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t In the last few years, there has been in
reasing interest from the agent
ommunity in the use of te
hniques from de
ision theory and gametheory. Our aim in this arti
le is to brie
y summarise the key 
on
eptsof de
ision theory and game theory and explain why they are usefulwhen building agent-based systems.Keywords: Game theory, de
ision theory, multi-agent systems1. INTRODUCTIONDe
ision theory (Rai�a, 1968) is a means of analysing whi
h of a seriesof options should be taken when it is un
ertain exa
tly what the resultof taking the option will be. De
ision theory 
on
entrates on identifyingthe \best" de
ision option, where the notion of \best" is allowed tohave a number of di�erent meanings, of whi
h the most 
ommon isthat whi
h maximises the expe
ted bene�t to the de
ision maker. Sin
eself-interested entities are assumed to be a
ting best when maximisingexpe
ted bene�ts, de
ision theory is often 
laimed to be able to make1



2 Game Theory and De
ision Theory in Agent-based Systemsthe most rational 
hoi
e. Overall, de
ision theory provides a powerfultool with whi
h to analyse s
enarios in whi
h a de
ision must be made.Now, it is widely believed that the 
ru
ial issue in designing au-tonomous agents is how to provide those agents with the ability to sele
tthe best a
tion from a range of possible a
tions. Frequently the agentsin question are operating in an unpredi
atble, and hen
e un
ertain, en-vironment, and therefore de
ision theory seems a natural tool to use toanalyse their behaviour.Game theory (Binmore, 1992) is a 
lose relative of de
ision theory,whi
h studies intera
tions between self-interested entities. In parti
ular,it studies the problems of how intera
tion strategies 
an be designed thatwill maximise the welfare of an entity in an en
ounter, and how proto
olsor me
hanisms 
an be designed that have 
ertain desirable properties.In the same way that de
ision theory 
an be 
laimed to provide a meansof making rational de
isions under un
ertainty, so game theory 
an be
laimed to provide a rational means of analysing intera
tions. Noti
ethat de
ision theory 
an be 
onsidered to be the study of games againstnature, where nature is an opponent that does not seek to gain the bestpayout, but rather a
ts randomly.In multi-agent systems, the issue of designing intera
tion strategiesand me
hanisms is very important, and so it 
omes as no surprise to learnthat game theory has been widely applied. Many of these appli
ationshave been to analyse negotiation and 
o-ordination me
hanisms.2. DECISION THEORYClassi
al de
ision theory, so 
alled to distinguish it from a number ofnon-
lassi
al theories whi
h have grown up in the last few years, is a setof mathemati
al te
hniques for making de
isions about what a
tion totake when the out
omes of the various a
tions are not known. Althoughthe area grew up long before the 
on
ept of an intelligent agent was
on
eived, su
h agents are 
anoni
al examples of the de
ision makerswhi
h 
an usefully employ 
lassi
al de
ision theory.2.1. PROBABILITY THEORYAn agent operating in a 
omplex environment is inherently un
ertainabout that environment; it simply does not have enough informationabout the enviroment to know either the pre
ise 
urrent state of itsenvironments, nor how that environment will evolve. Thus, for everyvariable Xi whi
h 
aptures some aspe
t of the 
urrent state of the envi-ronment, all the agent typi
ally knows is that ea
h possible value xij ofea
h Xi has some probability Pr(xij ) of being the 
urrent value of Xi .



Game Theory and De
ision Theory 3Writing x for the set of all xij , we have:Pr : x 2 x 7! [0; 1℄and Xj Pr(xij ) = 1In other words, the probability Pr(xij ) is a number between 0 and 1 andthe sum of the probabilities of all the possible values of Xi is 1. If Xi isknown to have value xij then Pr(xij ) = 1 and if it is known not to havevalue xij then Pr(xij ) = 0.While this mathemati
al de�nition of probability is rather straightfor-ward, the same 
annot be said of the semanti
s of probability. Indeed,there is no universal agreement on what probabilities mean. Of the var-ious 
on
i
ting s
hools of thought (Shafer, 1992), there are two mainpositions. The �rst, histori
ally, interprets a probability as a frequen
yof o

urren
e. This frequentisti
 approa
h takes that fa
t that an eventa has a probability of 0.356 to mean that 0.356 of the time it will o
-
ur. This sounds like a very straightforward interpretation until you
onsider in more detail how su
h a probability 
an be measured1 These
ond, Bayesian, position suggests that a probability is related to theodds that a rational person will bet on the event in question. Thus theprobability of a being 0.356 means that a rational person will pay $0.356to bet on a happening if they win $1 if a o

urs. This approa
h solvessome of the problems of the frequentisti
 interpretation (espe
ially whenestimating the probability of unique events) but has its own problems2.We will say no more about semanti
s here|all we say applies whateversemanti
s one 
hooses to use.Given two of these variables, X1 and X2, then the probabilities of thevarious values of X1 and X2 may be related to one another. If they arenot related, a 
ase we distinguish be referring to X1 and X2 as beingindependent, then for any two values x1i and x2j , we have:Pr(x1i ^ x2j ) = Pr(x1i ) Pr(x2j )If the variables are not independent, then:Pr(x1i ^ x2j ) = Pr(x1i jx2j ) Pr(x2j )where Pr(x1i jx2j ) is the probability of X1 having value x1i given that X2is known to take value x2j . Su
h 
onditional probabilities 
apture therelationship between X1 and X2, representing, for instan
e, the fa
t thatx1i (the value \wet", say, of the variable \state of 
lothes") be
omes
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Figure 1.1. An example Bayesian network.mu
h more likely when x2j (the value \raining" of the variable \weather
ondition") is known to be true.If we take the set of these Xi of whi
h the agent is aware, the set X,then for ea
h pair of variables in X we 
an establish whether the pairare independent or not. We 
an then build up a graph in whi
h ea
hnode 
orresponds to a variable in X and an ar
 joins two nodes if thevariables represented by those nodes are not independent of ea
h other.The resulting graph is known as a Bayesian network3 (Pearl, 1988), andthe graphi
al stru
ture provides a 
onvenient 
omputational frameworkin whi
h to 
al
ulate the probabilities of interest to the agent. In general,the agent will have some set of variables whose values it 
an observe,and on
e these observations have been taken, will want to 
al
ulate theprobabilities of the various values of some other set of variables.Figure 1.1 is an example of a fragment of a Bayesian network fordiagnosing faults in 
ars. It represents the fa
t that the age of the battery(represented by the node battery old ) has a probabilisti
 in
uen
e onhow good the battery is, and that this in turn has an in
uen
e on whetherthe battery is operational (battery ok), the latter being a�e
ted also bywhether the alternator is working and, as a result, whether the batteryis re
harged when the 
ar moves. The operational state of the batterya�e
ts whether the radio and lights will work. In this network it isexpe
ted that the observations that 
an be 
arried out are those relatingto the lights and the radio (and possibly the age of the battery), and thatthe result of these observations 
an be propagated through the networkto establish the probability of the alternator being okay and the batterybeing good. In this 
ase these latter variables are the ones whi
h we areinterested in sin
e they relate to �xing the 
ar.



Game Theory and De
ision Theory 5Typi
ally the variables an agent will be interested in are those thatrelate to its goals. For instan
e, the agent may be interested in 
hoos-ing an a
tion that will allow it to a
hieve a goal, and might thereforebe interested in 
hoosing that a
tion whi
h has the greatest 
han
e ofsu

eeding in a
hieving that goal. When the agent has many goals it
ould a
hieve, this strategy 
ould be extended to make the agent 
hooseto a
hieve the goal whi
h has the greatest 
han
e of being a
hieved, andto do this by applying the a
tion whi
h gives this greatest 
han
e.However, building an agent whi
h follows this strategy is somewhatshortsighted sin
e the agent will not 
onsider the value of the goals, andwill therefore 
hoose a goal whi
h is easy to a
hieve, but worthless, overa goal whi
h is hard to a
hieve but very valuable. To take a

ount ofthis problem, de
ision theory ke a

ount of an agent's preferen
es. Todo this, it makes use of the idea of utility.2.2. UTILITY THEORYWe start from the assumption that ea
h agent (or de
ision maker)has its own preferen
es and desires about how the world is. For themoment, we will not be 
on
erned with where these preferen
es 
omefrom4; we will just assume that they are the preferen
es of the agent'suser or owner. Next, we will assume that there is a set 
 = f!1; !2; : : :gof \out
omes" or \states" that the agents have preferen
es over.We will formally 
apture the preferen
es that an agent has by meansof a utility fun
tion, whi
h assigns to every out
ome a real number,indi
ating how \good" the out
ome is. The larger the number the betterfrom the point of view of the agent with the utility fun
tion. Thus thepreferen
es of an agent i will be 
aptured by a fun
tionui : 
! <It is not diÆ
ult to see that su
h a utility fun
tion leads to a preferen
eordering over out
omes. For example, if ! and !0 are both possibleout
omes in 
, and ui(!) � ui(!0), then out
ome ! is preferred byagent i at least as mu
h as !0. We 
an introdu
e a bit more notation to
apture this preferen
e ordering. We write! �i !0as an abbreviation for ui (!) � ui (!0)Similarly, if ui(!) > ui (!0), then out
ome ! is stri
tly preferred by agenti over !0. We write
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ision Theory in Agent-based Systems! �i !0as an abbreviation for ui(!) > ui(!0):In other words,! �i !0 i� ui (!) � ui (!0) and not ui(!) = ui(!0):We 
an see that the relation �i really is a (partial) ordering, in thatit has the following properties:Re
exivity: For all ! 2 
, we have that ! �i !.Transitivity: If ! �i !, and !0 �i !00, then !0 �i !00.Comparability: For all ! 2 
, and !0 2 
 we have that either ! �i !0or !0 �i !.The stri
t preferen
e relation will satisfy the se
ond and third of theseproperties, but will 
learly not be re
exive.Undoubtedly the simplest way to think about utilities is as money;the more money, the better. However, it is de
eptive to think that thisis all that utilities are. Utility fun
tions are a way of representing anagent's preferen
es. They do not simply equate to money.To see why this is the 
ase, suppose (and this really is a supposition)that the authors have US$500 million in the bank, while you, the reader,are absolutely penniless. A generous and ri
h benefa
tor appears, withone million dollars, whi
h he generously wishes to donate to one or moreof us. If the benefa
tor gives the dollar to the authors, what will thein
rease in the utility of our situation be? Well, we will have more money,so there will 
learly be some in
rease in our utility. But there will not bemu
h: after all, there is not mu
h that you 
an do with US$501 millionthat you 
annot do with US$500 million. In 
ontrast, if the benefa
torgave the money to you, the in
rease in your utility would be enormous;you would go from having no money at all to being a millionaire. Thatis a big di�eren
e5.This works the other way as well. Suppose the authors are in debt tothe tune of US$500 million; well, there is frankly not that mu
h di�eren
ein utility between owing US$500 million and owing US$499 million; theyare both pretty bad. In 
ontrast, there is a very big di�eren
e betweenbeing US$1 million in debt and not being in debt at all. A graph of therelationship between utility and money is shown in Figure 1.2.
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Figure 1.2. The relationship between money and utility.So, to summarise, a utility is a value whi
h is asso
iated with a stateof the world, and whi
h represents the value that the agent pla
es onthat state of the world. Utilities provide a 
onvenient means of en
od-ing the preferen
es of an agent; as von Neumann and Morgenstern (vonNeumann and Morgenstern, 1944) showed, it is possible to de�ne utilityfun
tions that faithfully en
ode preferen
es su
h that a state Si is pre-ferred to Sj , if and only if it has a higher utility for the agent exa
tly asdes
ribed above.2.3. EXPECTED UTILITYNow, we 
an 
onsider that our agent has a set of possible a
tionsA, ea
h member Ai of whi
h has a range of possible out
omes sin
e thea
tions are not deterministi
. The value of taking a parti
ular a
tion willdepend upon what the state of the world is|it is of little value 
arryinga surfboard when taking a trip a
ross the Sahara, but it is extremelyvaluable 
arrying a surfboard when taking a trip a
ross Bondi Bea
h|and so in 
hoosing whi
h a
tion to undertake, our agent will need tolook at the value of U (Sj ) where Sj is the state it is in after the a
tion.Doing this for ea
h possible a
tion, the agent 
an then 
hoose the a
tionwhi
h leads to the state it values most. We 
an 
ertainly build an agentwhi
h works in this way, and it would unerringly 
hoose to a
hieve thegoal with the highest value as en
oded by its utility fun
tion. However
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ision Theory in Agent-based Systemsit would be just as 
awed as an agent whi
h only tried to a
hieve themost likely goal, trying to a
hieve the most valuable goal irrespe
tive ofthe diÆ
ulty of that goal.To build more sensible agents we 
ombine probability and utility 
al-
ulations for ea
h a
tion and 
al
ulate the expe
ted utility of ea
h. Thisamounts to 
al
ulating a weighted average of the utility of ea
h out-
ome, where the weight is the probability of that out
ome given thea
tion being performed. Sin
e ea
h out
ome is itself a state, we have:EU (Ai) = XSj2SPr(Sj jAi)U (Sj )where S is the set of all states. The agent then sele
ts a
tion A� where:A� = arg maxAi2A XSj2SPr(Sj jAi)U (Sj )Now, these states whi
h are being 
onsidered here are just parti
ularinstantiations of the set of state variables X. Thus the probabilitiesin this 
al
ulation are just the probabilities of the Xi having parti
ularvalues given the a
tions.Harking ba
k to the dis
ussion of Bayesian networks above, we 
anthink of the Xi as being stru
tured as a graph, dropping the distin
tionbetween variables and the nodes in the graph whi
h represent them.The Ai 
an be brought into the graph as well, as a di�erent kind of node(square, perhaps, in 
ontrast to the usual round ones relating to the Xi)linked to the Xi whose values they in
uen
e. We 
an also in
orporateutilities. This time we only require a single node (a hexagon, to keep itdistin
t from the others), and this is linked to those Xi whi
h a�e
t itsvalue. Su
h a graphi
al stru
ture neatly 
aptures all the dependen
iesin an expe
ted utility 
al
ulation, and is known as an in
uen
e diagram(Howard and Matheson, 1984).Figure 1.3 is an example of a small in
uen
e diagram 
apturing ade
ision problem whi
h a 
ompany has to make about its resear
h anddevelopment budget. Sin
e the budget is the thing the de
ision is beingmade about, it is represented by a square de
ision node. This is linkedto the fa
tors it dire
tly e�e
ts, namely the te
hni
al su

ess of the 
om-pany's produ
ts and their overall pro�tability, that latter being 
apturedby the hexagonal value node. The remaining nodes are 
han
e nodes andrepresent the other fa
tors whi
h relate to the de
ision. These are justlike nodes in a Bayesian network. Given a parti
ular instantiation of thede
ision node, the relevant values 
an be propagated through the net-work, using an algorithm su
h as Sha
ter's graph redu
tion algorithm(Sha
hter, 1986) to establish the expe
ted utility of the de
ision.
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Figure 1.3. An example in
uen
e diagram.2.4. DECISION THEORY AND AGENTSGiven that the basi
 me
hanisms of de
ision theory �t so neatly intothe 
ontext of intelligent agents, it is perhaps surprising that they havenot been more widely employed in the �eld. However, agent systemswhi
h use de
ision theory seriously (that is adopting the notions of prob-ability and utility) are rather s
ar
e. One sub-area of de
ision theory is,however, be
oming popular and that is the �eld of Markov de
ision pro-
esses (MDPs), dis
ussed in detail in (Boutilier et al., 1999). In essen
ean MDP is an iterative set of 
lassi
al de
ision problems. Consider astate of the world as a node in a graph. Carrying out an a
tion in thatstate will result in a transition to one of a number of states, ea
h 
on-ne
ted to the �rst state by an ar
, with some probability, and in
ur some
ost. After a series of transitions a goal state may be rea
hed, and thesequen
e of a
tions exe
uted to do this is known as a poli
y. Solving anMDP amounts to �nding a minimal 
ost poli
y for moving from someinitial state to a goal state.MDPs 
apture many of the fa
ets of real world problems, but unre-alisti
ally assume that whatever system is solving the MDP knows atevery point what state it is in. This amounts to assuming that it is pos-sible to measure some aspe
t of the world and from this measurementtell pre
isely what state the world is in. This is rarely the 
ase; it is farmore likely is that from the measurement something 
an be un
ertainlyinferred about the world. In su
h a situation, the states of an MDP arerepla
ed by beliefs about those states, and we have a partially observ-able Markov de
ision pro
ess (POMDP). Be
ause they 
an 
apture somany real situations, POMDPs are 
urrently a hot topi
 in agent re-
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ision Theory in Agent-based Systemssear
h, despite the fa
t that they are intra
table for all but the smallestproblems.3. GAME THEORYGame theory is a bran
h of e
onomi
s that studies intera
tions be-tween self-interested agents. Like de
ision theory, with whi
h it sharesmany 
on
epts, game theory has its roots in the work of von Neumannand Morgenstern (von Neumann and Morgenstern, 1944). As its namesuggests, the basi
 
on
epts of game theory arose from the study ofgames su
h as 
hess and 
he
kers. However, it rapidly be
ame 
lear thatthe te
hniques and results of game theory 
an equally be applied to allintera
tions that o

ur between self-interested agents.The 
lassi
 game theoreti
 question asked of any parti
ular multi-agent en
ounter is: What is the best | most rational | thing an agent
an do? In most multi-agent en
ounters, the overall out
ome all depend
riti
ally on the 
hoi
es made by all agents in the s
enario. This impliesthat in order for an agent to make the 
hoi
e that optimises its out
ome,it must reason strategi
ally. That is, it must take into a

ount the de-
isions that other agent may make, and must assume that they will a
tso as to optimise their own out
ome. Game theory gives us a way offormalising and analysing su
h 
on
erns.3.1. MULTIAGENT ENCOUNTERSFirst, let us simplify things by assuming that we have just two agents;things tend to be mu
h more 
ompli
ated when we have more than two.Call these agents i and j respe
tively. Ea
h of the agents is assumedto be self-interested. That is, ea
h agent has its own preferen
es anddesires about how the world is, and these are en
oded as utilities. Wealso need to introdu
e a model of the environment in whi
h these agentswill a
t. The idea is that out two agents will simultaneously 
hoose ana
tion to perform in the environment, and as a result of the a
tions theysele
t, an out
ome in 
 will result. The a
tual out
ome that will resultwill depend on the parti
ular 
ombination of a
tions performed. We willalso assume that the agents have no 
hoi
e about whether to perform ana
tion | they have to simply go ahead and perform one. Further, it isassumed that they 
annot see the a
tion performed by the other agent.To make the analysis a bit easier, we will assume that ea
h agent hasjust two possible a
tions that it 
an perform. We will 
all these twoa
tions C , for \
ooperate", and \D", for \defe
t". (The rationale forthis terminology will be
ome 
lear below.) Let A
 = fC ;Dg the set of
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ision Theory 11these a
tions. The way the environment behaves is then determined bya fun
tion Env : A
|{z}agent i 's a
tion� A
|{z}agent j 's a
tion! 
In other words, on the basis of the a
tion (either C or D) sele
ted byagent i , and the a
tion (also either C or D) 
hosen by agent j .Here is an example of an environment fun
tion:Env(D ;D) = !1 Env(D ;C ) = !2Env(C ;D) = !3 Env(C ;C ) = !4 (1)This environment maps ea
h 
ombination of a
tions to a di�erent out-
ome. This environment is thus sensitive to the a
tions that ea
h agentperforms. At the other extreme, we 
an 
onsider an environment thatmaps ea
h 
ombination of a
tions to the same out
ome.Env(D ;D) = !1 Env(D ;C ) = !1Env(C ;D) = !1 Env(C ;C ) = !1 (2)In this environment, it does not matter what the agents do: the out
omewill be the same. Neither agent has any in
uen
e in su
h a s
enario. We
an also 
onsider an environment that is only sensitive to the a
tionsperformed by one of the agents.Env(D ;D) = !1 Env(D ;C ) = !2Env(C ;D) = !1 Env(C ;C ) = !2 (3)In this environment, it does not matter what agent i does: the out
omedepends solely on the a
tion performed by j . If j 
hooses to defe
t, thenout
ome !1 will result; if j 
hooses to 
ooperate, then out
ome !2 willresult.The interesting story begins when we put an environment togetherwith the preferen
es that agents have. To see what we mean by this,suppose we have the most general 
ase, 
hara
terised by (1), where bothagents are able to exert some in
uen
e over the environment. Now letus suppose that the agents have utility fun
tions de�ned as follows:ui(!1) = 1 ui (!2) = 1 ui(!3) = 4 ui (!4) = 4uj (!1) = 1 uj (!2) = 4 uj (!3) = 1 uj (!4) = 4 (4)Sin
e we know that every di�erent 
ombination of 
hoi
es by the agentsare mapped to a di�erent out
ome, we 
an abuse notation somewhat bywriting the following:



12 Game Theory and De
ision Theory in Agent-based Systemsui (D ;D) = 1 ui(D ;C ) = 1 ui(C ;D) = 4 ui(C ;C ) = 4uj (D ;D) = 1 uj (D ;C ) = 4 uj (C ;D) = 1 uj (C ;C ) = 4 (5)We 
an then 
hara
terise agent i 's preferen
es over the possible out
omesin the following way:(C ;C ) �i (C ;D) �i (D ;C ) �i (D ;D) (6)Now, 
onsider the following question:If you were agent i in this s
enario, what would you 
hoose to do |
ooperate or defe
t?In this 
ase, the answer is pretty unambiguous. Agent i prefers all theout
omes in whi
h it 
ooperates over all the out
omes in whi
h it defe
ts.Agent i 's 
hoi
e is thus 
lear: it should 
ooperate. It does not matterwhat agent j 
hooses to do.For agent j , the story is the same: we 
an write j 's preferen
es asfollows. (C ;C ) �i (D ;C ) �i (C ;D) �i (D ;D)In just the same way, agent j prefers all the out
omes in whi
h it 
o-operates over all the out
omes in whi
h it defe
ts. Noti
e that in thiss
enario, neither agent has to expend any e�ort worrying about whatthe other agent will do: the a
tion it should perform does not dependin any way on what the other does.If both agents in this s
enario a
t rationally, that is, they both 
hooseto perform the a
tion that will lead to their preferred out
omes, thenthe \joint" a
tion sele
ted will be (C ;C ): both agents will 
ooperate.Now suppose that, for the same environment, the agents' utility fun
-tions were as follows:ui (D ;D) = 4 ui(D ;C ) = 4 ui(C ;D) = 1 ui(C ;C ) = 1uj (D ;D) = 4 uj (D ;C ) = 1 uj (C ;D) = 4 uj (C ;C ) = 1 (7)Agent i 's preferen
es over the possible out
omes are thus as follows:(D ;D) �i (D ;C ) �i (C ;D) �i (C ;C )Agent j 's preferen
es are:(D ;D) �i (C ;D) �i (D ;C ) �i (C ;C )In this s
enario, agent i 
an do no better than to defe
t. The agentprefers all the out
omes in whi
h it defe
ts over all the out
omes in
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ision Theory 13i defe
ts i 
ooperatesj defe
ts 44 05j 
ooperates 11 33Table 1.1 . A payo� matrix with dominant strategies.whi
h it 
ooperates. Similarly, agent j 
an do no better than defe
t: italso prefers all the out
omes in whi
h it defe
ts over all the out
omesin whi
h it 
ooperates. On
e again, the agents do not need to engagein strategi
 thinking (worrying about what the other agent will do): thebest a
tion to perform is entirely independent of the other agent's 
hoi
e.I emphasise that in most multiagent s
enarios, the 
hoi
e an agent shouldmake is not so 
lear 
ut; indeed, most are mu
h more diÆ
ult.We 
an neatly summarise the previous intera
tion s
enario by makinguse of a standard game theoreti
 notation known as a payo� matrix, asin Table 1.1. The way to read su
h a payo� matrix is as follows. Ea
hof the four 
ells in the matrix 
orresponds to one of the four possibleout
omes. For example, the top-right 
ell 
orresponds to the out
omein whi
h i 
ooperates and j defe
ts; the bottom-left 
ell 
orresponds tothe out
ome in whi
h i defe
ts and j 
ooperates. The payo�s re
eivedby the two agents are written in the 
ell. The value in the top-right ofea
h 
ell is the payo� re
eived by player i (the 
olumn player), whilethe value in the bottom left of ea
h 
ell is the payo� re
eived by agent j(the row player). Thus in Table 1.1, if i 
ooperates and j defe
ts, j gets5 and i gets 0. As payo� matri
es are standard in the literature, and area mu
h more su

in
t notation than the alternatives, we will use themas standard in the remainder of this 
hapter.Before pro
eeding to 
onsider any spe
i�
 examples of multiagent en-
ounter, let us introdu
e some of the theory that underpins the kind ofanalysis we have informally dis
ussed above.3.2. DOMINANT STRATEGIES AND NASHEQUILIBRIAGiven a parti
ular multiagent en
ounter involving two agents i andj , there is one 
riti
ally important question that both agents want an-swered: What should I do? We have already seen some multiagent en-
ounters, and informally argued what the best possible out
ome shouldbe. In this se
tion, we will de�ne some of the 
on
epts that are used inanswering this question.



14 Game Theory and De
ision Theory in Agent-based SystemsThe �rst 
on
ept we will introdu
e is that of dominan
e. To under-stand what is meant by dominan
e, suppose we have two subsets of
, whi
h we refer to as 
1 and 
2 respe
tively. We will say that 
1dominates 
2 for agent i if every out
ome in 
1 is preferred over everyout
ome in 
2. For example, suppose that:
 = f!1; !2; !3; !4g;!1 �i !2 �i !3 �i !4;
1 = f!1; !2g; and
2 = f!3; !4g.Then 
1 strongly dominates 
2 sin
e !1 �i !3, !1 �i !4, !2 �i !3, and!2 �i !4. However, 
2 does not strongly dominate 
1, sin
e (for exam-ple), it is not the 
ase that !3 �i !1. Formally, 
1 strongly dominates
2 i� the following 
ondition is true:8!1 2 
1;8!2 2 
2; we have !1 �i !2:Now, in order to bring ourselves in line with the game theory literature,we will start referring to a
tions (members of the set A
) as strategies.Given any parti
ular strategy s for an agent i in a multiagent intera
tions
enario, there will be a number of possible out
omes. Let us denote bys� the out
omes that may arise by i playing strategy s. For example,referring to the example environment in equation (1), from agent i 'spoint of view we have C � = f!3; !4g, while D� = f!1; !2g.Now, we will say a strategy s1 dominates a strategy s2 if the set ofout
omes possible by playing s1 dominates the set possible by playings2, that is, if s�1 dominates s�2 . Again, referring ba
k to the example of(6), it should be 
lear that, for agent i , \
ooperate" strongly dominates\defe
t". Indeed, as there are only two strategies available, the 
oop-erate strategy is dominant : it is not dominated by any other strategy.The presen
e of a dominant strategy makes the de
ision about what todo extremely easy: the agent guarantees its best out
ome by perform-ing the dominant strategy. In following a dominant strategy, an agentguarantees itself the best possible payo�.Another way of looking at dominan
e is that if a strategy s is domi-nated by another strategy s 0, then a rational agent will not follow s (be-
ause it 
an guarantee to do better with s 0). When 
onsidering what todo, this allows us to delete dominated strategies from our 
onsideration,simplifying the analysis 
onsiderably. The idea is to iteratively 
onsiderea
h strategy s in turn, and if there is another remaining strategy thatstrongly dominates it, then to delete strategy s from 
onsideration. If we
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ision Theory 15end up with a single strategy remaining, then this will be the dominantstrategy, and is 
learly the rational 
hoi
e. Unfortunately, for many in-tera
tion s
enarios, there will not be a strongly dominant strategy; afterdeleting strongly dominated strategies, we may �nd more than one strat-egy remaining. What to do then? Well, we 
an start to delete weaklydominated strategies. A strategy s1 is said to weakly dominate strategys2 if every out
ome s�1 is preferred at least as mu
h as every out
omes�2 . The problem is that if a strategy is only weakly dominated, thenit is not ne
essarily irrational to use it; in deleting weakly dominatedstrategies, we may therefore \throw away" a strategy that would in fa
thave been useful to use.The next notion we shall dis
uss is one of the most important 
on
eptsin the game theory literature, and in turn is one of the most important
on
epts in analysing multiagent systems. The notion is that of equi-librium, and more spe
i�
ally, Nash equilibrium. The intuition behindequilibrium is perhaps best explained by example. Every time you drivea 
ar, you need to de
ide whi
h side of the road to drive on. The 
hoi
e isnot a very hard one: if you are in the uk, for example, you will probably
hoose to drive on the left; if you are in the us or 
ontinental Europe,you will drive on the right. The reason the 
hoi
e is not hard is thatit is a Nash equilibrium strategy. Assuming everyone else is driving onthe left, you 
an do no better than drive on the left also. From everyoneelse's point of view, assuming you are driving on the left then everyoneelse 
an do no better than drive on the left also.In general, we will say that two strategies s1 and s2 are in Nash equi-librium if:1 under the assumption that agent i plays s1, agent j 
an do nobetter than play s2; and2 under the assumption that agent j plays s2, agent i 
an do nobetter than play s1.The mutual form of an Equilibrium is important be
ause it \lo
ks theagents in" to a pair of strategies. Neither agent has any in
entive todeviate from a Nash equilibrium. To see why, suppose s1; s2 are a pair ofstrategies in Nash equilibrium for agents i and j respe
tively, and thatagent j 
hooses to play some other strategy: s3 say. Then by de�nition,i will do no better, and may possibly do worse than it would have doneby playing s1.The presen
e of a Nash equilibrium pair of strategies in a game mightappear to be the de�nitive answer to the question of what to do in anygiven s
enario. Unfortunately, there are two important results in thegame theory literature whi
h serve to make life diÆ
ult:
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ision Theory in Agent-based Systems1 Not every intera
tion s
enario has a Nash equilibrium.If there is no Nash equilibrium, then it may be possible to look fora mixed equilibrium as des
ribed in the next se
tion.2 Some intera
tion s
enarios have more than one Nash equilibrium.Despite these negative results, the notion of a Nash equilibrium is anextremely important 
on
ept, and will be useful in the analysis thatfollows.3.3. COMPETITIVE AND ZERO-SUMINTERACTIONSSuppose we have some s
enario in whi
h an out
ome ! 2 
 is preferredby agent i over an out
ome !0 if, and only if, !0 is preferred over ! byagent j . Formally, ! �i !0 if and only if !0 �j !:The preferen
es of the players are thus diametri
ally opposed to one-another: one agent 
an only improve its lot (i.e., get a more preferredout
ome) at the expense of the other. An intera
tion s
enario thatsatis�es this property is said to be stri
tly 
ompetitive, for hopefullyobvious reasons.Zero-sum en
ounters are those in whi
h, for any parti
ular out
ome,the utilities of the two agents sum to zero. Formally a s
enario is saidto be zero sum if the following 
ondition is satis�ed:ui(!) + uj (!) = 0 for all ! 2 
:It should be easy to see that any zero sum s
enario is stri
tly 
ompetitive.Zero sum en
ounters are important be
ause they are the most \vi
ious"types of en
ounter 
on
eivable, allowing for no possibility of 
ooperativebehaviour. If you allow your opponent positive utility, then this meansthat you get negative utility | intuitively, you are worse o� than youwere before the intera
tion.Games su
h as 
hess and 
hequers are the most obvious examples ofstri
tly 
ompetitive intera
tions. Indeed, any game in whi
h the pos-sible out
omes are win or lose will be stri
tly 
ompetitive. Outsidethese rather abstra
t settings, however, it is hard to think of real-worldexamples of zero-sum en
ounters. War might be 
ited as a zero sumintera
tion between nations, but even in the most extreme wars, therewill usually be at least some 
ommon interest between the parti
ipants(e.g., in ensuring that the planet survives).
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ision Theory 17i defe
ts i 
ooperatesj defe
ts �33 1�1j 
ooperates 00 �11Table 1.2 . A payo� matrix for a game with no pure equilibrium.For these reasons, some so
ial s
ientists are s
epti
al about whetherzero-sum games exist in real-world s
enarios (Zagare, 1984, p.22). Inter-estingly, however, people intera
ting in many s
enarios have a tenden
yto treat them as if they were zero-sum. Below, we will see that in somes
enarios | where there is the possibility of mutually bene�
ial 
ooper-ation | this type of behaviour 
an be damaging.3.4. MIXED EQUILIBRIAAll the s
enarios we have 
onsidered up to now have had solutionsin whi
h the agents pi
k a single out
ome, a single row or 
olumn inthe payo� matrix6. As dis
ussed above, there are s
enarios in whi
hagents that 
hoose su
h pure strategies 
an arrive at Nash equilibriumor other stable solutions. However, there are some situations in whi
hpure strategies will not give a stable solution. As an example, 
onsiderthe game de
ribed by the payo� matrix in Table 1.2.This payo� matrix des
ribes a zero sum game. If both i and j defe
t,then i loses 3 and j wins 3. If i defe
ts and j 
ooperates, then both geta zero payo�. If i 
ooperates and j defe
ts, i wins 1 and j loses 1, whileif both 
ooperate then the payo� is reversed. Thus neither agent hasone move it 
an make whi
h is de�nitely better than the other|it alldepends on what the other agent does. The result of this arrangementof payo�s is that neither agent 
an make a 
hoi
e whi
h holds up if theother agent somehow �nds out what the �rst agent is intending to do (asituation that is sometimes referred to as having a spyproof strategy).To see this, 
onsider what ea
h agent will 
hose to do. If i knew thatj would defe
t, then i would 
hoose to 
ooperate. However, if j knewthat i would 
o-operate, then j would 
hoose to 
ooperate. Similarly, ifi knew that j would 
ooperate, then it would 
hoose to defe
t, while ifj knew that i was planning to defe
t, then j would defe
t as well. Soany pie
e of information about what the other is intending (whi
h, of
ourse, 
ould be established by either agent by thinking about what itwould do in the other agent's shoes) will 
ause an agent to 
hange itsstrategy.
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Figure 1.4. Determining a mixed strategy for Agent i .So, rather than adopt a pure strategy, agents adopt a mixed strategyin whi
h they take a random 
hoi
e a
ross a set of pure strategies. Moreformally, agent i pi
ks a ve
tor of probabilities over the 
olumns in thepayo� matrix that relate to the pure strategies it might 
hoose. Ingeneral, where agent i has n possible strategies, it needs a ve
tor:
 = (
1; 
2; : : : ; 
n)where Xk 
k = 1and 
k � 0Agent i then pi
ks strategy k with probability 
k . Any ve
tor of prob-abilities gives a mixed strategy. The question is how to obtain a goodmixed strategy. Clearly, for the 2 � 2 game we have here, i needs to
ompute the best values of 
1 and 
2|the probabilities of defe
ting and
ooperating respe
tively. These will be the values whi
h give i the high-est expe
ted payo� for its mixed strategy. The diagram in Figure 1.4is one way of thinking about solving the problem of pi
king a mixedstrategy for agent i , whi
h is fundamentally a problem of determiningthe values of 
1 and 
2 whi
h will maximise the agent's expe
ted utility.The diagram plots expe
ted utility on the verti
al axis(axes), and theprobabilities 
1 and 
2 a
ross the horizontal axis. If j 
hooses to playthe �rst row, in other words to defe
t, then i will get either �3 or 1depending on its 
hoi
e of 
olumn. When this 
hoi
e is made randomly,the expe
ted payo� to i is the weighted sum:y = �3
1 + 
2
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Figure 1.5. Determining a mixed strategy for Agent j .whi
h is the equation of the line joining 1 and �3 in Figure 1.4 (sin
e
1 = 1 � 
2). Similarly, if j 
hooses to play the se
ond row, then theexpe
ted payo� to i is between 0 and �1, depending on the probabilitywith whi
h the two options available to i are sele
ted, and is plotted bythe other line in Figure 1.4. The interse
tion of the two lines gives thevalue of 
1 and 
2 (whi
h is just 1 � 
1) at whi
h i is indi�erent as towhat j plays|whi
hever j 
hooses, the expe
ted payo� to i is the same.This, then, yields a form of stability and the resulting values of 
1 and
2 give the mixed strategy for i .Agent j 
an analayse the problem in terms of a probability ve
torr = (r1; r2)and 
ome up with a similar pi
ture (Figure 1.5).Now, let's 
onsider the payo�'s the players will expe
t. With i havingmixed strategy (
1; 
2) and j having (r1; r2), then the loss that i willexpe
t to make will be:L = 3
1r1 + 0(1� r1)
1� r1(1� 
1) + (1� 
1)(1� r1)= 5
1r1 � 2r1 � 
1 + 1Now, assuming that i uses 
�1 = 0:4 as 
al
ulated above. Then:L = 5(0:4r1)� 2r1 � 
1 + 1= 0:6
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ision Theory in Agent-based Systemsand i will have an expe
ted loss of 0:6. Similarly, we 
an 
al
ulate thegain that j will expe
t to make as:G = 3
1r1 + 0(1� 
1)r1� 
1(1� r1) + (1� 
1)(1� r1)= 5
1r1 � r1 � 2
1 + 1If j pi
ks r�1 = 0:2 then: G = 0:6The neat thing is that the expe
ted gain or loss for one agent does notdepend upon the strategy of the other agent|on
e the 
orre
t mixedstrategy has been determined, it no longer matters what the other agentis going to do, the �rst agent still has the same expe
ted out
ome. Thisresult generalises to more general games, and Von Neumann's MinimaxTheorem shows that you 
an always �nd a pair of mixed strategies x �and y� whi
h result in i and j having the same expe
ted value for thegame.This theory is suÆ
ient ba
kground for the rest of the book, but beforewe leave the topi
, it is worth 
onsidering the best-known multi-agents
enario: the prisoner's dilemma.4. THE PRISONER'S DILEMMAConsider the following s
enario:Two men are 
olle
tively 
harged with a 
rime and held in separate
ells. They have no way of 
ommuni
ating with ea
h other or makingany kind of agreement. The two men are told that:1 if one of them 
onfesses to the 
rime and the other does not, the
onfessor will be freed, and the other will be jailed for three years;and2 if both 
onfess to the 
rime, then ea
h will be jailed for two years.Both prisoners know that if neither 
onfesses, then they will ea
h bejailed for one year.We refer to 
onfessing as defe
tion, and not 
onfessing as 
ooperat-ing, be
ause we are viewing the problem from the point of view of theprisoners|from the point of view of one of them, the best, most 
ooop-erative, thing the other 
an do is to not 
onfess.There are four possible out
omes to the prisoner's dilemma, dependingon whether the agents 
ooperate or defe
t, and so the environment is oftype (1). Abstra
ting from the s
enario above, we 
an write down theutility fun
tions for ea
h agent in the payo� matrix of Table 4. Notethat the numbers in the payo� matrix are not the length of the jail term.
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ision Theory 21i defe
ts i 
ooperatesj defe
ts 22 15j 
ooperates 51 33Table 1.3 . A payo� matrix for the Prisoner's Dilemma.In other words, the utilities are as follows:ui(D ;D) = 2 ui(D ;C ) = 5 ui(C ;D) = 1 ui(C ;C ) = 3uj (D ;D) = 2 uj (D ;C ) = 1 uj (C ;D) = 5 uj (C ;C ) = 3And the preferen
es are:(D ;C ) �i (C ;C ) �i (D ;D) �i (C ;D)(C ;D) �j (C ;C ) �j (D ;D) �j (D ;C )So, what should a prisoner do? The answer is not as 
lear 
ut as the pre-vious pure strategy examples we looked at. It is not the 
ase a prisonerprefers all the out
omes in whi
h it 
ooperates over all the out
omesin whi
h it defe
ts. Similarly, it is not the 
ase that a prisoner prefersall the out
omes in whi
h it defe
ts over all the out
omes in whi
h it
ooperates.The \standard" approa
h to this problem is to put yourself in thepla
e of a prisoner, i say, and reason as follows:Suppose I 
ooperate. Then if j 
ooperates, we will both get a payo� of3. But if j defe
ts, then I will get a payo� of one. So the best payo� I
an be guaranteed to get if I 
ooperate is 1.Suppose I defe
t. Then if j 
ooperates, then I get a payo� of 5, whereasif j defe
ts, then I will get a payo� of 2. So the best payo� I 
an beguaranteed to get if I defe
t is 2.So, if I 
ooperate, the worst 
ase is I will get a payo� of 1, whereas if Idefe
t, the worst 
ase is that I will get 2.Sin
e I would prefer a payo� of 2 to a payo� of 1, I should defe
t.Sin
e the s
enario is symmetri
 (i.e., both agents reason the same way),then the out
ome that will emerge | if both agents reason \rationally"| is that both agents will defe
t, giving them ea
h a payo� o� 2.Noti
e that neither strategy dominates in this s
enario, so our �rstroute to �nding a 
hoi
e of strategy is not going to work. Turning toNash equilibria, there is a single Nash equilibrium of D ;D . Thus underthe assumption that i will play D , j 
an do no better than play D , and
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ision Theory in Agent-based Systemsunder the assumption that j will play D , i 
an also do no better thanplay D .But is this the best they 
an do? Naive intuition says not. Surely ifthey both 
ooperated, then they 
ould do better | they would re
eivea payo� of 3. But if you assume the other agent will 
ooperate, thenthe rational thing to do | the thing that maximises your utility | is todefe
t. The 
on
lusion seems ines
apable: the rational thing to do in theprisoners dilemma is defe
t, even though this appears to \waste" someutility. (The fa
t that our naive intuition tells us that utility appearsto be wasted here, and that the agents 
ould do better by 
ooperating,even though the rational thing to do is to defe
t, is why this is referredto as a dilemma.)The prisoners dilemma may seem an abstra
t problem, but it turnsout to be very 
ommon indeed. In the real world, the prisoners dilemmaappears in situations ranging from nu
lear weapons treaty 
omplian
eto negotiating with one's 
hildren. Consider the problem of nu
learweapons treaty 
omplian
e. Two 
ountries i and j have signed a treatyto dispose of their nu
lear weapons. Ea
h 
ountry 
an then either 
o-operate (= get rid of their weapons), or defe
t (= keep their weapons).But if you get rid of your weapons, you run the risk that the other sidekeeps theirs, making them very well o� while you su�er what is 
alledthe \su
kers payo�". In 
ontrast, if you keep yours, then the possibleout
omes are that you will have nu
lear weapons while the other 
ountrydoes not (a very good out
ome for you), or else at worst that you bothretain your weapons. This may not be the best possible out
ome, but is
ertainly better than you giving up your weapons while your opponentkept theirs, whi
h is what you risk if your give up your weapons.Many people �nd the 
on
lusion of this analysis | that the rationalthing to do in the prisoner's dilemma is defe
t | deeply upsetting. Forthe result seems to imply that 
ooperation 
an only arise as a result orirrational behaviour, and that 
ooperative behaviour 
an be exploitedby those who behave rationally. The apparent 
on
lusion is that naturereally is \red in tooth and 
law". Parti
ularly for those who are in-
lined to a liberal view of the world, this is unsettling and perhaps evendistasteful. As 
ivilized beings, we tend to pride ourselves on somehow\rising above" the other animals in the world, and believe that we are
apable of nobler behaviour: to argue in favour of su
h an analysis istherefore somehow immoral, and even demeaning to the entire humanra
e.Naturally enough, there have been several attempts to respond tothis analysis of the prisoners dilemma, in order to \re
over" 
oopera-tion (Binmore, 1992, p.355{382).
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ision Theory 23We Are Not All Ma
hiavelli! The �rst approa
h is to argue thatwe are not all su
h \hard boiled" individuals as the prisoner's dilemma(and more generally, this kind of game theoreti
 analysis) implies. Weare not seeking to 
onstantly maximise our own welfare, possibly at theexpense of others. Proponents of this kind of argument typi
ally pointto real-world examples of altruism and spontaneous, mutually-bene�
ial
ooperative behaviour in order to justify their 
laim.There is some strength to this argument: we do not, (or at least, mostof us do not), 
onstantly deliberate about how to maximise our welfarewithout any 
onsideration for the welfare of our peers. Similarly, in manys
enarios, we would be happy to trust our peers to re
ognise the valueof a 
ooperative out
ome without even mentioning it to them, being nomore than mildly annoyed if we get the \su
ker's payo�".There are several 
ounter responses to this. First, it is pointed outthat many real-world examples of spontaneous 
ooperative behaviourare not really the prisoner's dilemma. Frequently, there is some built inme
hanism that makes it in the interests of parti
ipants to 
ooperate.For example, 
onsider the problem of giving up your seat on the bus. Wewill frequently give up our seat on the bus to an older person, motherwith 
hildren, et
., apparently at some dis
omfort (= loss of utility) toourselves. But it 
ould be argued that in su
h s
enarios, so
iety hasways of punishing non-
ooperative behaviour: su�ering the hard andunforgiving stares of fellow passengers when we do not give up our seat,or worse, being a

used in publi
 of being un
outh!Se
ond, it is argued that many \
ounter examples" of 
ooperativebehaviour arising do not stand up to inspe
tion. For example, 
onsidera publi
 transport system, whi
h relies on everyone 
ooperating andhonestly paying their fare every time they travel, even though whetheror not they have paid is not veri�ed. The fa
t that su
h a system works(the buses turn up on time) would appear to be some eviden
e thatrelying on spontaneous 
ooperative 
an work. But the fa
t that su
ha system fun
tions does not mean that the system is not exploited: itwill be, and if there is no means of 
he
king whether or not someonehas paid their fare and punishing non-
omplian
e, then all other thingsbeing equal, those individuals that do exploit the system will be bettero�. Unpalatable, perhaps, but true nevertheless.The Other Prisoner is My Twin! A se
ond line of atta
k is to arguethat two prisoner's will \think alike", and re
ognise that 
ooperation isthe best out
ome. For example, suppose the two prisoners are twins,inseparable sin
e birth; then, it is argued, if their though pro
esses aresuÆ
iently aligned, they will both re
ognise the bene�ts of 
ooperation,
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ision Theory in Agent-based Systemsand behave a

ordingly. The answer to this is that it implies thereare not a
tually two prisoner's playing the game. If I 
an make my twinsele
t a 
ourse of a
tion simply by \thinking it", then we are not playingthe prisoner's dilemma at all.This \falla
y of the twins" argument often takes the form \what ifeveryone were to behave like that" (Binmore, 1992, p311). The answer,as Yossarian pointed out in Joseph Heller's Cat
h 22, is that if everyoneelse behaved like that, you would be a damn fool to behave any otherway.People Are Not Rational! Some would argue7, that we might in-deed be happy to risk 
ooperation as opposed to defe
tion when fa
edwith situations where the su
ker's payo� really does matter very mu
h.For example, paying a bus fare that amounts to a few pennies does notreally hurt us mu
h, even if everybody else is defe
ting and hen
e ex-ploiting the system. But, it is argued, when we are fa
ed with situationswhere the su
ker's payo� really hurts us | life or death situations andthe like | we will 
hoose the \rational" 
ourse of a
tion that maximisesour welfare, and defe
t.The Shadow of the Future Lest the dis
ussion so far prove toodepressing, it should be emphasised that there are quite natural variantsof the prisoner's dilemma in whi
h 
ooperation is the rational thingto do. One idea is to play the game more than on
e. In the iteratedprisoner's dilemma, the \game" of the prisoner's dilemma is played anumber of times. Ea
h play is referred to as a \round". Criti
ally, it isassumed that ea
h agent 
an see what the opponent did on the previousround: player i 
an see whether j defe
ted or not, and j 
an see whetheri defe
ted or not.Now, for the sake of argument, assume that the agents will 
ontinueto play the game forever : every round will be followed by another round.Now, under these assumptions, what is the rational thing to do? If youknow that you will be meeting the same opponent in future rounds,the in
entive to defe
t appears to be 
onsiderably diminished, for tworeasons:If you defe
t now, your opponent 
an punish you by also defe
ting.Punishment is not possible in the one-shot prisoner's dilemma.If you \test the water" by 
ooperating initially, and re
eive thesu
ker's payo� on the �rst round, then be
ause you are playing thegame inde�nitely, this loss of utility (one util) 
an be \amortized"over the future rounds. When taken into the 
ontext of an in�nite
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ision Theory 25(or at least very long) run, then the loss of a single unit of utilitywill represent a small per
entage of the overall utility gained.So, if you play the prisoner's dilemma game inde�nitely, then 
oopera-tion is a rational out
ome (Binmore, 1992, p358). The \shadow of thefuture" en
ourages us to 
ooperate in the in�nitely repeated prisoner'sdilemma game.This seems to be very good news indeed, as truly one-shot gamesare 
omparatively s
ar
e in real life. When we intera
t with someone,then there is often a good 
han
e that we will intera
t with them in thefuture, and rational 
ooperation begins to look possible. However, thereis a 
at
h.Suppose you agree to play the iterated prisoner's dilemma a �xednumber of times, (say 100). You need to de
ide (presumably in advan
e)what your strategy for playing the game will be. Consider the last round(i.e., the 100th game). Now, on this round, you know | as does youropponent | that you will not be intera
ting again. In other words,the last round is in e�e
t a one-shot prisoner's dilemma game. As weknow from the analysis above, the rational thing to do in a one-shotprisoner's dilemma game is defe
t. Your opponent, as a rational agent,will presumably reason likewise, and will also defe
t. On the 100thround, therefore, you will both defe
t. But this means that the last\real" round, is 99. But similar reasoning leads us to the 
on
lusion thatthis round will also be treated in e�e
t like a one-shot prisoner's dilemma,and so on. Continuing this ba
kwards indu
tion leads inevitably to the
on
lusion that, in the iterated prisoner's dilemma with a �xed, pre-determined number of rounds, defe
tion is the dominant strategy, as inthe one-shot version (Binmore, 1992, p.354).Whereas it seemed to be very good news that rational 
ooperationis possible in the iterated prisoner's dilemma with an in�nite numberof rounds, it seems to be very bad news that this possibility appears toevaporate if we restri
t ourselves to repeating the game a pre-determined,�xed number of times. Returning to the real-world, we know that inreality, we will only intera
t with our opponents a �nite number of times(after all, one day the world will end). We appear to be ba
k where westarted.The story is a
tually better than it might at �rst appear, for severalreasons. The �rst is that a
tually playing the game an in�nite num-ber of times is not ne
essary. As long as the \shadow of the future"looms suÆ
iently large, then it 
an en
ourage 
ooperation. So, rational
ooperation 
an be
ome possible if both players know, with suÆ
ientprobability, that they will meet and play the game again in the future.



26 Game Theory and De
ision Theory in Agent-based SystemsThe se
ond reason is that, even though a 
ooperative agent 
an su�erwhen playing against a defe
ting opponent, it 
an do well overall pro-vided it gets suÆ
ient opportunity to intera
t with other 
ooperativeagents.5. SUMMARYIn this 
hapter we have dis
ussed some of the basi
 
on
epts in de
i-sion theory and game theory. Our intention was simply to make the restof the book 
omprehensible even for those who have not 
ome a
rosseither de
ision theory, or game theory, or both, in the past, and thisbrief dis
ussion stops short of being anything like a 
omprehensive in-trodu
tion to the topi
s. To do the latter would take a book as long asthis whole work (at the very least). However, for this who want to knowmore then there are a number of pla
es to look.For information on game theory, one of the best pla
es to start is(Binmore, 1992). This is a very readable introdu
tion from a leadingexpert, and, being intended as a textbook, starts at the very beginningand 
overs mu
h of the game theory one is ever likely to need to know.From a more spe
i�
ally agent-oriented perspe
tive, (Rosens
hein andZlotkin, 1994) is a seminal work in the appli
ation of game theory tomulti-agent en
ounters, and (Kraus, 2001) is a deep and rigorous inves-tigation of similar matters. In addition, (Sandholm, 1999) gives a goodgeneral dis
ussion of the use of game theory in designing multi-agentsystems, as well as related topi
s su
h as au
tion theory. Initial workon the iterated prisoner's dilemma was 
arried out by Axelrod (Axelrod,1984), and this is re
ommended as a point of departure for further read-ing on the topi
. (Mor and Rosens
hein, 1995) provides pointers intore
ent prisoner's dilemma literature. An non-mathemati
al introdu
tionto game theory, with an emphasis on the appli
ations of game theoryin the so
ial s
ien
es, is (Zagare, 1984), and some of the early work ingame theory is surveyed in (S
hwalbe and Walker, 2001)8.The seminal introdu
tion to de
ision theory is (Rai�a, 1968), and agood, if slightly dogmati
, alternative is (Lindley, 1975). (Smith, 1999)is not quite as detailed, but 
overs mu
h of the relevant material andis very easy to read. Bayesian networks are 
overed in detail by (Pearl,1988), the �rst book on the subje
t, and by (Castillo et al., 1997; Cowellet al., 1999; Jensen, 2001). The last two also 
over in
uen
e diagramsand so deal with network models for the whole of de
ision theory (in
ontrast Pearl and Castillo et al. deal only with probability). Finally,(Puterman, 1994) is a 
omprehensive introdu
tion to Markov de
ision
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esses, but for work in this area mu
h of the most relevant materialhas only yet appeared in journal and 
onferen
e papers.Notes1. You 
an 
al
ulate it as a ration of o

urren
e to the total number of events, but what
ounts as an o

urren
e? It is 
lear when 
al
ulating the probability of getting heads whentossing a 
oin, but mu
h less obvious when, for example, estimating the probability of aparti
ualr disease giving 
ertain symptoms. Even tri
kier is the question of how many eventsyou have to sum over. Typi
al de�nitions 
laim that you only truly know the probability ifyou sum over an in�nite number of events whi
h presents obvious pra
ti
al di�
ulties.2. The key step in the argument as to why betting rates are a suitable way of determingprobabilities is that if the bettor misestimates the probability and so proposes a di�erentbet|say paying $0.4 for the 
han
e of winning $1 when a o

urs|then the person they arebetting with 
an exploit them. In parti
ular, this se
ond person 
an 
onstru
t a Dut
h book,a set of bets whi
h 
an win an arbitrarily large amount of money from the bettor. Thus, theargument runs, the bettor will be motivated to get the probability right. The main problemwith this argument is that it pla
es a 
onsiderable 
ognitive burden on whoever is establishingthe probability.3. The notion of independen
e 
aptured in the ar
s of a Bayesian network is somewhatmore 
omplex than that des
ribed here, but the di�eren
e is not relevant for the purposes ofthis arti
le. For full details, see (Pearl, 1988).4. Indeed, in e
onomi
s as a whole, very little thought is given to the question of wherepreferen
es 
ome from.5. To misquote Martin Amis, the di�eren
e is 
lear|a 
ool million dollars.6. How might an agent 
hoose more than one row in the kind of framework we have been
onsidering? Well, as we will see in a very short while, it doesn't, but at the same time itdoesn't 
hoose a single row either...7. Ken Binmore 
ertainly did at the UKMAS workshop in De
ember 1998.8. They also provide the �rst English translation of what is generally regarded as the �rstpaper on game theory.Referen
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