
A framework for exploring role assignment in

real-time, multiagent teams

Vanessa Frias-Martinez and Elizabeth Sklar

Department of Computer Science

Columbia University

1214 Amsterdam Avenue, Mailcode 0401

New York, NY 10027, USA

vf2001, sklar@cs.columbia.edu

Abstract

We are examining the general problem of resource al-

location, in particular, role assignment and task organi-

zation within real-time, multiagent teams. Our current

work involves developing a framework for studying this

problem, focusing on methodologies for administration

of tasks and coordination of team members operating in

highly dynamic environments where changes occur fre-

quently and rapidly. This paper outlines initial work in

this area, describing the architecture of our “plug-and-

play” framework and specific freeware components that

we have combined to create a flexible environment for ex-

perimentation.

1. Introduction

We are examining the general problem of resource
allocation, in particular, role assignment and task orga-
nization within real-time, multiagent teams. Our cur-
rent work involves developing a framework for studying
this problem, focusing on methodologies for adminis-
tration of tasks and coordination of team members op-
erating in highly dynamic environments where changes
occur frequently and rapidly. One of our application do-
mains is the RoboCup Four-Legged Soccer League [14].
Eventually, we will deploy our strategies on the phys-
ical robots: Sony AIBO ERS-210’s and ERS-7’s (see
figure 1); but for now, we are experimenting in simu-
lation. In developing our simulation environment, we
have encountered a wide body of literature and a var-
ied set of tools for simulating various aspects of mul-
tiagent systems (MAS). This has motivated us to de-
sign a “plug-and-play” framework that allows one to

explore any number of these components in depth, and
at the same time, apply them to different domains.

(a) Model ERS-210

(b) Model ERS-7

Figure 1. Sony AIBO robots.

There are four basic components to our framework,
as shown in figure 2:

• application environment

• resource allocation mechanism

• learning methodology

• multiagent simulator

The application environment represents the real-time,
dynamic domain in which the multiagent team is act-
ing, such as robotic soccer or other domains with simi-
lar characteristics, for example, grid node management
in operating systems. The resource allocation mecha-

nism is where decisions are made about task organi-
zation and role assignment. Here is where we can ex-



periment with different techniques for reaching deci-
sions, such as auctions or argumentation. The learning

methodology indicates which class of representations
and machine learning algorithms are being used to en-
able the team to learn how to behave better, such as
genetic algorithms or neural networks, and reinforce-
ment or co-evolutionary learning. The multiagent sim-

ulator controls the interaction between the other com-
ponents and simulates time passing, giving the agents
turns to sense, plan, act and learn in the application en-
vironment.

plan

allocation
mechanism

application
environment

learning
methodology

multiagent
simulator learn

act

sense

resource

Figure 2. Our framework.

Our framework allows us to take advantage of ex-
isting tools and/or techniques for each component and
“plug them in”, adapting them to the specifics of our
problem domain — here, we focus on robot soccer. To
implement the application environment, we have been
using the robotic simulator PlayerStage [3]. For mak-
ing decisions about role assignment, we are using an
auction-based mechanism in which agents continually
bid for roles as their environment changes. To effect
clearing of the bids, we are using the JASA package
[17]. Finding successful bidding strategies is quite dif-
ficult, and so we are using genetic algorithms to learn
how to bid effectively [7]. Linking all these pieces to-
gether is the multiagent simulator, implemented using
the RePast package [16].

This paper is organized according to our framework,
detailing the specific components we are using to de-
velop team coordination in the RoboCup Four-Legged
Soccer League. We begin by describing the applica-
tion environment, then discuss the resource allocation
mechanism that we are developing. Next we outline
the methodology we have been using for enabling the
agents to learn. Finally we describe the multiagent sim-
ulator that we have incorporated into the framework.
We close with a brief summary and plans for future
work.

2. Application environment

Techniques from the field of multiagent systems have
been applied to robotics with increasing frequency over
the last ten years [22]. Soccer-playing robot teams such
as those participating in the RoboCup initiative [11]
are a good training ground for a multiagent system:
a set of heterogeneous agents, playing different posi-
tions on the soccer field, collaborate in a team and
at the same time compete against an opposing team.
A very important issue in the operation of a hetero-
geneous multiagent team is the assignment of roles
to team members. In a highly dynamic environment,
it is necessary to define a mechanism so that agents
can change roles as the environment changes. Many
RoboCup teams use hand-coded solutions to this prob-
lem.

We are exploring the use of an automated auction
mechanism in which the bidding strategy is learned by
the players using a co-evolutionary algorithm. In order
to make progress with any machine learning algorithm,
it is necessary to perform many runs over time. Typi-
cally, this is impractical and/or infeasible to do on real
robots, due to physical constraints on the robots them-
selves and issues such as battery life; although we note
that some quite clever work has been done to try and
overcome these issues [23, 13, 5]. Nonetheless, having
a simulator allows us to run experiments rapidly and
obtain fairly accurate predictions in terms of physical
measurements.

We have implemented the robot soccer application
environment using a robotic simulation package called
PlayerStage [3]. PlayerStage is an open source tool
composed of two components, Player and Stage. Player

acts as a client and provides a simulator base and
network interface for a variety of robot and sensor
hardware. There are existing Player clients that sim-
ulate different types of popular robots, including Pio-
neer and ATRV Jr. Stage acts as a server and simu-
lates a population of mobile robots moving and sens-
ing a two-dimensional environment. Stage provides a
set of simulated sensors including sonar, scanning laser
rangefinder, pan-tilt-zoom camera with color blob de-
tection and odometry. Any number of Players can con-
nect to the Stage, receive sensory information, perform
planning, learning, communication, etc.; and then send
action commands to the Stage to act out.

One of the great advantages of PlayerStage is the
modularity of its design. Because the Stage and Player
components run independently and communicate via
network sockets, it is possible to run them on differ-
ent platforms and to build Player clients in different
languages. It is even possible to run Player clients on-



board real, physical robots, thus facilitating a unique
mix of simulated and true, embodied agents.

This last feature is one of the primary reasons we
have introduced PlayerStage into our framework. It will
greatly simplify our future plan to move our simulated
results onto real robots. In order to do this, we can im-
plement a Player client running directly on an AIBO,
which can talk to the Stage in real-time. Currently,
there is not a Player client that simulates an AIBO, al-
though we will be exploring techniques for automatic
programming of such after we build the Player client
that executes directly on the AIBO and collect run-
time data.

3. Resource allocation mechanism

Many authors have studied automatic bidding
strategies for agent-based systems applied to areas
other than robot soccer, for example, fishmarket auc-
tions [19] and trading agent competitions (TAC)
[18] with adaptable single-agent auctions or com-
petitive negotiation scenarios [25]. Those applica-
tions were created to run in software only. We believe
that the first proven applications of auctions in physi-
cal multi robot systems were MURDOCH, developed
by Gerkey and Matarić [9] and Traderbots, devel-
oped by Dias and Stentz [6].

In our robot soccer environment, we are experi-
menting with learning bidding strategies and auction-
clearing mechanisms for role assignment. During the
simulated soccer game, players place bids for roles,
based on their perceptions of the current state of the
field: e.g., have I seen an opponent? where is the ball?
is the goal too far away? The auctioneer takes each
agent’s bid for which role to play at that moment in
the game, coordinates the bids, factors in the state of
the game, and returns roles to each agent.

JASA [17] is an open source tool for performing all
sorts of simulations of auctions. In our setup, JASA
performs the auction-clearing strategy for our “auc-
tioneer”, assigning roles based on players’ bids and re-
solving conflicts which may arise. For example, two
agents may want to be assigned the same role at the
same time, which may be illegal or undesirable, de-
pending on the constraints we define for the system.

Note that in our setup, the auctioneer is also part of
the team (it is actually executed on the goalie robot), so
its goals are the same as that of the players, which may
somewhat narrow the practical strategy search space.
In a typical auction, agents bid against each other for
selfish rewards and are not concerned with the over-
all outcome of all agents participating in the auction.
Here, we have an orthogonal situation: although agents

place individual bids, their overall goal is shared by the
other participants in the auction and so agents’ bids
will likely be more compatible than would otherwise
be found in other types of auctions where some partic-
ipants win at the expense of others. We refer to this
as team-based learning and discuss this aspect in sec-
tion 4.

The specifics of the bidding mechanism for our soc-
cer robots is as follows. We have defined three differ-
ent roles that agents can bid for: primary attacker (pa),
defensive supporter (ds) and offensive supporter (os).
There are four players on each team. Note that the
role of goalie is always fixed to one particular agent1;
and in our case, as above, the goalie is also the auc-
tioneer. It is not a requirement that there only be one
agent assigned to each of the other three roles. Indeed,
part of our experimentation involves considering ques-
tions like when is it better to have two, or even three,
primary attackers on the field.

The (non-goalie) players construct a bidding strat-
egy according to their perceptions of the state of the
soccer field. For the purpose of conducting preliminary
experiments, we greatly simplified the perception state
of each agent to three binary values: (1) can I see the
ball? (2) am I the closest player to the ball? (3) am
I the closest player to our opponent’s goal? These rel-
ative perceptions are represented by a 3-digit percept

code, containing one bit per perception, which is set to
0 or 1 depending on the state of the field. Table 1 illus-
trates the eight possible relative perceptions and cor-
responding percept code.

ball closest closest percept
seen? to ball? to goal? code

no no no 000
no no yes 001
no yes no 010
no yes yes 011
yes no no 100
yes no yes 101
yes yes no 110
yes yes yes 111

Table 1. Percept code definitions.

An agent’s bidding strategy defines a bid code that
corresponds to each possible percept code value, and a
bid consists of a preference ordering of (one, two or all
three) roles. In our preliminary experiments, we used

1 The RoboCup soccer rules specify that one goalie per team
must be designated a priori.



combinatorial auctions (each agents’ bid contains a list
of three roles) — offering second and third choices of
role if the preferred role(s) were lost. Given three roles,
six orderings are possible for combinatorial auctions of
the three roles (without repetition). Table 2 contains
the possible preference orders and the corresponding
bid code, given the limitation that an agent’s bid can-
not contain duplicate roles. In future work, we will ex-
periment with lifting this restriction.

role ordering bid code
PA-OS-DS 0 (000)
PA-DS-OS 1 (001)
OS-PA-DS 2 (010)
OS-DS-PA 3 (011)
DS-PA-OS 4 (100)
DS-OS-PA 5 (101)

Table 2. Bid code definitions.

With this setup, the search space of all possible bid
strategies for one agent (for the 8 perceptions and the
6 different role bids) is2:

V R(6, 8) = 68 = 1.6 ∗ 106, possible bids (1)

These calculations are for only one agent. Each team
is composed of three role-choosing agents. This means
that each of the possible bids that an agent can make
are going to be combined with two others to make a
team bid. In these terms, we have more than a million
possibilities to be considered by a team of three:

V R(1.6 ∗ 106, 3) > 1018, possible bid teams (2)

Given this combinatorial explosion within the bidding
space — even within our highly simplified experimen-
tal setup — it is a clear case where a machine learn-
ing algorithm can be helpful for identifying strong bid-
ding strategies.

As described below, the agent bidding strategy is set
at the beginning of a generation in the machine learn-
ing process; and a series of games is played to com-
prise a generation. During game play, the agents place
their bids, at which time JASA is invoked to evaluate
the bids and “clear” the auction. Thus far, we have ex-
perimented with a combinatorial auction where agents
bid on a preference-ordering for roles. JASA allows us
to experiment easily with other auction mechanisms as
well.

2 where V R(n, p) = np is the formula for computing the num-
ber of variations with repetition of selecting an ordered set of p

elements from a set of possible n elements.

4. Learning methodology

The field of multiagent learning is described in [24]
and in [21] as a fusion between multiagent systems
and machine learning (ML). Applying ML techniques
to MAS allows us to build evolving agents: agents
that learn from their experiences and interactions, and
adapt to their environment. Multiagent learning tech-
niques were originally applied to one agent at a time
[2], even as part of a multiagent system. Some research
into learning as a team within an MAS was done by Na-
gendra et al. [15] and was one of the early attempts at
demonstrating the utility of self-organization in a mul-
tiagent system where the agents are driven to achieve
a common objective. Sen and Sekaran [20] applied re-
inforcement learning techniques to a multiagent box-
pushing system. Our approach differs because we de-
fine our agents to be inherently selfish, but they must
learn to act as contributing members of a team; and it
is up to the auctioneer to balance the selfish requests of
the individuals with the needs of the team. We use ge-

netic algorithms (GA) [12] and a co-evolutionary learn-

ing [10, 1] to learn the combination of strategies that
works best for a team.

All four agents learn their bidding and clearing
strategies over time by playing many games and evalu-
ating the results. The term co-evolution refers to evolv-
ing agents where the fitness of an individual (or a team)
is based on that individual’s (or team’s) performance
in their environment compared to that of another in-
dividual (or team) operating in the same environment;
whereas standard evolutionary learning is based on a
pre-defined, fixed performance measure. In instances of
successful co-evolutionary learning, a virtual arms race
occurs where agents of subsequent generations chal-
lenge each other, resulting in continuous improvement
over time [4]. We consider the performance in the en-
vironment to mean the result of one team playing a se-
ries of soccer games against another team, and the fit-
ness of the team is shared as the fitness for each indi-
vidual agent on the team; we refer to this method of
fitness sharing as team-based learning.

We implement the GA as follows; further detail can
be found in [8]. Recall from the previous section that
an agent’s bidding strategy consists of a bid code for
each of the eight percept codes. There are six pos-
sible bid codes, which can be represented by a 3-bit
value 000 (0) and 101 (5). Assigning one of these codes
for each of the eight precept codes can be represented
by an 8x3 = 24-bit string. The GA begins by ran-
domly initializing bidding strategies for a population
of n players (where n ≥ 6); i.e., randomly setting bits
in n 24-bit strings. At each generation, we randomly



select six players (3 players per team) from this pop-
ulation. Then the two teams play a series of games
against each other, called a “round”. Each round con-
sists of g games; each generation consists of r rounds.
The games are played for a limited amount of simu-
lated time, and after each game, the fitness of the three
agents belonging to the winning team is increased. Af-
ter r rounds, a new generation is obtained by select-
ing the m best agents in the population (m < n), i.e.,
those with the highest fitness values, and using stan-
dard reproductive operators on these m agents to pro-
duce a new population of size n.

5. Multiagent simulator

The glue that holds the framework together and co-
ordinates between the other three components is the
multiagent simulator, in this case, RePast. We chose
RePast because of its flexible architecture and rich set
of tools for representing agents, collecting data and dis-
playing results while a simulation is running. RePast is
written in Java, which meant that we could fairly eas-
ily interface it with the other open-source components
which are also Java based, namely Stage and JASA.

Experiments are conducted as follows. The genetic
algorithm, implemented in Java as part of the RePast
controller, begins by randomly defining n 24-bit strings,
representing the initial population of players. The sim-
ulator selects two teams from the population and plays
a round of games between them to make a genera-
tion. Game play is simulated using PlayerStage. RePast
sends a message to PlayerStage saying it is ready for
the game to begin. PlayerStage simulates a game, us-
ing the JASA package and shared variables to imple-
ment clearing of the auction each time a new set of
perceptions comes in and role assignment takes place.
When the game is over, PlayerStage sends the results
back to RePast, which updates its statistics and then
selects another pair of teams to play the next round of
games.

6. Summary

We have described a framework that we have de-
veloped for conducting multiagent team-based learn-
ing experiments with role assignment in a highly dy-
namic environment. Our methodology provides a flex-
ible, “plug-and-play” schema so that different mecha-
nisms for role assignment, learning and even applica-
tion domain can be tested. The setup takes advantage
of existing tools and techniques; and here we have de-
scribed our use of RePast, PlayerStage and JASA to
experiment with learning roles within a robotic soc-

cer team. In earlier work [8], we ran experiments only
in RePast; however we believe this new, modular and
flexible framework will provide us with opportunities
to produce more applicable and robust results by al-
lowing us to develop and test algorithms with a wider
range of techniques and apply them to more domains.

This work is obviously preliminary, and our plan for
tomorrow is to use the framework for conducting not
only a broader series of experiments than those we have
run so far using the precise setup outlined herein, but
also introducing embodied agents into the learning pro-
cess, crossing over to other application environments
(such as grid node management) and evaluating differ-
ent techniques for resource allocation.

7. Acknowledgments

This work was made possible by funding from NSF
#IIS-03-29037.

References

[1] P. J. Angeline and J. B. Pollack. Competitive envi-
ronments evolve better solutions for complex tasks. In
S.Forrest, editor,GeneticAlgorithms:Proceedings of the
Fifth International Conference (GA93), 1993.

[2] T. Balch. Learning roles: Behavioral diversity in robot
teams. In AAAI Workshop on MultiAgent Systems,
1997.

[3] B.Gerkey, R. Vaughan, and A. Howard. PlayerStage.
http://playerstage.sourceforge.net.

[4] A.Blair,E. Sklar, andP.Funes. Co-evolution, determin-
ism and robustness. In S. Verlag, editor, Proceedings of
the SEAL-98 (Simulated Evolution and Learning Con-
ference), Lecture Notes in Artificial Intelligence 1585,
1998.

[5] S. Chernova and M. Veloso. An Evolutionary Approach
To Gait Learning For Four-Legged Robots. In Proceed-
ings of IROS’04, 2004.

[6] M. Dias and A. Stentz. A free market architecture for
distributed control of a multirobot system. In 6th In-
ternational Conference on Intelligent Autonomous Sys-
tems (IAS-6), 2000.

[7] V. Frias-Martinez and E. Sklar. A team-based co-
evolutionary approach to multi agent learning. In In
Workshop Proceedings of the Third International Con-
ference on Autonomous Agents and Multi Agent Sys-
tems, 2004.

[8] V. Frias-Martinez, E. Sklar, and S. Parsons. Explor-
ing auction mechanisms for role assignment in teams of
autonomous robots. In Proceedings of the Eighth Inter-
national RoboCup Symposium, 2004.

[9] B. Gerkey and M. Mataric. Sold!: Auction methods
for multirobot coordination. IEEE Transactions on
Robotics and Automation, 18(5), 2002.



[10] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. In L. et al., ed-
itor, Proceedings of ALIFE-2, pages 313–324. Addison
Wesley, 1992.

[11] H.Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Os-
awa. The robot world cup initiative. In In Proceedings
of Autonomous Agents, 1997.

[12] J. H. Holland. Adaption in Natural and Artificial Sys-
tems. University of Michigan Press, 1975.

[13] G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata,
T. Yamamoto, and M. Fujita. Evolving Robust Gaits
with AIBO. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3040–3045,
2000.

[14] H.Kitano,Y.Kuniyoshi, I. Noda,M.Asada,H.Matsub-
ara, and E. Osawa. RoboCup: A challenge problem for
AI. AI Magazine, 18:73–85, 1997.

[15] M.V.Nagendra, V.Lesser, and S.Lander. Learning orga-
nizational roles in a heterogeneous multi-agent system.
Proceedings of the Second International Conference on
Multi-Agent Systems, 1997.

[16] U. of Chicago. RePast. http://repast.sourceforge.net.

[17] S. Phelps. JASA. http://jasa.sourceforge.net.

[18] S. S. P.Stone, M. Littman and M. Kearns. Attac-2000:
An adaptive autonomous bidding agent. Journal of Ar-
tificial Intelligence Research, pages 189–206, 2001.

[19] J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia,
and C. Sierra. Towards a test-bed for trading agents in
electronic auction markets. AI Communications, 1997.

[20] S. Sen and M. Sekaran. Learning to coordinate without
sharing information. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, pages 426–
431, 1994.

[21] P. Stone and M. Veloso. Towards collaborative and ad-
versarial learning: A case study in robotic soccer. Inter-
national Journal of Human Computer Studies, 48:83–
104, 1998.

[22] P. Stone and M. Veloso. Multiagent systems: A sur-
vey from a machine learning perspective. Autonomous
Robotics, 8(3), July 2000.

[23] R. A. Watson, S. G. Ficici, and J. B. Pollack. Embod-
ied Evolution: Embodying an Evolutionary Algorithm
in a Population of Robots. In 1999 Congress on Evolu-
tionary Computation, pages 335–342. IEEE Press, 1999.

[24] G. Weib. Distributed reinforcement learning. Robotics
and Autonomous Systems, 15:135–142, 1997.

[25] D. Zeng and K. Sycara. Bayesian learning in negotia-
tion. In adaptation, coevolution and learning in multia-
gent systems: Papers from the 1996 aaai spring sympo-
sium, AAAI Tecnical Report SS-96-01, 1996.


