
An Agent-oriented Behavior-based Interface Framework
for Educational Robotics

M.Q. Azhar
Dept of Computer Science

Graduate Center
City University of New York

365 Fifth Avenue
New York, NY 10016, USA

mazhar@gc.cuny.edu

Rachel Goldman
Google, Inc.

1440 Broadway
New York, NY 10018 USA

rjg@google.com

Elizabeth Sklar
Dept of Computer and
Information Science

Brooklyn College
City University of New York

2900 Bedford Ave
Brooklyn, NY, USA 11210

sklar@sci.brooklyn.cuny.edu

ABSTRACT
This paper describes the development of an agent-oriented be-

havior-based interface framework for educational robotics. The

framework is designed to interact with multiple agent platforms

through an XML-based agent behavior language. Our longterm

goal is to create a standard middle ground that can act as a sort

of “magic black box” for current and future robotic platforms,

structured for use in educational settings where agent platforms

and operational environments vary greatly. The benefits of such a

system include:- ease of use: programmers only have to deal with

high-level abstractions; disappearing boundaries: programmers

are able to test and run the same behaviors on multiple platforms;

and interoperability: a standard behavior language is used for

multiple platforms.

1. INTRODUCTION
We use the term educational robotics to refer to the use of

robotics as a hands-on learning environment [17]. Many ed-
ucators are using robotics as a teaching tool for university-
level computer science, science and engineering courses as
well as schoolteachers at primary through pre-college levels
for technology and physical science subjects [17, 11, 20, 6,
3, 10, 4, 2]. Instructors have used robotics-inspired projects
to teach AI and robotics courses [10, 17]. Klassner and
Anderson [11] demonstrate the suitability of LEGO Mind-
storms [12] robots to support the ACM computing curricu-
lum through lab exercises and projects from beginning courses
in programming to advanced courses in operating systems,
compilers and networks. Fagin has used Ada-based robot-
ics [6] successfully for teaching college-level introduction to
programming courses.

One of the earliest efforts in this direction was undertaken
by Lynn Stein [20] who argues that computer science (CS)
students need to be better prepared for writing code that
will operate in a dynamic world. She promotes teaching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

students more multi-threaded, dynamic, re-active program-
ming techniques. The introduction of simple, inexpensive,
easy-to-use robotics kits (like the LEGO Mindstorms, which
became publicly available in 1999) is the ideal platform for
implementing Stein’s revolutionary approach to teaching in-
troductory computer science.

More recently, Blank et al. [3] introduced Pyro, a Python-
based programming framework which provides a set of ab-
stractions that allow students to write platform-independent
robot programs. This versatile programming environment
has been successfully integrated into a wide variety of ex-
isting computer science courses, from introductory program-
ming to advanced mobile robotics courses. One of the unique
features of Pyro is the write once/run anywhere (on any ro-
bot!) approach; whereas most robot programming interfaces
tend to be specific to particular robotic platforms.

Traditional computer programming environments are not
meant for responsive and autonomous objects, such as ro-
bots. It is partly due to the fact that the models and
metaphors underlying traditional programming languages
are not particularly suited to the task. The idea of pro-
gramming with “agents” help people create worlds involving
responsive, interacting agents [21]. In addition, we are not
looking to teach programming syntax but rather program-
ming concepts. Our agent-oriented behavior-based frame-
work effectively seperates four educational topics - agent-
based concepts, programming basics, mechanical engineer-
ing and physical world constraints [5].

There are several important practical factors that any ed-
ucator needs to take into consideration when integrating ro-
botics materials into their curriculum.

• Hardware: What kinds of robotics platforms are suit-
able and affordable for the particular curriculum? Cur-
rently, there are a wide variety of low-cost robotics
platforms available.

• Software: What kinds of programming environments
are available for the particular hardware platform cho-
sen and how student-friendly are they?

• Lack of “Practice” Environment: Most schools cannot
afford to let the students take the robotics kits home.
So, students can only program the robot during the
lab time [7]. What limitations does that put on the
types of projects that an instructor can assign?

• Multi-step Debugging Process: A continuing source of
irritation for anyone working in robotics lies in the
process of debugging whereby changes in code must
be tested by downloading modified code and then run-
ning it on the robot. This is a time-consuming, though
necessary, procedure; however, students tend to lose
patience when they have to test their changes repeat-
edly this way [5].

• Real-world Interaction: The unpredictability that ac-
companies work on robots operating in the “real world”
tends to lead to an even longer debugging process.
Again, this can take up valuable lab time and jeop-
ardize students’ ability to finish lab assignments and
projects on time.

In general, while the use of low-cost robotics platforms
in the classroom has many attractive features, such as mo-
tivating students and engaging non-traditional learners in
technology-based subjects, there are still several shortcom-
ings that must be overcome in order to realize the full poten-
tial of educational robotics as a practical learning environ-
ment. Particularly since time for “practice” on real robots
is limited, there is a need to reduce debugging time when
using physical robots in instructional settings.

Most robotics programming interfaces are designed for
university-level or late high school students and are imple-
mented as extensions to existing languages. For example,
Pyro is based on Python, Not-Quite C (NQC) [1] is based on
C, BrickOS [14] is based on C++ and leJOS [18] is based on
Java. There are fewer interfaces for students who lack pro-
gramming experience or interest in learning a programming
language. Probably the most well-known programming in-
terface used in instructional settings at the K-12 level for the
LEGO Mindstorms robot is RoboLab [22]. This is a graphi-
cal environment in which students are given “palettes” of
“icons” that they can drag and drop on a canvas. The
icons represent robot components like motors and sensors,
as well as abstract programming structures such as loops
and counter variables. Figure 1 contains a sample RoboLab
program.

Figure 1: Sample RoboLab program.
This program assumes that the robot has motors attached to
the ports labeled A and C. When executed, the program will

make the robot go forward for 2 seconds and then stop.

This paper describes the early development of an agent-
oriented, behavior-based interface framework designed to
address some of the shortcomings associated with the cur-
rent state of educational robotics. Our framework has the
capability to interact with multiple agent platforms through

an XML-based agent behavior language. Our longterm goal
is to create a standard middle ground that can act as a sort
of “magic black box”, for current and future robotic plat-
forms, following several design criteria:

• ease of use: programmers only have to deal with high-
level abstractions;

• disappearing boundaries: programmers are able to test
and run the same behaviors on multiple agent plat-
forms;

• interoperability: a standard behavior language is used
for multiple platforms; and

• flexibility: students from a wide range of backgrounds
and teachers with a broad range of goals can use the
system effectively, accommodating different levels, cur-
ricular needs, academic subjects and physical environ-
ments for instruction.

This paper is organized as follows. The next section pro-
vides an overview of our development approach, highlighting
key design criteria that have guided our process. Section 3
describes the implementation of the system, giving details
for one of three platforms for which we have written drivers
thus far. We conclude with a summary and discussion of
longterm goals and near future work.

2. OUR APPROACH
In essence, our approach encompasses the needs of both

users who want to utilize a pre-defined robot/agent behav-
ior hierarchy and users who want more control to define
their own behaviors for the robots/agents, using new com-
binations of low-level control structures and robot functions.
This ability to re-use and/or re-define at multiple levels blurs
the boundaries between the different robotics modules and
makes the entire system more adaptable to the user’s needs.
One of our long term aims is to be able to provide program-
mers with the option to enter the framework at any point
in the interface continuum and to move either towards inte-
grating pre-defined behaviors or towards re-defining existing
behaviors.

Our system provides control through a single integrated
interface. If, for a moment, we move away from the bottom-
up approach and focus on the top-down perspective, we can
begin to see what will be necessary for our behavior inter-
face. We have created a minimal set of agent behaviors that
can be programmed by selecting them from a specially de-
signed “behavior palette” (see Figure 2). Whereas standard
RoboLab groups icon palettes by functionality, our interface
groups icon palettes by behavior classes. Each class of be-
haviors can be expanded into sub-palettes that display the
associated lower-level behaviors.

Within the scope of the big picture, we not only look at
being able to run the same programs on multiple platforms,
but also hope to generate platform-specific code that can
be used as a learning tool and guide. Programmers would
have the ability to take generated code, modify and add to
it directly before it is run on the target platform. With
the big picture, we aim to create a consistent set of capa-
bilities across various software environments and platforms.
Although there are differences between the platforms that

Figure 2: Our Behavior Palette for RoboLab

need to be addressed (primarily related to sensors and ac-
tuators), we provide a standardized method for specifying
and generating behavior-oriented agents.

Because our particular application domain is a classroom
environment, we have identified a small subset of tasks that
are commonly explored in the classroom [17]. For example,
students are typically asked to develop the following high-
level behaviors when studying mobile robots:

• line following

• wall following

• object pushing

• obstacle avoidance

Each high-level behavior can be broken down into multiple
middle-level actions which, in turn, may be broken down fur-
ther into multiple low-level, platform-specific functions, thus
forming a functional hierarchy. Our initial development step
is to identify and implement the platform-specific low-level
functions that can be executed on a variety of platforms,
both in the virtual and physical worlds, with certain basic
commonalities. For development purposes, we have chosen
three target platforms and written drivers for each of these:

1. the LEGO Mindstorm Robotics Invention Kit [12],

2. the Sony AIBO legged robot [19], and

3. a virtual robotic agent inhabiting a simulated world,
implemented in Flash [13].

Our development strategy has been to combine a bottom-
up approach with a top-down approach. Using a top-down
approach, we identified (as above) a standard short list of be-
haviors; we refer to these as the high-level behaviors. Then,
we shift to a bottom-up approach and build the low-level
functions necessary to execute these behaviors on each of our
sample platforms. The final development step, which is the
primary contribution of the work presented here, has been
to connect the low-level functions to the high-level behav-
iors in such a way as to avoid any platform-specific features
or semantics, to allow for future expansion of our repertoire
at all levels, as we look toward adding new behaviors and

robot/agent platforms. For each of the four high-level be-
haviors listed above, we deconstruct the behavior into its
subsidiary parts. We select a set of common low-level func-
tions that are applicable to all the high-level behaviors we
have defined.

The following is an example of our decompostion of the
abstract behavior for line following. We assume that the
robot operates in an environment in which there is a colored
line, i.e., a line that is a sufficiently different color from the
background of the field on which it lies. We also assume
that the robot possesses some type of visual sensor that can
detect the line (i.e., a camera or a light sensor) Given these
constraints, the pseudo code for line following is:

follow_line {

loop(forever) {

locate_line()

re_orient()

deactivate(motors)

deactivate(sensors)

}

}

This pseudo code is comprised of one low-level function
(deactivate()), one low-level programming construct (loop),
and two high-level behaviors (locate_line() and re_orient()).
These latter two are further decomposed as:

locate_line {

activate(motors)

activate(sensors)

values = read(sensors)

process(values)

}

re_orient {

position(forward, backward, turn)

}

These behaviors consist only of low-level functions:
activate(), read(), process() and position().

Behavior Palette

High Level Behaviors

Low Level
Functions

leJOS ActionScript R-CODE

RCX Flash AIBO

XML-based
Middleware

Platform

Platform-specific
 Code

Stage 1

Stage 2

Figure 3: System architecture

3. IMPLEMENTATION
Figure 3 illustrates the architecture of our framework,

which revolves around middleware executed in two stages.
stage 1 translates the RoboLab output, which is in the

form of LEGO Assembly Language (LASM) commands, into
behavior-based XML using a module called lasm2xml. stage
2 consists of a platform-specific driver that converts our
behavior-based XML to the control code required by the
agent platform being used. Currently, we have developed
three individual second-stage drivers, one for each of the
three target platforms described in section 2.

The steps involved in using the system are as follows.
The user creates the program in RoboLab with our behavior
palette (see Figure 2), which is saved as a LASM file. We
will use the following RoboLab behavior-based program (see
Figure 4) through out this section as an example:

Figure 4: Behavior-based RoboLab Program

creates the following LASM (see Figure 5):

delt 0

task 0

pwr 1,2,7

dir 2,1

out 2,1

pwr 4,2,7

dir 2,4

out 2,4

wait 2,400

out 1,7

pwr 1,2,7

dir 2,1

out 2,1

pwr 4,2,7

dir 0,4

out 2,4

wait 2,400

out 1,7

pwr 1,2,7

dir 0,1

out 2,1

pwr 4,2,7

dir 0,4

out 2,4

wait 2,400

out 1,7

endt

Figure 5: LASM Program

In stage 1, the LASM file is used as input to the lasm2xml
module, which generates the robot’s behaviors in our XML
format. The lasm2xml module takes the LASM input and
creates XML equivalents (see Table 1) for the commands
that originated with the behavior palette in RoboLab.

Table 1: XML equivalence for behavior palette

RoboLab

Icons

XML Equivalence Description

<forward>value</forward> Move forward

for a speci-

fied distance

(mm)

<backward>value</backward> Move back-

ward for

a specified

distance

(mm)

<turnright>value

</turnright>

Turn right for

a specified de-

gree

<wait>value</wait> Wait for a

specified time

(sec)

We use the UNIX utilities lex and yacc [15] to implement
lasm2xml. In order to build an interpreter with lex and yacc,
there are two source files that need to be created: the lex
specification (a *.l file) and the yacc specification (a *.y

file). Figure 6 depicts how the two source files produce a
working compiler. Our lasm2xml.l holds the grammar for
translation and lasm2xml.y holds corresponding functions
for the grammar of our XML-based behavior language.

yacc

lex

lasm2xml.y

lasm2xml.l

y.tab.h
CC

(yyparse)
 y.tab.c

lex.yy.c
(yylex)

source

lasm2xml

captured ouput

Figure 6: lasm2xml driver using lex and yacc

Our lasm2xml produces the following XML (see Figure
7) for the behavior-based RoboLab program (see Figure 4)
where the target platform is Flash:

In stage 2, the user selects a destination platform and
executes the corresponding module to translate from the
XML-based middleware to the low-level, platform-specific
functions that can run directly on the platform of choice:

• xml2lejos → LEGO Mindstorms platform

• xml2aibo → Sony AIBO

• xml2flash → Flash simulator

<?xml version="1.0"?>

<behavior source=lasm destination=flash>

<command>

<forward>4</forward>

<turnright>4</turnright>

<backward>4</backward>

</command>

</behavior>

Figure 7: Behavior-based XML

In earlier work [5], we developed an agent-oriented simula-
tor in Flash [13] for the LEGO Mindstorms robot, and built
a prototype system for programming the agent in RoboLab
and feeding the LASM output directly into Flash. The cur-
rent implementation takes this notion one step further, by
abstracting the connection between the programming inter-
face (RoboLab) and the destination platform (Flash agent),
using XML, as output by lasm2xml. The first task is to
convert the XML input into the corresponding Flash “ac-
tion script” (the programming langauge used inside Flash)
commands. In this manner, low-level operations are masked
and grouped into abstracted behaviors. For instance, there
is no direct reference to the LEGO motors in the simu-
lator description. It should be noted that the xml2flash

module only handles simple sequential behaviors. Basic
control structures are under implementation. Because the
xml2flash simulation module only describes behaviors, the
simulator world is dynamic and can be created to model any
scenario. Lights, colors, and physical obstacles can be added
and removed. This structure follows the CML architecture
[8] where the agent behavior is separated from their virtual
world.

We have used the same lex-yacc environment for creating
code to run on the other two target platforms: the Sony
AIBO (i.e., using a module called xml2aibo) and the LEGO
Mindstorms via the leJOS Java-based programming environ-
ment (i.e., using a module called xml2lejos). The xml2aibo
module creates an“R-CODE” [16] file, which will be exe-
cuted in the R-CODE environment on the AIBO robot. An
example is shown in Figure 8.

The xml2lejos module creates a “leJOS” [18] specific
Java file, which will be executed in the leJOS (LEGO Java
Operating System) on a LEGO robot.

4. CONCLUSION
We have described the development of our agent-oriented

behavior-based interface framework for educational robotics.
Our current system is based not only on previous research,
but also on the foundation of relevant pedagogical and tech-
nical theory [9]. However, there are several questions that
still need to be addressed.

The main outstanding questions are:

1. where should the borderlines for the behavior decom-
position be drawn?

2. should the different behavior levels overlap?

3. how should the different behavior levels interact?

4. how can we create coherent sets of XML tags for each
behavior that will work on every robot platform?

:Start

PLAY:ACTION:STAND

WAIT

PUSH:4

CALL:Forward:1

WAIT

PUSH:4

CALL:Turn_Right:1

WAIT

PUSH:4

CALL:Backward:1

WAIT

**

* BEHAVIOR FUNCTIONS *

**

/***

* walk forward for a specified distance in mm

***/

:Forward //pass a distance

ARG:distance

PLAY:ACTION:WALK:0:distance

RETURN

/***

* walk backward for a specified distance in mm

***/

:Backward //pass a distance

ARG:distance

PLAY:ACTION:WALK:180:distance

RETURN

/***

* turn a specified number of degrees 2 the right

***/

:Turn_Right //pass a degree

ARG:degrees

PLAY:ACTION:TURN:-degrees

RETURN

Figure 8: R-CODE example

For instance, R-CODE which is specific to AIBO does not
have a time parameter for the forward command; instead it
takes a distance parameter. On the contrary, most plat-
forms (i.e., leJOS, brickOS, RoboLab) specific to LEGO
Mindstorms platform take a time parameter for the forward
command. Thus, the parameter differs across various target
robot platforms for the same low-level functions.

The answers to these questions depend on the overall fo-
cus: simplicity versus control. For simplicity (and currently
for the purposes of testing), all the behaviors including the
higher-level behaviors should be implemented on the tar-
get platform. This will make the middleware specification
simpler but will remove control from the user. The user
will be locked into the high-level behavior implementations
that have been pre-defined. For control, the user should
have the ability to define mid-level actions and high-level
behaviors based on the system hierarchy. By allowing the
user to have more control, the degree of specification will
increase. In this case, the middleware will have to provide
a means for decision-making, looping and structuring be-

haviors. The immediate conclusion after implementing the
low-level behaviors is that our system will not be a set of
discrete components. The boundaries between the different
modules are without precise definition. This will allow for
more flexibility in the long term.

We hope to address these issues and more in the future.
We believe that the successful implementation of XML-based
middleware demonstrates the feasibility and viability of our
proposed architecture.

5. REFERENCES
[1] D. Baum. NQC.

http://bricxcc.sourceforge.net/nqc/, accessed
January 16, 2006.

[2] R. D. Beer, H. J. Chiel, and R. F. Drushel. Using
autonomous robotics to teach science and engineering.
Communications of the ACM, 42(6), June 1999.

[3] D. S. Blank, D. Kumar, L. Meeden, and H. Yanco.
Pyro: A python-based versatile programming
environment for teaching robotics. Journal on
Educational Resources in Computing(JERIC), Special
issue on robotics in undergraduate education. Part 2,
4(3):1–15, 2004.

[4] M. Carbonaro, M. Rex, and J. Chambers. Using
LEGO Robotics in a Project-Based Environment. The
Interactive Multimedia Electronic Journal of
Computer-Enhanced Learning (IMEJ), 6(1), June
2004.

[5] K.-H. Chu, R. Goldman, and E. Sklar. Roboxap: an
agent-based educational robotics simulator. In
Agent-based Systems for Human Learning Workshop
at AAMAS-2005, 2005.

[6] B. Fagin. Using ada-based robotics to teach computer
science. In ITiCSE ’00: Proceedings of the 5th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation
and Technology in Computer Science Education, 2000.

[7] B. Fagin. Ada/Mindstorms 3.0: A computational
environment for introductory robotics and
programming. IEEE Robotics and Automation
Magazine, 10(2):19–24, June 2003.

[8] J. Funge, X. Tu, and D. Terzopoulos. Knowledge,
reasoning and planning for intelligent characters. In In
Siggraph 1999, Computer Graphics Proceedings, Alyn
Rockwood (Editor), pages 29–38. Addison Wesley
Longman, Los Angeles, 1999, 1999.

[9] R. Goldman. From robolab to aibo: Capturing agent
behavior. Master’s thesis, Columbia University
Department of Computer Science, NY, 2005.

[10] F. Klassner. A case study of lego mindstorms
suitability for artificial intelligence and robotics
courses at the college level. In Proceeding of the 33rd
SIGCSE Technical Symposium on Computer Science
Education, 2002.

[11] F. Klassner and S. Anderson. LEGO MindStorms:
Not just for K-12 anymore. IEEE Robotics and
Automation, 10(2):12–18, June 2003.

[12] LEGO. Mindstorms robotics invention kit.
http://www.legomindstorms.com/.

[13] Macromedia. Flash.
http://www.macromedia.com/software/flash/,
accessed January 16, 2006.

[14] N. Markus. brickOS.
http://brickos.sourceforge.net/, accessed January
16, 2006.

[15] T. Niemann. A Compact Guide to Lex and Yacc.
epaperpress.com, 2006.

[16] R-CODE. SDK. http://openr.aibo.com/openr
/eng/no perm/faq rcode.php4, accessed January 16,
2006.

[17] E. Sklar, S. Parsons, and P. Stone. Using RoboCup in
university-level computer science education. Journal
on Educational Resources in Computing (JERIC),
Special Issue on robotics in undergraduate education,
part I, 4(2), September 2004.

[18] J. Solorzano. leJOS. http://lejos.sourceforge.net,
accessed January 16, 2006.

[19] Sony. AIBO. http://www.us.aibo.com/, accessed
January 16, 2006.

[20] L. A. Stein. Rethinking cs101: Or, how robots
revolutionize introductory computer programming.
Computer Science Education, 1996.

[21] M. D. Travers. Programming with Agents: New
metaphors for thinking about computation. PhD thesis,
MIT, 1996. Supervisor- Marvin Minsky and Mitchel
Resnick.

[22] Tufts University. RoboLab.
http://www.ceeo.tufts.edu/robolabatceeo/,
accessed January 16, 2006.

