
cisc3665

game design

fall 2011

lecture # IV.3

scripting

topics:

• scripting

• lua

references:

• notes from:

– Programming Game AI by Example, by Mat Buckland. Worldware Publishing, 2005,

chapter 6.

– AI for Game Developers, by David M. Bourg and Glenn Seemann. O’Reilly Media,

2004, chapter 8.

• tutorial notes from: http://lua-users.org/wiki/LuaTutorial

• demo here: http://www.lua.org/demo.html

cisc3665-fall2011-sklar-lecIV.3 1

scripts

• a script resides in a file separate from the game engine source code

• the simplest scripts contain things like parameter settings

• the program (game engine) needs to be able to read and parse the script file, and interpret

it

• the parser/interpreter component of the game engine is a type of virtual machine

• more advanced scripts can contain game logic and/or game objects

cisc3665-fall2011-sklar-lecIV.3 2

interpreted vs compiled

• interpreted scripts are read and interpreted by the game engine (virtual machine) in the

same format as they are written

• compiled scripts are converted into a “compiled” format (e.g., byte code) after they are

written; and they are read/interpreted by the game engine (virtual machine) in the

compiled format

• the reason to use a compiled format for game scripts is for privacy/secrecy

• if the game script contains logic/strategies for how to win the game and/or secret

information about the game structure, then it should be hidden from users—here is where

a compiled script makes sense

cisc3665-fall2011-sklar-lecIV.3 3

reasons to have a script

• a script is an easy way to initialize variables (game parameters, game settings)

• using a script can save development time and increase productivity because you don’t have

to recompile the game engine each time you want to test a different parameter setting

• using a script can also increase creativity, because game designers who are not

programmers could write the script

• scripts can improve the extensibility of games, by allowing for customized mods

cisc3665-fall2011-sklar-lecIV.3 4



contents of scripts

• scripts can contain:

– variable / parameter settings

– dialogue between characters in the game

– “stage” directions, dictating how characters move around in the game environment in

response to changes in the game state and/or dialogue elements

– AI logic

cisc3665-fall2011-sklar-lecIV.3 5

using scripts

• you can write your own scripting “language”

• you need to define a format for what you want to store in the script

• and you need to write code in your game engine that will read the script and parse its

contents, and then interpret the parsed information inside the game

• you can also use scripting languages that are already written by other people and that can

interface with the language that your game engine is written in

cisc3665-fall2011-sklar-lecIV.3 6

scripting languages

• there are many scripting languages

• such as unix shell scripts (e.g., sh, bash, ksh, tsh, etc.)

• and languages such as perl, php, ruby, javascript, etc.

• one popular scripting language for games is called Lua

• Lua was written to interface with C/C++

• but a Java interface also exists

cisc3665-fall2011-sklar-lecIV.3 7

lua

• http://www.lua.org — download here

http://lua-users.org/wiki/LuaTutorial — first tutorial here

http://lua-users.org/wiki/TutorialDirectory — many more tutorials here

• what Lua is used for:

– configuring applications

– stand-alone scripting

– modifying run-time behavior in applications, as an embedded language

• first program: “hello world”

-- hello.lua

-- the first program in every language

io.write("Hello world, from ",_VERSION,"!\n")

cisc3665-fall2011-sklar-lecIV.3 8



to do

• work on homework assignment for unit IV, which is due November 17

• look at the sample “Rock Paper Scissors” Lua script on the class web page

cisc3665-fall2011-sklar-lecIV.3 9


