

analysis of algorithms

- often, there is more than one way to solve a problem, i.e., there exists more than one algorithm for addressing any task
- some algorithms are better than others
- which *features* of the algorithm are important?
 - speed (number of steps)
 - memory (size of work space; how much scrap paper do you need?)
 - complexity (can others understand it?)
 - parallelism (can you do more than one step at once?)
- Big-Oh notation
 - -O(N) means solution time is proportional to the size of the problem (N)
 - $-O(log_2N)$ means solution time is proportional to log_2N

classic algorithm examples: searching and sorting

- sequential search
- binary search
- search the Manhattan phone book for "Al Pacino":
 - how many ${\it comparisons}$ do you have to make in order to find the entry you are looking for?
 - equality versus relativity—which will tell you more? which will help you solve the problem more efficiently?
 - can you take advantage of the fact that the phone book is in $\it sorted$ order? (i.e., an "ordered list")
 - what would happen to your algorithm if the phone book were in random order?

cisc1110-fall2010-sklar-lecVIII.2

cisc1110-fall2010-sklar-lecVIII.2

swap

- most sorts use a utility function called swap() to swap two elements in an array
- the methodology works like this
 - given two variables A and B, you want to switch the values so that the value of A gets the value of B and vice versa
 - you can't just simply copy one to the other and then vice versa because you'll lose the first value you copy to, so you need a temporary variable
 - here's the steps:
 - 1. temp ← A
 - 2. A ← B
 - 3. $B \leftarrow temp$

• example code (this should look familiar-it is similar to the swap() function we looked at earlier in the term when studying reference parameters):

int myArray[LENGTH];

- // declare function swap(), to swap two entries in array void swap(int a, int b) { int tmp; tmp = myArray[a]; myArray[a] = myArray[b]; myArray[b] = tmp; return:
- } // end of swap()

cisc1110-fall2010-sklar-lecVIII.2

cisc1110-fall2010-sklar-lecVIII.2

