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Abstract

This paper describes the design and implementation of
a new, simplified, entry-level RoboCup league and its
integration into an introductory robotics and artificial
intelligence curriculum. This E-League allows teams to
focus on individual aspects such as hardware platform
development or multi agent coordination, because the
league provides modular solutions for several compo-
nents and lets teams concentrate on chosen area(s) in-
stead of requiring that all teams solve all aspects of a
coordinated RoboCup team.

Introduction
This paper describes the design and implementation of a
new, simplified, entry-level RoboCup league (Anderson et
al. 2003) and its integration into an introductory robotics
and artificial intelligence curriculum. RoboCup, initiated in
1997, was designed to bring together robotics and artificial
intelligence researchers world-wide by providing a common
problem that would require advances in many fields and a
collective approach to solve (Kitano et al. 1997). The
chosen arena was robotic soccer, currently played by au-
tonomous robots in several categories — leagues — which
vary in physical size, cost, type of hardware platform and
approaches to vision and software control. In 2000, the
RoboCupJunior division was formed, with the goal of in-
troducing young students (primary through high school) to
RoboCup and providing them with an exciting and mo-
tivating way to learn about technology through hands-on
experiences (Sklar, Eguchi, & Johnson 2002).

Four years later, there is now a growing population of
RoboCupJunior “graduates” who are interested in continu-
ing with their efforts but do not have a place within the initia-
tive because they do not have the resources required to enter
the senior leagues. Some of these students may be attend-
ing a university that has an existing RoboCup team, so that
by the time they are advanced undergraduates, they will per-
haps have an opportunity to participate on a senior league
team. But other students attend universities where there is
no RoboCup senior team and/or no robotics lab capable of
producing one. For these students, participation as under-
graduates is not an option. We were thus motivated to create
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an entry-level league for RoboCup, not only RoboCupJunior
veterans but also for students new to RoboCup.

In developing this new league, which we call the E-
League, we have discovered that in addition to the practi-
cal rationale of providing a stepping stone for undergradu-
ate students, the new setup also offers unique research chal-
lenges and teaching opportunities. Since the league pro-
vides a common, modular solution to each of the team as-
pects (e.g., vision, communication and control), teams can
choose one component as their focus and use the standard
solution for the other components. This means that teams
could choose an off-the-shelf hardware platform, such as
LEGO Mindstorms, and put their efforts into designing arti-
ficial intelligence techniques such as path-planning or multi
agent techniques such as coordination.

This paper first outlines our efforts so far in developing
the league, detailing the setup and outlining the rules. The
second part of the paper discusses use of the league within
an introductory course in embodied agents.

Technical description
The initial goal of the league described herein is to provide a
stepping stone from RoboCupJunior (RCJ) to participation
in the senior Small-Size League (SSL) or Mid-Size League.
There is significant leap in both expertise and resources nec-
essary to be a competitive entrant in these RoboCup leagues
as compared to RCJ. We estimate that it takes approximately
two years to build a RoboCup team from scratch, which is a
large time commitment for undergraduate students.

Another problem is the sophistication of the robots used
in the SSL and their cost. A typical SSL team has robots
that have omni-directional drives, dribble bars and power-
ful kicking mechanisms. Such a robot has four to six high
quality motors and a powerful on-board processor to con-
trol them. Each one of these robots costs around US$3,000.
Added to this is the cost of high quality video cameras.
These and other expenses typically drive the cost for a team
to around US$20,000–US$30,000.

For these reasons, it is difficult for students that are too
old for RCJ but are not part of an already established senior
team to either enter or continue involvement with RoboCup.
The E-League is intended to provide a scaled-down and
less expensive version of the SSL for entry-level students.
Competition in this new league will provide students with a



problem-solving experience that will also be useful in future
robotics projects. To achieve this goal, the simplified league
factors out the most complex aspects of the SSL, namely
vision processing and communication, and provides a com-
mon architecture for robot development. Further details of
the E-League architecture are provided in the next sections
of this paper.

We have chosen the RoboCup Small-Size League as our
model. Given this, we have identified two major stumbling
blocks for teams entering the SSL: vision and communica-
tion. For the E-League, our idea is to provide a standard so-
lution for these two aspects and have teams build the rest1.
Figure 1 illustrates the current model for the league.
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Figure 1: High-level architecture of the E-League.

As shown in Figure 1, the vision and communication
components are standard solutions defined and provided by
the league. This simplifies practical issues of having to
transport and set up cameras as well as the significant prob-
lem of coordinating frequencies for multiple communication
systems. The next sections detail our plans for the league’s
vision and communication.

Vision
The E-League uses a standard vision software package to
make it easier for teams to enter the league and to speed
up the competition. Once the vision software is installed,
calibrated and running, it is easy to have multiple playing
fields and teams can quickly move from one playing field
to another. This would not be possible otherwise, since it
takes even experienced SSL teams three to five hours to set
up their system on a new playing field. Without the need to
move, set up and calibrate cameras, we can have more teams
and more games.

In the first year, the league organizers chose to use
the Doraemon video server package developed by Jacky
Baltes2 (Baltes 2002). This software is open source soft-
ware released under the Gnu Public License. The Doraemon
video server has been in development for over four years and

1Note that we also provide a very simple control program
for teams that want to focus primarily on hardware development,
which may be the case for electrical and/or mechanical engineering
classes.

2
http://sourceforge.net/projects/robocup-video

has been used by several robotic teams in international com-
petitions, including RoboCup. Between 1999 and 2002, Do-
raemon was used by the University of Auckland Small-Size
team and was improved and updated each year. It has also
been used for two years in the Singapore robotic games.

The cheapest and most practical solution for video cap-
ture is to connect a camcorder or surveillance camera with
Composite or S-Video out to a Conexant-based frame grab-
ber card 3, e.g., a Hauppauge WinTV PCI board4. Note that
PVR devices are not compatible with Video4Linux, so these
should not be used. The most straightforward option is to
use a digital video decoder built on the bt878 chip that runs
with a bttv driver5.

Doraemon includes real-time camera calibration, color
calibration and object tracking components. Doraemon also
has the ability to calibrate the geometry of the scene from
any view, meaning that it is not necessary to have the camera
mounted directly overhead relative to the playing field, nor
is it necessary to add a wide-angle lens to the camera. Cur-
rently, the system is employed with robots wearing colored
“hats” or bar codes, but there are also more sophisticated
object recognizers that use only a single colored spot on the
robot (Baltes 2002). The developers are currently working
on a pattern-recognition process using neural networks that
does not require any markers (Baltes & Anderson 2003).

Doraemon transmits the position, orientation and veloc-
ity of all objects that were found to all clients listening on
Ethernet. The messages are transmitted in ASCII via UDP
broadcast in a single package. Each message contains eleven
of lines: two lines of header information, one line for ball in-
formation and eight lines for robot information. An example
is shown in Figure 2.

LineNum content
0 9 1073821804 0.0013
1 -76.3836 -1820.48 2356.39
2 1 ball NoFnd 971.056 840.711 35 0 -2.316 58.146
3 0 b0 Found 1185.59 309.187 100 0.059 499.282 285.083
4 0 b1 Found 1158.59 308.198 100 0.059 499.282 285.083
5 0 b2 Found 1086.95 309.187 100 0.059 499.282 285.083
6 0 b3 Found 1185.59 309.187 100 0.059 499.282 285.083
7 0 y0 Found 989.95 304.588 100 -0.101 413.528 -1.085
8 0 y1 NoFnd 1189.95 304.588 100 -0.101 413.528 -1.085
9 0 y2 Found 1189.95 304.588 100 -0.101 413.528 -1.085
10 0 y3 Found 1189.95 304.588 100 -0.101 413.528 -1.085

Figure 2: Sample output message from Doraemon.

The first line of each message contains (a) the number of
objects (NumObj = 9) that video server is currently track-
ing; (b) the absolute frame number; and (c) the time differ-
ence in seconds between this message and the previous mes-
sage. A client can use the absolute frame number and time
difference value to determine if any frames were dropped by
the video server. See line 0 in Figure 2.

The second line of each message contains the coordinates
(Cx, Cy, Cz), in millimeters, of the camera with respect to
the real-world coordinate system. This is used in distributed
vision or stereoscopic vision applications and will not be

3
http://www.conexant.com

4
http://www.hauppauge.com

5
http://www.bytesex.org/bttv



used in this league. The example shows that in this case,
the camera was mounted 2.3m above the playing field. See
line 1 in Figure 2.

Following this package header, there are NumObj lines,
one for each object that the video server is tracking (i.e., 9
here). Each object line contains the following information:

• the type of object (0=robot, 1=ball);

• the name of the object;

• whether the object was found in the image or if the video
server did not find the object and predicted the positions
based on previous motion;

• the x, y, and z coordinates of the object, in millimeters;

• the orientation of the object in radians; and

• the velocity of the object in the x and y directions.

The names used for each of the nine objects are ball for
the ball, b0 through b3 for the four robots on the blue team
and y0 through y3 for the four robots on the yellow team.
See lines 2 through 10 in Figure 2.

This example shows that ball was not found and that
the best estimate of the video server about the position of
the ball is (x = 971, y = 840, z = 35). A ball has no orien-
tation and the video server always gives it an orientation of 0
radians. Note that the height (z-coordinate) of all objects is
fixed if only a single camera view is used. For example, the
height of the ball is 3.5cm and the height of the robot in the
next line (below) is 10cm. The best guess for the velocity of
the ball is a vector (dx=-2,dy=58).

This example shows that the robot b0 was found at posi-
tion (x=1185, y=309, z=100). The orientation of the robot
is about 0 degrees and its motion is given by the vector
(dx=499, dy=285).

Communication
The Communications component of the league consists of
two paths. One path goes from each team’s client program
to the Communication Server. We refer to this as the input,
or read, path. The second path goes from the Communica-
tion Server to the robots, and we refer to this as the output, or
write, path. We have defined protocols for both paths. The
Communication Server contains two threads, one for read-
ing messages from clients and one for writing messages to
robots.

Input messages are passed along an Ethernet link, con-
necting each team’s computer (labeled team1 and team2 in
Figure 1) to the computer where the Communication Server
is running (labeled comm in Figure 1). The Comm Server
listens for messages from clients on a socket. The clients
send ASCII messages of the form:

[name]:[msg]\n

where [name] is the name of the robot (as above, b0
through b3 and y0 through y3) and [msg] is an 8-bit (one
byte) message to be sent to the specified robot, i.e., a num-
ber between 0 and 127 (however value 0 is reserved as a
NULL command, described below). Thus an example of a
complete message would be:

y0:123\n.

The Comm Server maintains an 8-byte command buffer, one
byte per robot. Each time an input message is received, the
Comm Server updates the byte corresponding to the robot
specified in the message. There is no restriction on the fre-
quency with which a client can send a message to the Comm
Server. However, keeping within the spirit of the league, we
expect that teams will not flood the Comm Server’s input
channel. In practice, we may find that some type of restric-
tion on the frequency of message transmission is necessary.

Output messages are transmitted to robots using a stan-
dard Infra-Red (IR) transmitter connected to the computer
via a serial port or USB port. We have been working with
the communication tower that comes with the LEGO Mind-
storms kit as well as our own custom built infrared trans-
mitter. The Lego tower with two IR transmitter diodes is
powerful enough for small labs, but more transmitter diodes
are needed for larger playing fields and for adverse envi-
ronments, such as the vast, open venues where competitions
are typically held. Our custom built interface accommodates
several transmitter pods with six or twelve diodes6. PCB
layouts and firmware are available.

The output thread writes continuously to the serial or USB
port — wherever the IR transmitter is connected. The Comm
Server transmits messages of the form:

[START][command-buffer][CHKSUM]

where [START] is a one-byte start value (255) and
[CHKSUM] is a one-byte checksum value (only three bits
are used, so the values of the checksum ranges from 0 to 7).

The process for the Comm Server output thread is as fol-
lows:

1. Lock the command buffer (to prevent the input thread
from making changes to it temporarily).

2. Copy the command buffer to the transmit buffer.

3. Set all 8 bytes in the command buffer to 0 (NULL com-
mand).

4. Release the lock on the command buffer.

5. Calculate the checksum value.

6. Append the checksum to the end of the transmit buffer.

7. Prepend the start value to the front of the transmit buffer

8. Send the transmit buffer over the IR link.

9. Clear the transmit buffer.

Robot Platform
An E-League team consists of 4 robots. The league does
not use one standard robot platform (like, for example, the
RoboCup 4-Legged League, which uses the Sony AIBO).
However, platform specifications are in place to keep teams
on an equal plane regarding the cost and sophistication of
the robot hardware. Thus we provide maximum specifica-
tions for processor capability, in terms of size (RAM) and
speed. This allows the option either to purchase an off-the-
shelf robot kit or to build one from basic components. Below

6
http://www.cs.umanitoba.ca/˜jacky/RoboCup-Uleague/



we list several popular robotic kits that are within the range
we are currently testing.

• Basic Stamp Board of Education (BOE Bot)
BASIC Stamp 2 (Parallax custom PIC 16C57C-20/SS)
speed: 20MHz
memory: 2K
approximate cost: US$229
programming interface: PBASIC
http://www.parallaxinc.com

• Handyboard
Motorola 68HC11
speed: 2MHz
memory: 32K
approximate cost: US$219
programming interface: Interactive C
http://www.handyboard.com

• LEGO Mindstorms 2.0
Hitachi H8/3293
speed: 10MHz
memory: 32K
approximate cost: US$199
programming interface: RCX Code, RoboLab,

Not-Quite C (NQC),
BrickOS and more

http://www.legomindstorms.com

Course
We have been developing an undergraduate course in in-
troductory robotics which uses the RoboCup E-League as
a hands-on environment for experimenting with the topics
and concepts discussed in the course. The curriculum cov-
ers twelve basic topics in introductory robotics, or embod-
ied agents. Students use the LEGO Mindstorms platform
for experimentation and the Not Quite C programming lan-
guage7 (Baum 2000; Baum et al. 2000).

The course is divided into lecture and lab components.
The lecture topics follow from the list itemized below, ap-
proximately once per week. If there is extra time in the term,
it is interesting to add topics such as Robots and Society,
Science Fiction (e.g., “I, Robot” (Asimov 1950)), Cognitive
Science (Minsky 1987), Synthetic Psychology (e.g., Brait-
enberg vehicles (Braitenberg 1984)) and Human-Robot in-
teraction.

• Introduction to embodied agents. The course begins
with an introduction to robotics and agent-based artifi-
cial intelligence (Russell & Norvig 1995). Some of the
basics of building with and programming LEGO Mind-
storms (Martin 1996; Martin et al. 2000) using Not Quite
C (NQC) are covered. Lab exercises introduce the basics
of NQC programming.

• Motors, effectors and actuators. Design and opera-
tion of robot actuators are discussed (McKerrow 1991;
Martin 2000). This includes the basic types of actuators
and how robots are typically grouped according to their
7
http://www.baumfamily.org/nqc/index.html

implementation (i.e., mobile robots, grasping robots, etc).
Different modes of locomotion are described. Degrees of
freedom are explained. Lab exercises let students exper-
iment with different types of locomotion, such as wheels
versus treads and 2-, 3- and 4-wheeled robots using dif-
ferent drive-train configurations.

• Sensors and vision. Design and operation of robot sen-
sors are outlined (McKerrow 1991; Martin 2000). De-
tailed discussion of robot vision ensues, including in par-
ticular, operation of the Doraemon vision server. Basic
algorithms for object detection and color calibration are
described. Lab exercises give students the opportunity to
learn how to calibrate the vision server and experiment
with various lighting conditions.

• Knowledge representation: mapping and memory. Var-
ious methodologies for knowledge representation are
discussed (Nilsson 1998). The development of method-
ologies for memory management (e.g., long-term versus
short-term) are outlined, based on the historical AI litera-
ture. These general techniques are applied to robotics for
handling tasks such as localization and mapping of the
environment. Lab exercises include a simple localization
task.

• Control I: deliberative, reactive and hybrid architectures.
The history of robot control is presented (Murphy 2000).
Early attempts at deliberative and reactive solutions are
described, as well as the development of hybrid architec-
tures. The trade-offs of each type are discussed. In lab,
students program their robots using deliberative and reac-
tive architectures.

• Control II: subsumption (layered) and behavior-based
architectures. The classic Brooks subsumption archi-
tecture is presented (Brooks 1986), along with a vari-
ety of behavior-based control techniques which followed
historically (Arkin 1998; Birk 1998; Mataric 1997). Lab
exercises have students constructing a simple subsump-
tion architecture for their robots.

• Control III: BDI architectures. The development of
agent-based control systems is described (Wooldridge
2002). In particular, Belief-Desire-Intention (BDI) archi-
tectures. In the lab, students modify their robots to use a
BDI architecture.

• Robotic Simulators. The notion of robotic simulators is
discussed (Balch 1998; Noda & Stone 2003), both as
tools for developing high-level multi robot behaviors as
well as low-level individual robot control algorithms. The
benefits and drawbacks of using robotic simulators is dis-
cussed. The RoboCup Simulator League is described.
As a lab exercise, students experiment with the either the
RoboCup simulator or a simplified alternative. Note that
the use of the RoboCup Simulator can require non-trivial
start-up time. Some packages have been developed that
ease interfacing to the simulator; these may be used in
conjunction with the RoboCup simulator.

• Learning I: Reinforcement learning. Learning in robots
is introduced (Mataric 1994). The classic reinforcement
learning algorithms are outlined (Kaebling, Littman, &



Moore 1996). Students use the RoboCup simulator to pro-
gram a simple reinforcement learning task.

• Learning II: Evolutionary learning. Evolutionary and
co-evolutionary learning techniques are described, in
particular genetic algorithms, perceptrons and neural
networks (Harvey, Husbands, & Cliff 1992; Watson, Fi-
cici, & Pollack 1999). Their application to robot con-
trollers is presented. Lab exercises involve programming
a simple evolutionary algorithm.

• Multi Robot Societies I: Communication. Methods of
communication between robots are discussed, primarily
from a software, agent-based perspective (Wooldridge
2002).

• Multi Robot Societies II: Artificial Life. Multi robot be-
haviors such as swarming are described here (Colorni,
Dorigo, & Maniezzo 1992; Balch, Khan, & Veloso 2001).
Examples from nature are presented, such as ant behav-
iors. Team behaviors are also discussed, in particular as
they relate to RoboCup soccer.

As indicated above, the lab components employ the tech-
niques discussed in lecture, building week by week toward a
RoboCup team that uses the setup described in the first part
of this paper. The students can be split into small groups of
2-4 students; and each group can work on building and pro-
gramming one robot. Another option is to divide the class
into larger groups and have each group build an entire team.

Assessment for the course includes exams, weekly read-
ing and lab assignments, and two robot contests using the
setup described in the previous section. The first contest,
held about mid-way through the term, involves robot “chal-
lenges” such as penalty kicks and an obstacle course through
the soccer field. The second contest, held at the end of the
semester, is a full soccer game. These contests are extremely
motivating for the students.

A course like this provides good opportunities for students
to improve non-curricular skills such as teamwork, technical
writing and oral communication. Students should be encour-
aged to keep lab notebooks and write up experiments con-
ducted throughout the term. A lab report can be submitted
following each contest. RoboCup team description papers
can be used as examples. These are found in the proceedings
of the RoboCup Symposia, published each year (since 1997)
as a Springer Verlag Lecture Notes volume8. As part of the
contests, students should be encouraged to describe to their
classmates their robot hardware and software in oral pre-
sentations. Formal, conference-style presentations are very
effective. Students can be required to produce slides and
prepare concise 10-minute talks. They should be required to
listen to each others’ presentations and ask questions at the
end.

Summary
We have presented our design for the E-League, a new,
entry-level league within RoboCup, providing a place for

8Up until 2001, these were included in the printed book; subse-
quently, they are on CDROM.

new undergraduates or entry-level students. The straightfor-
ward setup also offers instructors an exciting way to give
their students hands-on experiences with embodied agents,
to support introductory robotics and/or artificial intelligence
curriculum.

The league architecture consists of a common platform
for Vision and Communication. Both will be provided by
the league organizers at any competition venues. Precise
specifications for these platforms will be made available to
any teams who wish to participate, so that they may build
equivalent setups in their home labs in order to practice and
develop their teams. Some of these details are already avail-
able as open source software.

The league will be open to interested parties in 2004. Reg-
ularly updated information and a discussion board can be
found on our web page:

http://agents.cs.columbia.edu/eleague

As well, full details of the curriculum described here will
become available on this web site.
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