
cisc1110 fall 2010 lecture II.1

• simple data types

• storing data

• integers and floating-point numbers

• variables

• assignment statements

• math operators

• outputting variables

• floating-point divide versus integer divide

cisc1110-fall2010-sklar-lecII.1 1

storing data

• think of the computer’s memory as a bunch of boxes

• inside each box, there is a number

• you give each box a name

⇒ which, in C++ is called “declaring a variable”

• example:

program code:

int x;

computer’s memory:

x →

• in the example program code above, the name of the box is x

• preceding the name x is the word int, which is a “data type”

• data types are necessary to define what kind of data can be stored in the box

• different kinds of data take up different amounts of space in the computer’s memory

• when you declare a variable, you need to specify its data type so that the computer knows

how much memory to set aside for that variable

cisc1110-fall2010-sklar-lecII.1 2

• the data type also tells the computer what kinds of “operations” can be performed with

the data

• data types can be “numeric”, “character” or “boolean”

• numeric data types store numbers of various sizes:

– int : integer, for storing whole numbers (typically −231 . . . 231 − 1)

⇒ the smallest integer is: −231 = −2, 147, 483, 648

⇒ the largest integer is: 231 − 1 = 2, 147, 483, 647

– short : short integer, for storing small integers (−215 . . . 215 − 1)

– byte : one-word integer, for storing even smaller integers (−128 . . . 127)

– long : integer, for storing whole numbers (−231 . . . 231 − 1)

– float : floating-point, for storing real numbers (≈ −3.4× 1038 . . . 3.4× 1038)

– double : floating-point, for storing larger real numbers (≈ −1.7× 10308 . . . 1.7× 10308)

• character data types store alphanumeric characters:

– char : character, for storing one alphanumeric character

• boolean data types store true/false values:

– bool : boolean, for storing 0 (false) or 1 (true)

cisc1110-fall2010-sklar-lecII.1 3

integers and floating-point numbers

• note that for integers, unless you are writing embedded programs (i.e., code to run on a

small device with limited memory), then you don’t need to worry too much about the

different size integers —

just use int

• double can store up to 15 significant digits

float can store up to 7 significant digits

Remember:

• integers are for storing whole numbers

i.e., numbers without any fractional components

e.g., 1 or −3 or 10 or 987 or 143, 234, etc.

• floating-point numbers are for storing real numbers

i.e., numbers with decimal places

e.g., 1.23 or −12.4598 or 1, 234, 567, 890.0987654321

cisc1110-fall2010-sklar-lecII.1 4

variables

• each variable has:

– a name

– a data type

– a value

• naming rules:

– names may contain letters and/or numbers

– but cannot begin with a number

– names may also contain underscore ()

– can be of any length

– cannot use C++ keywords (also called identifiers)

– remember: C++ is case-sensitive!!

cisc1110-fall2010-sklar-lecII.1 5

assigning values

• = is the assignment operator

• example:

program code:

int x; // declaration

x = 19; // assignment

or

int x = 19; // declaration and assignment together

computer’s memory:

x → 19

• another example:

program code:

double y; // declaration

y = 87.34; // assignment

or

double y = 87.34; // declaration and assignment together

computer’s memory:

y → 87.34

cisc1110-fall2010-sklar-lecII.1 6

doing math

+ unary plus

− unary minus

+ addition

− subtraction

∗ multiplication

/ division

% modulo

example:

int x, y;

x = -5;

y = x * 7;

y = y + 3;

x = x * -2;

y = x / 19;

what are x and y equal to?

modulo means “remainder after integer division”

cisc1110-fall2010-sklar-lecII.1 7

increment and decrement operators

• increment operator: ++

meaning: add one and assign

example: i++;

is the same as: i = i + 1;

• decrement operator: −−

meaning: subtract one and assign

example: i--;

is the same as: i = i - 1;

cisc1110-fall2010-sklar-lecII.1 8

assignment operators

operator meaning example

+= add and assign i += 3; is the same as: i = i + 3;

-= subtract and assign i -= 3; is the same as: i = i - 3;

*= multiply and assign i *= 3; is the same as: i = i * 3;

/= divide and assign i /= 3; is the same as: i = i / 3;

%= modulo and assign i %= 3; is the same as: i = i % 3;

cisc1110-fall2010-sklar-lecII.1 9

outputting variables

• you can output the value of a variable using cout

• for example:

int i;

i = 7;

cout << "the value of i is " << i << endl;

• notice the use of the endl function. this is a built-in C++ function that produces a

newline. it is the same as "\n". so we could have written the following, which would do

the same thing as the last line, above:

cout << "the value of i is " << i << "\n";

• you can output character variables in the same way:

char c;

c = ’E’;

cout << "the value of c is " << c << endl;

cisc1110-fall2010-sklar-lecII.1 10

floating-point divide versus integer divide

• when you divide integers, if the result is not a whole number, then the result is converted

to an integer by truncating the decimal part

• if you want to use the decimal part, then divide floating-point values

• consider the following two examples on the next two pages

cisc1110-fall2010-sklar-lecII.1 11

• first, an integer example:

#include <iostream>

using namespace std;

int main() {

int x = 10;

int y = 2;

int w = 3;

int z;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

z = x / y;

cout << "z = " << z << endl;

z = x / w;

cout << "z = " << z << endl;

z = x / 6;

cout << "z = " << z << endl;

} // end of main()

cisc1110-fall2010-sklar-lecII.1 12

• second, a floating-point example:

#include <iostream>

using namespace std;

int main() {

double x = 10;

double y = 2;

double w = 3;

double z;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

z = x / y;

cout << "z = " << z << endl;

z = x / w;

cout << "z = " << z << endl;

z = x / 6;

cout << "z = " << z << endl;

} // end of main()

cisc1110-fall2010-sklar-lecII.1 13

• the integer output is:

x = 10

y = 2

z = 5

z = 3

z = 1

• and the floating-point output is:

x = 10

y = 2

z = 5

z = 3.33333

z = 1.66667

cisc1110-fall2010-sklar-lecII.1 14

• here’s another example:

#include <iostream>

using namespace std;

int main() {

int x = 10;

int w = 3;

double z;

z = x / w;

cout << "z = " << z << endl;

z = x / (double)w;

cout << "z = " << z << endl;

z = (double)x / w;

cout << "z = " << z << endl;

z = x / 6.0;

cout << "z = " << z << endl;

} // end of main()

cisc1110-fall2010-sklar-lecII.1 15

and the output is:

z = 3

z = 3.33333

z = 3.33333

z = 1.66667

• the (double) operator coerces (i.e., converts) the integer values into floating-point, so

that the result of the math is computed in floating-point and the precision is retained

• the last operation shows the use of a floating-point constant (6.0) which has the same

affect

cisc1110-fall2010-sklar-lecII.1 16

