linear array operations
• traverse
• min
• max
• sum
• search
• count

linear array traversal
• visit each element in the array, in the order of the array index
for (int i = 0; i < MAX; i++) {
cout << "A[" << A[i] << "]
}

linear algorithm to find smallest value in array
• visit each element in the array, in the order of the array index, and test for smallest value
smallest = A[0];
for (int i = 1; i < MAX; i++) {
 if (A[i] < smallest) {
 smallest = A[i];
 }
}

linear algorithm to find largest value in array
• visit each element in the array, in the order of the array index, and test for largest value
largest = A[0];
for (int i = 1; i < MAX; i++) {
 if (A[i] > largest) {
 largest = A[i];
 }
}
linear algorithm to sum elements in an array

• visit each element in the array, in the order of the array index, and add their values together

```java
sum = 0;
for ( int i = 1; i < MAX; i++ ) {
    sum += A[i];
}
```

linear algorithm to find an element in an array

• visit each element in the array, in the order of the array index, and look for the first element that matches a specified value

```java
found = false;
i = 0;
while ( ( ! found ) && ( i < MAX ) ) {
    if ( A[i] == key ) {
        found = true;
    }
    else {
        i++;
    }
    if ( ! found ) {
        i = -1;
    }
    // "i" is index of first array element whose value matches "key"; OR // "i" is -1, indicating that there are no elements that match
```

linear algorithm to count the number of "key"s in an array

• visit each element in the array, in the order of the array index, and count the number of elements that match a specified value

```java
count = 0;
for ( i = 0; i < MAX; i++ ) {
    if ( A[i] == key ) {
        count++;
    }
}
```