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Abstract. Many belief change formalisms employ plausibility or-
derings over the set of possible worlds to determine how the beliefs
of an agent ought to be modified after the receipt of a new epistemic
input. While most such possible world semantics rely on a single
ordering, we look at using an extra ordering to aid in guiding the
process of belief change. We show that this provides a unifying se-
mantics for a wide variety of belief change operators. By varying
the conditions placed on the second ordering, different families of
known belief change operators can be captured, including AGM be-
lief contraction and revision [1], severe withdrawal [14], systematic
withdrawal [12], and the linear liberation andσ-liberation operators
of [3]. Our approach also identifies novel classes of belief change
operators that are worth further investigation.

1 INTRODUCTION

Current formalisms in belief change [5, 9] typically employ a plausi-
bility ordering [6, 10] over the set of possible worlds or an epistemic
entrenchment ordering over the set of sentences in an agent’s belief
set. Operators for change are then defined by manipulation of these
orderings after receipt of a new epistemic input. There are many ad-
vantages to these approaches – foremost amongst them the guarantee
that change will be effected in a principled manner, the provision of
an intuitively plausible construction, and a formalism flexible enough
to accommodate alternative change strategies and iteration. However
there are some nuances that are not captured in such an approach. For
instance, agents do not usually employ one fixed ordering through-
out – often, different orderings might be used in different contexts
such as those requiring greater caution or skepticism. Or different or-
derings might be used based on the source of the epistemic inputs.
Such a critique is implicit in [4] where the notion ofeligibility adds
an extra dimension to belief change. A technical framework that pro-
vides tools for belief change operations based on multiple orderings
appears in [2] where combination operations for a class of preference
relationsP are studied in terms of an additional guiding preference
relation. In this study, the formalism for belief change – in particular
for belief removal – that we will present can be considered a special
case of [2] with≤ – over the set of interpretations – being the single
preference relation inP, and� – our additional dimension – being
the guiding relation.

An intuitive way to understand the second ordering on the set of
worlds is to think of it as representing a more stringent assessment
of the plausibility of states of affairs. Most rational agents are aware
of certain contexts within which their reasoning plays out – certain
contexts call for a different assessment of plausibility. For example,
I enforce a certain amount of skepticism on verifying news reports –
but will probably fall back on a more critical assessment when I’m
trying to assess news reports in a different situation, say the impend-
ing declaration of a war. Such a treatment is reminiscent of contex-
tualist assessments of epistemic statements – it is understood that the

agent makes any knowledge claim relative to some implicit standard
for assessing that claim and that different standards will induce dif-
fering assessments of the truth of epistemic claims. The contribution
of the paper is the unification, in a single formal framework, of a
large class of belief change operators by this method. It enables us to
view belief change as the manipulation by the agent of assessments
of plausibility of epistemic states of affairs in different contexts.

The plan of the paper is as follows. After laying down some tech-
nical preliminaries, in Sect. 2 we establish the foundations of our
framework for removal with a semantic definition and an axiomatic
characterisation. In Sect. 3 we study the class of belief removal oper-
ators obtained when the second ordering� is transitive. Sect. 4 builds
up to a characterisation ofAGM contraction[1] via sub-classes of
belief removal operators satisfying the standard properties known as
Vacuity, Inclusion and Recovery. Sect. 5 shows that important classes
of belief liberationoperators [3] can be captured in our framework.
Sect. 6 isolates various classes of removal operators related to, and
including, systematic withdrawal[12]. Sect. 7 shows that the lim-
iting cases correspond toAGM revision[1] and severe withdrawal
[14], while Sect. 8 concludes with some pointers to future work.

We assume a finitely generated propositional languageL
equipped with the usual constants, boolean operators and a classi-
cal Tarskian consequence relationCn.W denotes the set of possible
worlds/interpretations ofL. Logical entailment is denoted by|=. For
any set of sentencesA ⊆ L, [A] denotes the set of worlds satisfy-
ing all members ofA (writing [φ] rather than[{φ}] for the singleton
case). For a setS ⊆ W, Th(S) is the set of sentences true in all
worlds inS. The object which undergoes change will beK, a consis-
tent belief set (i.e., a deductively closed, consistent set of sentences).
We takeK to be arbitrary but fixed throughout. We assume that for
all removal operatorsm,K m φ is only defined for non-tautologous
propositions and refer to the set of non-tautologous members ofL as
L∗. The limiting case requires only a minor emendation. We make
this choice for ease of technical presentation. Finally, given a total
pre-order (i.e., a transitive, connected relation)≤ onW andS ⊆ W,
min(S,≤) will denote the set of≤-minimal elements ofS.

2 BASIC REMOVAL

We now set up our most general semantic construction of belief
change operators. We refer to these asremovaloperators because the
nett effect after being presented with an inputφ is thatφ is removed
from the belief set. However, as we shall see in Sect. 7, the extreme
case where the removal of a beliefφ results in the addition of¬φ is
included in the framework.

Assume a total pre-order≤ anchoredon [K]. That is to say,
[K] = min(W,≤). As usual we take≤ to be an ordering of plausi-
bility on the worlds, with worlds lower down in the ordering seen as
more plausible. In what follows,∼ will always denote the symmetric
closure of≤, i.e.,w1 ∼ w2 iff both w1 ≤ w2 andw2 ≤ w1. Now



we assume that we are given asecondbinary relation� onW, which
we require to be a reflexive sub-relation of≤. These two orderings
provide thecontextin which an agent makes changes to its current
beliefs.

Definition 1 (≤,�) is aK-contextiff ≤ is a total pre-order (onW)
anchored on[K], and� is a reflexive sub-relation of≤.

Given a belief setK and aK-context(≤,�), we use(≤,�) to de-
fine aremoval operatorm(≤,�) for K by setting, for allφ ∈ L∗,

K m(≤,�) φ = Th({w | w � w′ for somew′ ∈ min([¬φ],≤)})

That is, the models of the belief set resulting from a removal ofφ
are obtained by locating all the≤-best models of¬φ, and adding to
those, all worlds that are at least as�-plausible.

Definition 2 m is a basic removal operator(for K) iff m=m(≤,�)

for someK-context(≤,�).

Basic removal is characterised by the following postulates:

(B1) K m φ = Cn(K m φ)
(B2) φ 6∈ K m φ
(B3) If |= φ1 ↔ φ2 thenK m φ1 = K m φ2

(B4) K m ⊥ = K
(B5) K m φ ⊆ Cn(K ∪ {¬φ})
(B6) If θ ∈ K m (θ ∧ φ) thenθ ∈ K m (θ ∧ φ ∧ ψ)
(B7) If θ ∈ K m (θ ∧ φ) thenK m φ ⊆ K m (θ ∧ φ)
(B8) (K m θ) ∩ (K m φ) ⊆ K m (θ ∧ φ)
(B9) If φ 6∈ K m (θ ∧ φ) thenK m (θ ∧ φ) ⊆ K m φ

Theorem 1 LetK be a belief set andm an operator forK. Thenm
is a basic removal operator forK iff m satisfies(B1)–(B9).

All the rules above are already familiar from the belief change lit-
erature. Rules(B1)–(B3) belong to the sixbasic AGM contraction
postulates[1]. Rules(B4) and(B5) are weakened versions – under
our assumption thatK is consistent – of another of the basic AGM
postulates, namely the Vacuity rule:

(Vacuity) If φ 6∈ K thenK m φ = K

As we will confirm in Sect. 4, basic removal operators do not gen-
erally satisfy(Vacuity). The remaining two basic AGM contraction
rules, neither of which are sound for basic removal, are:

(Inclusion) K m φ ⊆ K
(Recovery) K ⊆ Cn((K m φ) ∪ {φ})

(Inclusion) is questioned in [3], leading to the study ofbelief lib-
eration operators, while(Recovery) has been questioned in many
places in the literature (e.g. [7, 9]). Briefly, liberation operators cater
to the intuition that removing a belief from an agent’s corpus can re-
move the reasons for not holding others and hence lead to the inclu-
sion of new beliefs. Of the other postulates for basic removal above,
(B8) and (B9) are the twosupplementaryAGM contraction postu-
lates [1], while(B6) and(B7) both follow from the AGM postulates
(see [1, 7, 13]). The latter rule is closely related to the well-known
ruleCautious Monotonyfrom non-monotonic inference [11].

The completeness part of Theorem 1 is proved by using the fol-
lowing way to construct a pair of orderings from a given belief set
and basic removal operator.

Definition 3 The structure(≤,�) obtained from a belief setK and
a basic removal operatorm, and denoted byC(K,m) is defined as
follows (cf. [4]), forw1, w2 ∈ W:
(≤) w1 ≤ w2 iff ¬α1 6∈ K m (¬α1 ∧ ¬α2)
(�) w1 � w2 iff ¬α1 6∈ K m ¬α2

whereαi is a sentence whose only model iswi (for i = 1, 2).

In the theorem,C(K,m) is used by checking that ifm satisfies(B1)–
(B9), then(≤,�) is aK-context and thatm=m(≤,�). We employ
this construction throughout the paper to prove that certain postulates
are complete for certain sub-classes of basic removal.

We now proceed to investigate how different requirements on the
second ordering of plausibility� and its interplay with≤ can help
us characterise different belief removal operations. We start with one
of the simplest properties there is – transitivity.

3 TRANSITIVE REMOVAL

In this section we see what happens if we let the second order�
be transitive, i.e.,� becomes a pre-order. We’ll call theK-context
(≤,�) transitive if� is transitive.

Definition 4 We callm a transitive removal operator(for K) iff
m=m(≤,�) for some transitiveK-context(≤,�).

Transitive removal operators may be alternatively described as fol-
lows. As with any pre-order, the relation� partitionsW into a set
W/≡ of equivalence classes via the relation≡ defined byw1 ≡ w2

iff both w1 � w2 andw2 � w1. The setW/≡ is partially-ordered
by the relation�∗ defined by[w1]≡ �∗ [w2]≡ iff w1 � w2. Mean-
while, we can also define a relation≤∗ onW/≡ by [w1]≡ ≤∗ [w2]≡
iff w1 ≤ w2. It is easy to check that≤∗ is well-defined and that≤∗ is
a total pre-order onW/≡ such that�∗⊆≤∗. Furthermore we have,
for eachφ ∈ L∗,K m(≤,�) φ = Th(

⋃
Υ), where

Υ = {X ∈ W/≡| X �∗ Y for someY ∈ min(¬φ,≤∗)},

and wheremin(¬φ,≤∗) here denotes the set of≤∗-minimal ele-
mentsY ∈ W/≡ such thatY ∩ [¬φ] 6= ∅. Note how worlds belong-
ing to the same equivalence class are ‘indistinguishable’ to the agent
using theK-context(≤,�).

The next result shows how we can axiomatically characterise the
class of transitive removal operators.

Theorem 2 (i). If (≤,�) is transitive thenm(≤,�) satisfies:

(BT) If K m θ 6⊆ K m φ then there existψ, λ ∈ L∗ such that
φ |= ψ |= λ and(K m θ) ∪ (K m λ) |= ψ

(ii). If m satisfies(BT) then the relation� of C(K,m) is transitive.

So transitive removal operators may be characterised by(B1)–(B9)
plus(BT). (BT), as might be noted, is a very weak requirement. One
natural way to strengthen it is to require thatψ = φ:

(BConserv) If K m θ 6⊆ K m φ then there existsλ ∈ L∗ such that
φ |= λ and(K m θ) ∪ (K m λ) |= φ

(BConserv) looks almost the same as the rules Conservativity and
Weak Conservativity, which were proposed and argued-for in [8, 9]
and used there to characterise operations of so-calledbase-generated
contraction.

It turns out that, for basic removal operators,(BConserv)may be
captured by requiring that, in addition to being transitive,(≤,�) sat-
isfies the following property:
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(a) If w1 ∼ w2 andw1 � w2 thenw2 � w1

Theorem 3 (i). If (≤,�) is transitive and satisfies (a) thenm(≤,�)

satisfies(BConserv). (ii). If m satisfies(BConserv)thenC(K,m) is
transitive and satisfies (a).

In terms of the alternative description of transitive removal given
above in terms of equivalence classes, requiring (a) of(≤,�) has
the effect that the relations≤∗ and�∗ on W/ ≡ satisfy, for all
X,Y ∈ W/≡: X �∗ Y impliesX <∗ Y or X = Y , where
<∗ is the strict part of≤∗. Thus any two distinct classesX,Y which
are on the same ‘level’ according to≤∗ (in that bothX ≤∗ Y and
Y ≤∗ X) are incomparable according to�∗.

As we will see, although(BConserv)is more restrictive than(BT),
the class of basic removals satisfying it remains general enough to
include many other important sub-classes of basic removal.

By going a step further and identifyingλ with φ in (BConserv)
we arrive at a yet stronger postulate:

(BSConserv) If K m θ 6⊆ K m φ then(K m θ) ∪ (K m φ) |= φ

(BSConserv)is known as Strong Conservativity [8], and is used in
[3] to help characterise the so-calledσ-liberationoperators (see Sect.
5). [3] also contains a detailed justification for the use of this rule. For
basic removal, we can capture this property by requiring the follow-
ing property, in conjunction with transitivity:

(b) If w1 ∼ w2 thenw1 � w2

Theorem 4 (i). If (≤,�) is transitive and satisfies (b) thenm(≤,�)

satisfies(BSConserv). (ii). If m satisfies(BSConserv)thenC(K,m)
is transitive and satisfies (b).

Condition (b) implies (a). In terms of the above construction in terms
of W/≡, having that� is transitive while strengthening (a) to (b)
has the effect that the relation≤∗ becomes atotal orderonW/ ≡.

4 TOWARDS AGM CONTRACTION

It was mentioned in Sect. 2 that basic removal does not satisfy the
three basic AGM contraction postulates(Vacuity), (Inclusion) and
(Recovery). In Sect. 7 it is shown that the severe withdrawal oper-
ators, which are known not to satisfy(Recovery)[14], are all basic
removal operators, thus proving that(Recovery) fails for basic re-
moval. For the failure of the other two rules, supposeK = Cn(∅)
and consider theK-context (≤,�) where≤ is the full relation
W ×W and� is just the equality relation. Then it is easy to check
that, for any consistentφ ∈ L∗, we getK m(≤,�) φ = Th([¬φ]) =
Cn(¬φ). ThusK m(≤,�) φ 6⊆ K, even thoughφ 6∈ K. ‘One half’
of (Vacuity), however,is valid for basic removal:

Proposition 1 Let m be a basic removal operator forK, thenm
satisfies: Ifφ 6∈ K thenK ⊆ K m φ

The ‘missing half’ of(Vacuity) is: If φ 6∈ K thenK m φ ⊆ K.
Clearly this rule doubles as a weakened version of(Inclusion). Thus
we see that, for basic removal operators,(Inclusion) actually implies
(Vacuity). Now let’s verify under what conditions on(≤,�) each of
these postulates are satisfied by basic removal operators.

4.1 Vacuity

To ensure thatm(≤,�) satisfy all of(Vacuity), we require that all≤-
minimal elements (i.e., all elements of[K]) are�-connected, i.e.,

(c) If (for eachi = 1, 2) wi ≤ w′ for all w′, thenw1 � w2

Theorem 5 (i). If (≤,�) satisfies (c) thenm(≤,�) satisfies(Vacu-
ity) . (ii). If m satisfies(Vacuity) thenC(K,m) satisfies (c).

As is easily verified, (c) is implied by condition (b). Thus we see that
any basic removal satisfying(BSConserv)satisfies(Vacuity). How-
ever, our counter-example above shows that(Vacuity) is not valid for
transitive removals satisfying (a).

Shouldn’t (Vacuity) be a basic requirement forany rational re-
moval operation? From a purelyminimal changepoint of view it is
certainly hard to contest, but we would nevertheless argue that there
are plausible scenarios in which it can fail. Consider an agent who
has equally good reasons to believe each ofp and¬p. In this situation
the agent remains cautious and commits to believe neitherp nor¬p.
But if this agent were then to receive information that undermines
p then it seems plausible that it would come to believe (or assign
significantly more plausibility to)¬p.

Of course one could always try andforce a given basic removal
m to satisfy (Vacuity) by defining a new operator+ from m by
K + φ = K if φ 6∈ K, K + φ = K m φ otherwise. It is
fairly straightforward to show that+ so defined satisfies(B1)–(B9),
and so again forms a basic removal. However we run into difficulties
in the case of transitive removal, for it turns out that rule(BT) is not
preserved. Exploring ways out of this problem will be left for future
work.

4.2 Inclusion

To obtain(Inclusion) we may add the following condition, stronger
than (c):

(d) If w1 ≤ w2 for all w2 thenw1 � w2 for all w2

So the≤-minimum worlds are also the�-minimum worlds.

Theorem 6 (i). If (≤,�) satisfies (d) thenm(≤,�) satisfies(Inclu-
sion). (ii). If m satisfies(Inclusion) thenC(K,m) satisfies (d).

Note that, even though basic removal operators do not satisfy(In-
clusion) in general, it is always possible totransforma given basic
removalm into an operator whichdoessatisfy that rule. We simply
take theincarcerationl of m [3], i.e., the operator defined fromm
byK l φ = K ∩ (K m φ). It can be shown that the incarceration
of a basic removal operator is always itself a basic removal, while
furthermore ifm satisfies any of the three postulates from Sect. 3,
thenl will satisfy the same ones as well.

4.3 Recovery

To obtain(Recovery) it suffices to require the following condition:
(e) If w1 � w2 thenw1 = w2 orw1 ≤ w′ for all w′

So, apart from itself, nothing but≤-minimal worlds may be below
any world in�.

Theorem 7 (i). If (≤,�) satisfies (e) thenm(≤,�) satisfies(Recov-
ery). (ii). If m satisfies(Recovery)thenC(K,m) satisfies (e).

The combination of (d) and (e) then states that the worlds below a
world w in � are exactlyw itself and the≤-minimal worlds. And
this gives us precisely AGM contraction (satisfying the basic plus
supplementary AGM contraction postulates).

Theorem 8 The following are equivalent:
(i). m is a full AGM contraction operator.
(ii). m satisfies(B1)–(B9) plus(Inclusion) and(Recovery).
(iii). m=m(≤,�) for some(≤,�) which satisfies (d) and (e).

Observe that since (d)+(e) implies transitivity and (a), every full
AGM contraction is a basic removal satisfying(BConserv).
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5 BELIEF LIBERATION

In [3] two models of belief liberation operators are presented, each in
terms of finite sequences of sentences. The second model,linear lib-
eration, is more general than the first,σ-liberation. The class of lib-
eration operators it generates includes that generated by the first. The
first construction employs a linearly ordered sequence of sentences
and the second a set of candidate belief sets one of which corresponds
to the agent’s set after belief retraction. Axiomatic characterisations
of each of these classes are also provided in [3]. Linear liberation
is characterised by(B1)–(B3) plus(Vacuity) and the following rule:
(Hyperreg) If θ 6∈ K m (θ ∧ φ) thenK m (θ ∧ φ) = K m θ

This is the rule originally known as Hyperregularity from [8]. The
first thing to note about(Hyperreg) is that, in the presence of(B1)–
(B4), it actually implies(Vacuity) and the remaining rules for basic
removal(B5)–(B9). Thus we see:

Proposition 2 m is a linear liberation operator iff it is a basic re-
moval operator which satisfies(Hyperreg).

Is there a condition on(≤,�) which corresponds exactly to(Hyper-
reg)? It turns out that the following condition does the trick:

(f) If w1 ∼ w2 andw3 � w1 thenw3 � w2

Rule (f) says that whether or not a worldw3 is beloww1 according
to� depends only on the≤-plausibility rank ofw1.

Theorem 9 (i). If (≤,�) satisfies (f) thenm(≤,�) satisfies(Hyper-
reg). (ii). If m satisfies(Hyperreg) thenC(K,m) satisfies (f).

Thus we see that linear liberation operators may be represented by
the class ofK-contexts which satisfy (f).

In [3] it is shown that theσ-liberation operators are precisely those
linear liberation operators which satisfy(BSConserv). Using this
fact together with Theorems 4 and 9 allows us to deduce:

Proposition 3 m is aσ-liberation operator iffm=m(≤,�) for some
transitive(≤,�) satisfying (b) and (f).

However, we can simplify here, for as soon as� is transitive, condi-
tions (b) and (f) becomeequivalent:

Proposition 4 Let (≤,�) be a transitiveK-context. Then(≤,�)
satisfies (b) iff(≤,�) satisfies (f).

This means that in Prop. 3 it is unnecessary to require both (b)and(f)
– just one of them will suffice. Depending on which one we choose
to retain, we obtain two different characterisations ofσ-liberation
which provide alternatives to the one from [3]:

Theorem 10 The following are equivalent:
(i). m is aσ-liberation operator.
(ii). m is a linear liberation operator which satisfies(BT).
(iii). m is a basic removal operator which satisfies(BSConserv).

The equivalence(i)⇔(ii) comes from combining Prop. 3 (retaining
just (f)) with Theorems 2 and 9, while(i)⇔(iii) comes from combin-
ing Prop. 3 (retaining just (b)) with Theorem 4. Surprisingly,(i)⇔(ii)
says that, in the axiomatisation ofσ-liberation in [3], (BSConserv)
may be replaced by the seemingly much weaker(BT). Meanwhile,
since(i)⇔(iii) , σ-liberation operators inherit the nice description in
terms ofW/≡ given for the basic removals which satisfy(BSCon-
serv)at the end of Sect. 3 (where≤∗ is a total order onW/≡).

Similar characterisations for sub-classes of liberation, such as the
class ofdichotomousliberation operators [3], exist. However, space
considerations prevent us here from embroidering further on this
theme.

6 SYSTEMATIC WITHDRAWAL

An interesting sub-class of basic removal operators, which includes
both systematic [12] and severe withdrawal [14] (see below) is ob-
tained by requiring the following condition on(≤,�):

(g) If w1 < w2 thenw1 � w2

where< is the strict part of≤.

Theorem 11 (i). If (≤,�) satisfies (g) thenm(≤,�) satisfies:

(B10) If θ ∈ K m (θ ∧ φ) thenφ 6∈ K m θ

(ii). If m satisfies(B10) thenC(K,m) satisfies (g).

The class of basic removal operatorsm(≤,�) such that(≤,�) satis-
fies (g) still do not generally satisfy(Inclusion) or (Vacuity), since
condition (g) does not rule out that some≤-minimal elements may
be�-unconnected. However they do comemightyclose to satisfying
(Inclusion), in that the following is satisfied:

If θ ∈ K thenK m θ ⊆ K

Using this fact we can see that forthisclass of operators,(Inclusion)
and(Vacuity) are equivalent.

The next condition onK-contexts is, essentially, a requirement for
antisymmetry to hold:

(h) If w1 � w2 then eitherw1 < w2 orw1 = w2

Theorem 12 (i). If (≤,�) satisfies (h) thenm(≤,�) satisfies:

(B11) If |= (θ ∨ φ) andθ 6∈ K m φ thenφ ∈ K m (θ ∧ φ)

(ii). If m satisfies(B11) thenC(K,m) satisfies (h).

Clearly, by requiring (h) in combination with (g) (and reflexivity) we
specify� uniquely:

(g)+(h) w1 � w2 iff eitherw1 < w2 orw1 = w2

Note that� so defined will automatically be transitive and will sat-
isfy the condition (a) from Sect. 3. Putting together Theorems 11 and
12, then, we have that the class of basic removal operatorsm(≤,�)

where� is defined via (g)+(h) may be axiomatically characterised
by (B1)–(B11). This looks very much like the class of systematic
withdrawals. A systematic withdrawal operator÷ can be defined in
terms of≤ as follows [12]:

K ÷ φ = K ∩ Th(∇≤(min([¬φ],≤)))

where∇≤(X) = {v | ∃w ∈ X s.t.v < w}. Unlike systematic with-
drawal, the class of removal operators defined by(B1)–(B11) fails to
satisfy(Inclusion)/(Vacuity), since all the≤-minimal elements are
necessarilyunconnectedaccording to�. So in fact(Vacuity) will
fail as soon as there is more than one≤-minimal element. These op-
erators satisfy instead:

If φ 6∈ K then¬φ ∈ K m φ

That is, for these operators, we see thatK m φ is an operation which
‘demotes’ the status ofφ: if its current status is ‘accepted’, i.e.,φ ∈
K, then its status is ‘demoted’ to ‘undecided’ i.e.,φ,¬φ 6∈ K m φ,
while if its current status is ‘undecided’ then its status is ‘demoted’
to ‘rejected’. If its status is already ‘rejected’ then no change occurs.
However, if we take the incarcerations of these operators then we end
up with precisely the class of systematic withdrawal operators.

Systematic withdrawal can also be obtained by weakening (h):
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(j) If w1 � w2 thenw1 < w2, w1 = w2, orw1 ≤ w′ ∀w′

So, unlike (h), (j) allows the models ofK to be connected according
to�, although it does not force them to be.

Theorem 13 (i). If (≤,�) satisfies (j) thenm(≤,�) satisfies:

(B12) If φ ∈ K, |= (θ ∨ φ) andθ 6∈ K m φ thenφ ∈ K m (θ ∧ φ)
(ii). If m satisfies(B12) thenC(K,m) satisfies (j).

Since the operators obtained from (g) and (h) form a sub-class of
the operators obtained from (g) and (j), the latter class still does not
satisfy(Vacuity). But adding (a) (and therefore(Vacuity)) to (g) and
(j) leads exactly to systematic withdrawal.

Theorem 14 The following are equivalent:
(i). m is a systematic withdrawal.
(ii). m satisfies(B1)–(B9) plus(Vacuity), (B10)and(B12).
(iii). m=m(≤,�) for some(≤,�) which satisfies (a), (g) and (j).

As we shall see in the next section, the class of severe withdrawals
can also be isolated in a similar manner.

7 LIMITING CASES

We have seen that the addition of the second ordering� provides us
with considerable flexibility when defining removal operators. But
what happens when we focus on the limits imposed on�? In this
section we consider the two cases where� is thesmallestand the
largestreflexive sub-relation of≤. If we take� to be the smallest�,
the equality relation, then the operatorm(≤,�) reduces to:

K m(≤,�) φ = Th(min([¬φ],≤)).

and we have the following result.

Theorem 15 (i). If � is the equality relation thenm(≤,�) satisfies:

(B13) ¬φ ∈ K m φ.

(ii). If m satisfies(B13) then� in C(K,m) is the equality relation.

Thus we see that removingφ here amounts to arevisionby its nega-
tion, and in fact thatm(≤,�) essentially reduces to an AGM revi-
sion function (satisfying the full list of AGM revision postulates [1]).
More precisely the operator∗(≤,�) for K defined by

K ∗(≤,�) φ = K m(≤,�) ¬φ

is an AGM revision operator. Moreover,everyAGM revision op-
erator can be obtained in this way. Note that in the above case,
sinceφ ∈ K m(≤,�) ¬φ, the right-hand side here is equal to
Cn((K m(≤,�) ¬φ) ∪ {φ}). Thus what we have is just the Levi
Identity [5]. In fact a result more general holds:whenever(≤,�) is
aK-context and∗(≤,�) is defined fromm(≤,�) via the Levi Identity
then∗(≤,�) is an AGM revision operator.

By taking� to be the largest reflexive sub-relation of≤ we get
the full relation≤, and the operatorm(≤,�) reduces to:

K m(≤,�) φ = Th({w | w ≤ w′ for somew′ ∈ min([¬φ],≤)}).

Thus, from the characterisation of severe withdrawal in terms of total
pre-orders found in [14], we see clearly that setting�=≤ gives us
the class of severe withdrawal operators. Note that� so defined will
be transitive and satisfy condition (b) from Sect. 3 (and hence also
(f) – see Prop. 4). From the results above it turns out that we can give
an axiomatic characterisation of severe withdrawal which is different
to the ones found in the literature (see [14]). To do this first note the
following:

Proposition 5 Let (≤,�) be aK-context. Then�=≤ iff both (f)
and (g) are satisfied.

Using this fact with Theorems 9 and 11 then yields:

Theorem 16 m is a severe withdrawal operator iff it satisfies(B1)–
(B4), (Hyperreg) and(B10).

8 CONCLUSION

In this study we have presented a unified framework for belief re-
moval in terms of a possible world semantics which is distinctive
in that it uses a pair of orderings over the set of worlds. We argued
for the conceptual plausibility of this pair and showed how a large
class of belief removal operators such as liberation, systematic and
severe withdrawal operators could be characterised. This approach
opens the door for identifying hitherto unstudied sub-classes of basic
removal operators, such as those obtained by requiring of� to be a
total pre-order and a partial order.An obvious generalisation to con-
sider in future work is the extension to propositional languages with
a countably infinite number of propositional variables. Also, a de-
tailed study of the connection between basic removal, base-generated
contraction, and sequence-based retraction is of interest. Finally, as
in any formalism for belief change, we need to consider iterated re-
moval and how this affects the adjustment of worlds in both≤ and
�, as well as the interplay between≤ and�.
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