uj (D ;D) = 1 uj (D ;C ) = 4 uj (C ;D) = 1 uj (C ;C ) = 4 (5)We an then haraterise agent i 's preferenes over the possible outomesin the following way:(C ;C ) �i (C ;D) �i (D ;C ) �i (D ;D) (6)Now, onsider the following question:If you were agent i in this senario, what would you hoose to do |ooperate or defet?In this ase, the answer is pretty unambiguous. Agent i prefers all theoutomes in whih it ooperates over all the outomes in whih it defets.Agent i 's hoie is thus lear: it should ooperate. It does not matterwhat agent j hooses to do.For agent j , the story is the same: we an write j 's preferenes asfollows. (C ;C ) �i (D ;C ) �i (C ;D) �i (D ;D)In just the same way, agent j prefers all the outomes in whih it o-operates over all the outomes in whih it defets. Notie that in thissenario, neither agent has to expend any e�ort worrying about whatthe other agent will do: the ation it should perform does not dependin any way on what the other does.If both agents in this senario at rationally, that is, they both hooseto perform the ation that will lead to their preferred outomes, thenthe \joint" ation seleted will be (C ;C ): both agents will ooperate.Now suppose that, for the same environment, the agents' utility fun-tions were as follows:ui (D ;D) = 4 ui(D ;C ) = 4 ui(C ;D) = 1 ui(C ;C ) = 1uj (D ;D) = 4 uj (D ;C ) = 1 uj (C ;D) = 4 uj (C ;C ) = 1 (7)Agent i 's preferenes over the possible outomes are thus as follows:(D ;D) �i (D ;C ) �i (C ;D) �i (C ;C )Agent j 's preferenes are:(D ;D) �i (C ;D) �i (D ;C ) �i (C ;C )In this senario, agent i an do no better than to defet. The agentprefers all the outomes in whih it defets over all the outomes in



Game Theory and Deision Theory 13i defets i ooperatesj defets 44 05j ooperates 11 33Table 1.1 . A payo� matrix with dominant strategies.whih it ooperates. Similarly, agent j an do no better than defet: italso prefers all the outomes in whih it defets over all the outomesin whih it ooperates. One again, the agents do not need to engagein strategi thinking (worrying about what the other agent will do): thebest ation to perform is entirely independent of the other agent's hoie.I emphasise that in most multiagent senarios, the hoie an agent shouldmake is not so lear ut; indeed, most are muh more diÆult.We an neatly summarise the previous interation senario by makinguse of a standard game theoreti notation known as a payo� matrix, asin Table 1.1. The way to read suh a payo� matrix is as follows. Eahof the four ells in the matrix orresponds to one of the four possibleoutomes. For example, the top-right ell orresponds to the outomein whih i ooperates and j defets; the bottom-left ell orresponds tothe outome in whih i defets and j ooperates. The payo�s reeivedby the two agents are written in the ell. The value in the top-right ofeah ell is the payo� reeived by player i (the olumn player), whilethe value in the bottom left of eah ell is the payo� reeived by agent j(the row player). Thus in Table 1.1, if i ooperates and j defets, j gets5 and i gets 0. As payo� matries are standard in the literature, and area muh more suint notation than the alternatives, we will use themas standard in the remainder of this hapter.Before proeeding to onsider any spei� examples of multiagent en-ounter, let us introdue some of the theory that underpins the kind ofanalysis we have informally disussed above.3.2. DOMINANT STRATEGIES AND NASHEQUILIBRIAGiven a partiular multiagent enounter involving two agents i andj , there is one ritially important question that both agents want an-swered: What should I do? We have already seen some multiagent en-ounters, and informally argued what the best possible outome shouldbe. In this setion, we will de�ne some of the onepts that are used inanswering this question.



14 Game Theory and Deision Theory in Agent-based SystemsThe �rst onept we will introdue is that of dominane. To under-stand what is meant by dominane, suppose we have two subsets of
, whih we refer to as 
1 and 
2 respetively. We will say that 
1dominates 
2 for agent i if every outome in 
1 is preferred over everyoutome in 
2. For example, suppose that:
 = f!1; !2; !3; !4g;!1 �i !2 �i !3 �i !4;
1 = f!1; !2g; and
2 = f!3; !4g.Then 
1 strongly dominates 
2 sine !1 �i !3, !1 �i !4, !2 �i !3, and!2 �i !4. However, 
2 does not strongly dominate 
1, sine (for exam-ple), it is not the ase that !3 �i !1. Formally, 
1 strongly dominates
2 i� the following ondition is true:8!1 2 
1;8!2 2 
2; we have !1 �i !2:Now, in order to bring ourselves in line with the game theory literature,we will start referring to ations (members of the set A) as strategies.Given any partiular strategy s for an agent i in a multiagent interationsenario, there will be a number of possible outomes. Let us denote bys� the outomes that may arise by i playing strategy s. For example,referring to the example environment in equation (1), from agent i 'spoint of view we have C � = f!3; !4g, while D� = f!1; !2g.Now, we will say a strategy s1 dominates a strategy s2 if the set ofoutomes possible by playing s1 dominates the set possible by playings2, that is, if s�1 dominates s�2 . Again, referring bak to the example of(6), it should be lear that, for agent i , \ooperate" strongly dominates\defet". Indeed, as there are only two strategies available, the oop-erate strategy is dominant : it is not dominated by any other strategy.The presene of a dominant strategy makes the deision about what todo extremely easy: the agent guarantees its best outome by perform-ing the dominant strategy. In following a dominant strategy, an agentguarantees itself the best possible payo�.Another way of looking at dominane is that if a strategy s is domi-nated by another strategy s 0, then a rational agent will not follow s (be-ause it an guarantee to do better with s 0). When onsidering what todo, this allows us to delete dominated strategies from our onsideration,simplifying the analysis onsiderably. The idea is to iteratively onsidereah strategy s in turn, and if there is another remaining strategy thatstrongly dominates it, then to delete strategy s from onsideration. If we



Game Theory and Deision Theory 15end up with a single strategy remaining, then this will be the dominantstrategy, and is learly the rational hoie. Unfortunately, for many in-teration senarios, there will not be a strongly dominant strategy; afterdeleting strongly dominated strategies, we may �nd more than one strat-egy remaining. What to do then? Well, we an start to delete weaklydominated strategies. A strategy s1 is said to weakly dominate strategys2 if every outome s�1 is preferred at least as muh as every outomes�2 . The problem is that if a strategy is only weakly dominated, thenit is not neessarily irrational to use it; in deleting weakly dominatedstrategies, we may therefore \throw away" a strategy that would in fathave been useful to use.The next notion we shall disuss is one of the most important oneptsin the game theory literature, and in turn is one of the most importantonepts in analysing multiagent systems. The notion is that of equi-librium, and more spei�ally, Nash equilibrium. The intuition behindequilibrium is perhaps best explained by example. Every time you drivea ar, you need to deide whih side of the road to drive on. The hoie isnot a very hard one: if you are in the uk, for example, you will probablyhoose to drive on the left; if you are in the us or ontinental Europe,you will drive on the right. The reason the hoie is not hard is thatit is a Nash equilibrium strategy. Assuming everyone else is driving onthe left, you an do no better than drive on the left also. From everyoneelse's point of view, assuming you are driving on the left then everyoneelse an do no better than drive on the left also.In general, we will say that two strategies s1 and s2 are in Nash equi-librium if:1 under the assumption that agent i plays s1, agent j an do nobetter than play s2; and2 under the assumption that agent j plays s2, agent i an do nobetter than play s1.The mutual form of an Equilibrium is important beause it \loks theagents in" to a pair of strategies. Neither agent has any inentive todeviate from a Nash equilibrium. To see why, suppose s1; s2 are a pair ofstrategies in Nash equilibrium for agents i and j respetively, and thatagent j hooses to play some other strategy: s3 say. Then by de�nition,i will do no better, and may possibly do worse than it would have doneby playing s1.The presene of a Nash equilibrium pair of strategies in a game mightappear to be the de�nitive answer to the question of what to do in anygiven senario. Unfortunately, there are two important results in thegame theory literature whih serve to make life diÆult:



16 Game Theory and Deision Theory in Agent-based Systems1 Not every interation senario has a Nash equilibrium.If there is no Nash equilibrium, then it may be possible to look fora mixed equilibrium as desribed in the next setion.2 Some interation senarios have more than one Nash equilibrium.Despite these negative results, the notion of a Nash equilibrium is anextremely important onept, and will be useful in the analysis thatfollows.3.3. COMPETITIVE AND ZERO-SUMINTERACTIONSSuppose we have some senario in whih an outome ! 2 
 is preferredby agent i over an outome !0 if, and only if, !0 is preferred over ! byagent j . Formally, ! �i !0 if and only if !0 �j !:The preferenes of the players are thus diametrially opposed to one-another: one agent an only improve its lot (i.e., get a more preferredoutome) at the expense of the other. An interation senario thatsatis�es this property is said to be stritly ompetitive, for hopefullyobvious reasons.Zero-sum enounters are those in whih, for any partiular outome,the utilities of the two agents sum to zero. Formally a senario is saidto be zero sum if the following ondition is satis�ed:ui(!) + uj (!) = 0 for all ! 2 
:It should be easy to see that any zero sum senario is stritly ompetitive.Zero sum enounters are important beause they are the most \viious"types of enounter oneivable, allowing for no possibility of ooperativebehaviour. If you allow your opponent positive utility, then this meansthat you get negative utility | intuitively, you are worse o� than youwere before the interation.Games suh as hess and hequers are the most obvious examples ofstritly ompetitive interations. Indeed, any game in whih the pos-sible outomes are win or lose will be stritly ompetitive. Outsidethese rather abstrat settings, however, it is hard to think of real-worldexamples of zero-sum enounters. War might be ited as a zero suminteration between nations, but even in the most extreme wars, therewill usually be at least some ommon interest between the partiipants(e.g., in ensuring that the planet survives).



Game Theory and Deision Theory 17i defets i ooperatesj defets �33 1�1j ooperates 00 �11Table 1.2 . A payo� matrix for a game with no pure equilibrium.For these reasons, some soial sientists are septial about whetherzero-sum games exist in real-world senarios (Zagare, 1984, p.22). Inter-estingly, however, people interating in many senarios have a tendenyto treat them as if they were zero-sum. Below, we will see that in somesenarios | where there is the possibility of mutually bene�ial ooper-ation | this type of behaviour an be damaging.3.4. MIXED EQUILIBRIAAll the senarios we have onsidered up to now have had solutionsin whih the agents pik a single outome, a single row or olumn inthe payo� matrix6. As disussed above, there are senarios in whihagents that hoose suh pure strategies an arrive at Nash equilibriumor other stable solutions. However, there are some situations in whihpure strategies will not give a stable solution. As an example, onsiderthe game deribed by the payo� matrix in Table 1.2.This payo� matrix desribes a zero sum game. If both i and j defet,then i loses 3 and j wins 3. If i defets and j ooperates, then both geta zero payo�. If i ooperates and j defets, i wins 1 and j loses 1, whileif both ooperate then the payo� is reversed. Thus neither agent hasone move it an make whih is de�nitely better than the other|it alldepends on what the other agent does. The result of this arrangementof payo�s is that neither agent an make a hoie whih holds up if theother agent somehow �nds out what the �rst agent is intending to do (asituation that is sometimes referred to as having a spyproof strategy).To see this, onsider what eah agent will hose to do. If i knew thatj would defet, then i would hoose to ooperate. However, if j knewthat i would o-operate, then j would hoose to ooperate. Similarly, ifi knew that j would ooperate, then it would hoose to defet, while ifj knew that i was planning to defet, then j would defet as well. Soany piee of information about what the other is intending (whih, ofourse, ould be established by either agent by thinking about what itwould do in the other agent's shoes) will ause an agent to hange itsstrategy.
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Figure 1.4. Determining a mixed strategy for Agent i .So, rather than adopt a pure strategy, agents adopt a mixed strategyin whih they take a random hoie aross a set of pure strategies. Moreformally, agent i piks a vetor of probabilities over the olumns in thepayo� matrix that relate to the pure strategies it might hoose. Ingeneral, where agent i has n possible strategies, it needs a vetor: = (1; 2; : : : ; n)where Xk k = 1and k � 0Agent i then piks strategy k with probability k . Any vetor of prob-abilities gives a mixed strategy. The question is how to obtain a goodmixed strategy. Clearly, for the 2 � 2 game we have here, i needs toompute the best values of 1 and 2|the probabilities of defeting andooperating respetively. These will be the values whih give i the high-est expeted payo� for its mixed strategy. The diagram in Figure 1.4is one way of thinking about solving the problem of piking a mixedstrategy for agent i , whih is fundamentally a problem of determiningthe values of 1 and 2 whih will maximise the agent's expeted utility.The diagram plots expeted utility on the vertial axis(axes), and theprobabilities 1 and 2 aross the horizontal axis. If j hooses to playthe �rst row, in other words to defet, then i will get either �3 or 1depending on its hoie of olumn. When this hoie is made randomly,the expeted payo� to i is the weighted sum:y = �31 + 2
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Figure 1.5. Determining a mixed strategy for Agent j .whih is the equation of the line joining 1 and �3 in Figure 1.4 (sine1 = 1 � 2). Similarly, if j hooses to play the seond row, then theexpeted payo� to i is between 0 and �1, depending on the probabilitywith whih the two options available to i are seleted, and is plotted bythe other line in Figure 1.4. The intersetion of the two lines gives thevalue of 1 and 2 (whih is just 1 � 1) at whih i is indi�erent as towhat j plays|whihever j hooses, the expeted payo� to i is the same.This, then, yields a form of stability and the resulting values of 1 and2 give the mixed strategy for i .Agent j an analayse the problem in terms of a probability vetorr = (r1; r2)and ome up with a similar piture (Figure 1.5).Now, let's onsider the payo�'s the players will expet. With i havingmixed strategy (1; 2) and j having (r1; r2), then the loss that i willexpet to make will be:L = 31r1 + 0(1� r1)1� r1(1� 1) + (1� 1)(1� r1)= 51r1 � 2r1 � 1 + 1Now, assuming that i uses �1 = 0:4 as alulated above. Then:L = 5(0:4r1)� 2r1 � 1 + 1= 0:6



20 Game Theory and Deision Theory in Agent-based Systemsand i will have an expeted loss of 0:6. Similarly, we an alulate thegain that j will expet to make as:G = 31r1 + 0(1� 1)r1� 1(1� r1) + (1� 1)(1� r1)= 51r1 � r1 � 21 + 1If j piks r�1 = 0:2 then: G = 0:6The neat thing is that the expeted gain or loss for one agent does notdepend upon the strategy of the other agent|one the orret mixedstrategy has been determined, it no longer matters what the other agentis going to do, the �rst agent still has the same expeted outome. Thisresult generalises to more general games, and Von Neumann's MinimaxTheorem shows that you an always �nd a pair of mixed strategies x �and y� whih result in i and j having the same expeted value for thegame.This theory is suÆient bakground for the rest of the book, but beforewe leave the topi, it is worth onsidering the best-known multi-agentsenario: the prisoner's dilemma.4. THE PRISONER'S DILEMMAConsider the following senario:Two men are olletively harged with a rime and held in separateells. They have no way of ommuniating with eah other or makingany kind of agreement. The two men are told that:1 if one of them onfesses to the rime and the other does not, theonfessor will be freed, and the other will be jailed for three years;and2 if both onfess to the rime, then eah will be jailed for two years.Both prisoners know that if neither onfesses, then they will eah bejailed for one year.We refer to onfessing as defetion, and not onfessing as ooperat-ing, beause we are viewing the problem from the point of view of theprisoners|from the point of view of one of them, the best, most ooop-erative, thing the other an do is to not onfess.There are four possible outomes to the prisoner's dilemma, dependingon whether the agents ooperate or defet, and so the environment is oftype (1). Abstrating from the senario above, we an write down theutility funtions for eah agent in the payo� matrix of Table 4. Notethat the numbers in the payo� matrix are not the length of the jail term.



Game Theory and Deision Theory 21i defets i ooperatesj defets 22 15j ooperates 51 33Table 1.3 . A payo� matrix for the Prisoner's Dilemma.In other words, the utilities are as follows:ui(D ;D) = 2 ui(D ;C ) = 5 ui(C ;D) = 1 ui(C ;C ) = 3uj (D ;D) = 2 uj (D ;C ) = 1 uj (C ;D) = 5 uj (C ;C ) = 3And the preferenes are:(D ;C ) �i (C ;C ) �i (D ;D) �i (C ;D)(C ;D) �j (C ;C ) �j (D ;D) �j (D ;C )So, what should a prisoner do? The answer is not as lear ut as the pre-vious pure strategy examples we looked at. It is not the ase a prisonerprefers all the outomes in whih it ooperates over all the outomesin whih it defets. Similarly, it is not the ase that a prisoner prefersall the outomes in whih it defets over all the outomes in whih itooperates.The \standard" approah to this problem is to put yourself in theplae of a prisoner, i say, and reason as follows:Suppose I ooperate. Then if j ooperates, we will both get a payo� of3. But if j defets, then I will get a payo� of one. So the best payo� Ian be guaranteed to get if I ooperate is 1.Suppose I defet. Then if j ooperates, then I get a payo� of 5, whereasif j defets, then I will get a payo� of 2. So the best payo� I an beguaranteed to get if I defet is 2.So, if I ooperate, the worst ase is I will get a payo� of 1, whereas if Idefet, the worst ase is that I will get 2.Sine I would prefer a payo� of 2 to a payo� of 1, I should defet.Sine the senario is symmetri (i.e., both agents reason the same way),then the outome that will emerge | if both agents reason \rationally"| is that both agents will defet, giving them eah a payo� o� 2.Notie that neither strategy dominates in this senario, so our �rstroute to �nding a hoie of strategy is not going to work. Turning toNash equilibria, there is a single Nash equilibrium of D ;D . Thus underthe assumption that i will play D , j an do no better than play D , and



22 Game Theory and Deision Theory in Agent-based Systemsunder the assumption that j will play D , i an also do no better thanplay D .But is this the best they an do? Naive intuition says not. Surely ifthey both ooperated, then they ould do better | they would reeivea payo� of 3. But if you assume the other agent will ooperate, thenthe rational thing to do | the thing that maximises your utility | is todefet. The onlusion seems inesapable: the rational thing to do in theprisoners dilemma is defet, even though this appears to \waste" someutility. (The fat that our naive intuition tells us that utility appearsto be wasted here, and that the agents ould do better by ooperating,even though the rational thing to do is to defet, is why this is referredto as a dilemma.)The prisoners dilemma may seem an abstrat problem, but it turnsout to be very ommon indeed. In the real world, the prisoners dilemmaappears in situations ranging from nulear weapons treaty omplianeto negotiating with one's hildren. Consider the problem of nulearweapons treaty ompliane. Two ountries i and j have signed a treatyto dispose of their nulear weapons. Eah ountry an then either o-operate (= get rid of their weapons), or defet (= keep their weapons).But if you get rid of your weapons, you run the risk that the other sidekeeps theirs, making them very well o� while you su�er what is alledthe \sukers payo�". In ontrast, if you keep yours, then the possibleoutomes are that you will have nulear weapons while the other ountrydoes not (a very good outome for you), or else at worst that you bothretain your weapons. This may not be the best possible outome, but isertainly better than you giving up your weapons while your opponentkept theirs, whih is what you risk if your give up your weapons.Many people �nd the onlusion of this analysis | that the rationalthing to do in the prisoner's dilemma is defet | deeply upsetting. Forthe result seems to imply that ooperation an only arise as a result orirrational behaviour, and that ooperative behaviour an be exploitedby those who behave rationally. The apparent onlusion is that naturereally is \red in tooth and law". Partiularly for those who are in-lined to a liberal view of the world, this is unsettling and perhaps evendistasteful. As ivilized beings, we tend to pride ourselves on somehow\rising above" the other animals in the world, and believe that we areapable of nobler behaviour: to argue in favour of suh an analysis istherefore somehow immoral, and even demeaning to the entire humanrae.Naturally enough, there have been several attempts to respond tothis analysis of the prisoners dilemma, in order to \reover" oopera-tion (Binmore, 1992, p.355{382).



Game Theory and Deision Theory 23We Are Not All Mahiavelli! The �rst approah is to argue thatwe are not all suh \hard boiled" individuals as the prisoner's dilemma(and more generally, this kind of game theoreti analysis) implies. Weare not seeking to onstantly maximise our own welfare, possibly at theexpense of others. Proponents of this kind of argument typially pointto real-world examples of altruism and spontaneous, mutually-bene�ialooperative behaviour in order to justify their laim.There is some strength to this argument: we do not, (or at least, mostof us do not), onstantly deliberate about how to maximise our welfarewithout any onsideration for the welfare of our peers. Similarly, in manysenarios, we would be happy to trust our peers to reognise the valueof a ooperative outome without even mentioning it to them, being nomore than mildly annoyed if we get the \suker's payo�".There are several ounter responses to this. First, it is pointed outthat many real-world examples of spontaneous ooperative behaviourare not really the prisoner's dilemma. Frequently, there is some built inmehanism that makes it in the interests of partiipants to ooperate.For example, onsider the problem of giving up your seat on the bus. Wewill frequently give up our seat on the bus to an older person, motherwith hildren, et., apparently at some disomfort (= loss of utility) toourselves. But it ould be argued that in suh senarios, soiety hasways of punishing non-ooperative behaviour: su�ering the hard andunforgiving stares of fellow passengers when we do not give up our seat,or worse, being aused in publi of being unouth!Seond, it is argued that many \ounter examples" of ooperativebehaviour arising do not stand up to inspetion. For example, onsidera publi transport system, whih relies on everyone ooperating andhonestly paying their fare every time they travel, even though whetheror not they have paid is not veri�ed. The fat that suh a system works(the buses turn up on time) would appear to be some evidene thatrelying on spontaneous ooperative an work. But the fat that suha system funtions does not mean that the system is not exploited: itwill be, and if there is no means of heking whether or not someonehas paid their fare and punishing non-ompliane, then all other thingsbeing equal, those individuals that do exploit the system will be bettero�. Unpalatable, perhaps, but true nevertheless.The Other Prisoner is My Twin! A seond line of attak is to arguethat two prisoner's will \think alike", and reognise that ooperation isthe best outome. For example, suppose the two prisoners are twins,inseparable sine birth; then, it is argued, if their though proesses aresuÆiently aligned, they will both reognise the bene�ts of ooperation,



24 Game Theory and Deision Theory in Agent-based Systemsand behave aordingly. The answer to this is that it implies thereare not atually two prisoner's playing the game. If I an make my twinselet a ourse of ation simply by \thinking it", then we are not playingthe prisoner's dilemma at all.This \fallay of the twins" argument often takes the form \what ifeveryone were to behave like that" (Binmore, 1992, p311). The answer,as Yossarian pointed out in Joseph Heller's Cath 22, is that if everyoneelse behaved like that, you would be a damn fool to behave any otherway.People Are Not Rational! Some would argue7, that we might in-deed be happy to risk ooperation as opposed to defetion when faedwith situations where the suker's payo� really does matter very muh.For example, paying a bus fare that amounts to a few pennies does notreally hurt us muh, even if everybody else is defeting and hene ex-ploiting the system. But, it is argued, when we are faed with situationswhere the suker's payo� really hurts us | life or death situations andthe like | we will hoose the \rational" ourse of ation that maximisesour welfare, and defet.The Shadow of the Future Lest the disussion so far prove toodepressing, it should be emphasised that there are quite natural variantsof the prisoner's dilemma in whih ooperation is the rational thingto do. One idea is to play the game more than one. In the iteratedprisoner's dilemma, the \game" of the prisoner's dilemma is played anumber of times. Eah play is referred to as a \round". Critially, it isassumed that eah agent an see what the opponent did on the previousround: player i an see whether j defeted or not, and j an see whetheri defeted or not.Now, for the sake of argument, assume that the agents will ontinueto play the game forever : every round will be followed by another round.Now, under these assumptions, what is the rational thing to do? If youknow that you will be meeting the same opponent in future rounds,the inentive to defet appears to be onsiderably diminished, for tworeasons:If you defet now, your opponent an punish you by also defeting.Punishment is not possible in the one-shot prisoner's dilemma.If you \test the water" by ooperating initially, and reeive thesuker's payo� on the �rst round, then beause you are playing thegame inde�nitely, this loss of utility (one util) an be \amortized"over the future rounds. When taken into the ontext of an in�nite



Game Theory and Deision Theory 25(or at least very long) run, then the loss of a single unit of utilitywill represent a small perentage of the overall utility gained.So, if you play the prisoner's dilemma game inde�nitely, then oopera-tion is a rational outome (Binmore, 1992, p358). The \shadow of thefuture" enourages us to ooperate in the in�nitely repeated prisoner'sdilemma game.This seems to be very good news indeed, as truly one-shot gamesare omparatively sare in real life. When we interat with someone,then there is often a good hane that we will interat with them in thefuture, and rational ooperation begins to look possible. However, thereis a ath.Suppose you agree to play the iterated prisoner's dilemma a �xednumber of times, (say 100). You need to deide (presumably in advane)what your strategy for playing the game will be. Consider the last round(i.e., the 100th game). Now, on this round, you know | as does youropponent | that you will not be interating again. In other words,the last round is in e�et a one-shot prisoner's dilemma game. As weknow from the analysis above, the rational thing to do in a one-shotprisoner's dilemma game is defet. Your opponent, as a rational agent,will presumably reason likewise, and will also defet. On the 100thround, therefore, you will both defet. But this means that the last\real" round, is 99. But similar reasoning leads us to the onlusion thatthis round will also be treated in e�et like a one-shot prisoner's dilemma,and so on. Continuing this bakwards indution leads inevitably to theonlusion that, in the iterated prisoner's dilemma with a �xed, pre-determined number of rounds, defetion is the dominant strategy, as inthe one-shot version (Binmore, 1992, p.354).Whereas it seemed to be very good news that rational ooperationis possible in the iterated prisoner's dilemma with an in�nite numberof rounds, it seems to be very bad news that this possibility appears toevaporate if we restrit ourselves to repeating the game a pre-determined,�xed number of times. Returning to the real-world, we know that inreality, we will only interat with our opponents a �nite number of times(after all, one day the world will end). We appear to be bak where westarted.The story is atually better than it might at �rst appear, for severalreasons. The �rst is that atually playing the game an in�nite num-ber of times is not neessary. As long as the \shadow of the future"looms suÆiently large, then it an enourage ooperation. So, rationalooperation an beome possible if both players know, with suÆientprobability, that they will meet and play the game again in the future.



26 Game Theory and Deision Theory in Agent-based SystemsThe seond reason is that, even though a ooperative agent an su�erwhen playing against a defeting opponent, it an do well overall pro-vided it gets suÆient opportunity to interat with other ooperativeagents.5. SUMMARYIn this hapter we have disussed some of the basi onepts in dei-sion theory and game theory. Our intention was simply to make the restof the book omprehensible even for those who have not ome arosseither deision theory, or game theory, or both, in the past, and thisbrief disussion stops short of being anything like a omprehensive in-trodution to the topis. To do the latter would take a book as long asthis whole work (at the very least). However, for this who want to knowmore then there are a number of plaes to look.For information on game theory, one of the best plaes to start is(Binmore, 1992). This is a very readable introdution from a leadingexpert, and, being intended as a textbook, starts at the very beginningand overs muh of the game theory one is ever likely to need to know.From a more spei�ally agent-oriented perspetive, (Rosenshein andZlotkin, 1994) is a seminal work in the appliation of game theory tomulti-agent enounters, and (Kraus, 2001) is a deep and rigorous inves-tigation of similar matters. In addition, (Sandholm, 1999) gives a goodgeneral disussion of the use of game theory in designing multi-agentsystems, as well as related topis suh as aution theory. Initial workon the iterated prisoner's dilemma was arried out by Axelrod (Axelrod,1984), and this is reommended as a point of departure for further read-ing on the topi. (Mor and Rosenshein, 1995) provides pointers intoreent prisoner's dilemma literature. An non-mathematial introdutionto game theory, with an emphasis on the appliations of game theoryin the soial sienes, is (Zagare, 1984), and some of the early work ingame theory is surveyed in (Shwalbe and Walker, 2001)8.The seminal introdution to deision theory is (Rai�a, 1968), and agood, if slightly dogmati, alternative is (Lindley, 1975). (Smith, 1999)is not quite as detailed, but overs muh of the relevant material andis very easy to read. Bayesian networks are overed in detail by (Pearl,1988), the �rst book on the subjet, and by (Castillo et al., 1997; Cowellet al., 1999; Jensen, 2001). The last two also over inuene diagramsand so deal with network models for the whole of deision theory (inontrast Pearl and Castillo et al. deal only with probability). Finally,(Puterman, 1994) is a omprehensive introdution to Markov deision



Game Theory and Deision Theory 27proesses, but for work in this area muh of the most relevant materialhas only yet appeared in journal and onferene papers.Notes1. You an alulate it as a ration of ourrene to the total number of events, but whatounts as an ourrene? It is lear when alulating the probability of getting heads whentossing a oin, but muh less obvious when, for example, estimating the probability of apartiualr disease giving ertain symptoms. Even trikier is the question of how many eventsyou have to sum over. Typial de�nitions laim that you only truly know the probability ifyou sum over an in�nite number of events whih presents obvious pratial di�ulties.2. The key step in the argument as to why betting rates are a suitable way of determingprobabilities is that if the bettor misestimates the probability and so proposes a di�erentbet|say paying $0.4 for the hane of winning $1 when a ours|then the person they arebetting with an exploit them. In partiular, this seond person an onstrut a Duth book,a set of bets whih an win an arbitrarily large amount of money from the bettor. Thus, theargument runs, the bettor will be motivated to get the probability right. The main problemwith this argument is that it plaes a onsiderable ognitive burden on whoever is establishingthe probability.3. The notion of independene aptured in the ars of a Bayesian network is somewhatmore omplex than that desribed here, but the di�erene is not relevant for the purposes ofthis artile. For full details, see (Pearl, 1988).4. Indeed, in eonomis as a whole, very little thought is given to the question of wherepreferenes ome from.5. To misquote Martin Amis, the di�erene is lear|a ool million dollars.6. How might an agent hoose more than one row in the kind of framework we have beenonsidering? Well, as we will see in a very short while, it doesn't, but at the same time itdoesn't hoose a single row either...7. Ken Binmore ertainly did at the UKMAS workshop in Deember 1998.8. They also provide the �rst English translation of what is generally regarded as the �rstpaper on game theory.ReferenesAxelrod, R. (1984). The Evolution of Cooperation. Basi Books.Binmore, K. (1992). Fun and Games: A Text on Game Theory. D. C.Heath and Company: Lexington, MA.Boutilier, C., Dean, T., and Hanks, S. (1999). Deision-theoreti plan-ning: strutural assumptions and omputational leverage. Journal ofArti�ial Intelligene Researh, 11:1{94.Castillo, E., Guti�errez, J. M., and Hadi, A. S. (1997). Expert Systemsand Probabilisti Network Models. Springer Verlag, Berlin, Germany.Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J.(1999). Probabilisti Networks and Expert Systems. Springer Verlag,Berlin, Germany.Howard, R. A. and Matheson, J. E. (1984). Inuene diagrams. In How-ard, R. A. and Matheson, J. E., editors, Readings on the Priniplesand Appliations of Deision Analysis, pages 719{762. Strategi De-isions Group, Menlo Park, CA.
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