
cisc3665

game design

fall 2011

lecture # III.2

perception

topics:

• game physics

• perception

• chasing and evading

references:

• notes on physics from: Programming Game AI by Example, by Mat Buckland. Worldware

Publishing (2005), chapter 1.

• notes on chasing and evading from: AI for Game Developers, by David M. Bourg and

Glenn Seemann. O’Reilly Media (2004), chapter 2.

cisc3665-fall2011-sklar-lecIII.2 1

vectors

• a vector represents two quantities: a magnitude and a direction

• a vector is expressed as: ~v = (x, y)

direction

magnitude

(x,y) = (4,9)
– to determine the magnitude and direction of a

vector, imagine a right triangle where the vector

is the hypotenuse

– the length of one side is the x-value and the

length of the other side is the y-value

– so you can use the Pythagorean Theorem to

determine the magnitude, |~v|, of the vector:
h2 = x2 + y2

h =
√

(x2 + y2)

• and some trigonometry to determine the direction (θ) of the vector:

sin(θ) = opposite/hypotenuse

sin(θ) = y/|~v|
θ = asin(y/|~v|)

cisc3665-fall2011-sklar-lecIII.2 2

normalized or unit vector

• it is common to normalize a vector, or find the unit vector

• the unit vector is a vector whose magnitude is equal to 1

• a unit vector is primarily used for its directionality

• so if we go back to our example on the previous page, ~v = (4, 9), we can compute the

magnitude as:

|~v| =
√

(42 + 92) =
√

(16 + 81) =
√
97 = 9.85

• the unit vector is computed by dividing the x and y components of the vector by its

magnitude:

(x, y) = (4, 9) ⇒ (4/9.85, 9/9.85) = (0.406, 0.914)

cisc3665-fall2011-sklar-lecIII.2 3

using vectors

• often, you want to perform operations on vectors, such as adding them together or

subtracting them from each other or finding the angle between them

• each of these operations is performed by applying the operation to the x and y

components individually

• adding two vectors:

what happens when you add two vectors together?

v3 = (4+3,9+1)=(7,10)

v2 = (3,1)

v1 = (4,9)

~v1 = (x1, y1) = (4, 9)
~v2 = (x2, y2) = (3, 1)
~v3 = ~v1 + ~v2

= (x1 + x2, y1 + y2) = (4 + 3, 9 + 1)

= (7, 10)

• notice that this is like starting ~v2 at the endpoint of ~v1, to arrive at ~v3

cisc3665-fall2011-sklar-lecIII.2 4

• subtracting two vectors:

what happens when you add subtract two vectors from each other?

v1 = (4,9)

v2 = (3,1)

v3 = (4−3,9−1)=(1,8) ~v1 = (x1, y1) = (4, 9)
~v2 = (x2, y2) = (3, 1)
~v3 = ~v1− ~v2

= (x1− x2, y1− y2) = (4− 3, 9− 1)

= (1, 8)

• notice that this is also like starting ~v2 at the endpoint of ~v1, but since we are using

subtraction, we reverse the direction of ~v2 to arrive at ~v3

cisc3665-fall2011-sklar-lecIII.2 5

• finding the angle between two vectors:

how do you find the angle between two vectors?

you use something called the dot product, which is computed as:

~v1 · ~v2 = x1× x2 + y1× y2 = | ~v1|| ~v2|cos(θ)
where θ is the angle between ~v1 and ~v2, which means that we want to solve for θ.

so we can rearrange the above as:

| ~v1|| ~v2|cos(θ) = x1× x2 + y1× y2

cos(θ) = (x1× x2 + y1× y2)/| ~v1|| ~v2|
θ = acos((x1× x2 + y1× y2)/| ~v1|| ~v2|)

angle between v1 and v2

v2 = (3,1)

v1 = (4,9) | ~v1| =
√

(x12 + y12) =
√

(42 + 92)

=
√

(16 + 81) =
√
97 = 9.85

| ~v2| =
√

(x22 + y22) =
√

(32 + 12)

=
√

(9 + 1) =
√
10 = 3.16

θ = acos((x1× x2 + y1× y2) / | ~v1|| ~v2|)
= acos((4× 3 + 9× 1) / 9.85× 3.16)

= acos((12 + 9)/31.126) = acos(21/31.126)

= acos(0.67) = 47.57◦

cisc3665-fall2011-sklar-lecIII.2 6

• scaling a vector:

sometimes you want to scale the magnitude of a vector. use multiplication to

proportionally increase the magnitude of the vector, and division to proportionally decrease

the magnitude of the vector.

• for example, if you want to have a vector, ~v4 that is half the magnitude of our vector
~v1 = (4, 9), there are two ways to compute ~v4

• one way is to divide each component in ~v1 by 2:

~v4 = (x1/2, y1/2) = (4/2, 9/2) = (2, 4.5)

• another way is to find the unit vector for ~v1 (as we did previously): (0.406, 0.914), and

then multiply that by half the magnitude of the ~v1, i.e., | ~v1|/2 = 9.85/2 = 4.925 (using

our earlier calculations for | ~v1|:
~v4 = (0.406× 4.925, 0.914× 4.925) = (2, 4.5)

cisc3665-fall2011-sklar-lecIII.2 7

motion

• in games, you typically want to make something move

• so we need to know about motion

• motion involves velocity (i.e., speed), which is defined as “change in position over time”

at time t1, position (x1,y1) is (4,3)
at time t0, position (x0,y0) is (0,1)

velocity

is a vector, ~v, representing the

change in x and the change in y

over the same time period

in our example:

(x0, y0) = (0, 1)

(x1, y1) = (4, 3)

~v0 = (x1− x0, y1− y0)

= (4− 0, 3− 1)

= (4, 2)

cisc3665-fall2011-sklar-lecIII.2 8

• motion also involves acceleration, which is defined as “change in velocity over time”

at time t2, position (x2,y2) is (7,9)

at time t0, position (x0,y0) is (0,1)
at time t1, position (x1,y1) is (4,3)

acceleration is also a vector, ~a,

representing the change in the

x and y components of velocity

over time

in our example:

(x0, y0) = (0, 1)

(x1, y1) = (4, 3)

~v0 = (4, 2)

(x2, y2) = (7, 9)

~v1 = (x2− x1, y2− y1)

= (7− 4, 9− 3)

= (3, 6)

~a = ~v1 − ~v0
= (3− 4, 6− 2)

= (−1, 4)

• if an object in motion has acceleration = 0, then it has constant velocity

cisc3665-fall2011-sklar-lecIII.2 9

falling objects

• what happens when an object falls?

• we’ll model free-falling objects—objects that do not have a force applied to them—except

the force of gravity

• the value of acceleration due to gravity is 9.8 meters per second squared (m/s/s)

time velocity distance travelled (∆y)

t0 = 0 0.0 m/s 0.0 m

t1 = 1 sec 9.8 m/s 9.8 m

t2 = 2 sec 19.6 m/s 29.4 m

t3 = 3 sec 29.4 m/s 58.8 m

cisc3665-fall2011-sklar-lecIII.2 10

colliding objects

• what happens when two objects collide with each other?

A

B

• force

• momentum: p = mv (mass times velocity)

• change in momentum over time that a force is acting on an object: dp = F × dt

• impulse is the measure of the strength and the duration of the force of the collision

• if two objects collide (and there are no external forces acting in the system), then

momentum is conserved

cisc3665-fall2011-sklar-lecIII.2 11

ptotal = p1 + p2

• so change in momentum = 0

∆p1 + ∆p2 = 0

• elastic collision = when kinetic energy is conserved (otherwise, collision is inelastic)

• Let’s assume that the mass of the objects doesn’t change when two objects collide. So we

have, by conservation of momentum:

∆p1 = ∆v1 ×m1

∆p2 = ∆v2 ×m2

∆p1 + ∆p2 = 0

∆v1 ×m1 +∆v2 ×m2 = 0

∆v1 = v1f − v1i

∆v2 = v2f − v2i

(v1f − v1i)×m1 + (v2f − v2i)×m2 = 0

v1fm1 − v1im1 + v2fm2 − v2im2 = 0

v1fm1 + v2fm2 = v1im1 + v2im2

cisc3665-fall2011-sklar-lecIII.2 12

perception

• there are generally two types of perception: local and global

• with global perception, the agent(s) in your game can “sense” everything that is in the

environment; i.e., all environmental properties are accessible

• so in the example below, the agent knows where all the holes, obstacles and tiles are in its

environment:

OBSTACLE
HOLE

TILE
AGENT

cisc3665-fall2011-sklar-lecIII.2 13

• with local perception, the agent(s) in your game can only “sense” properties using sensors

that are (virtually) part of the agent

• so in the example below, the agent can only knows about the closest element(s) in each of

the four compass directions (assuming that this agent has four sensors, and each sensor is

pointed in one compass direction)

• obviously in this case, there are properties that the agent does not see; these properties are

inaccessible

OBSTACLE
HOLE

TILE
AGENT

cisc3665-fall2011-sklar-lecIII.2 14

• the chasing and evading agents in ch 2 of Bourg & Seeman have global perception

• whereas, the TileWorld agent in your unit II assignment has local perception

• in that assignment and in our example on the previous page, the agent has 4 sensors that

look for non-empty cells in each of the 4 compass directions

• it is common to write a sense() function that simulates the sensors

• in our case, i.e., in tileworld.pde, we simply find the agent’s location in the occupancy

grid, and then look at cells above (north), below (south), to the left (west) and right

(east) of the agent in order to determine if anything is there

• we can set a range for each sensor—the maximum number of cells to look at in any

direction, counted from the agent’s location

• if we don’t set a range, then we assume that the agent can see to the edge of the world in

each direction—unless it finds a non-empty cell; in which case, the sensor returns a value

indicating what it detected in the non-empty cell (e.g., a tile, a hole or an obstacle)

cisc3665-fall2011-sklar-lecIII.2 15

chasing and evading

• exemplified as two-agent environment, where one agent is the predator (and does the

chasing) and the other agent is the prey (and does the evading)

• basic chasing algorithm— predator updates its position by moving closer to its prey

predator.sense(); // get (x,y) location of prey

if (predator.x > prey.x) predator.x--;

else if (predator.x < prey.x) predator.x++;

if (predator.y > prey.y) predator.y--;

else if (predator.y < prey.y) predator.y++;

if ((predator.x == prey.x) && (predator.y == prey.y)) {

GOTCHA!!!

}

cisc3665-fall2011-sklar-lecIII.2 16

• basic evading algorithm— prey updates its position by moving farther from its prey

opposite of the predator algorithm!

prey.sense(); // get (x,y) location of predator

if (prey.x > predator.x) prey.x++;

else if (prey.x < predator.x) prey.x--;

if (prey.y > predator.y) prey.y++;

else if (prey.y < predator.y) prey.y--;

• but this is ineffective if predator and prey are both using these algorithms and their

velocities are the same.

• so we should try something smarter...

cisc3665-fall2011-sklar-lecIII.2 17

line-of-site chasing

• compute straight-line path from predator to prey

• in a continuous environment (i.e., where agents locations can be real-valued coordinates),

then you can just use math to calculate a vector from predator to prey

(x_prey,y_prey)

(x_pred,y_pred)

distance to travel from predator to prey =

magnitude of vector:

=
√

(pred.x− prey.x)2 + (pred.y − prey.y)2

angle to travel from predator to prey =

direction of vector:

= sin−1(|pred.y − prey.y|)/magnitude

cisc3665-fall2011-sklar-lecIII.2 18

• in a discrete (e.g., tiled) environment, you need to use a scan conversion algorithm to

approximate the straight line, but always moving in one of the 4 compass directions

(x_prey,y_prey)

(x_pred,y_pred)

cisc3665-fall2011-sklar-lecIII.2 19

to do

• read ch 2 of Bourg & Seemann book (handout)

• work on assignment for unit II (labII.1), which is now due on OCT 14

(extended from original deadline)

• new date for midterm:

WED OCT 19

cisc3665-fall2011-sklar-lecIII.2 20

