
Using Surveyor SRV-1 Robots to Motivate CS1 Students

John Cummins3, M. Q. Azhar1,2, Elizabeth Sklar1,2,
1Dept of Computer Science, Graduate Center, City University of New York, New York, NY 10016 USA

2Dept of Computer and Information Science, Brooklyn College, City University of New York, Brooklyn, NY 11210 USA
3Dept of Mathematics, Brooklyn College, City University of New York, Brooklyn, NY 11210 USA

contact authors: jrpcummins@yahoo.com, mqazhar@sci.brooklyn.cuny.edu, sklar@sci.brooklyn.cuny.edu

Abstract

This paper focuses on the development of new software and
agent-centric curriculum for teaching introductory computer
science (CS1) students, using Surveyor’s SRV-1 robot, with
the intention of creating an engaging, interactive learning en-
vironment. The SRV-1 platform is an interesting contrast to
the older and more well-known LEGO Mindstorms RCX. We
present our work with the SRV-1 and contrast our experiences
with previous work using the RCX.

Introduction
Over the last 5-10 years, there has been a growing trend to-
ward the use of small, simple robots as a hands-on learn-
ing environment for teaching introductory computer science
(CS). To date, the most popular platform has been the LEGO
Mindstorms RCX Robotics Invention System1, which en-
tered the market in 1999 and has since appeared in primary,
secondary and undergraduate classrooms around the world.
A wide range of programming environments were devel-
oped for the RCX, branching out from the graphical, drag-
and-drop puzzle-piece paradigm employed by LEGO’s RCX
Code to the graphical wired-blocks paradigm of RoboLab
(Erwin, Cyr, & Rogers 2000) and a number of text-based
extensions to popular introductory languages such as the C-
based Not-Quite C (NQC) (Baum 2000) and the Java-based
Lejos (Laverde, Ferrari, & Stuber 2002). In 2006, LEGO in-
troduced their second generation Mindstorms robot, called
NXT, along with another graphical programming environ-
ment called LME. The RCX community has begun to adapt,
introducing NXT-based versions of NQC, Lejos and Robo-
Lab (version 2.9).

In our previous work, we have used the RCX exten-
sively in CS classrooms, from introductory computer sci-
ence for non-majors to introductory and advanced program-
ming for CS majors, to artificial intelligence for undergrad-
uate and graduate students (Sklar, Parsons, & Azhar 2007;
Sklar, Parsons, & Stone 2004). We have also employed the
RCX for outreach programs at the middle and high school
levels (Sklar et al. 2008; Goldman, Eguchi, & Sklar 2004)
and as a demonstration platform for an international edu-
cational robotics initiative called RoboCupJunior2 (Sklar &

1http://www.legoeducation.com
2http://www.robocupjunior.org

Parsons 2002). Our results confirm the prior findings of
many others: that robotics-based curricula can help moti-
vate students (Stein 1996; Beer, Chiel, & Drushel 1999;
Kumar 2004; Weinberg & Yu 2003; Fagin & Merkle 2003;
Carbonaro, Rex, & Chambers 2004; Sklar, Parsons, & Stone
2004; Blank et al. 2005; Bhave et al. 2005). In addition,
robotics-based learning environments assist students in de-
veloping teamwork, communication and time management
skills (Sklar, Eguchi, & Johnson 2002; Sklar, Parsons, &
Azhar 2007).

We have been interested in exploring platforms other
than the LEGO robots, initially because we found that the
LEGO robots are often perceived by undergraduates and
high school students as children’s toys, thus diminishing
their effectiveness as a motivational aid. Additionally, we
have been interested in using a platform that provides more
powerful visual sensing than is available with either LEGO
platform; in particular, we wish to employ a camera sen-
sor in order to provide a larger space for program develop-
ment and to give students a more realistic experience with
robotics.

In early 2007, we acquired a small number of SRV-1
robots from the Surveyor company3. Our aim was to use
these robots in our introductory programming class, which
is taught in C++ and is geared toward CS majors; this is
the canonical “CS1” classroom. Our goals here are to pro-
vide students with: (1) hands-on activities to create for them
an interactive learning environment, (2) an initial experience
programming a robot, and (3) exposure to the fields of arti-
ficial intelligence (AI) and agent-based systems. The SRV-1
is a well-built tracked4 robot that resembles a small tank.
The SRV-1 has a low-resolution color camera located on its
front. The SRV-1 also has several infra-red (IR) sensors that
can be used to estimate the robot’s distance from obstacles,
but our limited experimentation with this sensor produced
results that were unsatisfactory. Here, we focus on the use of
the camera sensor, which was more than adequate to achieve
our aims.

Although the SRV-1 robot has a small on-board proces-
sor, it does not contain enough memory to store programs,

3http://www.surveyor.com
4i.e., the platform has 4 wheels covered by 2 treads, one on each

side

SRV-1 platform XBee dongle

Figure 1: Surveyor platform

unlike the LEGO RCX and NXT robots. With both LEGO
platforms, users create programs on an off-board computer
(like a Mac or PC laptop) and then compile the program
into a language like LEGO Assembler and download the
executable code onto the robot. With the Lejos interface,
a small Java Virtual Machine (JVM) is downloaded onto
the robot, along with Lejos-based byte code, and the robot
executes accordingly. With the SRV-1 robot, programs are
also created on an off-board computer, but they are also ex-
ecuted off-board, by streaming commands to the robot us-
ing wireless communication. The robot runs a tiny server
on-board that uses a simple command/response protocol to
talk with the robot. This software is provided by Surveyor.
The server can also be used by the robot to send sensory
feedback back to the off-board computer. The SRV-1 robots
that we used initially have an ARM-7 processor that uses
its own radio channel and communicates with the off-board
computer via a serially connected XBee radio (see Figure 1).
The newer SRV-1 robots possess a Blackfin processor with
wireless communication hardware and software.

Processing sensory data on the SRV-1 is a different ex-
perience from that of other inexpensive robots. The LEGO
robots have simple sensors such as the touch (bump) sensor
which requires almost no processing: they return one value
(1) when in contact with something and another value (0)
when not in contact. In contrast, the SRV-1 has a color cam-
era which provides a lot of data that requires considerable
processing to become useful. This is intentional. According
to Howard Gordon of Surveyor: “That was exactly my goal
in creating the robot—to create a device that had to rely on
vision (albeit with a lot less neurons) the same way a human
does. Humans don’t have a built-in compass, GPS or much
in the way of odometry, but we seem to manage with visual
cues and memory” (Gordon 2008).

The remainder of this paper is organized as follows. In
the next section, we describe the software that we developed
to provide a simple C++ programming interface designed to
be usable by CS1 students to communicate with the SRV-
1 robot. Then, we outline two lab assignments that were
given to our students and present results of a survey given
to students after completing the labs. Finally, we conclude
with a discussion and directions for future work.

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <assert.h>
using namespace std;
#include "SVR.h"

Surveyor robot(ADDRESS);

int main() {
robot.drive(50, 50, 100);
return 0;

} // end of main()

Figure 2: Sample code

Software Development
We have developed a software package in C++ that can be
used to communicate with the Surveyor robot and, as above,
was designed simply, to be used in a classroom by introduc-
tory programming students. Note that although the package
was developed and tested for the SRV-1 platform, it could
be adopted to other platforms for use in the same type of
classroom environment. The C++ package consists of one
class, called Surveyor, that is intended to hide the details
of protocol management and provide the user with a simple
interface to the robot’s capabilities.

The package is used by first including a header file
(SVR.h) in the student’s C++ source code file. Then the
student must declare and instantiate a Surveyor object.
The student can then use this object’s functions to control
the robot. An example is shown in Figure 2. The functions
in the Surveyor class include:

• drive()—which tells the robot to move, based on three
parameters: the speed of the left and right motors (i.e.,
the power sent to each) and the duration that the motors
should run

• takePhoto()—which takes no parameters and tells
the robot to take a picture, store it in compressed JPEG
format and transmit the bytes of the image back to the
off-board computer

During the course of our software development, Surveyor
upgraded the SRV-1 from the ARM7 processor to the Black-
fin processor and from the XBee radio communication to
WiFi. This greatly speeded up everything to do with SVR-1.
We had to adjust the package accordingly, so we are cur-
rently maintaining two versions of the code: one for the
ARM7 processor and one for the Blackfin. The main dif-
ference between versions is in the communication method-
ology; the Blackfin uses sockets to communicate instead of
the serial communication used with the XBee radio device.
Both versions of our C++ Surveyor package are available
on-line at our robotics.edu repository5.

5
http://agents.sci.brooklyn.cuny.edu/robotics.edu

AI-centric CS1 Curricula
We have integrated the SRV-1 robot platform and C++ Sur-
veyor class into our existing CS1 curricula by giving assign-
ments that are relevant to and appropriate for CS1 students.
This section describes two labs that the students have com-
pleted.

Robot Lab 1: remote controller
Our first lab explores the CS1 concept of programmer-
defined functions, by using the robot’s motion capabilities.
In this lab, students had to write their own functions to create
different behaviors (e.g., program the robot go in a square, or
triangle or spiral). Students defined three different functions
(square(), triangle() and spiral()) and invoked
them based on user input. The drive() member function
of the Surveyor class is called by these functions. The left
and right track speeds (i.e., first two parameters passed to the
drive() function) can be in the range −128 to +127, and
the duration (i.e., third parameter) is in the range 0 to 255.
A duration of 0 means “until the next drive command”. Any
value longer than a few hundredths of a second is probably
best done by using a duration of 0 and having your PC do
the timing. We gave students the sample program shown in
Figure 2 that will move the robot forward one foot.

Robot Lab2: vision processor
The second lab focuses on the CS1 concept of arrays,
while at the same time experiencing robot sensor process-
ing. When a robot reads and processes sensory input, it can
make decisions about what to do based on feedback it re-
ceives from its environment. The SRV-1 has a color camera
as its main sensor. In the second lab, students started us-
ing this camera. We gave the students the sample program
shown in Figure 3; this program will keep the robot turning
until it sees the orange ball.

We create a new object called ballColor which cap-
tures the robot’s idea of the color of the ball. We included
color.h to store a constant value, T ORANGE BALL,
which is used as a reference for recognizing the
ballColor object. Note that this value is calibrated a pri-
ori by the instructor or teaching assistant, not by the CS1
students.

One of the aspects of C++ that we illustrate to our stu-
dents is that objects can be used without knowing everything
about them. For the moment we can think of ballColor
as specifying “orange”. Then, the function:

robot.setBin(1, ballColor);

tells the robot we are interested in orange things. The robot
has ten “color bins”, numbered from 0 to 9 and we have set
bin number 1 to orange. The function:

robot.getCountScan(1, ball);

fills its argument array ball with values depending on
where the robot sees the color orange.

The Surveyor robot divides its field of vision into an 80×

64 grid, i.e., there are 80 pixels horizontally (in the x direc-
tion) and 64 pixels vertically (in the y direction). The robot
sees this as 80 columns, and the function getCountScan

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <assert.h>
using namespace std;
#include "SVR.h"
#include "color.h"

Surveyor robot(ADDRESS);

YUVRange ballColor(T_ORANGE_BALL);

int main() {
char buffer[256];
int ball[80];
robot.getVersion(buffer);
cout << "SRV-1 version "

<< buffer << endl;
robot.setBin(1, ballColor);
for (;;) {

robot.getCountScan(1, ball);
if (ball[40] > 0)
break;

robot.drive(-40, 40, 3);
}
return 0;

}

Figure 3: Sample camera code

Figure 4: Sample robot view of ball

will load each element of the array with the number of or-
ange pixels in the corresponding column.

For example, if the robot is sees the image shown in Fig-
ure 4, then the call:

getCountScan(1, ball);

will fill the array ball with the following values:

ball = 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 4 4 5 3
5 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The robot does not see any orange in colums 0 through 34,
so those array elements are set to zeros. In colums 35 to 41,
the robot sees the orange ball and so those array elements
are loaded with values greater than zero. Finally, the robot
does not see any orange in columns 42 to 79 and so those
array elements are set to zeros.

Continuing with the explanation of the program shown in
Figure 3, inside the “for loop” we call getCountScan, if
array element 40 (i.e., the middle, vertically, of the robot’s
field of view) is zero, then we turn the robot a bit (note use
of the duration parameter to get a small precise turn). When
element 40 is greater than zero we break out of the for loop,
stop the robot and terminate the program. The effect of this
is that the robot will turn until it sees the ball.

Students who finish the basic requirements of the lab can
complete “challenges” in the remaining class time. One
of the challenges from this lab is to make the robot move
around (either randomly or according to a pattern), check-
ing regularly to determine if the robot sees the ball. Here,
students are exposed to the challenges of vision processing
in AI.

All of our curricula materials and student demos are avail-
able at our course website6.

6http://www.sci.brooklyn.cuny.edu/ mqazhar/teaching/cis1.5

Survey
We pilot tested the SRV-1 platform, our C++ Surveyor
software package and the labs described above in one sec-
tion of our CS1 class, during the Spring 2008 term. There
are 15 students enrolled in the class, 2 of whom are female.
All students were able to complete the first lab. Eighty per-
cent (80%) of them completed the second lab.

Students were given an informal survey after the lab ses-
sions were over. The survey asked questions about their ex-
perience with the robots, whether they liked working with
them, whether they felt using the robots distracted them
(or not) from learning the C++ language, and whether they
planned to continue with robotics-based programming in
CS2. Nine students completed the survey. Four of the nine
(44%) said that they would continue with robotics-based
programming in CS2; interestingly, the ones who said they
would not continue all offered reasons like they were trans-
ferring to another school or they did not need the course for
their major (not all students enrolled in CS1 are computer
science majors). Several students commented that program-
ming the robots helped them learn to pay more attention to
detail. Quite a few noted that the classroom lab environ-
ment helped them get to know their classmates better, which
is a positive aspect of the robotics labs. Finally, many said
that they realized how complicated it is to program a robot,
but were pleased when they could learn how to do so them-
selves. In general, the feedback was overwhelmingly posi-
tive.

Discussion
We have been very careful about introducing robotics ma-
terials to novice programmers because we do not want to
overwhelm them. We only exposed our students to sim-
plified robot vision processing and low-level motion com-
mands, believing that a straightforward environment would
motivate the students to learn more about robotics and com-
puter science. Our students’ reactions more than validated
our intuitions. All students in the class completed the first
robot lab. Many who completed it early created their own
extensions and asked insightful questions.

We believe that our students did so well with the SRV-1
robot, software and labs for the following reasons:

• Absolute integration: One of the obstacles of integrating
robotics into introductory programming course is a steep
learning curve. As novice programmers are already over-
whelmed with all new concepts, we do not want to burden
them further by making them learn additional, complex
robotics materials. We carefully developed the software
and curricula to fit in with what students are doing and to
relate new materials to what they have done before. We
provided them with “just-in-time” information that was
relevant for completing each lab.

• Same programming environment: Students were able to
program the robot using the same C++ programming en-
vironment throughout the semester, using either the Mac
OS-X terminal (UNIX) window or the PC command win-
dow. We introduced two-step processes in order to send
instructions to the robot. First, students need to execute

a makefile at the UNIX command prompt to compile
and link the program, and then they call the executable
to start sending instructions to the robot. All the students
were comfortable with this process.

• Simplicity of programming: The Surveyor class pro-
vided simple, pre-formed examples of many of the con-
cepts that neophyte programmers need to grasp. This al-
lowed the students to become accustomed to using the
concepts before having to do the detail work to imple-
ment them. For example, the YUVRange class encapsu-
lates the robots idea of the color of the ball. Students are
exposed to one of the best features of an object-oriented
programming language, such as C++, that is, we can use
objects without knowing everything about them.

• Robust communication: The Surveyor ARM7 robot uses
the XBee radio dongle to facilitate communication be-
tween the robot and the off-board, controlling computer.
One of the primary problems we have faced in the past
when using the LEGO Mindstorms RCX robot was its
faulty and flaky communication using an IR communica-
tion tower to download programs from an off-board com-
puter to the RCX robot. Here, we had 6 Surveyor SRV-1
robots in a classroom with XXX students, and we had no
communication problems.

• Robust hardware: The Surveyor robot has a longer battery
life than the LEGO Mindstorms RCX robots. It recharges
fairly quickly, coming with its own dedicated power adap-
tor. As well, it has an excellent motor drive.

These are still the early days of this project. The initial
reactions from students are encouraging. The challenge pre-
sented by the SVR-1 sensor (i.e., camera) is, we think, an
excellent introduction to AI. The idea of a robot dependent
on vision alone provides challenges appropriate to program-
mers of all capabilities, particularly when vision processing
can be simplified through the use of a class like the one out-
lined here. Once we started to look at the world as the robot
does, it became much easier to put together some useful pro-
grams, to create different robot behaviors such driving in a
square or finding an orange ball and even playing as a sim-
ple game of soccer. This mental change, the ability to see
a visual field without preconceptions such as perspective or
object recognition was perhaps the most valuable outcome
from this project.

Currently, we are developing additional labs to be used in
our CS2 class (which will be piloted in Fall 2008). With this
in mind, we have extended the Surveyor class to provide
a doubly linked list of “blobs” (areas of high density of a
particular color) so that students can get comfortable with
using a list before having to construct one.

Acknowledgements
We thank Howard Gordon of Surveyor.com for technical
support.

References
Baum, D. 2000. Dave Baum’s Definitive Guide to LEGO
Mindstorms. APress.

Beer, R. D.; Chiel, H. J.; and Drushel, R. F. 1999. Us-
ing autonomous robotics to teach science and engineering.
Communication of the ACM 42(6).

Bhave, A.; Hamner, E.; Hsiu, T.; Perez-Bergquist, A.;
Richards, S.; Nourbakhsh, I.; Crowley, K.; and Wilkinson,
K. 2005. The robot autonomy mobile robotics course:
Robot design, curriculum design and educational assess-
ment. Autonomous Robotics Journal 18(1).

Blank, D. S.; Kumar, D.; Meeden, L.; and Yanco, H. 2005.
Pyro: A python-based versatile programming environment
for teaching robotics. ACM Journal on Educational Re-
sources in Computing.

Carbonaro, M.; Rex, M.; and Chambers, J. 2004. Using
lego robotics in a project-based environment. The Interac-
tive Multimedia Electronic Journal of Computer-Enhanced
Learning (IMEJ) 6(1).

Erwin, B.; Cyr, M.; and Rogers, C. B. 2000. LEGO En-
gineer and ROBOLAB: Teaching Engineering with Lab-
VIEW from Kindergarten to Graduate School. Interna-
tional Journal of Engineering Education 16(3).

Fagin, B., and Merkle, L. 2003. Measuring the effective-
ness of robots in teaching computer science. In SIGCSE
’03: Proceedings of the 34th SIGCSE technical symposium
on Computer Science Education, 307–311.

Goldman, R.; Eguchi, A.; and Sklar, E. 2004. Using
Educational Robotics to Engage Inner-City Students with
Technology. In Proceedings of the Sixth International Con-
ference of the Learning Sciences (ICLS), 214–221.

Gordon, H. 2008. Personal e-mail communication (15 Feb
2008).

Kumar, A. N. 2004. Three years of using robots in an
artificial intelligence course: lessons learned. Journal of
Education Resources in Computing 4(3):1–15.

Laverde, D.; Ferrari, G.; and Stuber, J., eds. 2002. Pro-
gramming Lego Mindstorms with Java. Syngress.

Sklar, E., and Parsons, S. 2002. RoboCupJunior: a vehi-
cle for enhancing technical literacy. In Proceedings of the
AAAI-02 Mobile Robot Workshop.

Sklar, E.; Parsons, S.; Tejada, S.; Lowes, S.; Azhar, M. Q.;
Chopra, S.; Jansen, R.; and Rudowsky, I. 2008. Using arti-
ficial intelligence to help bridge students from high school
to college. In AAAI Spring Symposium on Using AI to mo-
tivate greater participation in Computer Science.

Sklar, E.; Eguchi, A.; and Johnson, J. 2002. RoboCupJu-
nior: learning with educational robotics. In Proceedings
of the Sixth RoboCup International Symposium, 238–253.
Received Scientific Challenge Award.

Sklar, E.; Parsons, S.; and Azhar, M. Q. 2007. Robotics
across the curriculum. In AAAI Spring Symposium on
Robots and Robot Venues: Resources for AI Education.
AAAI Press.

Sklar, E.; Parsons, S.; and Stone, P. 2004. Using RoboCup
in University-Level Computer Science Education. Journal
on Educational Resources in Computing. 4.

Stein, L. A. 1996. Rethinking cs101: Or, how robots rev-
olutionize introductory computer programming. Computer
Science Education.
Weinberg, J. B., and Yu, X. 2003. Robotics in education:
Low cost platforms for teaching integrated systems. IEEE
Robotics and Automation Magazine 10(2):4–6.

