
Toward an Undergraduate League for RoboCup.

John Anderson
�

, Jacky Baltes
�

, David Livingston
�

, Elizabeth Sklar
�

, and
Jonah Tower

�

�

Department of Computer Science
Columbia University

New York, NY, 10027, USA
sklar,jpt2002@cs.columbia.edu

�

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba, R3T 2N2, Canada
andersj,jacky@cs.umanitoba.ca

�

Department of Electrical and Computer Engineering
The Virginia Military Institute
Lexington, VA, 24450, USA

livingstondl@mail.vmi.edu

Abstract. This paper outlines ideas for establishing within RoboCup a league
geared toward, and limited to, undergraduate students. Veterans of RoboCupJu-
nior are outgrowing the league as they enter college and this has motivated us to
develop a league especially for undergraduate students — the ULeague. The de-
sign of the league, presented here, is based on a simplied setup of the Small-size
league by providing standard Vision and Communication packages.

1 Introduction.

With the rise in popularity of RoboCupJunior (RCJ) [4], a growing base of participants
are graduating from high school and wanting to continue with RoboCup but are unable
to because they do not have the resources required to enter the senior leagues. Some
of these students may be attending a university that has an existing RoboCup team, so
that they will perhaps have an opportunity to participate on a senior league team as ad-
vanced undergraduates. Other students attend universities where there is no RoboCup
senior team and/or no robotics lab; and for these students, participation as undergradu-
ates is not an option. We are thus motivated to create a RoboCup league especially for
undergraduates, and we have spent recent months designing and prototyping this league
— the ULeague.

The goal of the ULeague is to provide a stepping stone from RoboCupJunior to
participation in the Small-size (F180) or Mid-size leagues. There is a significant leap
in both expertise and resources necessary to be a competitive entrant in either of these
leagues compared to the Junior league. The sophistication and costs of the robots used
in the F180 league may be prohibitive. A typical Small-size team has robots that have
omni-directional drives, dribble bars and powerful kicking mechanisms. Such a robot
has four to six high quality motors and a powerful on-board processor to control them.

Each one of these robots costs around US$3,000. Added to this is the cost of high
quality video cameras. These and other expenses typically drive the cost for a team to
around US$20,000–US$30,000.

The ULeague is intended to provide a scaled-down and cheaper version of the
Small-size league problem for undergraduate students. To achieve this goal, the ULeague
factors out the most complex aspects of the Small-size league, namely vision process-
ing and communication, by providing common platforms for these tasks, so teams may
focus on robot development.

In addition to practical rationale, the ULeague also provides unique research chal-
lenges and opportunities. In the F180 league, it is possible for multiagent aspects of the
game to have little impact on the performance of a team. A powerful dribble bar and
kicker or other combination of physical features makes it possible for a single robot to
be dominant. The physical constraints placed on robots in the ULeague are intended to
force teams to rely more on coordination and cooperation to make progress in the game.
Moreover, since a common architecture is employed, the ULeague can be thought of as
a physical version of a simulation league. It is hoped that the ULeague will encourage
collaboration with teams from the RoboCup Simulator League. This could mean faster
dissemination of the research and progress made by teams in the Simulator league to
physical robot competitions.

We have chosen the Small-size league as our primary model, since this league re-
quires the least amount of space and the least expense in terms of equipment4. Given
this, we have identified two major stumbling blocks for teams entering the Small league:
vision and communication. So for the ULeague our idea is to provide a standard solu-
tion for these two aspects, provided by league organizers, and have teams build the rest
(see figure 1).

vision

team 1

team 2

comm

soccer field

camera transmitter

Fig. 1. High-level architecture of the ULeague.
The dashed lines represent an Ethernet connection.

4 as opposed to the Mid-size, Four-Legged or Humanoid leagues

2 Vision.

The ULeague will use a standard vision software package to make it easier for teams
to enter the ULeague and to speed up setup time at a competition. The current video
server is the Doraemon package developed by Baltes [2], which is open source software
released under the Gnu Public Licence5. Doraemon has been in development for over
three years and has been used by several robotic teams in international competitions,
including RoboCup. Doraemon includes real-time camera calibration, color calibration
and object tracking components.

Several features separate Doraemon from similar software written for other global
vision robotic soccer teams. It supports full 24-bit color. It supports maximum field
capture rates of 50 (PAL) or 60 (NTSC) fields per second. It includes sophisticated Tsai
camera calibration [5], allowing the system to calibrate the geometry of the scene from
any view, which means that it is not necessary to have the camera mounted directly
overhead relative to the playing field, nor is it necessary to add a wide-angle lens to
the camera. It tracks objects in two or three dimensions (the latter requires using multi-
ple cameras or stereoscopic vision); and it employs a clean object-oriented design that
makes it easy to define different types of robots. Currently robots using two colored
markers or bar codes are available, but there are also more sophisticated object recog-
nizers that use only a single colored spot on the robot [2]. The developers are currently
working on a pattern-recognition process using neural networks that does not require
any markers [3].

Installation and setup of Doraemon consists of four phases: (1) setting up the camera
and the viewing angle, (2) calibrating the camera geometry, (3) calibrating the rotation-
translation matrix, and (4) calibrating colors. Each phase is detailed below.

2.1 Setup of the Camera.

In the F180 league, each team provides their own video camera and mounts it in their
desired position. Most teams choose to place the camera directly overhead. This means
that the local organizing committee must provide a physical structure above the playing
field onto which teams can mount their cameras. However, the limited angle of view
requires that a wide-angle lens be mounted on the camera in order to have a view of
the whole playing field. Doraemon has more complex camera calibration routines and
is not limited to overhead views (see figure 2).

2.2 Camera Calibration.

Doraemon’s camera calibration uses the well-established Tsai camera calibration [5]
which is popular among computer vision researchers. It is also suitable for global vision
in robotic soccer since it can compute the calibration from a single image. The Tsai
camera calibration computes six external parameters (� , � and � of the camera position
as well as angles of roll, pitch and yaw) and six internal parameters (focal length, center
of the camera lens, uncertainty factor ��� , and � ��� � � radial lens distortion parameters) of
a camera using a set of calibration points. Calibration points are points in the image with

5
http://sourceforge.net/projects/robocup-video

Fig. 2. A sample view of the playing field

known world coordinates. In practice, Tsai calibration requires at least 15 calibration
points.

Doraemon uses a fast, robust and flexible method for extracting calibration points
from the environment. A simple colored calibration carpet is used. The user selects a
colored rectangle and specifies the distance in the � and � direction between the centers
of the rectangle. Doraemon’s calibration is iterative, so it can compensate for missing
or misclassified calibration points.

2.3 Rotation Matrix.

The Tsai calibration results in the overlay of a world coordinate system over the scene.
In principle this is sufficient to play soccer. However, Doraemon uses an additional ro-
tation and translation matrix to establish the world coordinate system. Instead of being
forced to compute the twelve parameters, the rotation and translation matrix allows one
to rotate, scale, shear and translate the playing field. This results in a set of linear equa-
tions with three unknowns and allows a rotation and translation matrix to be established
with only three points. The four corner points of the playing field are used (resulting in
one more point than required), and a least-squared error approximation of the matrix is
produced.

2.4 Colors.

Doraemon uses a sophisticated 12-parameter color model that is based on red (R), green
(G) and blue (B) channels as well as the difference channels red-green (R-G), red-
blue (R-B) and green-blue (G-B). Simple thresholding of the R, G and B channels is
sensitive to the brightness of the color. Even on a robotic soccer playing field with its
controlled lighting, it is difficult to detect more than four colors robustly using only
these channels. Other color models that have been proposed in the literature are less
sensitive to brightness (e.g. the HSI, YUV, or SCT models). However, these models
are computationally expensive, which greatly impacts the performance of the video
server. The color model used in Doraemon attempts to balance the best of both worlds.
The difference channels in the color model are similar to the hue values in the HSI or
similar models, but have the advantage that they can be computed faster than the HSI
model.

2.5 Output of the Video Server.

Doraemon transmits the position, orientation and velocity of all objects being tracked
to the team clients listening on the Ethernet. The messages are transmitted in ASCII via

UDP broadcast in a single package. Each line is terminated by an end of line character
(\n). For the ULeague, each message contains eleven lines: two lines of header infor-
mation, one line for ball information and eight lines for robot information. An example
is shown in figure 3.

LineNum content
0 9 1073821804 0.00139797
1 -76.3836 -1820.48 2356.39
2 1 ball NoFnd 971.056 840.711 35 0 -2.31625 58.1464
3 0 b0 Found 1185.59 309.187 100 0.0596532 436.282 -43.083
4 0 b1 Found 1158.59 508.198 100 0.0596532 499.282 285.083
5 0 b2 Found 1086.95 1009.187 100 0.0596532 499.282 285.083
6 0 b3 Found 2185.59 309.187 100 0.0596532 499.282 285.083
7 0 y0 Found 989.95 304.588 100 -0.10185 413.528 -1.08564
8 0 y1 NoFnd 1689.95 1004.588 100 -0.10185 413.528 -1.08564
9 0 y2 Found 189.95 704.588 100 -0.10185 413.528 -1.08564

10 0 y3 Found 1789.95 1304.588 100 -0.10185 413.528 -1.08564

Fig. 3. Sample output message from Doraemon.

The first line of each message contains (a) the number of objects that the video
server is currently tracking; (b) the absolute frame number; and (c) the time difference
in seconds between this message and the previous message. A client can use the absolute
frame number and time difference value to determine if any frames were dropped by
the video server.

The second line of each message contains the coordinates (� � � ��� � ���), in millime-
ters, of the camera with respect to the real-world coordinate system. This is used in dis-
tributed vision or stereoscopic vision applications and will not be used in the ULeague.
The example shows that in this case, the camera was mounted 2.3m above the playing
field (line 1 in figure 3).

Following this package header, there is one line for each object that the video server
is tracking 6. Each object line contains the following information:

– the type of object (0=robot, 1=ball);
– the name of the object;
– whether the object was found in the image or if the video server did not find the

object and predicted the positions based on previous motion (Found or NoFnd);
– the � , � , and � coordinates of the object, in millimeters;
– the orientation of the object in radians; and
– the velocity of the object in the � and � directions.

The names used for each of the nine ULeague objects are ball for the ball, b0
through b3 for the four robots on the blue team and y0 through y3 for the four robots
on the yellow team (lines 2-10 in figure 3). The example shows that ball (ball) was
not found and that the video server’s best estimate of where the ball is is the position� �����
	�� � �
�����
� � ��������� . A ball has no orientation and the video server always gives
it an orientation of 0 radians. Note that the height (� -coordinate) of all objects is fixed if
only a single camera view is used. For example, the height of the ball is 35mm and the
height of the robot in the next line (below) is 100mm. The best guess for the velocity
of the ball is a vector

��� ������� � � ��� ���
� . The example also shows that the robot b0

6 In the case of the ULeague, this will always be 9.

was found at position
� � � ��� ��� � ����� ��� � ��� � � ��� . The orientation of the robot is

approximately 0 degrees and its motion is given by the vector
� � � � ��� � � � � � � ���
� .

Note that since this particular robot is a differential-drive type robot, it is not surprising
that the direction of the velocity and the orientation of the robot coincide. The actual
velocity of the robot is approximately 43 cm/s. The information for robots b1 through
y3 is in the same format as described above for robot b0.

3 Communication.

The ULeage Communications component consists of two paths. One path goes from
each team’s client program to the Communication Server. We refer to this as the input,
or read, path. The second path goes from the Communication Server to the robots, and
we refer to this as the output, or write, path. We have defined protocols for both paths.
The Communication Server contains two threads, one for reading messages from clients
and one for writing messages to robots.

Input messages are passed along an Ethernet link, connecting each team’s computer
to the computer where the Communication Server is running (see figure 1). The Comm
Server listens for messages from clients on a socket. The clients send ASCII messages
of the form: [name]:[msg]\n where [name] is the name of the robot (as above,
b0 throughb3 and y0 throughy3) and [msg] is an 8-bit (one byte) message to be sent
to the specified robot, i.e., a number between 0 and 255 (however value 0 is reserved as
a NULL command, described below). Thus an example of a complete message would
be: y0:123\n. The Comm Server maintains an 8-byte command buffer, one byte per
robot. Each time an input message is received, the Comm Server updates the byte cor-
responding to the robot specified in the message.

Output messages are transmitted to robots using a standard Infra-Red (IR) trans-
mitter connected to the computer via a serial or USB port. The output thread writes
continuously to the output port, sending messages of the form: [START][command-
buffer][CHKSUM]where [START] is a one-byte start value (255) and [CHKSUM]
is a stop byte with an included 3-bit checksum (so the values of the checksum will range
from 0 to 7). The checksum computation is taken from the Lego networking protocol
as implemented in BrickOS7.

4 Platform.

The ULeague will not use a standard platform like the RoboCup Four-Legged league.
However, we have agreed that we need to choose standard platform specifications in
order to keep teams on an equal plane regarding costs of the robots. Thus we provide
maximum specifications for processor capability, in terms of size (RAM) and speed.
This allows the option either to purchase a pre-designed robot kit or to build one from
basic components. Several popular robotic kits that are within the range we are currently

7 BrickOS is a free OS for the Lego Mindstorms RCX. For more details, see
http://brickos.sourceforge.net.

testing include: Basic Stamp Board of Education (BOE Bot)8, Handyboard9 and LEGO
Mindstorms 2.010.

5 Rules of play.

The field set-up and rules of play are based on those of the Small-size league [1], with
adjustments as outlined below.

Field. The field of play is rectangular, 274cm by 152cm in size. The playing surface
is heavy green felt or carpet. There are goals at the long ends of the field: 70cm wide by
22cm high by 18cm deep. The field of play is marked with lines and does not have walls
(see figure 4). The organizers will place a digital video camera above the field, which
will send images to a central vision computer as described in section 2. The organizers
will also place IR transmitter(s) around the field, to send messages to all the robots on
the field (see section 3). The organizers will also supply a means to transmit the referee’s
signals to the robots; this will be a keyboard/mouse interface to the communications
computer.

Fig. 4. The ULeague field of play.

Robots and Ball. The ball is a standard orange-colored golf ball. Each team consists
of four robots. Teams may designate one of these robots to be a goalie, but this is not
required. Each robot must fit inside a cylinder 22cm in diameter and 22cm in height.
Robots are intended to use wheels or rubber tracks for locomotion. Metal spikes and
velcro are specifically prohibited for the purpose of locomotion. Robots do not com-
municate with each other directly; however, their client programs may communicate
with each other through sockets on the team computer. Before a game, each of the two
teams has a color assigned, either yellow or blue. The teams change colors and ends of
the field for the second half of a match. The organizers will supply circular markers of
each color, to be placed on the top of each robot so that they are visible by the overhead
camera.

Play. A human referee controls the game. The match lasts two equal periods of 10
minutes, with a half-time interval of 10 minutes. The clock will run at all times, with
allowances only made for major stoppages as per the FIFA laws. The game begins with
a kick-off by the team that wins the coin toss. The other team kicks off to begin the
second half of the game. The ball is out of play when it has completely crossed any

8
http://www.parallaxinc.com

9
http://www.handyboard.com

10
http://www.legomindstorms.com

of the field boundaries. The referee may stop all the robots using the referee interface,
retrieve the ball and resume play. A goal is scored when it fully crosses the goal line,
between the goal walls. The winning team is the one that scores the greater number of
goals during a match.

6 Summary.

We have presented our design for a new undergraduate league within RoboCup, as a
means for students who grow too old for RoboCupJunior to stay involved in the initia-
tive and as an entry level for new undergraduates and universities to gain experience
with RoboCup soccer. As well, the ULeague gives undergraduates who have tried the
RoboCup Simulator League a chance to experiment with physical robots without need-
ing to build a sophisticated and expensive hardware setup. The ULeague architecture
consists of a common platform for Vision and Communication. Both will be provided
by the league organizers at any competition venues.

There are still several open questions relating to the design of the ULeague. We
propose a field without walls, but how will this work in practice? Our proposed com-
munication mechanism has not been tested in a RoboCup competition yet; again, how
will this work in practice? The exact restrictions on robot platforms have not been de-
fined yet; what should these be?

The first full exhibition of this league will be held at RoboCupJunior-2003, in Padua,
Italy (July 2003). Presently, we have teams from three universities developing the league
(University of Manitoba, Canada; Columbia University, USA; Virginia Military Insti-
tute, USA). Teams from Australia, Iran and Singapore are also following along with
the development. We hope to open the league to any interested parties in 2004. Reg-
ularly updated information and a discussion board can be found on our web page:
http://www.robocupjunior.org/uleague.

7 Acknowledgements.

We gratefully acknowledge the work of the many students involved at the universities
of each of the co-authors.

References

1. http://www.itee.uq.edu.au/˜wyeth/f180rules.htm.
2. Jacky Baltes. Yuefei: Object orientation and id without additional markers. In RoboCup-01:

Robot Soccer World Cup V, New York, 2002. Springer.
3. Jacky Baltes and John Anderson. Learning orientation information using neural nets. In

submitted to Robocup-03 Symposium, 2003.
4. E. Sklar, A. Eguchi, and J. Johnson. RoboCupJunior: learning with educational robotics. In

Proceedings of RoboCup-2002: Robot Soccer World Cup VI, 2002.
5. Roger Y. Tsai. An efficient and accurate camera calibration technique for 3d machine vision.

In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1986.

