
cisc3660
game programming

fall 2012
lecture # III.3

topics:

• game loop

• game state machines

references:

• http://www.evl.uic.edu/spiff/class/cs426/,
by
Prof Jason Leigh, University of Illinois at Chicago (http://www.evl.uic.edu/spiff/)
and
Prof Robert Kooima, Louisiana State University (http://csc.lsu.edu/~kooima/)

cisc3660-fall2012-sklar-lecIII.3 1

game loop

• game play is controlled by an iterative loop that cycles through multiple tasks:

– read user input

– calculate user parameters

– calculate non-player character behavior/response

– draw graphics

– handle sound effects

• in an environment like Blender, these tasks are not necessarily handled sequentially
(because multiple tasks can occur in parallel)

• but it is still a good idea to design each of these tasks and think about how they impact
each other

cisc3660-fall2012-sklar-lecIII.3 2

finite state machine

• a finite state machine or FSM is a graph that consists of nodes and directed links

• each node represents a state in the game

• a state is typically characterized by parameter settings for game objects

• which can be represented visually in the game environment

• for example, the scene for the game could be either “day” or ”night”

• the visual representation of the “day” state could display a sun, whereas the visual
representation of the “night” state could display a moon

• the directed links show transitions between states

• the transitions occur either as a result of actions carried out by the (human) player or
reactions between autonomous game objects (such as collisions)

• the actions can cause parameter values to change, indicating different states

cisc3660-fall2012-sklar-lecIII.3 3

• an example finite state machine outlining the overall structure of a game is shown below:

• each of the states in this graph should correspond to one (or more) screens in your game
design

• note that, by convention, the final state in an FSM is drawn with a double outline
(“outtro” state in the example above)

cisc3660-fall2012-sklar-lecIII.3 4



• an example finite state machine outlining the game play is shown below:

• this graph shows multiple states for the player’s avatar:

– “init” = initial state

– “moving” = when the player is moving around normally in the virtual world of the game

– “injured” = when the player has been injured and is unable to move around

– “drinking” = when the player has found water and drinks to increase her health

– “dead” = game over!

cisc3660-fall2012-sklar-lecIII.3 5

game objects and states

• it is helpful to define game objects and states for each game object

• the state of a game object can be represented by the value(s) of one or more parameters
that describe the game object

• then determine what actions can change the parameter values, such as:

– actions taken by the (human) player

– actions taken by an autonomous game object (e.g., artificial intelligence)

– actions resulting from physics in the game environment

• not all changes in parameter values necessitate a change in an object’s state

• a game state can then be defined by listing the states of all the game objects—
i.e., a set of parameter values for all game objects corresponds to a game state

cisc3660-fall2012-sklar-lecIII.3 6


