A Unifying Semantics for Belief Change

C0300

Abstract. Many belief change formalisms employ plausibility or- agent makes any knowledge claim relative to some implicit standard
derings over the set of possible worlds to determine how the belieffor assessing that claim and that different standards will induce dif-
of an agent ought to be modified after the receipt of a new epistemitering assessments of the truth of epistemic claims. The contribution
input. While most such possible world semantics rely on a singleof the paper is the unification, in a single formal framework, of a
ordering, we look at using an extra ordering to aid in guiding thelarge class of belief change operators by this method. It enables us to
process of belief change. We show that this provides a unifying seview belief change as the manipulation by the agent of assessments
mantics for a wide variety of belief change operators. By varyingof plausibility of epistemic states of affairs in different contexts.

the conditions placed on the second ordering, different families of The plan of the paper is as follows. After laying down some tech-
known belief change operators can be captured, including AGM benical preliminaries, in Sect. 2 we establish the foundations of our
lief contraction and revision [1], severe withdrawal [14], systematicframework for removal with a semantic definition and an axiomatic
withdrawal [12], and the linear liberation amdliberation operators  characterisation. In Sect. 3 we study the class of belief removal oper-
of [3]. Our approach also identifies novel classes of belief changators obtained when the second orderihig transitive. Sect. 4 builds

operators that are worth further investigation. up to a characterisation &GM contraction[1] via sub-classes of
belief removal operators satisfying the standard properties known as
1 INTRODUCTION Vacuity, Inclusion and Recovery. Sect. 5 shows that important classes

) . ) . . of belief liberationoperators [3] can be captured in our framework.
Current formalisms in belief change [5, 9] typically employ a plausi- sect 6 isolates various classes of removal operators related to, and

bility ordering [6, 10] over the set of possible worlds or an epiStemiCincluding, systematic withdrawal12]. Sect. 7 shows that the lim-
entrenchment ordering over the set of sentences in an agent's beliﬁ{ng cases correspond ®GM revision[1] and severe withdrawal
set. Operators for change are then defined by manipulation of thegg,) \yhile Sect. 8 concludes with some pointers to future work.
orderings after receipt of a new epistemic input. There are many ad- \y,a assume a finitely generated propositional langudge

vantages to these approaches — foremost amongst them the guarani@ginned with the usual constants, boolean operators and a classi-

that change will be effected in a principled manner, the provision of5| Tarskian consequence relation. 1 denotes the set of possible
an intuitively plausible construction, and a formalism flexible enough

) ; : " worlds/interpretations of. Logical entailment is denoted Iy. For
to accommodate alternative change strategies and iteration. Howevgﬁy set of sentences C L, [A] denotes the set of worlds satisfy-

_there are some nuances that are not captured in such an_approach. Fr{HaII members of (writing [¢] rather thar{{¢}] for the singleton
instance, agents do not usually employ one fixed ordering throughc-ase)_ For a sef C W, Th(S) is the set of sentences true in all
out — often, differen'F orderings might be used i'n'different. contextsorids inS. The obfect which undergoes change willfea consis-
such as those requiring greater caution or skepticism. Or different O ¢ peief set (i.e., a deductively closed, consistent set of sentences).
derings might be used based on the source of the epistemiC iNPUtjye take ks to be arbitrary but fixed throughout. We assume that for
Such a critique is implicit in [4] where the notion efigibility adds | removal operators, K < ¢ is only defined for non-tautologous

an extra dimension to belief change. A technical framework that PrOpropositions and refer to the set of non-tautologous membelisasf

vides tools for belief change operations based on multiple orderingi*. The limiting case requires only a minor emendation. We make
appears in [2] where combination operations for a class of preferencg,is chojce for ease of technical presentation. Finally, given a total
relationsP are studied in terms of an additional guiding preferen(:elore_c)m|er (i.e., a transitive, connected relatismn)V andS C W,
relation. In this study, the formalism for belief change —in particularmin(& <) will denote the set of-minimal elements 0f.

for belief removal — that we will present can be considered a special - -

case of [2] with< — over the set of interpretations — being the single2  BASIC REMOVAL

preference relation i, and=< — our additional dimension — being

the guiding relation. We now set up our most general semantic construction of belief
An intuitive way to understand the second ordering on the set othange operators. We refer to theseemsovaloperators because the

worlds is to think of it as representing a more stringent assessmeimiett effect after being presented with an inpus that¢ is removed

of the plausibility of states of affairs. Most rational agents are awardrom the belief set. However, as we shall see in Sect. 7, the extreme

of certain contexts within which their reasoning plays out — certaincase where the removal of a beligfesults in the addition of¢ is

contexts call for a different assessment of plausibility. For exampleincluded in the framework.

I enforce a certain amount of skepticism on verifying news reports — Assume a total pre-ordex anchoredon [K]. That is to say,

but will probably fall back on a more critical assessment when I'm[K] = min(W, <). As usual we take< to be an ordering of plausi-

trying to assess news reports in a different situation, say the impendability on the worlds, with worlds lower down in the ordering seen as

ing declaration of a war. Such a treatment is reminiscent of contexmore plausible. In what follows; will always denote the symmetric

tualist assessments of epistemic statements — it is understood that thlesure of<, i.e., w1 ~ w- iff both w1 < ws andws < wi. Now



we assume that we are givesecondinary relation< on, which  Definition 3 The structurg <, <) obtained from a belief sek” and
we require to be a reflexive sub-relation ©f These two orderings a basic removal operatot=, and denoted b¢ (K, <) is defined as
provide thecontextin which an agent makes changes to its currentfollows (cf. [4]), forw;, ws € W:
beliefs. (S) w1 < ws iff may Q K < (—‘051 N —\042)

(j) w1 j w2 |ﬁ Q] € K < le%}
Definition 1 (<, X) is a K-contexiiff < is a total pre-order (orWV)

. : : whereq; i ntence wh nly m is(fori =1, 2).
anchored or{ K], and < is a reflexive sub-relation of.. ereay is a sentence whose only modelis(for i 2)

In the theoremC (K, <) is used by checking that if satisfieqB1)—
(B9), then(<, <) is a K-context and that-=<(< <. We employ
this construction throughout the paper to prove that certain postulates
K ©(<.<) ¢ =Th({w | w = w' for somew’ € min([~¢], <)}) are complete for certai_n sub-.classes of t_)asic removr?ll.
- We now proceed to investigate how different requirements on the
That is, the models of the belief set resulting from a removap of second ordering of plausibilityt and its interplay with< can help
are obtained by locating all thé-best models of-¢, and adding to  Us characterise different belief removal operations. We start with one

those, all worlds that are at least-gsplausible. of the simplest properties there is — transitivity.

Definition 2 = is a basic removal operatdfor K) iff == < <) 3 TRANSITIVE REMOVAL

for somek -context(<, <). In this section we see what happens if we let the second oxder
be transitive, i.e.X becomes a pre-order. We'll call th€-context
(<, X) transitive if < is transitive.

Given a belief sef{ and aK-context(<, <), we use(<, <) to de-
fine aremoval operatot= < <) for K by setting, for alkp € L.,

Basic removal is characterised by the following postulates:

(Bl) K < ¢ = Cn(K < ¢) Definition 4 We call = a transitive removal operatoffor K) iff

(B2) 9 ¢ K <= ¢ <=2 (<, <) for some transitive-context(<, <).

(BS) If ': (Z)l — ¢2 thenK < ¢1 =K < ¢2 -

B4) K<l =K Transitive removal operators may be alternatively described as fol-
(B5) K <= ¢ C Cn(K U{—¢}) lows. As with any pre-order, the relation partitions)V into a set
B6) If 0 K= (0A@)thend € K <= (O AP AY) W /= of equivalence classes via the relatiardefined byw; = w2

B7) Ifoe K= (0Ap)thenK <= ¢p C K <= (0N @) iff both w1 < we andwy < wi. The seW /= is partially-ordered
B8) (K< 0)N(K=<=¢)CTK=(0A9) by the relation<* defined byjw:]= <* [ws]= iff w1 < w2. Mean-
B9 Ifpg K= (0N@)thenK = (0Nd) CK < ¢ while, we can also define a relatigti: onW /= by [w1]= <* [w2]=

iff w1 < wa. Itis easy to check that™ is well-defined and that™ is

Theorem 1 Let K be a belief set and- an operator forK. Then< a total pre-order oV /= such thatx* C<*. Furthermore we have,
is a basic removal operator foK iff < satisfieqB1)}{B9). foreachy € L., K & (< <y ¢ = Th(J ), where
All the rules above are already familiar from the belief change lit- ¥ = {X € W/=[ X <" Y for someY” € min(~¢, <)},
erature. RulegB1)+B3) belong to the sixbasic AGM contraction and wheremin(—¢, <*) here denotes the set sf*-minimal ele-
postulates{l]: Rules(B_4) and_(BS) are weakened versions - under mentsY € W /= stjc_h thatv’ N [¢] # 0. Note how worlds belong-
our assumption thak is consllstent — of another of the basic AGM ing to the same equivalence class are ‘indistinguishable’ to the agent
postulates, namely the Vacuity rule: using thek -context(<, <).

The next result shows how we can axiomatically characterise the
class of transitive removal operators.

As we will confirm in Sect. 4, basic removal operators do not gen-roorem 2 (i). If (
erally satisfy(Vacuity). The remaining two basic AGM contraction '
rules, neither of which are sound for basic removal, are: (BT) If K =60 ¢ K = ¢then there exist), A € L, such that

_ oEYvEMaNd(K <) UK <A Ey
(Inclusion) K < ¢ C K N - . . i,
(Recovery) K C Cn((K < ¢) U {¢}) (ii). If = satisfiegBT) then the relation< of C(K, <) is transitive.

(Vacuity) If ¢ ¢ KthenK < ¢ =K

<, X) s transitive thenc < < satisfies:

So transitive removal operators may be characterise(Bly-(B9)
plus(BT). (BT), as might be noted, is a very weak requirement. One
rnatural way to strengthen it is to require thiat= ¢:

(Inclusion) is questioned in [3], leading to the study loélief lib-
eration operators, whilgRecovery) has been questioned in many
places in the literature (e.g. [7, 9]). Briefly, liberation operators cate
to the intuition that removing a belief from an agent’s corpus can re{BConserv) If K < 6 Z K < ¢ then there exista € L. such that
move the reasons for not holding others and hence lead to the inclu- oENand(K < )U (K =\ E¢
sion of new beliefs. Of the other postulates for basic removal above,
(B8) and (B9) are the twosupplementanAGM contraction postu-  (BConserv) looks almost the same as the rules Conservativity and
lates [1], while(B6) and(B7) both follow from the AGM postulates Weak Conservativity, which were proposed and argued-for in [8, 9]
(see [1, 7, 13]). The latter rule is closely related to the well-knownand used there to characterise operations of so-dadlee-generated
rule Cautious Monotonyrom non-monotonic inference [11]. contraction

The completeness part of Theorem 1 is proved by using the fol- It turns out that, for basic removal operataBConserv) may be
lowing way to construct a pair of orderings from a given belief setcaptured by requiring that, in addition to being transitize, <) sat-
and basic removal operator. isfies the following property:



If w1 ~ W2 andw1 < w2 thenwg < wy

(@)

Theorem 3 (i). If (<, X) is transitive and satisfies (a) thes < <)
satisfiegBConserv). (ii). If < satisfiegBConserv)thenC(K, <) is
transitive and satisfies (a).

Theorem 5 (i). If (<, <) satisfies (c) thers (< <) satisfie(Vacu-
ity). (ii). If < satisfieqVacuity) thenC (K, <) satisfies (c).

As is easily verified, (c) is implied by condition (b). Thus we see that
any basic removal satisfyin@SConserv)satisfieqVacuity). How-
ever, our counter-example above shows {Watuity) is not valid for

In terms of the alternative description of transitive removal giventransitive removals satisfying (a).

above in terms of equivalence classes, requiring (a)<gf<) has
the effect that the relations™ and <* on W/ = satisfy, for all
X,Y ¢ W/=:X <X Y implesX <* YorX =Y, where
<™ is the strict part oK*. Thus any two distinct classes, Y which
are on the same ‘level’ according £ (in that bothX <* Y and
Y <* X) are incomparable according t¢".

As we will see, althougfBConserv)is more restrictive tha(BT),

Shouldn’t (Vacuity) be a basic requirement fany rational re-
moval operation? From a puretginimal changepoint of view it is
certainly hard to contest, but we would nevertheless argue that there
are plausible scenarios in which it can fail. Consider an agent who
has equally good reasons to believe eagharid—p. In this situation
the agent remains cautious and commits to believe neither —p.

But if this agent were then to receive information that undermines

the class of basic removals satisfying it remains general enough tp then it seems plausible that it would come to believe (or assign

include many other important sub-classes of basic removal.
By going a step further and identifying with ¢ in (BConserv)
we arrive at a yet stronger postulate:

(BSConserv) If K < 0 Z K < ¢then(K < 0) U (K < ¢) = ¢

(BSConserv)is known as Strong Conservativity [8], and is used in
[3]to help characterise the so-callediberation operators (see Sect.
5). [3] also contains a detailed justification for the use of this rule. Fo

basic removal, we can capture this property by requiring the follow-

ing property, in conjunction with transitivity:
(b)

Theorem 4 (i). If (<, <) is transitive and satisfies (b) thes < <)
satisfie{BSConserv) (ii). If < satisfie{BSConserv)thenC(K, <)
is transitive and satisfies (b).

If wy ~ W2 thenw1 =< w2

significantly more plausibility to}-p.

Of course one could always try afidrce a given basic removal
< to satisfy (Vacuity) by defining a new operatot from < by
K=¢=Kif¢g & K, K= ¢ = K = ¢ otherwise. It is
fairly straightforward to show that so defined satisfig81)+(B9),
and so again forms a basic removal. However we run into difficulties

in the case of transitive removal, for it turns out that r{B&) is not

rpreserved. Exploring ways out of this problem will be left for future

work.
4.2

To obtain(Inclusion) we may add the following condition, stronger
than (c):

(d)

So the<-minimum worlds are also th&-minimum worlds.

Inclusion

If wy < wo for all we thenw; < ws for all ws

Condition (b) implies (a). In terms of the above construction in termstheorem 6 (j). If (<, <) satisfies (d) ther: (< <, satisfiegInclu-

of W/ =, having that< is transitive while strengthening (a) to (b)
has the effect that the relatieh® becomes #otal orderon W/ =.

4 TOWARDS AGM CONTRACTION

It was mentioned in Sect. 2 that basic removal does not satisfy thEFmova

three basic AGM contraction postulat@éacuity), (Inclusion) and

(Recovery) In Sect. 7 it is shown that the severe withdrawal oper-

ators, which are known not to satisfiRecovery)[14], are all basic
removal operators, thus proving th@ecovery)fails for basic re-
moval. For the failure of the other two rules, suppdse= Cn(0)
and consider the<-context (<, <) where < is the full relation
W x W and= is just the equality relation. Then it is easy to check
that, for any consistent € L., we getK << <y ¢ = Th([~¢]) =
Cn(—¢). ThusK << <) ¢ € K, even thoughy ¢ K. ‘One half’

of (Vacuity), howeverjs valid for basic removal:

Proposition 1 Let <= be a basic removal operator fok, then <
satisfies: Ifp ¢ K thenK C K < ¢

The ‘missing half’ of(Vacuity) is: If ¢ ¢ K thenK < ¢ C K.
Clearly this rule doubles as a weakened versiofiraflusion). Thus
we see that, for basic removal operatghsclusion) actually implies
(Vacuity). Now let's verify under what conditions dix, <) each of
these postulates are satisfied by basic removal operators.

4.1 Vacuity

To ensure that- < <) satisfy all of(Vacuity), we require that alk-
minimal elements (i.e., all elements [df]) are<-connected, i.e.,

(©

If (for eachi = 1,2) w; < w’ for all w’, thenw; < ws

sion). (ii). If = satisfie{Inclusion) thenC (K, <) satisfies (d).

Note that, even though basic removal operators do not sdtisfy
clusion) in general, it is always possible tmansforma given basic

| into an operator whiclloessatisfy that rule. We simply
take theincarceration= of < [3], i.e., the operator defined from

by K = ¢ = K N (K < ¢). It can be shown that the incarceration
of a basic removal operator is always itself a basic removal, while
furthermore if< satisfies any of the three postulates from Sect. 3,
then= will satisfy the same ones as well.

4.3 Recovery

To obtain(Recovery)it suffices to require the following condition:
(e) Ifw; =< wethenw; = ws orw; < w' for all w’

So, apart from itself, nothing but-minimal worlds may be below
any world in=.

Theorem 7 (i). If (<, %) satisfies (e) ther- (< < satisfiefRecov-
ery). (ii). If < satisfiegfRecovery)thenC(K, <) satisfies (e).

The combination of (d) and (e) then states that the worlds below a
world w in < are exactlyw itself and the<-minimal worlds. And

this gives us precisely AGM contraction (satisfying the basic plus
supplementary AGM contraction postulates).

Theorem 8 The following are equivalent:

(i). = is a full AGM contraction operator.

(ii). = satisfiedB1)}«B9) plus(Inclusion) and(Recovery)
(iii). === (< <) for some(<, <) which satisfies (d) and (e).

Observe that since (d)+(e) implies transitivity and (a), every full
AGM contraction is a basic removal satisfyi(Conserv).



5 BELIEF LIBERATION

6 SYSTEMATIC WITHDRAWAL

In [3] two models of belief liberation operators are presented, each if\n interesting sub-class of basic removal operators, which includes

terms of finite sequences of sentences. The second ntioeeal, lib-
eration, is more general than the first;liberation. The class of lib-
eration operators it generates includes that generated by the first.

first construction employs a linearly ordered sequence of sentenc

nge) If w1 < w2 thenw1 =< w2

both systematic [12] and severe withdrawal [14] (see below) is ob-
tained by requiring the following condition g, <):

and the second a set of candidate belief sets one of which correspondéiere< is the strict part oK.
to the agent’s set after belief retraction. Axiomatic characterisations
of each of these classes are also provided in [3]. Linear liberatiod heorem 11 (i). If (<, <) satisfies (g) ther- < <) satisfies:

is characterised b§B1)-(B3) plus(Vacuity) and the following rule:
(Hyperreg) If0 g K< (0N@)thenK < (ONP) =K <=0

This is the rule originally known as Hyperregularity from [8]. The
first thing to note aboufHyperreq) is that, in the presence ¢81)-
(B4), it actually implies(Vacuity) andthe remaining rules for basic
removal(B5)+B9). Thus we see:

Proposition 2 < is a linear liberation operator iff it is a basic re-
moval operator which satisfigslyperreg).

Is there a condition ofi<, <) which corresponds exactly {blyper-
reg)? It turns out that the following condition does the trick:

(f)

Rule (f) says that whether or not a worlg; is beloww; according
to < depends only on the-plausibility rank ofw; .

If w1 ~ Wa andw3 < wy thenw3 < w2

Theorem 9 (i). If (<, X) satisfies (f) them- < <) satisfiegHyper-
reg). (ii). If = satisfieqHyperreg) thenC (K, <) satisfies (f).

Thus we see that linear liberation operators may be represented hg11)

the class of-contexts which satisfy (f).

(B10) Ifo0e K= (0A¢p)thenp & K <6
(ii). If = satisfiegB10)thenC (K, <) satisfies (g).

The class of basic removal operatars< <) such tha <, <) satis-
fies (g) still do not generally satisfyinclusion) or (Vacuity), since
condition (g) does not rule out that sordeminimal elements may
be <-unconnected. However they do coméghtyclose to satisfying
(Inclusion), in that the following is satisfied:

If 0 € KthenK -0 C K

Using this fact we can see that fibis class of operatorglnclusion)
and(Vacuity) are equivalent.

The next condition ot -contexts is, essentially, a requirement for
antisymmetry to hold:

(h)
Theorem 12 (i). If (<, <) satisfies (h) ther= (< < satisfies:
If=(0V¢)andd ¢ K < ¢ptheng € K = (0 A ¢)

If w1 < wo then eitherw; < wa Orwi; = we

In [3] it is shown that ther-liberation operators are precisely those (i) If < satisfiegB11)thenC (K, <-) satisfies (h).

linear liberation operators which satisfBSConserv) Using this
fact together with Theorems 4 and 9 allows us to deduce:

Proposition 3 < is ao-liberation operator iff-=< (< <, for some
transitive (<, <) satisfying (b) and (f).

However, we can simplify here, for as soonass transitive, condi-
tions (b) and (f) becomequivalent

Proposition 4 Let (<, <) be a transitiveK-context. Ther(<, <)
satisfies (b) ifi <, <) satisfies (f).

This means that in Prop. 3 itis unnecessary to require botm({f)

Clearly, by requiring (h) in combination with (g) (and reflexivity) we
specify < uniquely:

(@)+(h)

Note that< so defined will automatically be transitive and will sat-
isfy the condition (a) from Sect. 3. Putting together Theorems 11 and
12, then, we have that the class of basic removal operatpss-)
where =< is defined via (g)+(h) may be axiomatically characterised
by (B1)}{B11). This looks very much like the class of systematic
withdrawals. A systematic withdrawal operatercan be defined in

wy = we iff either wi < w2 Orwy = we

_ just one of them will suffice. Depending on which one we choose€Ms Of< as follows [12]:

to retain, we obtain two different characterisationsosfiberation
which provide alternatives to the one from [3]:

Theorem 10 The following are equivalent:

(i). < is ac-liberation operator.

(i)). = is a linear liberation operator which satisfiBT).

(iii). < is a basic removal operator which satisfi@SConserv)

The equivalencéi)<(ii) comes from combining Prop. 3 (retaining
just (f)) with Theorems 2 and 9, whil@ < (iii) comes from combin-
ing Prop. 3 (retaining just (b)) with Theorem 4. Surprisingi)s=>(ii)
says that, in the axiomatisation efliberation in [3], (BSConserv)
may be replaced by the seemingly much wegBar). Meanwhile,
since(i) < (iii), o-liberation operators inherit the nice description in
terms of W /= given for the basic removals which satigSCon-
serv) at the end of Sect. 3 (wher€” is a total order oW /=).

K = gb =Kn Th(vS(min([ﬁﬁé]v S)))

whereV<(X) = {v | Jw € X s.t.v < w}. Unlike systematic with-
drawal, the class of removal operators definedBi)~(B11) fails to
satisfy (Inclusion)/(Vacuity), since all the<-minimal elements are
necessarilyjunconnectedccording to=<. So in fact(Vacuity) will
fail as soon as there is more than gieninimal element. These op-
erators satisfy instead:

If p & Kthen-¢ € K < ¢

That is, for these operators, we see tRat- ¢ is an operation which
‘demotes’ the status af: if its current status is ‘accepted’, i.e, €

K, then its status is ‘demoted’ to ‘undecided’ i.¢,~¢ ¢ K < ¢,
while if its current status is ‘undecided’ then its status is ‘demoted’
to ‘rejected’. If its status is already ‘rejected’ then no change occurs.

Similar characterisations for sub-classes of liberation, such as thelowever, if we take the incarcerations of these operators then we end
class ofdichotomoudiberation operators [3], exist. However, space up with precisely the class of systematic withdrawal operators.
considerations prevent us here from embroidering further on this Systematic withdrawal can also be obtained by weakening (h):

theme.
4



() If w1 < wothenw; < we, w1 = wa, orw; < w' V'

So, unlike (h), (j) allows the models d@f to be connected according
to <, although it does not force them to be.

Theorem 13 (i). If (<, <) satisfies (j) ther=(< < satisfies:

(B12) Ifpe K,E(0Ve¢)andd ¢ K <= ¢ptheng € K < (0 A ¢)
(ii). If = satisfieqB12)thenC(K, <) satisfies (j).

Since the operators obtained from (g) and (h) form a sub-class

Proposition 5 Let (<, <) be a K-context. Then<=< iff both (f)
and (g) are satisfied.

Using this fact with Theorems 9 and 11 then yields:

Theorem 16 < is a severe withdrawal operator iff it satisfiéB1)—
(B4), (Hyperreg) and(B10).

4 CONCLUSION

the operators obtained from (g) and (j), the latter class still does nofy this study we have presented a unified framework for belief re-

satisfy(Vacuity). But adding (a) (and therefo(¥acuity)) to (g) and
(j) leads exactly to systematic withdrawal.

Theorem 14 The following are equivalent:

(i). = is a systematic withdrawal.

(ii). <= satisfie{B1)}HB9) plus(Vacuity), (B10)and(B12).

(iii). === (< <) for some(<, <) which satisfies (a), (g) and (j).

moval in terms of a possible world semantics which is distinctive
in that it uses a pair of orderings over the set of worlds. We argued
for the conceptual plausibility of this pair and showed how a large
class of belief removal operators such as liberation, systematic and
severe withdrawal operators could be characterised. This approach
opens the door for identifying hitherto unstudied sub-classes of basic
removal operators, such as those obtained by requiring tf be a

As we shall see in the next section, the class of severe withdrawalgtal pre-order and a partial order.An obvious generalisation to con-

can also be isolated in a similar manner.
7 LIMITING CASES

We have seen that the addition of the second ordexipgovides us

sider in future work is the extension to propositional languages with
a countably infinite number of propositional variables. Also, a de-
tailed study of the connection between basic removal, base-generated
contraction, and sequence-based retraction is of interest. Finally, as

with considerable flexibility when defining removal operators. Butin any formalism for belief change, we need to consider iterated re-

what happens when we focus on the limits imposed<@hin this
section we consider the two cases whetds the smallestand the
largestreflexive sub-relation of. If we take= to be the smallesk,

the equality relation, then the operatef< <) reduces to:

K (< <) ¢ = Th(min([~¢], <)).
and we have the following result.
Theorem 15 (i). If < is the equality relation ther- < <, satisfies:
(B13) —¢ € K = ¢.
(ii). If = satisfieqB13)then= in C(K, <) is the equality relation.

Thus we see that removinghere amounts to gvisionby its nega-
tion, and in fact that-< <) essentially reduces to an AGM revi-

sion function (satisfying the full list of AGM revision postulates [1]).

More precisely the operatef < <) for K defined by
Kx<z)0=K<<<) 79

is an AGM revision operator. Moreovegvery AGM revision op-

erator can be obtained in this way. Note that in the above case,
sincep € K << <) —¢, the right-hand side here is equal to [10]

Cn((K <(<,<) —¢) U {¢4}). Thus what we have is just the Levi
Identity [5]. In fact a result more general holdghenever(<, <) is
aK-context and(< < is defined frome < < via the Levi Identity
thenx < <) is an AGM revision operator.

By taking < to be the largest reflexive sub-relation ¢fwe get
the full relation<, and the operatot: < <) reduces to:

K =<5y ¢=Th({w | w < w' for somew’ € min([~¢], <)}).

Thus, from the characterisation of severe withdrawal in terms of total

pre-orders found in [14], we see clearly that setting < gives us
the class of severe withdrawal operators. Note thab defined will

moval and how this affects the adjustment of worlds in betand
=, as well as the interplay betweehand=<.
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be transitive and satisfy condition (b) from Sect. 3 (and hence also
(f) — see Prop. 4). From the results above it turns out that we can give
an axiomatic characterisation of severe withdrawal which is different
to the ones found in the literature (see [14]). To do this first note the
following:



