
[Exercise 1] [Exercise 2] [Exercise 3] [Extra Credit]

Notepad Tutorial:

Notepad Exercise 3

In this exercise, you will use life-cycle event callbacks to store and retrieve application state data. This exercise
demonstrates:

Life-cycle events and how your application can use them

Techniques for maintaining application state

Step 1

Import Notepadv3 into Eclipse. If you see an error about AndroidManifest.xml, or some problems related to an
Android zip file, right click on the project and select Android Tools > Fix Project Properties from the popup menu. The
starting point for this exercise is exactly where we left off at the end of the Notepadv2.

The current application has some problems — hitting the back button when editing causes a crash, and anything else that
happens during editing will cause the edits to be lost.

To fix this, we will move most of the functionality for creating and editing the note into the NoteEdit class, and introduce a full
life cycle for editing notes.

1. Remove the code in NoteEdit that parses the title and body from the extras Bundle.

Instead, we are going to use the DBHelper class to access the notes from the database directly. All we need passed
into the NoteEdit Activity is a mRowId (but only if we are editing, if creating we pass nothing). Remove these lines:

String title = extras.getString(NotesDbAdapter.KEY_TITLE);
String body = extras.getString(NotesDbAdapter.KEY_BODY);

2. We will also get rid of the properties that were being passed in the extras Bundle, which we were using to set the title
and body text edit values in the UI. So delete:

if (title != null) {
 mTitleText.setText(title);
}
if (body != null) {
 mBodyText.setText(body);
}

Step 2

Create a class field for a NotesDbAdapter at the top of the NoteEdit class:

 private NotesDbAdapter mDbHelper;

Also add an instance of NotesDbAdapter in the onCreate() method (right below the super.onCreate() call):

 mDbHelper = new NotesDbAdapter(this);

 mDbHelper.open();

Step 3

In NoteEdit, we need to check the savedInstanceState for the mRowId, in case the note editing contains a saved state in
the Bundle, which we should recover (this would happen if our Activity lost focus and then restarted).

1. Replace the code that currently initializes the mRowId:

 mRowId = null;

 Bundle extras = getIntent().getExtras();
 if (extras != null) {
 mRowId = extras.getLong(NotesDbAdapter.KEY_ROWID);
 }

with this:

 mRowId = (savedInstanceState == null) ? null :
 (Long) savedInstanceState.getSerializable(NotesDbAdapter.KEY_ROWID);
 if (mRowId == null) {
 Bundle extras = getIntent().getExtras();
 mRowId = extras != null ? extras.getLong(NotesDbAdapter.KEY_ROWID)
 : null;
 }

2. Note the null check for savedInstanceState, and we still need to load up mRowId from the extras Bundle if it is not
provided by the savedInstanceState. This is a ternary operator shorthand to safely either use the value or null if it is
not present.

3. Note the use of Bundle.getSerializable() instead of Bundle.getLong(). The latter encoding returns a long
primitive and so can not be used to represent the case when mRowId is null.

Step 4

Next, we need to populate the fields based on the mRowId if we have it:

populateFields();

This goes before the confirmButton.setOnClickListener() line. We'll define this method in a moment.

Step 5

Get rid of the Bundle creation and Bundle value settings from the onClick() handler method. The Activity no longer needs
to return any extra information to the caller. And because we no longer have an Intent to return, we'll use the shorter version
of setResult():

public void onClick(View view) {
 setResult(RESULT_OK);
 finish();
}

We will take care of storing the updates or new notes in the database ourselves, using the life-cycle methods.

The whole onCreate() method should now look like this:

super.onCreate(savedInstanceState);

mDbHelper = new NotesDbAdapter(this);
mDbHelper.open();

setContentView(R.layout.note_edit);

mTitleText = (EditText) findViewById(R.id.title);
mBodyText = (EditText) findViewById(R.id.body);

Button confirmButton = (Button) findViewById(R.id.confirm);

mRowId = (savedInstanceState == null) ? null :
 (Long) savedInstanceState.getSerializable(NotesDbAdapter.KEY_ROWID);
if (mRowId == null) {
 Bundle extras = getIntent().getExtras();
 mRowId = extras != null ? extras.getLong(NotesDbAdapter.KEY_ROWID)
 : null;
}

populateFields();

confirmButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 setResult(RESULT_OK);
 finish();
 }

});

Step 6

Define the populateFields() method.

private void populateFields() {
 if (mRowId != null) {
 Cursor note = mDbHelper.fetchNote(mRowId);
 startManagingCursor(note);
 mTitleText.setText(note.getString(
 note.getColumnIndexOrThrow(NotesDbAdapter.KEY_TITLE)));

Why handling life-cycle events is important

If you are used to always having control in your
applications, you might not understand why all this
life-cycle work is necessary. The reason is that in
Android, you are not in control of your Activity, the
operating system is!

As we have already seen, the Android model is
based around activities calling each other. When one
Activity calls another, the current Activity is paused at
the very least, and may be killed altogether if the
system starts to run low on resources. If this
happens, your Activity will have to store enough state
to come back up later, preferably in the same state it
was in when it was killed.

Activities have a well-defined life cycle. Lifecycle
events can happen even if you are not handing off
control to another Activity explicitly. For example,
perhaps a call comes in to the handset. If this
happens, and your Activity is running, it will be
swapped out while the call Activity takes over.

 mBodyText.setText(note.getString(
 note.getColumnIndexOrThrow(NotesDbAdapter.KEY_BODY)));
 }
}

This method uses the NotesDbAdapter.fetchNote() method to find the right note to edit, then it calls
startManagingCursor() from the Activity class, which is an Android convenience method provided to take care of the
Cursor life-cycle. This will release and re-create resources as dictated by the Activity life-cycle, so we don't need to worry
about doing that ourselves. After that, we just look up the title and body values from the Cursor and populate the View
elements with them.

Step 7

Still in the NoteEdit class, we now override the methods
onSaveInstanceState(), onPause() and onResume().
These are our life-cycle methods (along with onCreate() which
we already have).

onSaveInstanceState() is called by Android if the Activity is
being stopped and may be killed before it is resumed! This
means it should store any state necessary to re-initialize to the
same condition when the Activity is restarted. It is the
counterpart to the onCreate() method, and in fact the
savedInstanceState Bundle passed in to onCreate() is the
same Bundle that you construct as outState in the
onSaveInstanceState() method.

onPause() and onResume() are also complimentary methods.
onPause() is always called when the Activity ends, even if we
instigated that (with a finish() call for example). We will use
this to save the current note back to the database. Good practice
is to release any resources that can be released during an
onPause() as well, to take up less resources when in the
passive state. onResume() will call our populateFields()
method to read the note out of the database again and populate
the fields.

So, add some space after the populateFields() method and add the following life-cycle methods:

a. onSaveInstanceState():

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 saveState();
 outState.putSerializable(NotesDbAdapter.KEY_ROWID, mRowId);
 }

We'll define saveState() next.

b. onPause():

 @Override
 protected void onPause() {
 super.onPause();

 saveState();
 }

c. onResume():

 @Override
 protected void onResume() {
 super.onResume();
 populateFields();
 }

Note that saveState() must be called in both onSaveInstanceState() and onPause() to ensure that the data is
saved. This is because there is no guarantee that onSaveInstanceState() will be called and because when it is called, it
is called before onPause().

Step 8

Define the saveState() method to put the data out to the database.

 private void saveState() {
 String title = mTitleText.getText().toString();
 String body = mBodyText.getText().toString();

 if (mRowId == null) {
 long id = mDbHelper.createNote(title, body);
 if (id > 0) {
 mRowId = id;
 }
 } else {
 mDbHelper.updateNote(mRowId, title, body);
 }
 }

Note that we capture the return value from createNote() and if a valid row ID is returned, we store it in the mRowId field
so that we can update the note in future rather than create a new one (which otherwise might happen if the life-cycle events
are triggered).

Step 9

Now pull out the previous handling code from the onActivityResult() method in the Notepadv3 class.

All of the note retrieval and updating now happens within the NoteEdit life cycle, so all the onActivityResult() method
needs to do is update its view of the data, no other work is necessary. The resulting method should look like this:

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent intent) {
 super.onActivityResult(requestCode, resultCode, intent);
 fillData();
}

! Go to top

Because the other class now does the work, all this has to do is refresh the data.

Step 10

Also remove the lines which set the title and body from the onListItemClick() method (again they are no longer needed,
only the mRowId is):

 Cursor c = mNotesCursor;
 c.moveToPosition(position);

and also remove:

 i.putExtra(NotesDbAdapter.KEY_TITLE, c.getString(
 c.getColumnIndex(NotesDbAdapter.KEY_TITLE)));
 i.putExtra(NotesDbAdapter.KEY_BODY, c.getString(
 c.getColumnIndex(NotesDbAdapter.KEY_BODY)));

so that all that should be left in that method is:

 super.onListItemClick(l, v, position, id);
 Intent i = new Intent(this, NoteEdit.class);
 i.putExtra(NotesDbAdapter.KEY_ROWID, id);
 startActivityForResult(i, ACTIVITY_EDIT);

You can also now remove the mNotesCursor field from the class, and set it back to using a local variable in the fillData()
method:

 Cursor notesCursor = mDbHelper.fetchAllNotes();

Note that the m in mNotesCursor denotes a member field, so when we make notesCursor a local variable, we drop the m.
Remember to rename the other occurrences of mNotesCursor in your fillData() method.

Run it! (use Run As -> Android Application on the project right click menu again)

Solution and Next Steps

You can see the solution to this exercise in Notepadv3Solution from the zip file to compare with your own.

When you are ready, move on to the Tutorial Extra Credit exercise, where you can use the Eclipse debugger to examine the
life-cycle events as they happen.

" Back to Notepad Tutorial

Except as noted, this content is licensed under Creative Commons Attribution 2.5. For details and restrictions, see the Content
License.
Privacy & Terms - Brand Guidelines - Report Document Issues

