
cisc3665

game design

fall 2011

lecture # II.2

introduction to game AI and agents

topics:

• introduction to agents (continued)

references:

• notes on agents from An Introduction to Multiagent Systems, by Michael Wooldridge,

Wiley (2002), chapter 1-2

cisc3665-fall2011-sklar-lecII.1 1

formalisms for describing abstract agent architectures

• the set of possible environment states: E = {e, e′, . . .}

• the set of possible agent actions: Ac = {α, α′, . . .}

• a run, r, is a sequence of states and actions:

r : e0
α0→ e1

α1→ e2
α2→ e3 . . .

α
u−1→ eu

and R = {r0, r1, r2, . . .}, the set of all such sequences

• a run can end with an action: RAc, or a run can end with a state, RE

• a state transformer function represents the behavior of an environment as it is effected by

an action:

τ : RAc → ℘(E)

where ℘ is the power set of E, i.e., E × E

• we make the assumptions that environments are history-dependent and non-determimistic

• if τ (r) = ∅, then a run has ended (“game over”)

cisc3665-fall2011-sklar-lecII.1 2

• an environment, Env, is a tuple: 〈E, e0, τ〉, where e0 ∈ E is the initial state and τ is the

transformer function

• an agent, Ag, is a function which maps runs to actions:

Ag : RE → Ac

and AG is the set of all agents Ag

• a system is a pair containing an agent, Ag, and an environment, Env

• associated with any system is a set of runs of Ag in Env:

R(Ag,Env)

• we make the assumption that R(Ag,Env) contains only runs that have ended

cisc3665-fall2011-sklar-lecII.1 3

• So, a sequence:

(e0, α0, e1, α1, e2, . . .)

represents a run of agent Ag in environment Env = 〈E, e0, τ〉 if:

1. e0 is the initial state of Env

2. α0 = Ag(e0)

and

3. eu ∈ τ ((e0, α0, . . . , αu−1)),

where

u > 0 and

αu = Ag((e0, α0, . . . , eu))

cisc3665-fall2011-sklar-lecII.1 4

reactive agents

• a purely reactive agent decides what to do based only on the current state of its

environment

• formally, an agent’s action selection function is:

action : E → Ac

is the choice of action taken by agent Ag

• for example, consider a thermostat agent:

action(e) =











off if e = temperature OK

on otherwise

cisc3665-fall2011-sklar-lecII.1 5

agent perception: understanding the world around it

• the see function represents an agent’s ability to perceive (sense) its environment maps

percepts (i.e., sensor readings) to states:

see : E → Per

where Per is a percept

• this allows an agent to determine the state of its environment based on its perceptions

(i.e., its sensor inputs)

• we can say that an agent’s choice of what to do (its action selection function) is a

function that maps sets (or sequences) of perceptions to actions:

action : Per∗ → Ac

cisc3665-fall2011-sklar-lecII.1 6

agent’s internal state: understanding itself

• the agent’s internal state, I, represents its perceptions, current and past (and can be used

to record its history)

• so the action selection function for an agent that considers its history (unlike a reactive

agent, which only “lives in the moment”) is:

action : I → Ac

• an agent updates its internal state using the next function:

next : I × Per → I

cisc3665-fall2011-sklar-lecII.1 7

agent control loop

while(true) {
Ag.I ← i0 // Ag starts in internal state

Ag.see(e) // Ag observes its environment, e, and generates a percept

Ag.I ← Ag.next(i0, Ag.see(e)) // Ag updates its internal state

α0 ← Ag.action(Ag.I) // Ag decides what to do

Ag.do(α0) // Ag performs action α0

}

cisc3665-fall2011-sklar-lecII.1 8

utility

• when agents decide what to do, one thing they may consider is the utility of a state

• a utility function maps environment states to real numbers:

u : E → ℜ

• the utility of a run can be computed in various ways:

– the minimum utility of all states in the run

– the maximum utility of all states in the run

– the average utility of all states in the run

– the sum of all utilities of all states in the run

– etc

• determining the utility of a run is a hard problem and is typically domain dependent

cisc3665-fall2011-sklar-lecII.1 9

• instead of thinking about somehow combining the utilities of all the states in a run, think

of a real number that can be assigned to the value of the run as a whole:

u : R→ ℜ

• and in this way, we can abstract away the detail of how to compute the utility for the run

(which is hard and often is domain dependent)

• another hard problem is determining what numbers to assign for utilities of states or runs

• again, this is domain dependent

• we will not answer this question today, but we’ll come back to this question later in the

term

cisc3665-fall2011-sklar-lecII.1 10

expected utility

• the probability that run r (a specific sequence of states and actions) occurs when agent

Ag is placed in environment Env is represented as:

P (r | Ag,Env)

• the sum of the probabilities of all runs for an agent in an environment is:
∑

r∈R(Ag,Env)
P (r | Ag,Env) = 1

• an agent might want to consider the expected utility, EU , of a given run:

EU(r) = u(r)P (r | Ag,Env)

• or we might want to assess the expected utility of an agent in a given environment:

EU(Ag,Env) =
∑

r∈R(Ag,Env)
u(r)P (r | Ag,Env)

cisc3665-fall2011-sklar-lecII.1 11

example

• given environment Env = 〈E, e0, τ〉, defined as:

E = {e0, e1, e2, e3, e4, e5}, τ (e0
α0→) = {e1, e2}, τ (e0

α1→) = {e3, e4}

• given two agents:

Ag1(e0) = α0 and Ag2(e0) = α1

• given probabilities associated with the various runs:

P (e0
α0→ e1 | Ag1, Env) = 0.4

P (e0
α0→ e2 | Ag1, Env) = 0.6

P (e0
α1→ e3 | Ag2, Env) = 0.1

P (e0
α1→ e4 | Ag2, Env) = 0.9

• given the utility function:

u(e0
α0→ e1) = 8

u(e0
α0→ e2) = 11

u(e0
α1→ e3) = 70

u(e0
α1→ e4) = 9

• what are the expected utilities of the agents for this utility function?

cisc3665-fall2011-sklar-lecII.1 12

optimal agents

• an optimal agent maximizes its expected utility:

Agopt = arg max
Ag∈AG

EU(Ag,Env)

• but it may not be practical (or possible) to compute this, e.g., if Ag : RE → Ac is really

big

• so we consider a bound on the computation, m, and define: AGm as the set of agents

that can be computed on machine (computer) m

• then we define a bounded optimal agent Agbopt as:

Agbopt = arg max
Ag∈AGm

EU(Ag,Env)

cisc3665-fall2011-sklar-lecII.1 13

tasks

• a predicate task specification is a special case of assigning utilities to a run where:

u(r) = 1 (meaning “true”) ⇒ agent succeeds

u(r) = 0 (meaning “false”) ⇒ agent fails

and we define the predicate task specification Ψ : R→ {0, 1}

• a task environment is a pair 〈Env,Ψ〉

• a task environment specifies:

– the properties of the agent’s system

– the criteria by which the agent’s success or failure will be assessed

• the set of all runs of agent Ag in Env that satisfy Ψ is:

RΨ(Ag,Env) = {r | r ∈ R(Ag,Env)andΨ(r) = 1}

• and we can say that Ag succeeds in Env if all its runs produce utility = 1, i.e.,:

RΨ(Ag,Env) = R(Ag,Env)

cisc3665-fall2011-sklar-lecII.1 14

• we might be interested in predicting the probability that an agent will be successful in a

particular environment:

P (Ψ | Ag,Env) =
∑

r∈RΨ(Ag,Env)
P (r | Ag,Env)

cisc3665-fall2011-sklar-lecII.1 15

to do

• read ch 2 of Wooldridge book (handout)

• work on assignment for unit I (labI.2), which is due on SEPT 25

(electronic submission instructions are forthcoming...)

cisc3665-fall2011-sklar-lecII.1 16

