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Abstract

Dictionary matching is the problem of finding any pattern in a given set of patterns in the given text. It has ap-
plications in diverse areas, among them molecular biology, WWW search engines, online databases, and multimedia.
In this project we address succinct dictionary matching in one and two dimensions since many devices have limited
storage capacity. Although several algorithms have been developed for 1-dimensional dictionary matching that meet
optimal space bounds, they have not been implemented. We propose a different approach that yields a more imple-
mentable algorithm and will deploy the method with the use of algorithmic engineering. This project is the first to
address 2-dimensional dictionary matching in a space-constrained environment. The objectives of this project are
to develop efficient algorithms and software for dictionary matching in oneand two dimensions whose execution
requires very little space.

1 Introduction

The classical textual pattern matching problem consists offinding all occurrences of a given pattern stringP , in

a given textT . The solution to this problem has found a variety of applications, including querying a database,

searching the web, and searching a DNA sequence for a motif. Thedictionary matching problemis an extension of

this and attempts to identify a set of patterns,D = {P1, . . . , Pk}, which is called a dictionary, within a given text

T . A search for specific phrases in a book, scanning for virus signatures, and network intrusion detection, are all

applications of dictionary matching. Biological applications include searching a DNA sequence for a set of motifs, or

for a regular expression. Image identification software, which identifies smaller images in a large image based on a

set of known images, is a direct application of 2-dimensional dictionary matching. An efficient dictionary matching

algorithm should search for all patterns in one pass throughthe text, rather than searching for each pattern individually.

In this work we are concerned with efficiently solving the dictionary matching problem insmall space. The

motivation for this is that there are many scenarios, such ason mobile and satellite devices, where storage capacity is

limited. The challenge in developing search algorithms forspace-constrained applications takes on a new dimension.

In addition to reducing the running time of the algorithm, the algorithm must operate using very limited extra space.

A lot of effort has been devoted recently to solving 1-dimensional dictionary matching in small space [7, 14, 15, 4,

13]. Although the final result achieves linear-time dictionary matching in optimal space, meetingkth order empirical

entropy bounds, none of these results have been implemented. Furthermore, the algorithms are complex and difficult to

implement. The space-efficient implementations that existare based upon different algorithms that have been tailored

toward specific applications. For example, [21] was designed for use in network intrusion detection systems as an

improvement over traditional Aho-Corasick. Fredriksson’s software [10] for succinct dictionary matching has optimal
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averagetime, and is only efficient for certain types of data (e.g. large alphabets, texts that are available in reverse

order).

The first goal of this project is to present a simple, implementable algorithm for 1D dictionary matching in small

space. Our algorithm is general in the sense that it will workwell for any alphabet size, and for large inputs. We will

begin by implementing a dictionary matching program that relies on the generalized suffix tree , then improving on

this method by merging the algorithm with a compressed suffixtree representation [6]. The suffix tree is a versatile

tool often needed in many applications. Our tool will augment the suffix tree to allow the additional functionality of

fast dictionary matching, using very little additional space.

The second component of this project works with 2-dimensional patterns and texts. To date, 2-dimensional dic-

tionary matching in small space has been neglected, although algorithms for 2D pattern matching in small space have

been achieved [8]. We will develop the first efficient 2D dictionary matching algorithm to operate in small space.

For highly periodic patterns, our algorithm will use a newlydeveloped preprocessing scheme [18] that is based upon

succinctly representing periods by their Lyndon words [17]. For patterns that are not periodic, we will extend the ideas

for 1D dictionary matching with compressed suffix trees, using the methodology that converts a 2D pattern to a linear

representation [3, 5]. The ideas once again are clear and simple, yielding an algorithm that is practical to implement.

2 Background

The pattern matching problem consists of locating all occurrences of a pattern string in a text string. Efficient al-

gorithms preprocess the pattern once so that the search is completed in time proportional to the length of the text.

Dictionary matchingis a generalization of the pattern matching problem. It seeks to find all occurrences of all ele-

ments of asetof pattern strings in a text string. The set of patternsD = {P1, P2, . . . , Pd} is called thedictionary.

We can define dictionary matching by:

• INPUT: A set of patternsP1, P2, . . . , Pd of total lengthℓ and a textT = t1t2 . . . tn all over an alphabetΣ, with

alphabet-size|Σ| = σ.

• OUTPUT: All ordered pairs(i, j) such that patternPj matches the segment of text beginning at locationti.

2.1 Dictionary Matching in One-Dimensional Data

Knuth, Morris, and Pratt developed a well-known linear-time algorithm for pattern matching [16]. They construct

an automaton that maintains a failure link for each prefix of the pattern. The failure link of a position points to its

longest suffix that is also a pattern prefix. Aho and Corasick extended the Knuth-Morris-Pratt algorithm to dictionary
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matching by forming an automaton of the dictionary [1]. Preprocessing requires time and space proportional to the

size of the dictionary. Then, the text is scanned once to identify all pattern occurrences. The search phase runs in time

proportional to the length of the text and does not depend on the dictionary size.

Since applications arise in which additional storage spaceis extremely limited, effort has been invested in devel-

oping pattern matching algorithms that are linear in time but require only constant extra space. The first time-space

optimal pattern matching algorithm is from Galil and Seiferas [11]. Rytter [19] presented a constant-space, yet linear-

time version of the Knuth-Morris-Pratt algorithm . Space-efficient real-time searching is discussed by Gasieniec and

Kolpakov [12].

Concurrently searching for a set of patterns within limitedworking space presents a greater challenge than search-

ing for a single pattern in small space. Recent work has begunto address 1-dimensional dictionary matching in small

space [7, 14, 15, 4].Hk, kth order empirical entropy of a string, describes the minimum number of bits that are needed

to encode the string within context. Empirical entropy reveals that storage space meets the information-theoretic lower

bounds of data. In the analysis of algorithms it is standard to useO(n) to denote a function whose rate of growth is

proportional ton; we follow this convention.

The first linear-time algorithm for dictionary matching, devised by Aho and Corasick, requires an automaton that

occupiesO(ℓ) words, orO(ℓ log ℓ) bits. The first solution to beat this space complexity was presented by Chan et al.

[7]. They reduce the size of the index by alog factor toO(ℓ) bits and slow the linear time complexity bylog2ℓ.

The first succinct dictionary matching algorithm with no slowdown was introduced by Belazzougui [4]. His al-

gorithm mimics the Aho-Corasick automaton within smaller space. This new approach encodes the three kinds of

transitions of the AC trie separately and in different ways.Hon et al. extend this approach to encode the forward tran-

sitions of the AC automaton more efficiently without slowingdown the procedure [13]. With this new representation,

the space meets optimal compression of the dictionary (kth order empirical entropy) and runtime is linear.

The space-efficient algorithms described thus far have not been implemented, and their implementation will be a

complex task. Several software packages have been created to perform efficient 1D dictionary matching in small space.

Zha and Sahni recently described and implemented a compressed version of the Aho-Corasick automaton [21]. This

implementation does not meet optimal space bounds, but offers a practical space saving over the regular Aho-Corasick

automaton. Fredriksson [10] designed and implemented dictionary matching in small space with optimalaverage time

complexity. However, this approach is not efficient for all types of data. In particular, when the alphabet is small, as

in DNA sequences, regular Aho-Corasick is preferred. Furthermore, the algorithm is not online in the sense that it

cannot process a text that arrives character by character inreal-time.
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This work will close the gap that exists between the theoretical algorithms and the practical implementations. We

have designed and almost fully coded a practical and implementable algorithm that meets information-theoretic space

bounds, is almost linear in time time, and is truly online.

2.2 Dictionary Matching in Two-Dimensional Data

This work is the first to address 2-dimensional dictionary matching in small space. In this section we review recent

results in 2D single pattern matching and 2D dictionary matching.

The first linear-time 2D pattern matching algorithm was developed independently by Bird [5] and by Baker [3].

They translate the 2D pattern matching problem into a 1D pattern matching problem. Rows of the pattern are perceived

as metacharacters and named so that distinct rows receive different names. The text is named in a similar fashion

and 1D pattern matching is performed over the text columns. Baker points out that this algorithm solves dictionary

matching if 1D dictionary matching is performed on the linearized data. That is, the KMP automaton [16] can be

replaced by an AC automaton [1]. Since an AC automaton is formed of the pattern rows, this method requires working

space proportional to the total size of the dictionary. We summarize the Bird/Baker algorithm since our 2D algorithm

is partially based upon these ideas.

Bird / Baker algorithm

1. Preprocess Pattern: Form Aho-Corasick automaton of pattern rows.

Name pattern rows and construct Knuth-Morris-Pratt automaton of 1D pattern.

2. Row Matching: Run Aho-Corasick automaton on each text row to label positions at which a pattern row ends.

3. Column Matching: Run Knuth-Morris-Pratt algorithm on named text columns. Output pattern occurrences.

An approach for small-space, yet linear-timesinglepattern matching in 2D was developed by Crochemore et al.

[8]. Their algorithm preprocesses a pattern in time proportional to its length within logarithmic space. Then, a text is

searched in time proportional to its length and only constant extra space. Such an algorithm can be trivially extended

to perform dictionary matching but its runtime would dependon the number of patterns in the dictionary.

The 2D dictionary matching algorithm of Amir and Farach converts the patterns to a 1D representation by con-

sidering subrow/subcolumn pairs around the diagonals [2].Text scanning time is proportional ton log d and the data

structures occupy space proportional to the total dictionary size.

None of the existing approaches to 2D dictionary matching are easily adapted to a space-constrained environ-

ment. We propose to develop an efficient algorithm for 2D dictionary matching whose space requirements meet the

information-theoretic bounds of the dictionary.
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3 Project Design

In this project we plan to develop and implement time and space efficient dictionary matching algorithms. Four steps

will be taken, each of which is described in the ensuing subsections.

1. Write a dictionary matching program based on the generalized suffix tree.

2. Combine the implementation with the compressed suffix tree to perform 1D dictionary matching in small space.

3. Develop the first succinct 2D dictionary matching algorithm.

4. Evaluation: compare time and space usage of our approach to the state of the art methods.

3.1 Dictionary Matching on Generalized Suffix Tree

Our first goal is to obtain a fast, space-efficient program fordictionary matching in 1-dimension. We chose to use

the suffix tree as the data structure for this implementation, since there are compressed suffix tree representations that

reach empirical entropy bounds of the input string. Furthermore, these data structures have been implemented and are

currently being improved and maintained by the Compact DataStructures Library development team at the Libcds

website.

Figure 1: Suffix Tree

The suffix tree is a compact trie that represents all suffixes of an input string. The suffix tree forS = s1s2 · · · sn is

a rooted, directed tree withn leaves, one for each suffix. Each internal node, except the root, has at least two children.

Each edge is labeled with a nonempty substring of S and no two edges out of a node begin with the same character.

The path from the root to leafi spells out suffixS[i . . . n]. As an example, the suffix tree forMississippi is shown in

Figure 1. The straightforward approach to suffix tree construction inserts each suffix by a sequence of comparisons

beginning at the root, in quadratic time with respect to the size of the input.
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Ukkonen gives an algorithm for suffix tree construction thatis both linear time and online [20]. The elegance of

Ukkonen’s algorithm is evident in its key property. The algorithm admits the arrival of the string during construction.

Yet, each suffix is inserted exactly once, and never updated after its insertion. As a new character is appended to the

string, Ukkonens’s algorithm makes sure that all suffixes ofthe input string are indexed by the tree. As soon as a suffix

is implicitly found in the tree, modification of the tree ceases until the next new character is examined.

In our code, we follow the specific conventions that ensure linear time complexity and correctness. To guarantee

that each suffix ends at a leaf and cannot be a substring of another suffix, a special character, $/∈ Σ, is appended to

the string before construction of the suffix tree. An edge is not labeled by characters as the size of this substring is not

predetermined. Instead, an edge is labeled by the start and end positions of the substring it represents.

Thegeneralized suffix treeis a suffix tree for a set of strings. A suffix tree is often used to index several strings by

concatenating the strings with unique delimiters between them. That approach wastes a significant amount of space

by indexing artificial suffixes that span several strings. Ukkonen’s algorithm lends itself to a more space efficient

construction of the generalized suffix tree in which only actual suffixes are stored. It is built incrementally, in an

online fashion, inserting one string at a time.

We have implementeddictionary matchingon a text over the generalized suffix tree of patterns. This algorithm

mimics Ukkonen’s process for inserting a new string into a generalized suffix tree, without modifying the actual tree.

The text is processed in an online fashion, traversing the tree of patterns as each successive character is read. A pattern

occurrence is announced at each encounter of a labeled leaf.The suffix link of a node allows rapid navigation to a

distant part of the tree. At a position of mismatch, suffix links are used to navigate the tree, eliminating redundant

character comparisons. Since the tree is not modified, thereare several details that need attention. For example, at

each level, null links must be bypassed. Also, we may attemptto examine nodes that do not exist, since we do not

index the text.

The suffix tree is a versatile tool in string algorithms, and is already needed in many applications to facilitate other

queries. Thus, in practice, our dictionary matching program will require very little additional space. This tool is itself

a contribution, allowing efficient dictionary matching in small space, however, in the next section we discuss how we

will further improve this application.

3.2 Compressed Suffix Tree

Recent innovations in succinct full-text indexing provideus with the ability to compress a suffix tree, using no more

space than the entropy of the original data they are built upon. These self-indexes can replace the original text, as they

support retrieval of the original text, in addition to answering queries about the data, very quickly. As our data sets
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increase in size, it becomes increasingly advantageous to discover more applications of compressed self-indexes since

they occupy roughly the same space as the optimal compression of the underlying data.

We will combine our efficient dictionary matching algorithmwith a compressed suffix tree representation to obtain

an even more space-efficient dictionary matching program. The suffix tree for a string of lengthℓ, described in Section

3.1, occupiesO(ℓ)words orO(ℓ log ℓ) bits of space. Several compressed suffix tree representations have been designed

and implemented. Fischer et al. [9] achievekth order empirical entropy in their compressed representation of the suffix

tree, with sub-logarithmic slowdown in traversal operations. This data structure has been implemented and evaluated

by Cánovas and Navarro [6] and their code is readily available.

3.3 Succinct 2D Dictionary Matching

We have developed the first efficient 2D dictionary matching algorithm that operates in small space. Givend patterns,

D = {P1, . . . , Pd}, each of sizem × m, and a textT of sizen × n, our algorithm will find every occurrence of

Pi, 1 ≤ i ≤ d, in T . We form a compressed self-index of the patterns, after which the original dictionary may be

discarded. We limit the space usage of our algorithm to spaceproportional to thekth order empirical entropy of the

dictionary,Hk(D), with possibly an extraO(dm log dm) bits. The time complexity of our new algorithm is linear.

Our algorithm preprocesses the dictionary of patterns before searching the text once for all patterns in the dictio-

nary. The text scanning stage initially filters the text to a limited number ofcandidatepositions and then verifies which

of these positions are actual pattern occurrences. As is common in many space-constrained algorithms, we divide the

text into small blocks, and work with one block of text at a time. We limit our algorithm toO(dm log dm) bits of

working space to process the text and search for occurrencesof all patterns simultaneously.

We divide patterns into two groups based on 1D periodicity. Our algorithm will consider each of these cases

separately. A pattern can consist of rows that are periodic with period≤ m/4 (Case I). Alternatively, a pattern can

have one or more possibly aperiodic rows whose periods are larger thanm/4 (Case II). We are faced with different

bottlenecks in each of these cases. In the case of a pattern whose rows are highly periodic, one pattern can overlap

itself with several occurrences in close proximity to each other. Thus, we can easily have more candidates than the

space we allow. In the case of an aperiodic pattern row, we have a smaller number of potential pattern occurrences,

but several patterns can overlap in both directions. For this reason, we realize that the dictionary must be represented

in a way that permits random access to any pattern character.

In [18] we outlined an algorithm that accepts 2D Lempel-Ziv compressed input and can handle patterns that fit

Case I. We have now extended our focus to include small-space2D dictionary matching of all 2D data. We generalize

our approach in Case I and deal with patterns of the second type, Case II.
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Figure 2: Three 2D patterns converted to 1D representationswith the naming scheme we introduce. Patterns 1 and 2
are different, yet their 1D representations are the same.

For Case I, we generalize the naming technique used by Bird [5] and Baker [3] (Section 2.2) to represent 2D

data in 1D. We overcome the space requirement of traditional2D dictionary matching algorithms with an innovative

preprocessing scheme that groups pattern rows, with each group having a single representative. We store awitness, or

position of mismatch, between the group representatives. A2D pattern is named by the group representative for each

of its rows. Three 2D patterns and their 1D representations are shown in Figure 2.

In the text scanning phase, we name the rows of the text to forma 1D representation of the 2D text. Then, we use

1D dictionary matching, e.g., [1], to mark each instance of a1D pattern as a candidate for a 2D pattern occurrence.

Since similar pattern rows are grouped together, we need a verification stage to determine if the candidates are actual

pattern occurrences. We allow only one pass over the text to preserve the independence between text processing time

and the dictionary size. To this end, we have identified characteristics ofconsistentpatterns, i.e., patterns that can

overlap in the same text row. Figure 3 depicts a pair of consistent patterns.

In Case II, when some pattern row is not highly periodic, manycompletely different patterns can overlap closely in

the text. As a result, it is difficult to employ a naming schemeto find all occurrences of patterns. However, we can filter

the text to identify a limited number of potential pattern occurrences. This preliminary step is straightforward as we

can employ the first aperiodic row (or row with period> m/4 ) of each pattern for this purpose. However, verification

of these candidates in one pass over the text presents a hurdle. We propose two methods to overcome this difficulty

and verify the candidates in one pass. One method uses the compressed suffix tree (Section 3.2) that occupies space

proportional to the optimal compression of the dictionary.While this method employs a data structures that has many

other uses, it slows down verification by a sublogarithmic factor. Alternatively, we can use the novel small-space 1D

dictionary matching algorithm with no slowdown [13] in the verification stage. Employing this new idea as a black

box gives us the first small-space 2D dictionary matching algorithm with no slowdown.
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Figure 3: Horizontally consistent patterns have overlapping columns: one is a horizontal cyclic shift of the other. The
first is Pattern 2 of Figure 2, the other is new.

3.4 Evaluation

We plan to assess the effectiveness of our software against space-efficient 1D dictionary matching software. Specif-

ically, we will compare our approach to those of Zha and Sahni[21] and Fredriksson [10]. Zha and Sahni describe

and provide an efficient implementation of the Aho-Corasickautomaton. Fredriksson achieves dictionary matching in

small space and expected linear time.

Since we are primarily interested in large sets of data on which dictionary matching is performed, we use realistic

sets of biological, security and virus detection data. For biological sequences, we obtained fly sequences from FlyBase,

and flu sequences from the Influenza Virus Sequence Database.Network intrusion detection system signatures are

readily available at ClamAV, and virus signatures at Snort.

3.5 Summary

In summary, this project proposes to tackle the problem of performing dictionary matching in one and two dimensions

with small space. In one-dimension, the theoretical ideas for performing dictionary matching in small space have

mostly been developed. The major challenge lies in the algorithmic engineering of combining the succinct data

structures with the generalized suffix tree. In two-dimensions, we are developing a new algorithm to perform dictionary

matching in small space. The work is almost complete and is currently being prepared for publication. These results

have potential benefits for a wide audience including biologists, computer scientists, and the software industry. It is

anticipated that the PI will complete her dissertation workin the next academic year.

4 Timeline
Spring 2011 Finalize and publish our succinct 2D dictionary algorithm.

Summer 2011 Complete implementation of 1D dictionary matching over thecompressed suffix tree.

Fall 2011 Publish experimental results on 1D data and make them accessible on the World Wide Web.

Spring 2012 Write and defend dissertation.
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