
cisc3665, fall 2011 / prof sklar
Assignment II: Introduction to Game AI and Agents

Instructions

This is the assignment for unit II, Introduction to Game AI and Agents.
It is worth 5 points (i.e., 5% of your term grade).

The assignment is due on October 9 (electronic submission). Instructions for electronic submissions are posted
on the class web page.

This assignment is based on the reading distributed in class on Sep 14 (ch 2 of An Introduction to MultiAgent
Systems, by Michael Wooldridge).

The assignment has two parts:
• Part 1 is a programming part. This must be completed using the Processing environment (see labI.1). This

part must be submitted as a zip file containing the Processing folder in which you created your sketch.

• Part 2 is a written component. This part must be submitted in a plain text or PDF document.

To submit your assignment electronically, you will need to create one zip file containing files for with both parts
(pdf for part 1 and zip for part 2—you can have a zip within a zip).

Preparation

• Read the chapter entitled Intelligent Agents (from An Introduction to MultiAgent Systems by Michael
Wooldridge), which was handed out in class on Sep 14.

• Note the section about Tileworld on pages 37-38 of the book chapter.
item Download the sample Processing code from the class web page called tileworld0.zip. This code
simulates a simplified version of Tileworld, with a simple agent (blue circle), moving around a 40 × 60
grid of squares. There is one obstacle (grey rectangle), one hole (black rectangle) and one tile (magenta
rectangle) in the world. The agent moves randomly, in either of the 4 compass directions (north, south,
east, west); it moves one grid square per iteration through the Processing draw() loop. This version of
Tileworld is simpler than the one described on pages 37-38 of the book chapter because the holes do not
change location while the game runs (we’ll get to the more complex version later in the semester).
Run this code to see how it works. Notice that the agent does not sense any of the elements in its
environment, and so it may randomly move over the obstacle, hole or tile. Your job with this assignment is
to fix this and to make your agent behave intelligently.

1 Programming component: Simple Agent (4 points)

1.1 Modify the tileworld0.pde code so that your Tileworld contains multiple obstacles, holes and tiles. The
sample code only has one of each. You need to figure out how you are going to keep track of multiple
obstacles, holes and tiles in such a way that you can (see below) easily detect if the agent has run into any
of them. You will probably want to create an array that keeps track of where each of the elements in the
Tileworld are—the agent, the obstacles, the holes and the tiles. Initialize all your obstacles, holes and tiles
to randomly placed locations around the Tileworld. Make sure that any single grid square contains either

1



an obstacle, a hole, a tile, or none of the above; i.e., you cannot place an obstacle, hole and/or tile in the
same grid square.
(1 point this part)

1.2 Modify the code to give the agent a perceive() function. This function should let the agent look for
obstacles, holes and tiles in each of the four compass directions. Assume that the agent has 3 types of
“sensors”: one for detecting obstacles, one for detecting holes and one for detecting tiles; and that the
agent has 4 sensors of each type, one for north, south, east and west. Decide what the agent’s sensor range
is, i.e., what is the maximum number of grid squares it can see in each direction. You may want to define
different ranges for each type of sensor.
Each of the agent’s 12 sensors should be set as follows:
= 0 if there is nothing ahead between the agent and its maximum sensor range
> 0 if there is an obstacle/hole/tile ahead, and the value is the number of squares ahead
(1 point this part)

1.3 Modify your code so that it fixes the problem of the agent ignoring obstacles. If the agent tries to move
into a square that has an obstacle in it, then the agent should not move.
(0.3 points this part)

1.4 Modify your code so that it fixes the problem of the agent ignoring holes. If the agent moves into a square
with a hole in it, then the agent falls down the hole and dies and the game is over.
(0.3 points this part)

1.5 Modify your code so that the agent, instead of moving randomly, moves rationally ; i.e., your agent should
try to survive. If the agent senses a hole ahead, it changes its direction so that it does not fall down a hole
and die.
(0.4 points this part)

1.6 The object of the game is for the agent to find all the tiles in the world and push the tiles into holes. If the
agent is next to a tile and moves toward that tile, then both the agent and the tile move ahead one grid
square in that direction. See the example below (where A is the agent and T is a tile):

starting position:
T
A

agent moves north, pushing tile:

T
A

Modify your code so that if the agent is next to a tile, it will push it as illustrated above and according to
the following rules:
• If there is an obstacle in the square ahead of the tile, the agent (and the tile) cannot move in that

direction.

• If there is another tile in the square ahead of the tile, the agent (and the tile) cannot move in that
direction; i.e., we treat a second tile in the agent’s path like an obstacle (our agent is weak and can
only move one tile at a time).

• If there is a hole in the square ahead of the tile, the tile falls down the hole and the agent earns a
dollar.

(1 point this part)

2



2 Written component: Simple Agent (1 point)

The agent from the simplified Tileworld that you coded in the first part of this assignment has two states:
STOPPED and RUNNING. Later (not part of this assignment), you will write code for a more intelligent agent. A
more intelligent agent existing in Tileworld, even the simple one, will need to have more than two states in order
for the agent to make choices about what to do next.

For this part of the assignment, you will define a set of states for your more intelligent agent and
analyze the utility of these states. (See the lecture slides from Sep 14 and Sep 21.)

You already know what the agent’s set of actions are, e.g.: Ac = {α0, α1, α2, α3}, where α0 means move north,
α1 means move west, α2 means move south, and α3 means move east.

You also know the constraints on the agent’s actions:
• the agent cannot move into a square where there is an obstacle

• the agent will die if it falls down a hole

• the agent cannot push a tile into an obstacle or another tile

• the agent will earn a dollar if it pushes a tile into a hole

So now, define some states and utilities.

Here is an example to get you started (where A is the agent and H is a hole):
H
A

H
A

H

A

H
A

H

e0 e1 e2 e3 e4

If the agent is in state e0 and executes action α0 (move north), then it will end up in state e4 and fall down the
hole and die. If the agent is in state e0 and executes action α1 (move west), then it will end up in state e3. If
the agent is in state e0 and executes action α2 (move south), then it will end up in state e2. If the agent is in
state e0 and executes action α3 (move east), then it will end up in state e1.

You should also assign a (comparative) utility to each of these states. Since the agent dies in state e4, then there
should be negative utility associated with that state and with any action that takes the agent into that state.
The remaining states (e0, e1 and e2) are all equally better than e4, since the agent does not die in any of these
states. So any action taking the agent into any of these states should be given higher utility.

So, we can say:
u(e0

α0→ e4) = −1

u(e0
α1→ e3) = 1

u(e0
α2→ e2) = 1

u(e0
α3→ e1) = 1

Complete a similar analysis for obstacles and tiles, starting with states e5, e6, e7, e8 and e9, shown
below. (A is the agent, H is a hole, T is a tile, and X is an obstacle.)

X
A

T
A

H
T
A

X
T
A

T
T
A

e5 e6 e7 e8 e9

Note that I expect that your answer will include: drawings of additional states, and comparative utilities of the
transitions between states (as in my example above). I don’t care what the actual utility numbers are—we only
really care here about the relative values (i.e., which states are better than others, which states are harmful, etc.).

3


