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Abstract

Possible-world semantics are provided for Parikh’s
relevance-sensitive model for belief revision. Having
Grove’s system-of-spheres construction as a base, we
consider additional constraints on measuring distance
between possible worlds, and we prove that, in the pres-
ence of the AGM postulates, these constraints character-
ize precisely Parikh’s axiom (P). These additional con-
straints essentially generalize a criterion of similarity
that predates axiom (P) and was originally introduced
in the context of Reasoning about Action. A by-product
of our study is the identification of two possible read-
ings of Parikh’s axiom (P), which we call thestrongand
theweakversions of the axiom. An interesting feature
of the strong version is that, unlike classical AGM be-
lief revision, it makes associations between the revision
policies ofdifferenttheories.

Introduction

Much of the work in the field of Belief Revision is based on
the classical work of Alchourron, Gardenfors and Makin-
son, (Alchourron, Gardernfors, & Makinson 1985), that has
given rise to a formal framework for studying this process,
commonly referred to as theAGM paradigm. Within the
AGM paradigm there are two constituents that are of partic-
ular interest for this paper. The first is the set of rationality
postulates for belief revision, known as theAGM postulates
(Alchourron, Gardernfors, & Makinson 1985). The second
is a special kind of preorder on possible worlds, called asys-
tem of spheres, based on which Grove defined a constructive
model for belief revision; Grove has shown in (Grove 1988)
that the AGM postulates are sound and complete with re-
spect to his system-of-spheres semantics.

Studying the AGM paradigm, Parikh (Parikh 1999) ob-
served that is it rather liberal in its treatment of the notion of
relevance. More precisely, Parikh argues that during belief
revision a rational agent does not change her entire belief
corpus, but only the portion of it that is relevant to the new
information. This intuition oflocal change, Parikh claims,
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is not fully captured by the AGM paradigm. To remedy this
shortcoming, Parikh introduced an additional axiom, named
(P), as a supplement to the AGM postulates. Loosely speak-
ing, axiom (P) says that when new informationϕ is received,
only part of the initial belief setK will be affected; namely
the part that shares common propositional variables with the
minimal language ofϕ. Parikh’s approach is also known as
the language splitting model.

Although axiom (P) is just a first step towards captur-
ing the role of relevance in belief revision1, Parikh’s work
has received considerable attention since the publication of
(Parikh 1999) (see for example (Chopra & Parikh 1999),
(Chopra & Parikh 2000), (Chopra, Georgatos, & Parikh
2001)). Yet, despite all the research on axiom (P), no se-
mantics for it have yet been formulated. This is the gap that
the present article aims to fill. We examine new constraints
on systems-of-spheres and, building on Grove’s result, we
prove that in the presence of the AGM postulates, axiom (P)
is sound and complete with respect to these new semantic
constraints.

What is particularly pleasing about our result is that the
new constraints on systems of spheres are in fact not new at
all; they essentially generalize a very natural condition that
predates axiom (P) and has been motivated independently by
Winslett in the context of Reasoning about Action (Winslett
1988). This connection between Belief Revision with Rea-
soning about Action further confirms intuitions about the re-
lationship between the two areas (see (Peppas & Wobcke
1992), (Peppas 1994), and (Peppas, Foo, & Nayak 2000)).

In the course of formulating semantics for axiom (P) we
observed that there are in fact two possible readings of this
axiom, which we call thestrongand theweakversions of
(P). We present both these versions herein and we show that
the strong version of (P) brings with it a new feature in the
picture of classical AGM revision: it makes associations be-
tween the revision policies ofdifferenttheories.

The outline of the paper is as follows. We first present
some background material on the AGM paradigm and the

1Work on relevance in general in Artificial Intelligence has been
ongoing for a while. A comprehensive collection of papers dealing
with relevance could be found in (AIJ 1997).



language splitting model (first three sections). The crucial
axiom (P) is then examined in greater detail to fully flesh
out its possible readings (4th section). We proceed with the
formulation of semantics for axiom (P). For ease of expo-
sition and clarity, we start by focusing on the special case
of “opinionated” agents, that is, agents whose belief set is a
consistent complete theory (5th section). Then we consider
the general case of incomplete theories (6th section). The
last section contains some concluding remarks.

Formal Preliminaries

Throughout this paper we work with a finite set of propo-
sitional variablesP = {p1, . . . pm}. We defineL to be the
propositional language generated fromP (using the stan-
dard boolean connectives∧,∨,→,¬ and the special sym-
bols>,⊥) and governed by classical propositional logic`.
A sentenceϕ ∈ L is contingentiff 6` ϕ and 6` ¬ϕ. For a
set of sentencesΓ of L, we denote byCn(Γ) the set of all
logical consequences ofΓ, i.e.,Cn(Γ) = {ϕ ∈ L: Γ ` ϕ}.
We shall often writeCn(ϕ1, ϕ2, . . . , ϕn), for sentencesϕ1,
ϕ2, . . . ,ϕn, as an abbreviation ofCn({ϕ1, ϕ2, . . . , ϕn}).

A theoryT of L is any set of sentences ofL closed under
`, i.e.,T = Cn(T ). In this paper we focus only onconsistent
theories. Hence from now on, whenever the term “theory”
appears unqualified, it is understood that it refers to a con-
sistent theory. We denote the set of all consistent theories
of L by KL. A theory T of L is completeiff for all sen-
tencesϕ ∈ L, ϕ ∈ T or ¬ϕ ∈ T . We denote the set of all
consistent complete theories ofL byML. In the context of
systems of spheres, consistent complete theories essentially
play the role of possible worlds. Following this convention,
in the rest of the article we use the terms “possible world”
(or simply “world”) and “consistent complete theory” inter-
changeably. For a set of sentencesΓ of L, [Γ] denotes the
set of all consistent complete theories ofL that containΓ.
Often we use the notation[ϕ] for a sentenceϕ ∈ L, as an
abbreviation of[{ϕ}]. For a theoryT and a set of sentences
Γ of L, we denote byT + Γ the closure under̀ of T ∪ Γ,
i.e., T + Γ = Cn(T ∪ Γ). For a sentenceϕ ∈ L we often
write T + ϕ as an abbreviation ofT + {ϕ}.

In the course of this paper, we often considersublan-
guagesof L. Let P ′ be a subset of the set of proposi-
tional variablesP . By LP ′ we denote the sublanguage of
L defined overP ′. In the limiting case whereP ′ is empty,
we takeLP ′ to be the language generated by>,⊥ and the
boolean connectives. For a sublanguageL′ ofL defined over
a subsetP ′ of P , byL′ we denote the sublanguage defined
over the propositional variables in the complement ofP ′ i.e.,
L′ = L(P−P ′). For a sentenceχ of L, byLχ we denote the
minimalsublanguage ofL within whichχ can be expressed
(i.e.,Lχ contains a sentence that is logically equivalent toχ,
and moreover noproper sublanguage ofLχ contains such
a sentence).2 Finally we note that in the forthcoming dis-

2It is not hard to verify that for everyχ, Lχ is unique – see

cussion, we often project operations defined earlier for the
entire languageL, to one of its sublanguagesL′. When this
happens, all notation will be subscripted by the sublanguage
L′. For example, for a set of sentencesΓ ⊂ L′, the term
CnL′(Γ) denotes the logical closure ofΓ in L′. Similarly,
[Γ]L′ denotes the set of all maximally consistent supersets of
Γ in L′. When no subscript is present, it is understood that
the operation is relevant to the original languageL.

The AGM Paradigm

Much research in belief revision is based on the work of Al-
chourron, Gardenfors and Makinson (Alchourron, Gardern-
fors, & Makinson 1985), who have developed a research
framework for this process, known as theAGM paradigm.
In this section we shall briefly review two of the main mod-
els for belief revision within the AGM paradigm; the first is
based on a set ofrationality postulates, and the second on a
preorder on worlds known as asystem of spheres.

The AGM Postulates

In the AGM paradigm, belief revision is modeled as a func-
tion ∗ mapping a theoryT and a sentenceϕ to the theory
T ∗ϕ. In this paper we assume that the theoryT and the sen-
tenceϕ areindividuallyconsistent. Alchourron, Gardenfors,
and Makinson have proposed the following set of postulates
for belief revision:

(K*1) T ∗ ϕ is a theory ofL.

(K*2) ϕ ∈ T ∗ ϕ.

(K*3) T ∗ ϕ ⊆ T + ϕ.

(K*4) If ¬ϕ 6∈ T thenT + ϕ ⊆ T ∗ ϕ.

(K*5) T ∗ ϕ = L iff ` ¬ϕ.

(K*6) If ` ϕ ↔ ψ thenT ∗ ϕ = T ∗ ψ.

(K*7) T ∗ (ϕ ∧ ψ) ⊆ (T ∗ ϕ) + ψ.

(K*8) If ¬ψ 6∈ T ∗ ϕ then(T ∗ ϕ) + ψ ⊆ T ∗ (ϕ ∧ ψ).

Systems of Spheres

Apart from axiomatic approaches to belief revision, a num-
ber of explicit constructions for this process have been pro-
posed. One popular construction is that proposed by Grove
(Grove 1988) based on a total preorder on possible worlds.

Definition 1 (Grove 1988) LetT be a theory ofL, andST

a collection of sets of possible worlds i.e.,ST ⊆ 2ML . ST

is a system of spheres centered on[T ] iff the following con-
ditions are satisfied:3

(Parikh 1999) for details.
3We include condition (S4) for reasons of comprehensiveness,

even though in the finite propositional case, this condition is redun-
dant.



(S1) ST is totally ordered with respect to set inclusion;
that is, ifV , U ∈ ST thenV ⊆ U or U ⊆ V .

(S2) The smallest sphere inST is [T ]; that is, [T ] ∈ ST ,
and ifV ∈ ST then[T ] ⊆ V .

(S3) ML ∈ ST (and thereforeML is the largest sphere
in ST ).

(S4) For everyϕ ∈ L, if there is any sphere inST inter-
secting[ϕ] then there is also a smallest sphere in
ST intersecting[ϕ].

For a system of spheresST and a sentenceϕ ∈ L, the
smallest sphere inST intersecting[ϕ] is denotedCT (ϕ).4
With any system of spheresST , Grove associates a function
fT : L 7→ 2ML defined as follows:

fT (ϕ) = [ϕ] ∩ CT (ϕ)

Grove uses the system of spheresS and its associated func-
tion fT , to define constructively the process of revisingT ,
by means of the following condition:

(S*) T ∗ ϕ =
⋂

fT (ϕ)

Grove proved that the class of functions generated from sys-
tems of spheres by means of (S*) is precisely the family
of revision functions satisfying the eight AGM postulates
(K*1) - (K*8). One of the main aims of this paper is to
characterize the subclass of systems of spheres which cor-
respond (via (S*)) to revision functions that, in addition to
(K*1) - (K*8), also satisfy axiom (P) (see below).

Relevance-Sensitive Belief Revision

When revising a theoryT by a sentenceϕ it seems plau-
sible to assume that only the beliefs that arerelevantto ϕ
should be affected, while the rest of the belief corpus is un-
changed. For example, an agent that is revising her beliefs
about planetary motion is unlikely to revise her beliefs about
Malaysian politics. This simple intuition is not fully cap-
tured in the AGM paradigm. To see this consider the trivial
revision function∗t defined below:

T ∗t ϕ =
{

T + ϕ if ϕ is consistent withT
Cn(ϕ) otherwise

It is not hard to verify that∗t satisfies all the AGM pos-
tulates, and yet it has the rather counter-intuitive effect of
throwing awayall non-tautological beliefs inT whenever
the new informationϕ is inconsistent withT , regardless of
whether these beliefs are related toϕ or not.

4In the limiting case whereϕ is inconsistent, Grove defines
CT (ϕ) to be the setML. However, since in this paper we only
consider revision byconsistentsentences, these limiting cases are
irrelevant.

In order to block revision functions like∗t Parikh intro-
duced in (Parikh 1999) a new axiom, named (P), as a supple-
ment to the AGM postulates. The main intuition that axiom
(P) aims to capture is that an agent’s beliefs can be subdi-
vided into disjoint compartments, referring to different sub-
ject matters, and that when revising, the agent modifies only
the compartment(s) affected by the new information:

(P) If T = Cn(χ, ψ) whereχ, ψ are sentences of dis-
joint sublanguagesL1, L2 respectively, andϕ ∈
L1, thenT ∗ ϕ = (CnL1(χ)◦ϕ) + ψ, where◦ is a
revision operator of the sublanguageL1.

It was shown in (Parikh 1999) that (P) is consistent with
the AGM postulates, (K*1) - (K*6) (known as thebasic
AGM postulates). The results presented later in this paper
entail that (P) is in fact consistent with all eight AGM pos-
tulates (K*1) - (K*8).

Two Readings of Axiom (P)

Before proceeding with the formulation of semantics for ax-
iom (P), it is worth taking a closer look at it.

Consider two sentencesχ, ψ ∈ L, such thatLχ ∩ Lψ =
∅, and letT be the theoryT = Cn({χ, ψ}). Moreover, let
ϕ be any sentence inLχ. According to axiom (P), anything
outsideLχ will not be affected by the revision ofT by ϕ.
This however is only one side of axiom (P). The other side
concerns the part of the theoryT that is related toϕ, which
according to axiom (P) will change toCnLχ(χ)◦ϕ, where◦
is a revision function defined over the sublanguageLχ. It is
this second side of axiom (P) that needs closer examination.

Axiom (P) is open to two different interpretations. Ac-
cording to the first reading, which we call theweakversion
of axiom (P), the revision function◦ that modifies the rele-
vant part ofT – call it thelocal revision function – mayvary
from theory to theory, even when the relevant partCn(χ)
stays the same. To give a concrete example, leta, b, c be
propositional variables, letT be the theoryT = Cn(a∧b, c),
and letT ′ be the theoryT ′ = Cn(a ∧ b,¬c). Denote byL1

the sublanguage defined over{a, b} and byL2 the sublan-
guage defined over{c}. Moreover, letϕ be the sentenceϕ
= ¬a ∨ ¬b. The part ofT andT ′ that is relevant toϕ (in the
sense of the language-splitting model) is the same for both
theories, namelyCn(a ∧ b). Nevertheless, according to the
weakversion of axiom (P), the local revision operators◦ and
◦′ that modify the twoidentical relevant parts ofT andT ′
respectively, may very welldiffer. For example, it could be
the case thatCnL1(a ∧ b)◦(¬a ∨ ¬b) = CnL1(¬a ∧ b), and
CnL1(a∧b)◦′(¬a∨¬b) = CnL1(a∧¬b), from which it fol-
lows thatT ∗ϕ = Cn(¬a, b, c), andT ′ ∗ϕ = Cn(a,¬b,¬c).
In other words, the weak version of axiom (P) allows the lo-
cal revision function to becontext-sensitive. In the scenario
described above, the presence ofc in T leads to a local revi-
sion function◦ for CnL1(a∧b) that producesCnL1(¬a∧b)
as the result of revising by¬a ∨ ¬b; on the other hand, the
presence of¬c in T ′, induces a local revision function◦′



for CnL1(a ∧ b) that producesCnL1(a ∧ ¬b) for the same
input. Therefore, whilec (or ¬c) remains unaffected during
the (global) revision by¬a ∨ ¬b (since it is not relevant to
the new information), its presence influences the way that
the relevant part of the theory is modified.

To prevent such an influence we need to resort to the
strongversion of axiom (P) which makes the local revision
function◦ context-independent. According to the strong in-
terpretation of (P), for any two theoriesT = Cn(χ, ψ) and
T ′ = Cn(χ, ψ′), such thatLχ ∩ Lψ = Lχ ∩ Lψ′ = ∅, there
exists asingle local revision function◦ such thatT ∗ ϕ =
(CnLχ(χ)◦ϕ)+ψ andT ′ ∗ϕ = (CnLχ(χ)◦ϕ)+ψ′, for any
ϕ ∈ Lχ.

It should be noted that although axiom (P) is open to both
the weak and the strong interpretations, the discussion and
some results in (Parikh 1999) suggest that the strong ver-
sion of axiom (P) is intended. Following Parikh, we shall
also adopt the strong version of axiom (P) in this paper. To
make this assumption explicit and to avoid any ambiguity,
we make use of the following two conditions which together
are shown to be equivalent to the strong version of axiom
(P):

(R1) If T = Cn(χ, ψ), Lχ ∩ Lψ = ∅, andϕ ∈ Lχ, then
(T ∗ ϕ) ∩ Lχ = T ∩ Lχ.

(R2) If T = Cn(χ, ψ), Lχ ∩ Lψ = ∅, andϕ ∈ Lχ, then
(T ∗ ϕ) ∩ Lχ = (Cn(χ) ∗ ϕ) ∩ Lχ.

Condition (R1) is straightforward: when revising a theory
T by a sentenceϕ, the part ofT that isnot relatedto ϕ is
not affected by the revision. Condition (R2) is what imposes
the strong version of axiom (P). To see this, consider a re-
vision function∗ (which defines a revision policy forall the
theories ofL), and letT = Cn(χ, ψ) andT ′ = Cn(χ, ψ′) be
two theories such thatLχ ∩ Lψ = Lχ ∩ Lψ′ = ∅. Consider
now any sentenceϕ ∈ Lχ. The relevant part toϕ of T and
T ′ is in both cases the same. Then, according to (R2), the
way that this relevant part is modified in bothT andT ′ is
also the same; namely, as dictated by the revision function
∗ itself when applied toCn(χ) (once again, notice that∗ is
defined for all theories, includingT , T ′, andCn(χ)).

The following result shows that (R1) and (R2) are indeed
equivalent with the strong version of axiom (P).

Theorem 1 Let∗ be a revision function satisfying the AGM
postulates (K*1) - (K*8). Then∗ satisfies (P) iff∗ satisfies
(R1) and (R2).

Proof.

( ⇒ )

Assume that∗ satisfies (P). LetT be a theory ofL such
that T = Cn(χ, ψ), whereχ, ψ ∈ L andLχ ∩ Lψ = ∅.
Consider now any sentenceϕ ∈ Lχ. By (P) it follows
thatT ∗ ϕ = (CnLχ(χ)◦ϕ) + ψ, where◦ is a revision op-
erator ofLχ. From the above, (R1) follows immediately.

For (R2), let us denote byT ′ the theoryCn(χ). Firstly no-
tice thatT ′ ∗ ϕ is equal to the closure inL of CnLχ

(χ)◦ϕ
i.e., T ′ ∗ ϕ = Cn(CnLχ

(χ)◦ϕ). Indeed,T ′ can be written
asT ′ = Cn(χ, ψ ∨ ¬ψ) and therefore, by (the strong ver-
sion of) axiom (P),T ′ ∗ ϕ = (CnLχ

(χ)◦ϕ) + (ψ ∨ ¬ψ) =
Cn(CnLχ

(χ)◦ϕ). Consequently,T ∗ϕ = (Cn(χ) ∗ϕ)+ψ,
and moreoverLCn(χ)∗ϕ ∩Lψ = ∅. Therefore,(T ∗ ϕ) ∩Lχ

= (Cn(χ) ∗ ϕ) ∩ Lχ as desired.

( ⇐ )

Assume that∗ satisfies (R1) and (R2). LetT be a theory
of L such thatT = Cn(χ, ψ), whereχ, ψ ∈ L andLχ ∩ Lψ

= ∅. As a first step in proving (P), we shall show that for
anyϕ ∈ Lχ, the theoryT ∗ ϕ is also split betweenLχ and
Lψ. Assume on the contrary that this is not the case for a
particularϕ ∈ Lχ. Then, as shown by Lemma-A in (Parikh
1999), there is a worldr such that bothr ∩ Lχ andr ∩ Lχ

areindividually consistent withT ∗ ϕ, and yetr 6∈ [T ∗ ϕ].
Let α be the conjunction of literals inLχ that hold atr,
and similarly, letβ be the conjunction of literals inLχ that
hold atr. Sinceα is consistent withT ∗ ϕ, from (K*7) and
(K*8) it follows that T ∗ (ϕ ∧ α) = (T ∗ ϕ) + α. Therefore,
r 6∈ [T ∗(ϕ∧α)]. Consider now any worldr′ in [T ∗(ϕ∧α)].
Clearly,r′ ` α, and given thatr′ 6= r, it follows thatr′ `
¬β. Since all worlds in[T ∗ (ϕ ∧ α)] satisfy¬β it follows
that¬β ∈ T ∗(ϕ∧α). Then, by (R1) we derive that¬β ∈ T ,
which again by (R1) entails that¬β ∈ T ∗ ϕ. This however
contradicts the fact thatr ∩ Lχ is consistent withT ∗ ϕ.
Hence we have shown that, given (R1), the theoryT ∗ ϕ is
split betweenLχ andLψ for all ϕ ∈ Lχ.

Continuing with the proof of condition (P), we define◦ to
be the following operator ofLχ: for any theoryT ′ ofLχ and
any sentenceγ ∈ Lχ, T ′◦γ = (Cn(T ′) ∗ γ) ∩ Lχ. It is not
hard to verify that◦ is indeed an AGM revision operator, i.e.,
it satisfies the postulates (K*1) - (K*8). Consider now any
sentenceϕ ∈ Lχ. We conclude the proof of this theorem by
showing thatT ∗ ϕ = (CnLχ(χ)◦ϕ) + ψ.

Indeed, from (R2) it follows that(T ∗ϕ)∩Lχ = (Cn(χ)∗
ϕ)∩Lχ, and therefore by the construction of◦, (T ∗ϕ)∩Lχ

= CnLχ(χ)◦ϕ. Moreover, sinceLχ ∩ Lψ = ∅, we derive
that (T ∗ ϕ) ∩ Lχ = ((CnLχ(χ)◦ϕ) + ψ) ∩ Lχ. On the
other hand, from (R1) we have that(T ∗ ϕ) ∩ Lχ = T ∩ Lχ

= Cn(χ, ψ) ∩ Lχ = ((CnLχ(χ)◦ϕ) + ψ) ∩ Lχ (the last
equation follows from the fact that(CnLχ(χ)◦ϕ) is in Lχ

which in turn is disjoint fromLψ). Putting together the
above observations we notice that the two theories,T ∗ ϕ
and(CnLχ(χ)◦ϕ) + ψ are identical when projected onLχ

as well aswhen projected on to its complementLχ. Given
that, as shown earlier,T ∗ϕ is split betweenLχ andLψ, we
derive the desired identity; i.e.T ∗ ϕ = (CnLχ(χ)◦ϕ) + ψ5

The strong version of axiom (P) brings about a new fea-
ture in the picture of classical AGM revision: it makes asso-

5Notice the use of (R2) in proving the strong version of axiom
(P).



ciations between the revision policies ofdifferent theories.
None of the AGM postulates have this property – they all
refer to asingle theory T – making any combination of
revision policies on different theories permissible (as long
of course as each policyindividually satisfies the AGM ax-
ioms). This is no longer the case when (R2) (or the strong
version of (P)) is brought into the picture. This condition in-
troduces dependencies between the revisions carried out on
different (overlapping) theories.

The Special Case of Complete Theories

Let us now turn to our main objective in this article, which is
to formulate system-of-spheres semantics for axiom (P). The
semantics will be developed progressively in two steps. In
the first step, undertaken in this section, we limit ourselves
to the first side of axiom (P), i.e., condition (R1). Moreover
we consider onlycompletetheories as belief sets. Then, in
the second step (next section), we generalize our results to
arbitrary theories and we also bring (R2) into the picture.

The reason for this two-phase approach is mainly to in-
crease readability and enhance the motivation of the con-
cepts that will be introduced later. Conditions (R1) and (R2)
are quite independent of one another so it makes sense to
study them separately. Moreover, the characterization of
(R1) in terms of systems of spheres is much more intuitive
when confined to complete theories; once this characteriza-
tion is well understood for the special case, its generaliza-
tion, although not trivial, is easier to follow.

Let T be a consistent complete theory, and letST be a
system of spheres centered on[T ]. The intended reading
of ST is that it representscomparative similaritybetween
possible worlds i.e., the further away a world is from the
center ofST , the less similar it is to[T ].6 None of the condi-
tions (S1) - (S4) however indicatehow similarity between
worlds should be measured. In (Peppas, Foo, & Nayak
2000) a specific criterion of similarity is considered, orig-
inally introduced in the context ofReasoning about Action
with Winslett’sPossible Models Approach(PMA) (Winslett
1988). This criterion, calledPMA’s criterion of similarity,
measures “distance” between worlds based on propositional
variables. In particular, letr, r′ be any two possible worlds
of L. By Diff(r, r′) we denote the set of propositional vari-
ables that have different truth values in the two worlds i.e.,
Diff(r, r′) = {pi ∈ P : pi ∈ r andpi 6∈ r′}∪ {pj ∈ P :
pj 6∈ r andpj ∈ r′}. A system of spheresST is aPMA sys-
tem of spheresiff it satisfies the following condition (Peppas,
Foo, & Nayak 2000) (throughout this paper, the symbolsr
andr′ always represent consistent complete theories):

(PS) If Diff(T, r) ⊂ Diff(T, r′) then there is a sphere
V ∈ ST that containsr but notr′.

6Perhaps “comparative plausibility” would have been a bet-
ter term in the present context. However we shall tolerate this
slight abuse of terminology mainly to comply with (Peppas, Foo,
& Nayak 2000).

According to condition (PS), the less a worldr differs
from the initial belief setT in propositional variables, the
closer it is to the center ofST . Notice that condition (PS)
places no constraints on the relative order of worlds that are
Diff-incomparable. In other words, for two worldsr andr′
such that neitherDiff(T, r) ⊂ Diff(T, r′) nor Diff(T, r′) ⊂
Diff(T, r), their relative order inST is not constrained by
(PS).

It turns out that, in the special case of consistent complete
belief sets, condition (PS) is the counterpart of (R1) in the
realm of systems of spheres. Before however presenting the
formal result, let us consider intuitively why this might be
so.

Let ST be a system of spheres centered on[T ] that sat-
isfies (PS). Moreover letϕ be any consistent sentence that
contradictsT (i.e., ¬ϕ ∈ T ). The set ofϕ-worlds occupy
a territory inST that is disjoint from the center[T ]. At the
outskirts of thisϕ-territory there are worlds that look very
different fromT . However, as we move closer to the center
of ST the ϕ-worlds that we meet agree withT in progres-
sively more and more propositional variables. By the time
we reach the boundary of theϕ-territory with the center of
ST , all the ϕ-worlds there agree withT in everyproposi-
tional variable outsideLϕ. Hence, the intersection of these
worlds (which by (S*) is the revision ofT by ϕ) also agrees
entirely withT outsideLϕ; thus (R1).

The above intuitive explanation of the relationship be-
tween (PS) and (R1) is formally established with following
result:

Theorem 2 Let ∗ be a revision function satisfying (K*1) -
(K*8), T a consistent complete theory ofL, andST the sys-
tem of spheres centered on[T ], corresponding to∗ by means
of (S*). Then∗ satisfies (R1) atT iff ST satisfies (PS).

Proof.

( ⇒ )

Assume that∗ satisfies (R1) atT . Moreover assume that,
contrary to the theorem,ST violates (PS). LetV be the
smallest sphere inST that violates (PS). That is,V is
the smallest sphere inST that contains a worldr′′ for
which there exists another worldr′ such thatDiff(T, r′) ⊂
Diff(T, r′′), and moreover the smallest sphere containingr′,
call it U , is not a subset ofV (and thereforeV ⊆ U ). Let
ϕ be the conjunction of all the literals7 in r′ than are not in
T . Notice that fromDiff(T, r′) ⊂ Diff(T, r′′), it follows that
ϕ ∈ r′′. Moreover, it is easily verified thatV is the small-
est sphere inST that intersects[ϕ]. Indeed, assume on the
contrary that a sphere smaller thanV , call it V ′, contains a
world z satisfyingϕ, i.e., ϕ ∈ z. Then clearlyDiff(T, r′)
⊆ Diff(T, z), and sincer′ 6= z, it follows thatDiff(T, r′) ⊂
Diff(T, z). HenceV ′ violates (PS), which contradicts our
initial assumption thatV is the smallest sphere inST that

7A literal is a propositional variable or the negation of a propo-
sition variable.



violates (PS). ThereforeV is indeed the smallest sphere in
ST intersecting[ϕ]. Consequently,r′′ ∈ [T ∗ ϕ]. Consider
now a literall ∈ r′′, such thatl 6∈ T and l 6∈ Lϕ. Note
that sinceDiff(T, r′) ⊂ Diff(T, r′′), such a literall indeed
exists. Clearly then,¬l ∈ T , and¬l 6∈ T ∗ ϕ. This however
contradicts (R1) since¬l 6∈ Lϕ, and therefore it should have
remained unaffected from the revision byϕ.

( ⇐ )

Assume thatST satisfies (PS), and letχ, ψ be sentences in
L, such thatT = Cn(χ, ψ) andLχ ∩ Lψ = ∅. Consider now
any sentenceϕ ∈ Lχ, and letr′ be any world in[T ∗ ϕ] i.e.,
ϕ ∈ r′ andr′ belongs to the smallest sphereCT (ϕ) in ST

that intersects[ϕ]. Firstly we show thatDiff(T, r′) ⊆ Lχ.
Assume on the contrary that there is a literall ∈ T ∩ Lχ,
such thatl 6∈ r′. Let r′′ be the consistent complete theory
that agrees withr′ in all literals exceptl. Clearly then, since
ϕ ∈ r′ andl 6∈ Lϕ, we derive thatϕ ∈ r′′. Moreover, by the
construction ofr′′, Diff(T, r′′) ⊂ Diff(T, r′). Consequently,
by (PS), there exists a sphereV that containsr′′ and does not
containr′. ThereforeV ⊂ CT (ϕ). This leads to a contra-
diction sinceV contains aϕ-world (namely,r′′), and at the
same time it is smaller than the smallest sphere intersecting
[ϕ]. HenceDiff(T, r′) ⊆ Lχ. This shows that all worldsr′
in [T ∗ϕ] agree withT on everything outsideLχ. Therefore
T ∩ Lχ = (T ∗ ϕ) ∩ Lχ as desired.

It is worth noting that in (Peppas, Foo, & Nayak 2000),
there exists a characterization of condition (PS) in terms of
epistemic entrenchments(Gardenfors & Makinson 1988).
Consequently, since by Theorem 2 (R1) is equivalent to
(PS), the results in (Peppas, Foo, & Nayak 2000) can be
used to provide a characterization of (R1) in terms of epis-
temic entrenchments.

As already mentioned in the introduction, what is quite
appealing about Theorem 2 is that it characterizes (R1),
not in terms of some technical non-intuitive condition, but
rather by a natural constraint on similarity between possi-
ble worlds, that in fact predates (R1) and was motivated in-
dependently in a different context (Winslett 1988). More-
over, as we will show in the next section, the essence of this
characterization of (R1) in terms of constraints on similar-
ity, carries over into the general case of incomplete belief
sets (albeit with some modifications).

The General Case

To elevate Theorem 2 to the general case, we first need to
extend the definition ofDiff to cover comparisons between
a world r and an arbitrary, possiblyincomplete, theoryT .
The generalization ofDiff that we shall use herein takes into
account the notion of aT -splitting introduced by Parikh in
his language-splitting model (Parikh 1999).

Let T be a theory ofL andP1, P2, . . . , Pn a partition of
the setP of all propositional variables inL. We say that
{P1, P2, . . . , Pn} is a T -splitting iff there exist sentences
ϕ1 ∈ LP1 , ϕ2 ∈ LP2 , . . . , ϕn ∈ LPn , such thatT = Cn(ϕ1,

ϕ2, . . ., ϕn). Parikh has shown in (Parikh 1999) that for ev-
ery theoryT there is a uniquefinestT -splitting, i.e. one
which refines8 every otherT -splitting. We shall denote the
finestT -splitting ofT byF(T ).

Using the notion of a finestT -splitting, we define the dif-
ference between a (possibly incomplete) theoryT of L and
a worldr as follows:

Definition 2 LetT be a consistent theory ofL (possibly in-
complete) andr a possible world. The difference Diff(T, r)
betweenT andr is the following subset ofP :

Diff(T, r) =
⋃{P ′ ∈ F(T ) : for someϕ ∈ LP ′ , T ` ϕ and

r ` ¬ϕ}

It is not hard to verify that in the special case of a consis-
tent complete theoryT , the above definition ofDiff collapses
to the one given in the previous section.

Notice that ifT is incomplete, then for any worldw com-
patible withT (i.e. w ∈ [T ]), Diff(T, w) = ∅. Moreover,
for any worldr, Diff(T, r) ⊆ ⋃

w∈[T ] Diff(w, r); the precise
relationship betweenDiff(T, r) andDiff(w, r) for w ∈ [T ],
is given by the following result:

Theorem 3 Let T be a consistent theory ofL andr a pos-
sible world. Then, Diff(T, r) =

⋃{P ′ ∈ F(T ) : for all
w ∈ [T ], P ′ ∩ Diff(w, r) 6= ∅}.

Proof.

(LHS)⊆ (RHS)

Assume thatp ∈ Diff(T, r). Then for someP ′ ∈ F(T ),
p ∈ P ′ and for someϕ ∈ LP ′ , T ` ϕ andr ` ¬ϕ. Let
l1, . . . ln be the literals inLP ′ that hold inr. Clearly then,
l1 ∧ · · · ∧ ln ` ¬ϕ, and thereforeϕ ` ¬l1 ∨ · · · ∨¬ln. From
this we derive that for allw ∈ [T ], sincew ` ϕ, there is at
least one1 ≤ k ≤ n such thatw ` ¬lk. Consequently, for
all w ∈ [T ], P ′ ∩ Diff(w, r) 6= ∅.

(LHS)⊇ (RHS)

Assume that for someP ′ ∈ F(T ), P ′ ∩ Diff(w, r) 6= ∅
for all w ∈ [T ]. Let l1, . . . ln be the literals inLP ′ that
hold in r. Then for allw ∈ [T ] there is a1 ≤ j ≤ n
such that¬lj ∈ w. Therefore,T ` ¬l1 ∨ · · · ∨ ¬ln. Since

(¬l1 ∨ · · · ∨ ¬ln) ∈ LP ′ , it follows thatP ′ ⊆ Diff(T, r) as
desired.

Condition (R1) and Systems of Spheres

Having generalizedDiff, let us re-examine condition (PS)
for a system of spheresST related to a belief setT that is not

8A partitionZ refines another partitionZ′, if for every element
of Z there is a superset of it inZ′.



necessarily complete. It turns out that in this case (PS) no
longer corresponds to (R1); in particular, (PS) is too strong.

To see this, consider the following counter-example. As-
sume thatL is built from the propositional variablesa, b,
c, d, and letT be the theoryT = Cn(a ↔ b, c ↔ d).
Clearly, {{a, b}, {c, d}} is a T -split. Next, letST be the
following system of spheres (represented as a total preorder
on worlds):9

abcd
abcd
abcd
abcd

≤
abcd
abcd
abcd
abcd

≤ abcd
abcd

≤
abcd
abcd
abcd

≤
abcd
abcd
abcd

It is not hard to verify that the revision function∗ induced
by the above system of spheresST , satisfies (R1). At the
same time however,ST violates (PS). In particular consider
the worldsr = {a, b,¬c, d} and r′ = {¬a, b, c,¬d}}. Al-
thoughDiff(T, r) = {c, d} ⊂ Diff(T, r′) = {a, b, c, d}, the
two worldsr andr′ are equidistant from the center ofST .

Despite its failure to generalize, (PS) should not be disre-
garded altogether. It can still serve as a guide in formulating
the appropriate counterpart(s) of (R1) for the general case;
as we prove later in this section, the two general conditions
(Q1) and (Q2) that correspond to (R1) are both in the spirit
of (PS) (and not surprisingly, they collapse to (PS) in the
special case of complete belief sets).

To formulate the conditions (Q1) and (Q2), we first need
to introduce some further concepts related to the notion of
distance between a world and an incomplete theory.

Consider a theoryT and letr be a world not compatible
with T i.e.,r 6∈ [T ]. ClearlyDiff(T, r) 6= ∅. Is there another
world r′ that differs fromT on exactly the same proposi-
tional variables, i.e.,Diff(T, r) = Diff(T, r′)? If T is com-
plete, the answer is obviously “no”: for any set of proposi-
tional variablesP ′, there can only beoneworld r such that
Diff(T, r) = P ′. If howeverT is incomplete(i.e., [T ] con-
tains more than one world), this is no longer the case. For
example, suppose thatT = Cn(a ↔ b, c ↔ d) – wherea, b,
c, d, are the propositional variables of the language – and let
r, r′ be the possible worldsr = Cn({¬a, b, c, d}), andr′ =
Cn({a,¬b, c, d}). It is not hard to see that, althoughr and
r′ are different,Diff(T, r) = Diff(T, r′) = {a, b}. The two
worlds r andr′, have also another thing in common: they
agree on the propositional variablesoutside Diff(T, r). We
call such worldsexternalT -duals(for the definition below,
recall thatP is the set of all propositional variables in the
languageL):

Definition 3 Let r, r′ be possible worlds, and letT be a
theory ofL. The worldsr and r′ are externalT -duals
iff Diff(T, r) = Diff (T, r′) and r ∩ (P − Diff(T, r)) =
r′ ∩ (P − Diff(T, r′)).

9Notice that in order to increase readability, in this example we
are representing worlds as sequences of literals rather than theories;
moreover, the negation of a propositional variablep is denotedp.

Multiple T -duals (external andinternal ones as we will
see later) add more structure to a system of spheres, and ren-
der condition (PS) too strong for the general case. The possi-
bility of placing externalT -duals indifferentspheres, opens
up new ways of ordering worlds that still induce relevance-
sensitive revision functions without however submitting en-
tirely to the demands of (PS).

Let us elaborate on this point. Consider a system of
spheresST centered on the theoryT , and letr, r′ be any two
worlds such thatDiff(T, r) ⊂ Diff(T, r). Theorem 2 tells us
that in the special case of complete theories, to ensure local
change (alias, condition (R1)) the worldr should be placed
(strictly) closer to the center[T ] of ST thanr′. In the gen-
eral case however, and with the aid of externalT -duals, one
can perhaps afford to be a bit more liberal about the location
of r; perhaps all that is needed is that at least one external
T -dualr′′ of r (and not necessarilyr itself) be closer to[T ]
thanr′. It turns out that, in fact, this is pretty much the case,
expect that the worldr′′ “covering” for r (in relation tor′)
is not just any externalT -dual ofr but a very specific one:
it is the externalT -dual ofr that agrees withr′ on all liter-
als inDiff(T, r). We shall call this externalT -dual ofr, the
r′-cover forr at T , and we shall denote it byϑT (r, r′).

Definition 4 LetT be a theory ofL, letr, r′ be two possible
worlds such that Diff(T, r) ⊂ Diff(T, r′), and letr′′ be an
externalT -dual of r. The worldr′′ is ther′-cover forr at
T iff r′′ ∩ Diff(T, r) = r′ ∩ Diff(T, r). We shall denote the
r′-cover forr at T byϑT (r, r′).

A simple example will help to clarify the above definition.
Suppose that the languageL is built from the propositional
variablesa, b, c, d, e, and letT be the theoryT = Cn(a ↔ b,
b ↔ c, d ↔ e). Let r be the worldr = Cn(a,¬b, c, d, e)
and r′ the worldr′ = Cn(¬a, b,¬c, d,¬e). The finestT -
splitting is{{a, b, c}, {d, e}}. Then according Definition 2,
Diff(T, r) = {a, b, c} andDiff(T, r′) = {a, b, c, d, e}. Hence
Diff(T, r) ⊂ Diff(T, r′). The worldr has many external
T -duals likeCn(¬a,¬b, c, d, e), Cn(a, b,¬c, d, e), etc. Yet
out of all these externalT -duals, only one is ar′-cover forr
atT , namely the worldϑT (r, r′) = Cn(¬a, b,¬c, d, e).

As mentioned earlier, the notion of “covering” will be
used to weaken condition (PS). In particular, consider the
condition (Q1) below:

(Q1) If Diff(T, r) ⊂ Diff(T, r′) then there is a sphere
V ∈ ST that containsϑT (r, r′) but notr′.

Condition (Q1) formalizes the intuition mentioned earlier
about weakening (PS) with the aid of externalT -duals. It
is not hard to show that (PS) entails (Q1), and that (Q1)
collapses to (PS) when the initial belief setT is complete.
Moreover, (Q1) isstrictly weaker than (PS). To see this, con-
sider the first example in this section; the system of spheres
ST satisfies (Q1) but violates (PS).

Yet despite all its nice properties, condition (Q1) in itself
does not suffice to guarantee local change; it seems that from



something too strong for (R1) (condition (PS)), we have now
moved to something too weak. Consider in particular the
following counter-example: the languageL is build over
three propositional variablesa, b, c, the initial belief setT
is T = Cn(a ↔ b), and the system of sphereST centered on
[T ] is the one represented below:

abc
abc
abc
abc

≤ abc ≤ abc ≤ abc
abc

In this example all the worlds outside[T ] (i.e. inML −
[T ]) differ from [T ] on precisely the same propositional vari-
ables, namely on{a, b}. ConsequentlyST trivially satis-
fies (Q1) since its antecedentDiff(T, r) ⊂ Diff(T, r′) never
holds forr, r′ 6∈ [T ]. Yet despite the compliance with (Q1),
the revision function * induced fromST violates (R1) atT
(simply consider the revision ofT by a ∧ ¬b).10

To secure the correspondence with (R1), condition (Q1)
needs to be complimented with a second condition, called
(Q2). This second condition uses the notion of aninternal
T -dualdefined below:

Definition 5 Let r, r′ be possible worlds, and letT be a
theory ofL. The worldsr and r′ are internalT -duals iff
Diff(T, r) = Diff (T, r′), andr∩Diff(T, r) = r′∩Diff(T, r′).

To give a concrete example of internalT -duals and high-
light their difference from external ones, suppose thatL is
built over the propositional lettersa, b, c, d, and let the ini-
tial theoryT be T = Cn(a ↔ b, c ↔ d). The worldsr
= Cn(¬a, b, c, d) andr′ = Cn(¬a, b,¬c,¬d) differ from T
on exactly the same propositional variables, i.e.,Diff(T, r)
= Diff(T, r′) = {a, b}. Yet r andr′ are not externalT -duals
since outsideDiff(T, r) the two worlds are not identical. On
the other hand,r andr′ are identicalinside Diff(T, r). This
makes them internalT -duals.

Clearly, for any theoryT and any two worldsr, r′, if r
andr′ are both internal and externalT -duals, then they are
identical.

We can now proceed with the presentation of condition
(Q2), which together with (Q1), brings about the correspon-
dence with (R1). As usual, in the following conditionT is an
arbitrary consistent theory ofL (possibly incomplete),ST is
a system of spheres centered on[T ], andr, r′ are possible
worlds.

(Q2) If r andr′ are internalT -duals, then they belong to
the same spheres inST ; i.e., for any sphereV ∈
ST , r ∈ V iff r′ ∈ V .

Notice that in the special case thatT is complete, no world
r has internal or externalT -duals (other than itself). Conse-

10It is worth noting that in this example, there is onlyonesystem
of spheresST whose revision function * satisfies (R1) atT . This
is the system containing only the spheres[T ] andML.

quently, in that case, (Q1) reduces to (PS), while (Q2) de-
generates to a vacuous condition.

The promised correspondence between (R1) and the two
conditions (Q1) - (Q2) is given by the theorem below:

Theorem 4 Let ∗ be a revision function satisfying (K*1)
- (K*8), T a consistent theory ofL, and ST a system of
spheres centered on[T ], that corresponds to∗ by means of
(S*). Then∗ satisfies (R1) atT iff ST satisfies (Q1) - (Q2).

Proof.

( ⇒ )

Assume that∗ satisfies (R1) atT . Starting with (Q1),
let r, r′ be two consistent complete theories such that
Diff(T, r) ⊂ Diff(T, r′). If Diff(T, r) = ∅, thenr is con-
sistent withT , and thereforer ∈ [T ]. Then, given that
r′ 6∈ [T ], (Q1) follows trivially from (S2). Assume there-
fore thatDiff(T, r) 6= ∅. Let L′ be the sublanguage ofL
defined overDiff(T, r), and letϕ be the conjunction of all
literals inL′ that hold atr′ i.e., ϕ = l1 ∧ · · · ∧ lk, where
for each1 ≤ i ≤ k, li is a literal inL′, and li ∈ r′.
By (S*), [T ∗ ϕ] = fT (ϕ) = [ϕ] ∩ CT (ϕ), whereCT (ϕ)
is the smallest sphere inST intersecting[ϕ]. Clearly, since
ϕ is consistent,fT (ϕ) 6= ∅. Consider now any worldr′′
in fT (ϕ). From (R1) and the construction ofϕ, it follows
that Diff(T, r′′) ⊆ Diff(T, r). Moreover, again by the con-
struction ofϕ, Diff(T, r) ⊆ Diff(T, r′′). HenceDiff(T, r) =
Diff(T, r′′). Moreover, sincer′′ satisfiesϕ, r′′ ∩ Diff(T, r)
= r′ ∩ Diff(T, r). Finally notice that, because of (R1),
r′ 6∈ CT (ϕ). We have therefore shown that all worlds in
fT (ϕ) are closer to the center ofST thanr′, that they all
differ from T on exactly the same propositional variables as
r, and that withinDiff(T, r) they agree withr′. What is still
left to show in order to prove (Q1) is that there is at least
one world infT (ϕ) that agrees withr on the propositional
variables outsideDiff(T, r). Let ψ be the conjunction of lit-
erals inL′ that hold atr. Sincer differs from T only in
the propositional variables inL′, it follows that¬ψ 6∈ T .
Consequently, by (R1),¬ψ 6∈ T ∗ ϕ. This again entails
that there is at least one worldfT (ϕ), that satisfiesψ and
therefore agrees withr on all propositional variables outside
Diff(T, r) as desired. This concludes the proof of (Q1).

For (Q2), assume on the contrary that it is not true atST ,
and letV be the smallest sphere inST that violates (Q2).
Then, there exist two worldsr, r′ that are internalT -duals
such thatr ∈ V andr′ 6∈ V . Fromr′ 6∈ V we firstly derive
that Diff(T, r′) 6= ∅, and thereforeDiff(T, r) 6= ∅, which
again entails that[T ] ⊂ V . Next, letL′ be the sublanguage
of L defined overDiff(T, r). Defineϕ to be the conjunction
of all literals inL′ that hold atr (and therefore also hold at
r′). ClearlyCT (ϕ) ⊆ V . Moreover, from (R1) and the con-
struction ofϕ it follows that any worldr′′ in fT (ϕ) differs
from T on exactly the same propositional variables asr i.e.,
Diff(T, r′′) = Diff(T, r). In addition, sincer′′ satisfiesϕ, r′′
andr are in fact internalT -duals, which also makesr′′ and
r′ internalT -duals. Consider now the sentenceψ defined



as the conjunction of literals inL′ that hold atr′. Since
r′ 6∈ CT (ϕ) (recall thatCT (ϕ) ⊆ V ), and moreover all
worlds infT (ϕ) satisfyϕ, it follows that no world infT (ϕ)
satisfiesψ, or equivalently, all worlds infT (ϕ) satisfy¬ψ.
Hence,¬ψ ∈ T ∗ ϕ. From (R1) this entails that¬ψ ∈ T ,
which again entails thatDiff(T, r′)∩L′ 6= ∅, leading us to a
contradiction. Hence (Q2) is true.

( ⇐ )

Assume thatST satisfies (Q1) and (Q2). LetT be such
thatT = Cn(χ, ψ), for some sentencesχ, ψ ∈ L such that
Lχ ∩ Lψ = ∅. Moreover, letϕ be any sentence inLχ. If
[T ] ∩ [ϕ] 6= ∅, then (R1) trivially holds. Assume therefore
that[T ]∩[ϕ] = ∅. Firstly we show thatT∩Lχ ⊆ (T ∗ϕ)∩Lχ.
Let γ be any sentence inT ∩ Lχ. Assume, contrary to the
theorem, that for somer in fT (ϕ), ¬γ ∈ r. Let w be any
world in [T ]. Constructr′ as follows:r′ agrees withr in Lχ

and it agrees withw outsideLχ i.e., r′ ∩ Lχ = r ∩ Lχ, and
r′∩Lχ = w∩Lχ. Clearly,Diff(T, r′) ⊂ Diff(T, r). Then by
(Q1), there is a sphereV smaller thanCT (ϕ) that contains
ϑT (r′, r) (i.e. ther-cover forr′ atT ). It is not hard to verify
thatϕ ∈ ϑT (r′, r), which however contradicts the fact that
ϑT (r′, r) ∈ V ⊂ CT (ϕ). HenceT ∩ Lχ ⊆ (T ∗ ϕ) ∩ Lχ as
desired.

For the converse, letγ be any sentence inLχ such that
γ 6∈ T . Then there is a worldw ∈ [T ] such that¬γ ∈
w. Let r be any world infT (ϕ). Construct the worldr′ as
follows: r′ agrees withr in Lχ and it agrees withw outside
Lχ (i.e., r′ ∩ Lχ = r ∩ Lχ, andr′ ∩ Lχ = w ∩ Lχ). Since,
as we have shown in the first part of the proof,T ∩ Lχ ⊆
(T ∗ ϕ) ∩ Lχ, it follows that Diff(T, r) ⊆ Lχ. Then, by
the construction ofr′, it follows that r andr′ are internal
T -duals. Consequently, by (Q2),r′ ∈ CT (ϕ), and sincer′
satisfiesϕ, it follows thatr′ ∈ fT (ϕ). Finally notice that, by
construction,¬γ ∈ r′. Consequentlyγ 6∈ T ∗ ϕ as desired.
Combining the above we derive thatT ∩Lχ = (T ∗ϕ)∩Lχ.

Condition (R2) and Systems of Spheres

We now turn to the second side of axiom (P), encoded by
condition (R2). As noted previously, a ramification of (R2)
is that it introduces dependencies between revision policies
associated withdifferenttheories. Not surprisingly, the con-
dition corresponding to (R2) in the realm of systems of
spheres, is one that makes associations between systems of
spheres with different centers.

Definition 6 LetV be a set of worlds inML, and letL′ be
a sublanguage ofL. By V/L′ we denote the restriction of
V to L′; that is,V/L′ = {r ∩ L′: r ∈ V }. Moreover, for a
system of spheresST , byST /L′ we denote the restriction of
ST toL′; that is,ST /L′ = {V/L′ : V ∈ ST }.

Notice that for any sublanguageL′ of L, ST /L′ is also a
system of spheres. The condition (Q3) below is the semantic

counterpart of (R2). As usual,P ′ is a subset ofP , T and
T ′ are theories ofL, andST , ST ′ are systems of spheres
centered on[T ] and[T ′] respectively:

(Q3) If {P ′, (P − P ′)} is both aT - splitting and aT ′-
splitting, and moreover,T ∩ LP ′ = T ′ ∩ LP ′ , then
ST /LP ′ = ST ′/LP ′ .

The following result shows that (Q3) is the system-of-
spheres counterpart of (R2):

Theorem 5 Let * be a revision function satisfying (K*1) -
(K*8), and {ST }T∈KL a family of systems of spheres (one
for each theoryT in KL), corresponding to∗ by means of
(S*). Then∗ satisfies (R2) iff{ST }T∈KL satisfies (Q3).

Proof.

( ⇒ )

Assume that∗ satisfies (R2), and letT , T ′ be two theories
of L. Moreover, assume that for someP ′ ⊆ P , the setsP ′,
(P − P ′) are a splitting ofP relative to bothT andT ′, and
T∩LP ′ = T ′∩LP ′ . If P ′ = ∅ orP ′ = P , then (Q3) is trivially
true. Assume therefore that∅ 6= P ′ ⊂ P . Then, for some
sentencesχ, ψ, andψ′, T = Cn(χ, ψ), T ′ = Cn(χ, ψ′),Lχ =

LP ′ , andψ, ψ′ ∈ L(P−P ′) =Lχ. Consequently, by (R2), for
anyϕ ∈ Lχ, (T ∗ϕ)∩Lχ = (T ′∗ϕ)∩Lχ = (Cn(χ)∗ϕ)∩Lχ.

Next consider the systems of spheresST and ST ′ cen-
tered on[T ] and[T ′] respectively, and assume that, contrary
to Theorem 5,ST /LP ′ 6= ST ′/LP ′ . Without loss of gener-
ality, we can assume thatST /LP ′ contains an element that
is not inST ′/LP ′ . Let V be the smallest sphere inST such
that V/LP ′ 6∈ ST ′/LP ′ . Moreover, letV ′ be the small-
est sphere inST ′ such thatV/LP ′ ⊂ V ′/LP ′ . Clearly,
[T ] ⊂ V ⊂ ML and [T ′] ⊂ V ′ ⊂ ML. Consider now
a world r′ ∈ V ′ such thatr′ ∩ LP ′ 6∈ V/LP ′ . Next, con-
sider a worldr ∈ V such thatr ∩ LP ′ 6∈ (

⋃{U ′ ∈ ST ′ :
U ′ ⊂ V ′})/LP ′ . It is not hard to verify that such a world
r indeed exists, and moreover,r ∩ LP ′ 6∈ (

⋃{U ∈ ST :
U ⊂ V })/LP ′ . Let l1, · · · lm be the literals inLP ′ that
hold in r, and letl′1, · · · l′m be the literals inLP ′ that hold
in r′. Finally, let ϕ be the sentenceϕ = (l1 ∧ · · · ∧ lm) ∨
(l′1 ∧ · · · ∧ l′m). Then the smallest sphere intersecting[ϕ] in
ST and inST ′ , is V andV ′ respectively. From this we de-
rive thatr′/LP ′ 6∈ fT (ϕ)/LP ′ andr′/LP ′ ∈ fT ′(ϕ)/LP ′ .
Consequently,(T ∗ϕ)∩Lχ 6= (T ′ ∗ϕ)∩Lχ, which however
contradicts (R2).

( ⇐ )

Assume that{ST }T∈KL satisfies (Q3) and letT be a the-
ory of L such that for someχ, ψ ∈ L, T = Cn(χ, ψ)
andLχ ∩ Lψ = ∅. Let T ′ be the theoryT ′ = Cn(χ).
Clearly,T ∩ Lχ = T ′ ∩ Lχ, and therefore by (Q3),ST /Lχ

= ST ′/Lχ. Next, consider any sentenceϕ ∈ Lχ, and let



CT (ϕ) andCT ′(ϕ) be the smallest spheres inST andST ′

respectively intersecting[ϕ]. We show thatCT (ϕ)/Lχ =
CT ′(ϕ)/Lχ. Assume on the contrary thatCT (ϕ)/Lχ 6=
CT ′(ϕ)/Lχ. SinceST /Lχ = ST ′/Lχ, without loss of gen-
erality we can then assume thatCT (ϕ)/Lχ ⊂ CT ′(ϕ)/Lχ.
Moreover, again fromST /Lχ = ST ′/Lχ, we have that
CT (ϕ)/Lχ ∈ ST ′/Lχ. Let V be the sphere inST ′ whose
restriction toLχ is equal toCT (ϕ) i.e.,V/Lχ = CT (ϕ)/Lχ.
Clearly, V ⊂ CT ′(ϕ). On the other hand however, since
ϕ ∈ Lχ andCT (ϕ) contains as least oneϕ-world, it follows
thatV also contains aϕ-world. This of course contradicts
the fact thatCT ′(ϕ) is the smallest sphere inST ′ intersect-
ing [ϕ], and proves thatCT (ϕ)/Lχ = CT ′(ϕ)/Lχ. Conse-
quently,(T ∗ ϕ) ∩ Lχ = (T ′ ∗ ϕ) ∩ Lχ as desired.

Putting together the results reported in Theorems 1, 4, and
5, we obtain immediately the following theorem that pro-
vides possible-world semantics for (the strong version of)
axiom (P):

Theorem 6 Let ∗ be a revision function satisfying (K*1) -
(K*8) and {ST }T∈KL a family of systems of spheres (one
for each theoryT in KL), corresponding to∗ by means of
(S*). Then∗ satisfies (P) iff{ST }T∈KL satisfies (Q1) - (Q3).

Conclusion

The main contribution of this paper is Theorem 6 that pro-
vides system-of-spheres semantics for Parikh’s axiom (P).
What is quite appealing about this result is that the semantic
conditions (Q1) - (Q3) that characterize axiom (P) are quite
natural constraints on similarity between possible worlds. In
fact, conditions (Q1) - (Q2) essentially generalize a measure
of similarity that predates axiom (P), and was motivated in-
dependently in the context of Reasoning about Action by
Winslett. This intuitive nature of the semantics is more ev-
ident in the special case of consistent complete belief sets.
An interesting by-product of our study is the identification
of the two possible readings of axiom (P), both of which are
plausible depending on the context.

It should be noted that apart from Winslett, other authors
have also made specific proposals for measuring distance
between possible worlds (see for example, (Borgida 1985),
(Dalal 1988), and (Satoh 1988)).11 It would be a worthwhile
exercise to investigate whether any of these measures of dis-
tance also yield some kind of “local change effect” for their
associated revision functions.
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