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Abstract

Dictionary matching is the problem of finding any pattern in a given set ttlépes in the given text. It has ap-
plications in diverse areas, among them molecular biology, WWW seagihes, online databases, and multimedia.
In this project we address succinct dictionary matching in one and twongdiores since many devices have limited
storage capacity. Although several algorithms have been developgedfmensional dictionary matching that meet
optimal space bounds, they have not been implemented. We propdfferend approach that yields a more imple-
mentable algorithm and will deploy the method with the use of algorithmic engige€eThis project is the first to
address 2-dimensional dictionary matching in a space-constraingdrement. The objectives of this project are
to develop efficient algorithms and software for dictionary matching inamtwo dimensions whose execution
requires very little space.

1 Introduction

The classical textual pattern matching problem consistinding all occurrences of a given pattern striflg in

a given textT. The solution to this problem has found a variety of appi@ret, including querying a database,
searching the web, and searching a DNA sequence for a mdtddittionary matching problens an extension of
this and attempts to identify a set of patterds,= {Py, ..., P;}, which is called a dictionary, within a given text
T. A search for specific phrases in a book, scanning for virgeagures, and network intrusion detection, are all
applications of dictionary matching. Biological appliicats include searching a DNA sequence for a set of motifs, or
for a regular expression. Image identification softwareictiidentifies smaller images in a large image based on a
set of known images, is a direct application of 2-dimendiditetionary matching. An efficient dictionary matching

algorithm should search for all patterns in one pass thrélgkext, rather than searching for each pattern indivigual

In this work we are concerned with efficiently solving thetitinary matching problem iismall space. The
motivation for this is that there are many scenarios, su@nasobile and satellite devices, where storage capacity is
limited. The challenge in developing search algorithmssfmace-constrained applications takes on a new dimension.

In addition to reducing the running time of the algorithre #igorithm must operate using very limited extra space.

A lot of effort has been devoted recently to solving 1-dimenal dictionary matching in small space [7, 14, 15, 4,
13]. Although the final result achieves linear-time dichonpmatching in optimal space, meetihth order empirical
entropy bounds, none of these results have been implemdrnigtiermore, the algorithms are complex and difficult to
implement. The space-efficient implementations that existhased upon different algorithms that have been tailored
toward specific applications. For example, [21] was desidgioe use in network intrusion detection systems as an

improvement over traditional Aho-Corasick. Fredrikssmsoftware [10] for succinct dictionary matching has optima



averagetime, and is only efficient for certain types of data (e.g.géaalphabets, texts that are available in reverse

order).

The first goal of this project is to present a simple, impletable algorithm for 1D dictionary matching in small
space. Our algorithm is general in the sense that it will weel for any alphabet size, and for large inputs. We will
begin by implementing a dictionary matching program théieseon the generalized suffix tree , then improving on
this method by merging the algorithm with a compressed strifi representation [6]. The suffix tree is a versatile
tool often needed in many applications. Our tool will augttée suffix tree to allow the additional functionality of

fast dictionary matching, using very little additional spa

The second component of this project works with 2-dimeraipatterns and texts. To date, 2-dimensional dic-
tionary matching in small space has been neglected, althalggrithms for 2D pattern matching in small space have
been achieved [8]. We will develop the first efficient 2D diciary matching algorithm to operate in small space.
For highly periodic patterns, our algorithm will use a newveloped preprocessing scheme [18] that is based upon
succinctly representing periods by their Lyndon words [Egr patterns that are not periodic, we will extend the ideas
for 1D dictionary matching with compressed suffix treesngghe methodology that converts a 2D pattern to a linear

representation [3, 5]. The ideas once again are clear amlesigielding an algorithm that is practical to implement.

2 Background

The pattern matching problem consists of locating all omnaes of a pattern string in a text string. Efficient al-
gorithms preprocess the pattern once so that the searcmiglet®d in time proportional to the length of the text.
Dictionary matchings a generalization of the pattern matching problem. It se¢ekind all occurrences of all ele-

ments of asetof pattern strings in a text string. The set of pattebhs- { Py, P, .. ., P;} is called thedictionary.

We can define dictionary matching by:
e INPUT: A set of patternd’,, P, . .., P; of total length? and a textl’ = t1¢, .. . t,, all over an alphabet, with
alphabet-sizéY| = o.

e OUTPUT: All ordered pairgs, j) such that patter®; matches the segment of text beginning at locatjon

2.1 Dictionary Matching in One-Dimensional Data
Knuth, Morris, and Pratt developed a well-known lineardiadgorithm for pattern matching [16]. They construct
an automaton that maintains a failure link for each prefixhef pattern. The failure link of a position points to its

longest suffix that is also a pattern prefix. Aho and Corasit&reled the Knuth-Morris-Pratt algorithm to dictionary



matching by forming an automaton of the dictionary [1]. Poggssing requires time and space proportional to the
size of the dictionary. Then, the text is scanned once tdiiyeadl pattern occurrences. The search phase runs in time

proportional to the length of the text and does not depenthewlictionary size.

Since applications arise in which additional storage sjmestremely limited, effort has been invested in devel-
oping pattern matching algorithms that are linear in timerkbguire only constant extra space. The first time-space
optimal pattern matching algorithm is from Galil and Seafef11]. Rytter [19] presented a constant-space, yet inear
time version of the Knuth-Morris-Pratt algorithm . Spadgeeent real-time searching is discussed by Gasieniec and

Kolpakov [12].

Concurrently searching for a set of patterns within limieatking space presents a greater challenge than search-
ing for a single pattern in small space. Recent work has bagaddress 1-dimensional dictionary matching in small
space [7, 14, 15, 4JH},, kth order empirical entropy of a string, describes the mimmnumber of bits that are needed
to encode the string within context. Empirical entropy edsehat storage space meets the information-theoretierlow
bounds of data. In the analysis of algorithms it is standanaseO () to denote a function whose rate of growth is

proportional ton; we follow this convention.

The first linear-time algorithm for dictionary matchingvited by Aho and Corasick, requires an automaton that
occupiesO(¢) words, orO(¢log ¢) bits. The first solution to beat this space complexity wasgméed by Chan et al.

[7]. They reduce the size of the index byog factor toO(¢) bits and slow the linear time complexity yg>~.

The first succinct dictionary matching algorithm with novettown was introduced by Belazzougui [4]. His al-
gorithm mimics the Aho-Corasick automaton within smallpace. This new approach encodes the three kinds of
transitions of the AC trie separately and in different wayen et al. extend this approach to encode the forward tran-
sitions of the AC automaton more efficiently without slowithgwn the procedure [13]. With this new representation,

the space meets optimal compression of the dictionatydrder empirical entropy) and runtime is linear.

The space-efficient algorithms described thus far have @en limplemented, and their implementation will be a
complex task. Several software packages have been cregieddrm efficient 1D dictionary matching in small space.
Zha and Sahni recently described and implemented a conagrgsssion of the Aho-Corasick automaton [21]. This
implementation does not meet optimal space bounds, busdaffpractical space saving over the regular Aho-Corasick
automaton. Fredriksson [10] designed and implementebdenty matching in small space with optinslerage time
complexity. However, this approach is not efficient for gppés of data. In particular, when the alphabet is small, as
in DNA sequences, regular Aho-Corasick is preferred. Furttore, the algorithm is not online in the sense that it

cannot process a text that arrives character by charactealittime.



This work will close the gap that exists between the thecaétilgorithms and the practical implementations. We
have designed and almost fully coded a practical and impiésthée algorithm that meets information-theoretic space

bounds, is almost linear in time time, and is truly online.

2.2 Dictionary Matching in Two-Dimensional Data
This work is the first to address 2-dimensional dictionaryahig in small space. In this section we review recent

results in 2D single pattern matching and 2D dictionary tmiatg.

The first linear-time 2D pattern matching algorithm was digwved independently by Bird [5] and by Baker [3].
They translate the 2D pattern matching problem into a 1Bepathatching problem. Rows of the pattern are perceived
as metacharacters and named so that distinct rows recdigesdi names. The text is named in a similar fashion
and 1D pattern matching is performed over the text columrekeBpoints out that this algorithm solves dictionary
matching if 1D dictionary matching is performed on the lineed data. That is, the KMP automaton [16] can be
replaced by an AC automaton [1]. Since an AC automaton isddraf the pattern rows, this method requires working
space proportional to the total size of the dictionary. Wesarize the Bird/Baker algorithm since our 2D algorithm

is partially based upon these ideas.

Bird / Baker algorithm

1. Preprocess Pattern: Form Aho-Corasick automaton of pattern rows.

Name pattern rows and construct Knuth-Morris-Pratt automaf 1D pattern.
2. Row Matching: Run Aho-Corasick automaton on each text row to label posstet which a pattern row ends.

3. Column Matching: Run Knuth-Morris-Pratt algorithm on named text columnstgitipattern occurrences.

An approach for small-space, yet linear-tisiagle pattern matching in 2D was developed by Crochemore et al.
[8]. Their algorithm preprocesses a pattern in time prapoé to its length within logarithmic space. Then, a text is
searched in time proportional to its length and only cortstatra space. Such an algorithm can be trivially extended

to perform dictionary matching but its runtime would dep@mdhe number of patterns in the dictionary.

The 2D dictionary matching algorithm of Amir and Farach cents the patterns to a 1D representation by con-
sidering subrow/subcolumn pairs around the diagonalsT@lt scanning time is proportional tolog d and the data

structures occupy space proportional to the total dictipsie.

None of the existing approaches to 2D dictionary matchirggessily adapted to a space-constrained environ-
ment. We propose to develop an efficient algorithm for 2Didiery matching whose space requirements meet the

information-theoretic bounds of the dictionary.



3 Project Design

In this project we plan to develop and implement time and sgdficient dictionary matching algorithms. Four steps

will be taken, each of which is described in the ensuing sttivses.

1. Write a dictionary matching program based on the genedbzffix tree.
2. Combine the implementation with the compressed suffetwgerform 1D dictionary matching in small space.
3. Develop the first succinct 2D dictionary matching alduorit

4. Evaluation: compare time and space usage of our approdhh ttate of the art methods.

3.1 Dictionary Matching on Generalized Suffix Tree

Ouir first goal is to obtain a fast, space-efficient programdictionary matching in 1-dimension. We chose to use
the suffix tree as the data structure for this implementasorce there are compressed suffix tree representations tha
reach empirical entropy bounds of the input string. Furtiare, these data structures have been implemented and are
currently being improved and maintained by the Compact Batactures Library development team at the Libcds

website.

Figure 1: Suffix Tree

The suffix tree is a compact trie that represents all suffikemdnput string. The suffix tree fa§ = s1s5 -« - s, IS
arooted, directed tree withleaves, one for each suffix. Each internal node, except thtehas at least two children.
Each edge is labeled with a nonempty substring of S and no dgeseout of a node begin with the same character.
The path from the root to ledfspells out suffixS[i . .. n]. As an example, the suffix tree fdississippi is shown in
Figure 1. The straightforward approach to suffix tree camsion inserts each suffix by a sequence of comparisons

beginning at the root, in quadratic time with respect to ike of the input.



Ukkonen gives an algorithm for suffix tree construction tisaboth linear time and online [20]. The elegance of
Ukkonen's algorithm is evident in its key property. The algon admits the arrival of the string during construction.
Yet, each suffix is inserted exactly once, and never upddtedits insertion. As a new character is appended to the
string, Ukkonens's algorithm makes sure that all suffixethefinput string are indexed by the tree. As soon as a suffix

is implicitly found in the tree, modification of the tree ceasuntil the next new character is examined.

In our code, we follow the specific conventions that ensuredr time complexity and correctness. To guarantee
that each suffix ends at a leaf and cannot be a substring diemsuffix, a special character gy, is appended to
the string before construction of the suffix tree. An edgedislabeled by characters as the size of this substring is not

predetermined. Instead, an edge is labeled by the startrehgasitions of the substring it represents.

Thegeneralized suffix treis a suffix tree for a set of strings. A suffix tree is often usedhtlex several strings by
concatenating the strings with unique delimiters betwéemt That approach wastes a significant amount of space
by indexing artificial suffixes that span several strings.kaHen’s algorithm lends itself to a more space efficient
construction of the generalized suffix tree in which onlyuattsuffixes are stored. It is built incrementally, in an

online fashion, inserting one string at a time.

We have implementedictionary matchingon a text over the generalized suffix tree of patterns. Tlhyerghm
mimics Ukkonen'’s process for inserting a new string into magalized suffix tree, without modifying the actual tree.
The text is processed in an online fashion, traversing treedf patterns as each successive character is read. Anpatter
occurrence is announced at each encounter of a labeledTaafsuffix link of a node allows rapid navigation to a
distant part of the tree. At a position of mismatch, suffikéirare used to navigate the tree, eliminating redundant
character comparisons. Since the tree is not modified, #verseveral details that need attention. For example, at
each level, null links must be bypassed. Also, we may attémpkamine nodes that do not exist, since we do not

index the text.

The suffix tree is a versatile tool in string algorithms, asdlready needed in many applications to facilitate other
queries. Thus, in practice, our dictionary matching progveill require very little additional space. This tool iseté
a contribution, allowing efficient dictionary matching imall space, however, in the next section we discuss how we

will further improve this application.

3.2 Compressed Suffix Tree
Recent innovations in succinct full-text indexing provigewith the ability to compress a suffix tree, using no more
space than the entropy of the original data they are builhupbese self-indexes can replace the original text, as they

support retrieval of the original text, in addition to ansing queries about the data, very quickly. As our data sets



increase in size, it becomes increasingly advantageotsdow&r more applications of compressed self-indexegsinc

they occupy roughly the same space as the optimal compnreskibe underlying data.

We will combine our efficient dictionary matching algorithwith a compressed suffix tree representation to obtain
an even more space-efficient dictionary matching programe. stiffix tree for a string of length described in Section
3.1, occupie®(¢) words orO (¢ log ¢) bits of space. Several compressed suffix tree represemtédtave been designed
and implemented. Fischer et al. [9] achiétk order empirical entropy in their compressed represiemtaf the suffix
tree, with sub-logarithmic slowdown in traversal openasioThis data structure has been implemented and evaluated

by Canovas and Navarro [6] and their code is readily available.

3.3 Succinct 2D Dictionary Matching

We have developed the first efficient 2D dictionary matchilgg@thm that operates in small space. Givepatterns,
D = {P,...,P;}, each of sizen x m, and a textT" of sizen x n, our algorithm will find every occurrence of
P, 1 <i<d, inT. We form a compressed self-index of the patterns, after hwthie original dictionary may be
discarded. We limit the space usage of our algorithm to spemgortional to thekth order empirical entropy of the

dictionary,Hy (D), with possibly an extr® (dm log dm) bits. The time complexity of our new algorithm is linear.

Our algorithm preprocesses the dictionary of patternsrbefearching the text once for all patterns in the dictio-
nary. The text scanning stage initially filters the text tovdted number otandidatepositions and then verifies which
of these positions are actual pattern occurrences. As isntomin many space-constrained algorithms, we divide the
text into small blocks, and work with one block of text at ag¢ime limit our algorithm taD(dm log dm) bits of

working space to process the text and search for occurrefiedispatterns simultaneously.

We divide patterns into two groups based on 1D periodicityr @gorithm will consider each of these cases
separately. A pattern can consist of rows that are periodit period < m/4 (Case I). Alternatively, a pattern can
have one or more possibly aperiodic rows whose periods egerlthanm /4 (Case Il). We are faced with different
bottlenecks in each of these cases. In the case of a pattersewbws are highly periodic, one pattern can overlap
itself with several occurrences in close proximity to eatiiea Thus, we can easily have more candidates than the
space we allow. In the case of an aperiodic pattern row, we hasmaller number of potential pattern occurrences,
but several patterns can overlap in both directions. Ferrémson, we realize that the dictionary must be represented

in a way that permits random access to any pattern character.

In [18] we outlined an algorithm that accepts 2D Lempel-Zompressed input and can handle patterns that fit
Case I. We have now extended our focus to include small-spiactictionary matching of all 2D data. We generalize

our approach in Case | and deal with patterns of the secom Gase |l.



Pattern 1 Pattern 2 Pattern 3

a|a|b|bjaja|b|b N b|bla|a|b|bla]a 1 b|blala|b|bla]a 1

a|a|b|c|aja|b|c 12| a|b|c|afa|b]|c|a 2 | alb|c|alal|b]|c|a 2 |
a|bj|c|afa|b|c|a 12 | alal|b|c|alal|b]c B ala|c|c|alalc|c s |
a|bjc|a|b|c|a|b ‘3_ cla|b|c|a|b|c]|a ‘T alala|c|alala|a -6_
a|bja|bjfa|bja|b 14 | bla|b|a|b|a|b]a 2 | cla|c|blcla|c|b 7 |
a|b|b|aja|b|b|a 11| a|b|b|afa|b]|b|a 1| b|blala|b|bla]a 1 |
claja|bjfc|aja|b 12| blcla|al|b|c|a]|a o] clalal|b|c|alal|b o |
a|bja|bjfa|bja|b N alb|a|bla|bla|b 2 | ala|b|clala|b]|c |

Figure 2: Three 2D patterns converted to 1D representatidthsthe naming scheme we introduce. Patterns 1 and 2
are different, yet their 1D representations are the same.

For Case |, we generalize the naming technique used by Bjrdr& Baker [3] (Section 2.2) to represent 2D
data in 1D. We overcome the space requirement of traditidbadictionary matching algorithms with an innovative
preprocessing scheme that groups pattern rows, with eacip ¢raving a single representative. We stovétaess or
position of mismatch, between the group representative2D fattern is named by the group representative for each

of its rows. Three 2D patterns and their 1D representatiomstaown in Figure 2.

In the text scanning phase, we name the rows of the text to &t representation of the 2D text. Then, we use
1D dictionary matching, e.g., [1], to mark each instance @Dapattern as a candidate for a 2D pattern occurrence.
Since similar pattern rows are grouped together, we needfication stage to determine if the candidates are actual
pattern occurrences. We allow only one pass over the texesepve the independence between text processing time
and the dictionary size. To this end, we have identified atarestics ofconsistentpatterns, i.e., patterns that can

overlap in the same text row. Figure 3 depicts a pair of cemisipatterns.

In Case Il, when some pattern row is not highly periodic, memypletely different patterns can overlap closely in
the text. As aresult, it is difficult to employ a naming scham#nd all occurrences of patterns. However, we can filter
the text to identify a limited number of potential patterrcoences. This preliminary step is straightforward as we
can employ the first aperiodic row (or row with perindm /4 ) of each pattern for this purpose. However, verification
of these candidates in one pass over the text presents &hivel propose two methods to overcome this difficulty
and verify the candidates in one pass. One method uses tharessad suffix tree (Section 3.2) that occupies space
proportional to the optimal compression of the diction&¥hile this method employs a data structures that has many
other uses, it slows down verification by a sublogarithmatda Alternatively, we can use the novel small-space 1D
dictionary matching algorithm with no slowdown [13] in therification stage. Employing this new idea as a black

box gives us the first small-space 2D dictionary matchingritigm with no slowdown.



b |bjalfaf(blblalalp]|p
a|bfcfaia]|blcialalp
a|a[bfciafalbifcl|ala
c|a|bfcia]|blcfalc]|a
bla|bia|blalfbl|alip]a
a|bfbfalial|blbialas]lp
b |c|alfa/|blcalalp]c
a|bfafbiafblalfb]|a]|p

Figure 3: Horizontally consistent patterns have overlagmiolumns: one is a horizontal cyclic shift of the other. The
first is Pattern 2 of Figure 2, the other is new.

3.4 Evaluation

We plan to assess the effectiveness of our software agaiase<efficient 1D dictionary matching software. Specif-
ically, we will compare our approach to those of Zha and S§kitli and Fredriksson [10]. Zha and Sahni describe
and provide an efficient implementation of the Aho-Corasigtomaton. Fredriksson achieves dictionary matching in

small space and expected linear time.

Since we are primarily interested in large sets of data orchvtlictionary matching is performed, we use realistic
sets of biological, security and virus detection data. kalolgical sequences, we obtained fly sequences from FlyBase
and flu sequences from the Influenza Virus Sequence Datab&swiork intrusion detection system signatures are

readily available at ClamAYV, and virus signatures at Snort.

3.5 Summary

In summary, this project proposes to tackle the problem dbpming dictionary matching in one and two dimensions
with small space In one-dimension, the theoretical ideas for performingtidhary matching in small space have

mostly been developed. The major challenge lies in the dhgoic engineering of combining the succinct data
structures with the generalized suffix tree. In two-dimensj we are developing a new algorithm to perform dictionary
matching in small space. The work is almost complete andriently being prepared for publication. These results
have potential benefits for a wide audience including biisisg computer scientists, and the software industry. It is

anticipated that the PI will complete her dissertation wiarthe next academic year.

4 Timeline

Spring 2011 | Finalize and publish our succinct 2D dictionary algorithm.

Summer 2011 Complete implementation of 1D dictionary matching overd¢benpressed suffix tree.

Fall 2011 Publish experimental results on 1D data and make them abl=eea the World Wide Web

Spring 2012 | Write and defend dissertation.
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