
RoboXAP: an agent-based educational robotics simulator

Kar-Hai Chu1, Rachel Goldman1 and Elizabeth Sklar2

1 Department of Computer Science
Columbia University

New York, NY 10027 USA
kmc2103,rg2020@columbia.edu

2 Department of Computer and Information Science
Brooklyn College, City University of New York

Brooklyn, NY 11210 USA
sklar@sci.brooklyn.cuny.edu

Abstract

We describe an agent-based educational robotics sim-
ulator for children that we have built based on the popu-
lar RoboLab graphical programming environment and the
LEGO Mindstorms robot. Motivated by practical as well
as pedagogical issues, we developed the RoboXAP environ-
ment to try and overcome some of the key difficulties en-
countered when implementing educational robotics curricu-
lum for kids.

1. Introduction

We have developed an agent-based simulation environ-
ment for children, designed to be used in conjunction with
the popular RoboLab [25] graphical programming interface
and LEGO Mindstorms [21] robotic platform. The idea is
to give students an opportunity to learn about agent-based
programming by using RoboLab in a “safe and friendly”
place – they can “try out” programs in our simulator be-
fore loading them onto the robot platform and before being
faced with real-world, physical constraints and issues such
as noise. Once students have debugged their programs in
the simulator, they can then download them onto the LEGO
robot and see, e.g., how noise within the physical world
may affect their robot and control code. This effectively
separates four educational topics — agent-based concepts,
programming basics, mechanical engineering and physical
world constraints.

From a practical standpoint, students can work in
readily-accessible computer labs and make progress with
programming tasks on days when they do not have ac-
cess to the physical robots, either because of lack of time or

shortage of equipment. From a pedagogical standpoint, stu-
dents have a simulation environment in which they can
check if a source of error is in their program (rather than in
the mechanics of their robot or from noise in the environ-
ment).

This paper presents the design of our RoboXAP (pro-
nounced “robo-zap”) agent-based simulation environment.
We begin with a brief overview of the system architecture
and background. This is followed by technical details of
how the system works. Then we highlight an informal study
we conducted with a small number of children at an after-
school program in order to get feedback on the design of
the simulator. The closing section outlines plans for a pi-
lot study to be conducted in Spring 2005.

We acknowledge that many, many simulation and robotic
environments exist for kids, starting with Papert’s Turtle
LOGO [23]. From MicroWorlds [20] to NetLogo [22] to
googol-Choo-Choo [13] to AddictingGames.com [1], there
is a vast variety in application technologies, goals and con-
tent. Our work capitalizes on the popularity of RoboLab
and aims to solve particular implementaion problems, as de-
scribed above. As such, we do not in this paper provide any
comparison with other simulation or robotic environments
for kids; there simply is not another simulator built to be
used in conjunction with RoboLab that addresses the par-
ticular issues we have highlighted and emphasizes an agent
behavior-based model for constructing robot control code.
Here we focus on the technical description and background
that contributed to our design decisions. Future work will
constrast RoboXAP with other kids’ environments and will
also strive to compare on-line versus hands-on learning ex-
periences.



2. System Overview

The RoboLab [6, 25] programming environment, de-
veloped as a joint project between the Tufts School of
Education, the Tufts School of Engineering and the Na-
tional Instruments Corporation, combines the National
Instruments’ LabVIEW graphical programming ap-
proach with RCX code (developed by LEGO) to create
a flexible and understandable way to write control soft-
ware for the LEGO Mindstorms robots. A sample is shown
in figure 1. Hardware entities such as motors and sen-
sors are represented by rectangular icons on the screen,
and users drag and drop them, using a mouse, to cre-
ate “code”. The icons must be strung together using
“wires”, and all programs must bedownloadedfrom Robo-
Lab onto the LEGO brick in order to be executed. The
environment is highly visual and gives a good first experi-
ence with procedural programming concepts.

The purpose of RoboLab is to provide an educational
tool for both children and adults. The graphical program-
ming environment scaffolds its levels of programming, al-
lowing users to produce results and acquire skills early on
without having to read large and complicated manuals. The
ability for students of all ages to employ the same tool-set
enables all users to focus more on exploring and learning
about programming and robotics, and less on learning how
to use the software development environment.

Figure 1. A RoboLab program that tells the
robot to go forward until the light sensor
reads a value less than 40; then stop. “Modi-
fiers” hang down from the main control loop,
which moves horizontally across the dia-
gram, and indicate speeds, thresholds and
port connections.

Our goal with RoboXAP is to provide an intermediate
simulation layer, between the RoboLab environment and
the LEGO robot, for the practical and pedagogical reasons
outlined earlier. A further, longterm goal is to develop an in-
terface by which RoboLab could be used to program mul-
tiple types of robot platforms, in addition to the LEGO
Mindstorms and our RoboXAP simulator. For example, we
have been using Sony AIBO robots in our lab (see figure
3) for conducting research on robot coordination tasks us-
ing an agent, behavior-based control architecture [11]. The

(a) The RCX microcontroller; (b) A light sensor.

Figure 2. Components of the LEGO Mind-
storms Robotics Kit. The RCX has 3 output
ports and 3 input ports. Motors plug into the
output ports. Sensors, such as the light sen-
sor shown here, plug into input ports.

AIBO’s are programmed in C++ using an open develop-
ment environment calledOPENR. This work has informed
the development of RoboXAP as detailed in the following
sections.

Figure 3. Sony AIBO robot

The overall system architecture is illustrated in figure 4.
The basic components are (1) a graphical programming en-
vironment (RoboLab), (2) a middleware layer that translates
between the programming environment and code that can
be downloaded into a simulator or onto robot hardware, and
the (3a) simulation environment or (3b) the robot itself. The
solid lines and arrows in the diagram indicate the flow of
code, from RoboLab through the translation step and into
the simulator. The dashed lines and arrows indicate a user’s
development cycle — students write code in the program-
ming environment, which gets sent either to the simulator
or the robot for testing; and then they can return to the pro-
gramming environment to fix bugs and expand their pro-
grams.

When dealing with varying robotic platforms, even with
a relatively simple one like the LEGO Mindstorms, it is ef-
fective for students to be able to classify and specify be-
havior patterns for their robots. Behavior patterns can range
from basic behaviors, such as “move forward for 4 sec-



Flash
Sony AIBO

simulator
software

RoboXAP
(3a)

translation
engine

XAP
(2)

programming
environment

RoboLab
(1)

robot
hardware

(3b)

LASM

XML

LEGO Mindstorms

Figure 4. Overview of system architecture

onds”, to complex behaviors such as “open a gate” or “move
food to where the pets are kept”1. Due to the complexity
of defining and implementing robot behaviors, many con-
trol architectures are designed to build complex behaviors
out of simple, low-level commands [18]. We take advantage
of this trend for constructing our middleware layer, which
uses the popular Extensible Markup Language XML. The
idea is to define low-level behaviors, such as “move forward
for 4 seconds”, that are constructed out of multiple Robo-
Lab icons but translate into a parameterized XML “tag” so
that specification of behaviors is platform independent. For
example, for a LEGO robot to move forward, it must turn
on two motors that make its wheels spin; but for an AIBO
robot to move forward, it must coordinate multiple motors
that control the joints in its four legs.

It is important to note here that RoboXAP currently as-
sumes the use of a standard hardware configuration for the
LEGO robot, namely a wheeled design that has motors con-
trolling each of two wheels as shown in figure 5. When
RoboXAP is deployed in classrooms, students will be given
a set of building constraints corresponding to the limitations
of the simulator. As the simulator becomes more sophisti-
cated, we will be able to support a more diverse set of robot
body constructions.

The remainder of the paper is focused primarily on the
technical background and details of the system.

1 This is one of the challenges for the FIRST Lego League 2005 com-
petition (http://www.firstlegoleague.org/).

Figure 5. LEGO Mindstorms robot configured
for RoboXAP

3. Technical Background

Since the initial release of the Extensible Markup Lan-
guage XML [3] in 1998, a myriad of XML-based behav-
ior languages have been developed capitalizing on many of
the key features [26] of XML. Specifically, XML is popu-
lar for structuring and representing complex data; however,
one does not need to be an experienced programmer to use
or learn it. Like HTML, XML uses tags and attributes and
is both easy to read and write. Tags in XML are used to de-
limit information and are interpreted in context by differ-
ent applications. By defining a set of rules, one can ensure
that the generated or read data is unambiguously structured.
Additionally, XML is well supported and many free tools
exist to both validate and display XML data. The main at-
traction of XML is that it is extensible, modular, platform-
independent and free. Here we examine a few XML-based
behavior specification languages which have been devel-
oped for robotic architectures.

The Extensible Robot Control Language (XRCL) [2]
is an XML-based language intended for programming and
simulating mobile robots. XRCL includes both a proposed
language specification and an environment for interpret-
ing that language. XML was chosen as the basis for the
XRCL for three reasons. First, it provides a standard for
representing the structure of data. Second, a large vari-
ety of editing, processing and validating tools exist. Third,
XML has become popular with both programmers and non-
programmers and is used in varying contexts. Based on
the model of embedding JavaScript within HTML docu-
ments, the XRCL implementation intersperses C++ code
and XML tags. Although C++ is used to code low-level be-
haviors, Java or Lisp could easily be used as well. The sys-
tem was designed to be easy enough for a novice, but pow-



erful enough for advanced researchers.
The Extensible Agent Behavior Specification Language

(XABSL) [16] presents a flexible, hierarchical behavior
control architecture, which allows for scalable agent be-
havior solutions. XABSL was developed in order to sim-
plify the behavior specification process for autonomous
agents with the intention of supporting both reactive and
deliberative behaviors. It was designed for use with AIBO
robots operating in a robotic soccer environment (RoboCup
[24, 14]). Building on the XML model, XABSL is both
modular and extensible. Behavior patterns can be used in
different contexts, old behaviors can be extended and new
behaviors can be added without adversely affecting others.
The XABSL framework takes advantage of existing XML
technologies and contains numerous visualization and de-
bugging tools. Although XABSL is designed to run on any
robotics platform, it has currently been implemented and
tested on the Sony AIBO platform and in a simulation robot
soccer environment.

XABSL is better suited for specifying and mapping be-
haviors than native programming languages as the num-
ber and complexity of behaviors increases. Designing and
implementing complex behaviors in native languages, like
C++, is an involved task and can result in an unclear and
convoluted structure. Due to intricacies of implementation,
extending and maintaining large complex behavior control
systems can become difficult and error prone. Higher-level
specifications, like XABSL, separate the behavior design
from the implementation of the target platform thereby sim-
plifying the entire process. For this reason XABSL’s high-
level abstraction of behaviors, using an XML-based repre-
sentation, makes it well suited for mapping RoboLab icons
(or groups of icons) to particular options and states. Ad-
ditionally the modularity of XABSL allows the behaviors
to be reused in different contexts removing the need to re-
code an entire behavior when a slight modification is needed
or when new RoboLab icons need to be mapped to a spe-
cific behavior. Based on the extensibility and scalability of
XML-based behavior specification languages, extensions of
RoboLab can be easily accommodated.

Using XML technologies is more attractive than defin-
ing a new grammar for numerous reasons. Many of these
reasons are why the XRCL and XABSL projects were moti-
vated to choose XML as their backbone. XML support tools
have the ability to validate an XABSL document before run-
time. Furthermore, XML provides flexible data representa-
tion, and easy transformation from and to other program-
ming languages. Last, complex behaviors, specified using
XABSL, are easily visualized using packages like XSLT
[27] or DotML [5].

Another approach to designing control architectures for
agent-based systems usescognitive modeling. Unlike XML-
based behavior languages, which are primarily designed

to simplify the specification and structure of behaviors
thereby achieving abstraction, many non-XML based be-
havior languages like the Cognitive Modeling Language
(CML) achieve behavior abstraction through logic based
reasoning systems. CML was designed to aid in behav-
ior specification in simulation environments including com-
puter games and animation. Cognitive models go one step
further than behavior models. Cognitive models govern
what an agent knows, how that knowledge is acquired and
how it is used to plan. The Cognitive Modeling Language
(CML) [12] was designed to help build these cognitive mod-
els.

Cognitive modeling can be broken into two parts: do-
main knowledge specification and agent behavior specifica-
tion. This helps create modularity by separating knowledge
from control. CML forms a middle ground between logic
programming languages like Prolog and traditional imper-
ative programming languages like C. The main features of
CML are the intuitive nature with which domain knowledge
can be specified and the presence of control structures that
can be used to focus the reasoning engine. This is extremely
important for animation and computer games where fast de-
velopment is more important than fast execution. The the-
oretical background for CML is highly based in traditional
AI planning.

Another feature of CML is that from the user’s perspec-
tive, the underlying theory is hidden. Users are not required
to write any first-order logical axioms; rather, they can use
descriptive keywords that have a clear-cut mapping to the
underlying formalism. Figure 6 depicts the relationship be-
tween the user, the cognitive model and a reactive system.
The goal of CML is to equip characters with a model that
enables them to interpret high-level instruction from the an-
imator.

Our XAP solution combines the language specification
advantages of working with XML and the cognitive model-
ing advantages of CML, wherein agent behaviors are sepa-
rated from the environment where the robots act. An XML-
based middleware solution is best suited for the task of
bridging RoboLab and a target platform/environment be-
cause of its modular, scalable and extensible properties.
XML-based behavior languages simplify the specification
of robot behavior and have the ability to handle real-time
sensor data. The design of XAP is informed by XRCL and
XABSL, but contains its own set of primitives, with the in-
tension of encapsulating the types of simple behaviors that
kids tend to code in RoboLab.

4. System Details

RoboXAP has three main components:

• the translater that takes the output of RoboLab (in
the form of LASM commands – LEGO assembly lan-



2) The effect that performing an action
would have on the virtual world

1) Preconditions for performing an action

3) The initial state of the virtual world

Cognitive Model

REASONING
ENGINE

USER

REACTIVE
SYSTEM

Sensory
information

Domain
specification

Information about
the virtual world

Behavior
specification

Low−level
commands

Figure 6. Interaction between the user, cogni-
tive model and reactive system (from [12])

guage) and converts them into behaviors specified us-
ing our XML-based language;

• our XML-based Agent Protocol language (XAP); and

• the RoboXAP simulation environment, implemented
in Macromedia’s Flash [8].

Even though the simulator is the only component that is vis-
ible to the user and contains any visual output, all three parts
reside together and are implemented in Flash. The main pur-
pose for this is to avoid requiring the user to install any ad-
ditional tools in order to run RoboXAP. Macromedia Flash
Player can be downloaded and run on many different web
browsers and over a dozen operating systems [10].

By keeping all of RoboXAP’s components within the
Flash environment, we can maintain compatibility with al-
most any system that has a web browser capable of running
the Flash plug-in. The three-tier design serves to keep the
functionality of the front-end simulator and the back-end
translator independent of each other. This not only allows
updates to be made easily, but also for other components to
be substituted in without too many changes in the software.
We note that when interfacing with other front-end destina-
tions, such as the AIBO, the translation engine will be re-
quired to convert XAP behaviors into C++.

RoboXAP is built entirely with Macromedia’s Action-
Script 2.0 [9]. ActionScript is Macromedia’s proprietary
language used solely within Flash. It is object-oriented, al-
lows users to create more dynamic content, and gives seri-
ous programmers strong tools to refine their Flash presen-
tations [9]. In designing the simulator, an environment with
both strong multimedia capabilities and flexible program-
ming was needed. It is because of ActionScript’s powerful
features, combined with Flash’s already established multi-

media functionality, that makes it the ideal medium for de-
velopment.

The RoboXAP process cycle begins with a user creat-
ing a program in RoboLab. The system is designed so that
at the press of a button, RoboXAP will be launched from
within the RoboLab environment2. It will generate LEGO
assembly code (LASM) from the user’s block-diagram pro-
gram, convert it to XAP, send the XAP code into the robot
world simulator and display visually what the robot is do-
ing, i.e., how the robot operates in the simulated world us-
ing the control code that was written in RoboLab.

Figure 7 illustrates the RoboLab code and result-
ing movement in a RoboXAP world. The string of Robo-
Lab commands tells the robot to go forward for 4 seconds,
turn for some number of seconds (N) and then go for-
ward again for another 4 seconds. This example is a
challenge we gave to a group of 3rd and 4th grade stu-
dents. They were told to figure out what valueN would
need to be in order to get the robot to return to its start-
ing place at the end of the program. The RoboXAP world
contains a clock in the upper right portion of the win-
dow, so that students can make a (calculated) guess for
what N should be, then run the simulation and actu-
ally see whatN should be by watching the clock. In the
figure,N = 4.7 seconds.

(a) RoboLab code

(b) corresponding RoboXAP simulation
(arrows were added for clarity, to indicate

the motion of the animation)

Figure 7. RoboXAP example

RoboLab generates assembly code based on the block-
diagram program that the user has constructed. RoboXAP’s

2 The automatic launching of RoboXAP from within RoboLab is cur-
rently under development and at the moment, RoboXAP must be
started up manually, outside of RoboLab.



first process is to convert the LASM into an XAP represen-
tation. Our purpose is not to have a one-to-one translation of
every LASM line that RoboLab produces, but rather to con-
vert groups of lines to behaviors and generate an XML de-
scription of each behavior. Table 1 contains sample LASM
code. The first three lines instruct motor one (A) to turn on
at full power in the forward direction3. Similarly, the last
three lines instruct motor three (C) to do the same thing.
However, we do not want to refer to motors in XAP; that
does not tell us what behavior the robot is following and it is
too specific for the Mindstorms hardware. Instead, we want
something more generally descriptive about the robot’s be-
havior. The corresponding XAP code in table 2 only con-
tains two commands:forward, which encompasses most
of the 6 lines of LASM code, except for the power level set-
ting; andpower, which handles the power level setting, in-
dicating the robot’s speed (relative to its maximum capabil-
ities). In this case since the Mindstorms power level ranges
from 0 to 7, the power level of7 represents 100% of its ca-
pacity; hence the translation in XAP is 100.

pwr 1,2,7
dir 2,1
out 2,1
pwr 4,2,7
dir 2,4
out 2,4

Table 1. LASM code example

<instruction>
<command>forward</command>
<power>100</power>
</instruction>

Table 2. XAP code example

Difficulties arise when different commands are mixed to
produce an effect that is not quickly decipherable. For ex-
ample, to make a robot go in an arc, both motors are turned
on at different speeds. It is not easy to capture this behav-
ior by looking at the code itself, as it can be compounded
by other commands. Control structures are also problem-
atic, as the LASM frequently uses JUMP commands. Creat-
ing a multi-pass translator would require considerable pro-
cessing power, something we wish to avoid as Flash player
is a client-side application. We do not want to force users

3 LASM numbers the three output ports1, 2 and4, corresponding to the
labels A, B and C on the LEGO robot.

to have an extremely powerful machine in order to run
RoboXAP.

Although the translator uses only a single pass, it looks
ahead several lines in order to determine the purpose of each
“chunk” of LASM code. The assembly is very basic, and
only by clumping several lines together can we establish
some type of understandable functionality. The need to fre-
quently look ahead several lines is a process-intensive pro-
cedure. However, the tradeoff is that by spending time to
produce more descriptive XML, the simulator can later ani-
mate the robot with less lag. This also gives RoboXAP more
portability. It serves to allow the XML to be easily inserted
into other simulators or external devices, or even to be con-
verted into a higher level XML that can possibly describe
sophisticated behaviors, such as those outlined in section3.

Flash ActionScript is the driving force behind
RoboXAP’s front-end simulator. With many anima-
tion tools natively built-in, it is the ideal environment for
creating a dynamic simulator. ActionScript’s XML pars-
ing tool is too simple to perform complex operations, but
it can still traverse an XML tree and manipulate child
and parent nodes. After receiving XAP from the transla-
tion engine, each instruction, along with its arguments, is
performed in a step-wise manner. Most of the robot’s func-
tionality can be reproduced in the simulator: all different
movements (e.g., forward and backward), timers, and exter-
nal sensors can be programmed to perform as they would in
the real world. Because XAP only describes the robot be-
havior, the world in the simulator is dynamic, independent
of the user’s program, and can be created to suit any sce-
nario. Lights, colors, and physical obstacles are all
components in the simulator that can be added and re-
moved. This structure follows the CML architecture in
which the agent behavior is kept separate from their (vir-
tual) world.

Each XAP instruction corresponds to a specific anima-
tion. Flash displays the robot movement in real-time and
each step is displayed as it is parsed. Because most of
the difficulties of defining what each motion should do is
handled by the translator, this significantly decreases the
amount of processing needed at this point. The result is
smoother viewing and no frame skipping. It is here, with
Flash’s strong animation and presentation powers, that we
can fully demonstrate what the robot is capable of doing.
For example, with native controls for collisions, we can pro-
duce extremely customizable worlds and interactions be-
tween objects. Simple features such as timers are built-in
and allow for an authentic reproduction of a real robot.

5. Preliminary Study

An informal demonstration of the RoboXAP prototype
was given to a class of thirteen third and fourth grade stu-



dents in order to provide us with preliminary feedback on
the project. The class was part of an after-school robotics
program at a local elementary school. All of the students
had some experience programming in RoboLab and using
the LEGO robots. A brief explanation of how RoboXAP
would work in parallel with their robots was given. Because
the students had been working on a project which involved
their robots traversing a field and performing certain tasks4,
the simulation mimicked the real-life arena that was already
familiar to them. The students watched in astonishment as
the virtual robot completed several of the real life objec-
tives they had been working on.

(a) RoboXAP emulation of the
FIRST Lego League world 2005

(b) participants provide feedback
about RoboXAP

Figure 8. Informal focus group

4 The FIRST Lego League challenge 2005

The reaction was unanimously positive. Every student
immediately recognized what the simulation was doing and
compared it with their own tasks. We asked the class sev-
eral questions, the most important being: “do you think the
simulation would be useful in helping with your project,
and if so, how?” Some of the responses included: “it would
shorten the amount of time needed to fix programs”, “you
won’t need to take turns on the playing field” and “how
realistic is it?” Not surprisingly, the first two responses
were the immediate practical issues that we had hoped
RoboXAP would solve. Regarding the first comment – us-
ing RoboXAP to help debug code – one of the quickest
ways students, especially younger ones, lose patience is
when they have to repeatedly test out small changes on their
robots; it would be interesting to see if having a simulation
to assist with debugging could alleviate their anxiety.

6. Discussion

Just as every student is a unique individual, the meth-
ods used to teach the students must be unique as well. Con-
ventional teaching methods generally pass information in
a single direction: from the teacher to the student. Simula-
tions allow for a different instructional technique, making
teachers promoters of information. The student’s role also
changes from a passive receiver of information to an ac-
tive contributor to a lesson. By providing students with con-
tent that is both real and dynamic, an ability to change what
is happening in front of them, and a two-way flow of infor-
mation, there is a greater motivation for them to learn [4].

Simulators are unbreakable, unlike the real-world coun-
terparts that they are mimicking. This has benefits for every
age group. It gives younger kids experiences that might be
unsafe for themselves or any equipment they might be us-
ing. For older students, it offers them an opportunity to push
experiments beyond their limits [17]. Letting students have
free reign over their experiments or projects can make for a
more enjoyable educational experience.

In addition to a simulator’s indestructible nature, it pro-
vides the ability to engage in activities that they otherwise
would not experience, either because there is no practical
equivalent that can be implemented in a classroom setting
or because some of the subjects covered in a simulator may
be outside standard curricula. Linser’s 1999 [15] study gave
students the opportunity to try their hand in world politics.
The results showed that an interactive, collaborative learn-
ing environment creates more student interest and motiva-
tion than a traditional classroom lecture. Matson’s [19] im-
plementation of a robotic simulator for K-6 grade children
does not teach a regular school subject, but attempts to de-
velop logical and critical thinking at an early age.

Few studies have been completed that compare the use
of a simulator to traditional teaching methods. Finkelstein’s



2004 [7] quantitative study is a rare instance of using simu-
lations in a university undergraduate circuits lab while hav-
ing control groups learning the same material. Both pre-
and post-tests were conducted, and post-test results showed
slightly higher learning rates when comparing the simula-
tion group with the control group (who approached the cir-
cuits material in a traditional hands-on lab setting).

Our development of RoboXAP is nearing the end of its
technical development phase and will move into testing and
educational research phases over the next 6 to 12 months.
In Spring 2005, a pilot study will be conducted with stu-
dents in a primary school to determine how effective the en-
vironment is in addressing practical (time and equipment),
pedagogical (divide-and-conquer and frustration) and aca-
demic (agent-based concepts and programming basics) is-
sues. In 2005-06, we will begin to consider more broadly
the role of simulators in classroom settings, and we plan
to conduct comparative studies to evaluate use of simulated
versus hands-on (physical) learning environments.

Acknowledgments

We are grateful to Professor Chris Rogers at Tufts Uni-
versity for his help and advice with developing for the
RoboLab programming environment. We are also grate-
ful to Shawn Mishler for enabling the preliminary study.
This work was made possible in part by funding from NSF
#GK12-03-38329.

References

[1] http://www.addictinggames.com/.
[2] D. S. Blank, J. H. Hudson, B. C. Mashburn, and E. A.

Roberts. The XRCL project: The university of arkansas
entry into AAAI 1999 mobile robot competition. Techni-
cal Report Technical Report CSCE-1999-01, University of
Arkansas, 1999.

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. W3C recommendation: Exten-
sible markup language (XML) 1.0 (third edition).
http://www.w3.org/TR/REC-xml/, 2004.

[4] L. Chwif and M. R. P. Barretto. Simulation models as an aid
for the teaching and learning process in operations manage-
ment. InProceedings of the 2003 Winter Simulation Confer-
ence, volume 2, pages 1994–2000, 2003.

[5] DotML 1.2: The dot markup language. http://www.martin-
loetzsch.de/DOTML/, 2003.

[6] B. Erwin, M. Cyr, and C. B. Rogers. Lego engineer and robo-
lab: Teaching engineering with labview from kindergarten to
graduate school.International Journal of Engineering Edu-
cation, 16(3), 2000.

[7] N. D. Finkelstein, K. K. Perkins, W. Adams, P. Kohl, and
N. Podolefsky. Can computer simulations replace real equip-
ment in undergraduate laboratories? InPERC Proceedings
2004, 2004.

[8] Macromedia flash. http://www.macromedia.com/software/flash/.
[9] Flash action script. http://www.macromedia.com/devnet/mx/flash/

actionscript.html.
[10] Flash system requirements.

http://www.macromedia.com/software/flashplayer/
productinfo/systemreqs/.

[11] V. Frias-Martinez, E. Sklar, and S. Parsons. Exploring auc-
tion mechanisms for role assignment in teams of autonomous
robots. InProceedings of the RoboCup-2004: Robot Soccer
World Cup VIII, 2004.

[12] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling:
Knowledge, reasoning and planning for intelligent charac-
ters. In A. Rockwood, editor,Siggraph 1999, Computer
Graphics Proceedings, pages 29–38, Los Angeles, 1999. Ad-
dison Wesley Longman.

[13] http://www.googolplex.co.jp/indexus.html.
[14] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.

Robocup: The robot world cup initiative. InProceedings
of the First International Conference on Autonomous Agents
(Agents-97), 1997.

[15] R. Linser and S. Naidu. Web-based simulations as teaching
and learning media in political science. InAusWeb99 Con-
ference Proceedings, 1999.

[16] M. Lotzsch. XABSL: Extensible agent behavior
specification language. http://www.ki.informatik.hu-
berlin.de/XABSL/, 2003.

[17] G. B. Lu, M. Oveissi, D. Eckard, and G. W. Rublioff. Ed-
ucation in semiconductor manufacturing processes through
physically-based dynamic simulation. InProceedings of the
1996 Frontiers in Education Conference, volume 1, pages
250–253, 1996.

[18] M. J. Mataric. Behavior-based robotics as a tool for syn-
thesis of artificial behavior and analysis of natural behavior.
Trends in Cognitive Science, 2(3):82–87, March 1998.

[19] E. T. Matson, R. Pauly, and S. DeLoach. Robotic simulators
to develop logic and critical thinking skills in under served
K-6 school children. InProceedings of the 2003 ASEE Mid-
west Section Meeting, 2003.

[20] http://www.microworlds.com/.
[21] http://www.legomindstorms.com/.
[22] http://ccl.northwestern.edu/netlogo/.
[23] S. Papert.Mindstorms: Children, Computers, and Powerful

Ideas. BasicBooks, 1980.
[24] http://www.robocup.org.
[25] Tufts RoboLab. http://www.ceeo.tufts.edu/robolabatceeo/.
[26] W3c xml in 10 points. http://www.w3.org/XML/1999/XML-

in-10-points, 2003.
[27] XSL transformations (XSLT) version 1.0.

http://www.w3.org/TR/xslt, 1999.


