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Abstract. This paper describes a framework designed to broaden the
entry-level for the use of sophisticated robots as educational platforms.
The goal is to create a low-entry, high-ceiling programming environment
that, through a graphical behavior-based interface, allows inexperienced
users to author control programs for the Sony Aibo four-legged robot. To
accomplish this end, we have extended the popular RoboLab application,
which is a simple, icon-based programming environment originally de-
signed to interface with the LEGO Mindstorms robot. Our extension is
in the form of a set of “behavior icons” that users select within RoboLab,
which are then converted to low-level commands that can be executed
directly on the Aibo. Here, we present the underlying technical aspects
of our system and demonstrate its feasibility for use in a classroom.

1 Introduction

Many teachers have an interest in introducing robots into their classrooms for
teaching a variety of subjects other than specifically robotics, from traditional
technical topics such as programming and mechanical engineering to other areas
such as mathematics and physical science, where robots are used to demonstrate
the concepts being taught. It has long been recognized that hands-on methods
have a powerful impact on student learning and retention [1–3]. The growing
field of educational robotics—the use of robots as a vehicle for teaching sub-
jects other than specifically robotics [4]—has employed that approach, using the
constructionist [5] process of designing, building, programming and debugging
robots, as well as collaboration and teamwork, as powerful means of enlivening
education [2, 6, 7]. Even very young children have been successfully engaged in
hands-on learning experiences that expose them to some of the basic principles



of science and engineering, widening their horizons and preparing them for life
in a highly automated, technically challenging world.

For the past several years, we have been designing and helping to implement
educational robotics curriculum in inner-city primary and middle school class-
rooms, after-school programs and summer schools, undergraduate introductory
programming courses and international robotic competitions [8, 9, 7, 10]. To sup-
port these curricula, we have employed RoboLab [11], a widely used graphical
programming environment developed at Tufts University, for operation on the
LEGO Mindstorms Invention System robot [12]. RoboLab runs on a Mac, Win-
dows or Unix computer. The environment is highly visual and provides a good
first experience with procedural programming concepts. Entities such as motors
and sensors are represented as rectangular icons on the screen, and users drag
and drop them with the mouse onto a canvas to create “code”. The icons are
strung together using “wires”, and all programs are downloaded from RoboLab
onto the LEGO robot via a “communication tower”, connected to the computer’s
USB or serial port, that transmits the program to the robot using an infra-red
signal. A simple RoboLab program is illustrated in Figure 1.

Fig. 1. A basic RoboLab program
If the robot has wheels and motors attached to two of its ports (labeled A and C),

this program will make the robot go forward for 2 seconds and then stop.

RoboLab’s graphical programming environment tiers the levels of program-
ming, which allow a novice to produce results quickly and acquire skills without
having to read a sophisticated text or complicated application manual. Ranging
from “Pilot” to “Inventor” levels, RoboLab is broad enough to ensure the suc-
cess of both beginners and advanced users. The initial Pilot levels are completely
graphical so even users who cannot read can be successful. The more advanced
“Inventor” levels incorporate advanced programming concepts and features to
add power, flexibility and complexity to programs.

Our experiences working with classroom teachers and young students have
raised several issues that have motivated us to pursue the development of a
behavior-based interface, which abstracts away the low-level motor and sensor
commands that often confuse inexperienced programmers or deter techno-phobic
students [13]. Our longterm goal is to create a standard middle ground that can



act as a sort of “magic black box”, for current and future robotic platforms,
following several design criteria:

– ease of use: programmers only have to deal with high-level icons—novices
will not get discouraged with low-level text-based syntax;

– disappearing boundaries: programmers are able to test and run the same
behaviors on multiple agent platforms—running the same RoboLab program
on a LEGO robot and on an Aibo will help students understand about
abstraction and behavior-based control;

– interoperability: a standard behavior language is used for multiple platforms—
students do not need to learn different languages in order to use a variety
of robot platforms, or our simulator (currently under development [14, 15]);
and

– flexibility: students from a wide range of backgrounds and teachers with a
broad range of goals can use the system effectively, accommodating different
levels, curricular needs, academic subjects and physical environments for
instruction.

Because of RoboLab’s popularity in the classroom and its icon-based pro-
gramming style, it is well suited as the front-end for our interface. We have
three underlying educational goals, each supporting different pedagogical needs:

– First, we want to produce a low-entry, high-ceiling interface to the Sony
Aibo robot [16] (pictured in Figure 2a) that will encourage non-traditional
computer science students to learn programming, allowing us to capitalize
on the “cuteness factor” associated with Aibo while still providing students
with a serious, first adventure in programming.

– Second, we want advanced students to gain an appreciation of the modu-
larity of both a robot’s controlling interface and its underlying hardware.
Just as Java and JavaScript are platform independent, providing a robot
programming environment that is platform independent will give students
hands-on experience with code abstraction, witnessing the same code execut-
ing on both the LEGO robot and the Aibo (and other platforms).

– Third, we want to create a motivating, hands-on environment with which to
introduce more advanced students to behavior-based concepts.

This paper is organized as follows. We begin by reviewing several different
programming interfaces designed for the Sony Aibo. Then we describe some
technical details about RoboLab and explain how our behavior-based program-
mming interface operates. Finally, we end with a brief summary and mention
directions for future work.

2 Background

OPEN-R is the programming interface designed for the Aibo, provided for free
via download from Sony’s web site [17]. OPEN-R gives programmers the ability
to develop software to control the low-level hardware of the robot. Some of



(a) Aibo ERS-7M2/B (b) LEGO Mindstorms

Fig. 2. Robot platforms

the features of OPEN-R include: modularized hardware, modularized software
and networking support. Because the hardware is modularized, each module is
connected by a high-speed serial bus and can be exchanged for a new module.
Each software module in OPEN-R is either a “data object” or a “distributed
object” and is implemented in C++4. OPEN-R programs are built as a collection
of concurrently running OPEN-R objects, which have the ability to communicate
with each other via message passing. Due to the modularity of the software,
individual objects can be easily replaced and each object is separately loaded
from a Sony Memory Stick. Furthermore, OPEN-R supports Wireless LAN and
TCP/IP network protocol.

Sony’s formalism for describing the working cycle of OPEN-R objects resem-
bles layered finite state automata [18]. Each OPEN-R object can have numerous
states and must include an IDLE state. At any given point, an object can be in
only one state, and objects move from state to state using transitions. In order
to switch states, an event must activate a transition to a new state and the
pre-condition of the new state must be satisfied.

The low-level functionality of the robot can be controlled using the OPEN-R
API [17]. With the API, programmers can experiment with image processing,
sensory feedback information and robot motion in order to develop (original)
sets of behaviors for the Aibo. However, the OPEN-R API can be quite hard to
use for novice and even intermediate programmers. As a result, several interfaces
and abstraction languages have been developed to sit on top of OPEN-R in an
attempt to hide the low-level complexity from the inexperienced end-user. These
include:

– R-CODE [19],

– YART (Yet Another R-CODE Tool) [20],

– Tekkotsu [21], and

– URBI (Universal Robotic Body Interface) [22, 23].

4 C++ objects and OPEN-R objects are not the same and should not be confused
with each other [18].



These languages/interfaces vary in power and intricacy, and each has its own
goals and features, as described briefly below. OPEN-R is the basis upon which
R-CODE, Tekkotsu, and URBI are built. YART goes one step further, abstract-
ing R-CODE one level by providing a basic graphical user interface (GUI) to
create and manipulate R-CODE programs.

The R-CODE SDK provides a set of tools that allow users to program the
Aibo using the R-CODE scripting language, offering higher-level commands than
traditional programming languages such as C, C++ and even OPEN-R. The
benefits of R-CODE being a scripting language are its simplicity (to both learn
and use) and its lack of compilation; however, programmers have less control
than with other lower-level languages. With only a few lines of R-CODE, users
can program the Aibo to perform complex behaviors such as dancing, kicking
or walking. Because R-CODE does not require compilation, it can be written in
a plain text file on any operating system and saved directly on a memory stick
that has the R-CODE virtual machine pre-loaded on it. R-CODE commands
can be viewed as OPEN-R macros, where the degree of precision and control
depends solely on the underlying OPEN-R code. Although R-CODE is powered
by OPEN-R functions, the developer does not have access to the underlying
OPEN-R subroutines. R-CODE is best suited for performing actions and various
behavior sequences.

YART [20] is an R-CODE front-end developed by a hobbyist. It provides a
text-based GUI with simple drag-and-drop functionality and produces files of R-
CODE commands. This tool can also be used to generate customized behaviors
via pre-existing YART-compatible Aibo personalities. YART is an easy place to
start programming simple behavior patterns. However, unlike RoboLab, YART
is a text-based interface, so the objects that the user drags with the mouse are
bits of text—whereas in RoboLab, the user drags graphical icons.

Tekkotsu [21], developed at Carnegie Mellon University by Touretzky et al.,
is an application development framework for intelligent robots that is compatible
with the OPEN-R framework [17]. It is based on an object-oriented and event-
passing architecture that utilizes some of the key features of C++, like templates
and inheritance. Although Tekkotsu was originally created for the Sony Aibo,
the current version can be compiled for multiple operating systems. Tekkotsu
simplifies robotic application development by supplying basic visual processing,
forward and inverse kinematics solvers, remote monitoring, teleoperation tools,
and wireless networking support. Tekkotsu handles low-level tasks so the devel-
oper can focus on higher-level programming. It provides primitives for sensory
processing, smooth control effectors, and event-based communication. Some of
the higher-level features include a hierarchical state machine formalism used for
control flow management and an automatically maintained world map. Addi-
tionally, Tekkotsu includes various housekeeping and utility functions and tools
to monitor various aspects of the robot’s state.

The Universal Robotics Body Interface (URBI) [22, 23], developed at École
Nationale Supérieure de Techniques Avancées (ENSTA), is an attempt to provide
a standard way to control the low-level aspects of robots while providing the



high-level capabilities of traditional programming languages. URBI is based on a
client-server architecture where the server is running on the robot and is typically
accessed by the client via TCP/IP. The client can be virtually any system or any
other kind of computer, thereby adding flexibility to URBI. The URBI language
is a high-level scripting language capable of controlling the joints and accessing
the sensors, camera, speakers or other hardware on the robot. URBI has been
primarily applied to entertainment robots because they tend to provide the most
interesting interfaces and capabilities.

Each of these interfaces have informed our approach. We selected RoboLab
as the front-end for several reasons. RoboLab is already quite widely used in
classrooms worldwide. Teachers and students are comfortable with the interface
and will not feel like they need to learn yet another programming environment
in order to expand their use of robot platforms in the classroom. In addition,
schools do not need to purchase another software package; our methodology is a
free extension to RoboLab. Finally, as detailed below, RoboLab is constructed
on top of a framework designed to support a wide range of hardware devices,
thus the concept of expanding its use to interface with a range of robot devices
is a natural fit.

3 Our Approach

This section describes the approach to our implementation, outlining the steps
required for progressing from writing programs in RoboLab to generating code
that is executed on the Aibo. Given that one of our objectives with this work is
to develop a behavior-based programming interface for controlling Aibo, we have
designed a set of generic low-level behaviors that can be graphically represented
in RoboLab. As part of this process, we analyzed the main differences between
the Aibo platform and the LEGO Mindstorms platform to ensure that our be-
haviors are suitable for both. The two platforms are physically quite different,
not only in terms of processor configuration but also in regard to the types of
sensors and effectors provided. The LEGO Mindstorms is typically constructed
as a wheeled robot, as depicted in Figure 2b (though legged structures can be
built). The kit comes with two touch sensors and a light sensor and has the
ability to support numerous other LEGO and commercial sensors. The Aibo, a
four-legged robot, comes with a variety of built-in sensors including: multiple
touch sensors, distance sensors and a camera; and it cannot support any other
sensors (without being dismantled).

With the capabilities of both platforms in mind, we defined a set of proto-
type behaviors and control structures suitable for our behavior-based “palette”
in RoboLab (illustrated in Figure 3). RoboLab is implemented on top of Na-
tional Instruments’ LabVIEW [24]. Individual icons and full programs are saved
as “VIs” (virtual instruments). Each icon or program can be seen as imitating an
actual instrument [25]. We used RoboLab’s built-in feature to create “subVIs”
(VI modules or subroutines) in order to construct our customized behaviors.
These behaviors act as macros for sets of lower-level RoboLab commands. Al-



though the ability to expand RoboLab’s current set of icons is a remarkably
powerful feature, we are constrained by the necessity to use a set of pre-defined
icons as the underlying basis for each new icon. For example, as illustrated in
Figure 4, our forward behavior icon is in reality a macro for the set of icons:
motor A forward, motor C forward, and wait for (some amount of time).

The behaviors icons, shown in the palette to the
left, can be used just like any other RoboLab icon.
As with basic RoboLab function icons, wiring to-
gether a sequence of behavior icons creates a well-
formed RoboLab program. The meanings of the
first eight icons are (from top left to right): loop
while back sensors are pressed, loop while back
sensors are not pressed, branch according to state
of back sensor, move backwards, begin behavior,
loop while distance sensor is less than or equal to
parameter, loop while distance sensor is greater
than parameter, branch according to state of dis-
tance sensor. See [13] for a complete and detailed
description of the behavior icons.

Fig. 3. Behavior Icon Palette

Fig. 4. Forward behavior icon and its underlying set of basic RoboLab icons

The first step in our approach is for a user to write a program in RoboLab
and save the contents of the program to a file, in a manner that will preserve
its functionality while allowing translation to Aibo commands to occur outside
of RoboLab. The default output from RoboLab is LASM, or LEGO Assembly
Language. We use this default, saving the LASM commands in an output file —
whereas normally, users send the LASM commands directly to the LEGO robot
via the communication tower. Once the LASM file is saved, we invoke our trans-
lation program, called lasm2aibo, that converts the LASM commands into Aibo
commands. After examining the Aibo languages and interfaces discussed in sec-
tion 2, we decided to use R-CODE to implement Aibo commands in our system
because R-CODE is easy to use and does not require compilation, and because



R-CODE offers a more natural mapping to RoboLab. With R-CODE, numer-
ous behaviors can be prototyped quickly and tested efficiently. Both Tekkotsu
and URBI are better suited for applications that require complex solutions and
greater computational power.

A key challenge in designing lasm2aibo was to determine which LASM com-
mand(s) and what parameters are generated for each RoboLab icon. Our be-
havior icons are macros comprised of multiple low-level built-in RoboLab icons,
which complicates the translation process, as detailed below. Taking a file of
LASM commands as input, our translater recognizes tokens that match relevant
LASM commands, numbers, white space, and delineators (commas and new line
characters), and “compiles” (or translates) these into R-CODE sequences. We
designed and implemented our translator using the UNIX tools Lex [26] and
Yacc [27].

Both Lex and Yacc greatly simplify compiler writing, or translating between
two programming language representations. Lex generates the C code for build-
ing a lexical analyzer or lexer. Any given lexer takes an arbitrary input stream
and divides it into a sequence of tokens based on a set of regular expression
patterns. The Lex specification refers to the set of regular expressions that Lex
matches against the input. A deterministic finite state automaton generated by
Lex performs the recognition of the expressions. Lex allows for ambiguous spec-
ifications and will always choose the longest match at each input point. Each
time one of the patterns is matched, the lexer invokes user-specified C code to
perform some action with the matched token. Yacc is responsible for generat-
ing C code for a syntax analyzer or a parser. Yacc uses the grammar rules to
recognize syntactically valid inputs and to create a syntax tree from the corre-
sponding lexer tokens. A syntax tree imposes a hierarchical structure on tokens
by taking into account elements such as operator precedence and associativity.
When one of the rules has been recognized, then the user-provided code for this
rule (an “action”) is invoked. Yacc generates a bottom-up parser based on shift-
reduce parsing. When there is a conflict, Yacc has a set of default actions. For
a shift-reduce conflict, Yacc will shift. For reduce-reduce conflicts, Yacc will use
the earlier rule in the specification.

In our case, Yacc reads the grammar description and the token declara-
tions from lasm2aibo.y and generates a parser function yyparse() in the file
y.tab.c. Running Yacc with the -d option causes Yacc to generate definitions for
the tokens in the file y.tab.h. Lex generates a lexical analyzer function yylex()

in the file lex.yy.c by reading the pattern descriptions from lasm2aibo.l

and including the header file y.tab.h. The lexer and parser are compiled and
linked together to form the executable lasm2aibo. From the main() function in
lasm2aibo, the yyparse() function is called, which in turn calls the yylex()

function to obtain each token.

Our Yacc parser is generated from the lasm2aibo grammar specification.
Through a series of grammar productions, the parser attempts to group se-
quences of tokens into syntactically correct statements. Associated with each
production is a set of semantic actions. Given that many of the LASM com-



mand sequences for varying groups of behaviors are the same, often behavior
identification becomes part of the semantic analysis. For instance, all the mo-
tion behaviors including forward, backward, right and left produce the same
LASM command output. Furthermore, there is no direct way to distinguish be-
tween activating an LED or a motor because they are both viewed as output
devices. Only by examining the values of some of the parameters and by mak-
ing certain assumptions can they be differentiated. Having to perform specific
behavior recognition during the semantic analysis is one of the limitations in-
volved in using LASM as our source program. Ideally, each behavior should be
represented by a unique syntax, allowing for quicker and cleaner parsing.

When a behavior is recognized, the semantic actions involve calling the cor-
responding behavior function. These pre-defined behavior functions are used to
generate the equivalent behavior in R-CODE and help flag the R-CODE sub-
routines that need to be included in the R-CODE source file. The final output
of the translator includes the file R-CODE.R, the R-CODE program that matches
the original RoboLab program, and a behaviors.txt file used for debugging
purposes to ensure that behaviors, sensors, and control structures are appropri-
ately classified. Running the lasm2aibo executable file with a LASM text file
as input generates the file R-CODE.R. This file should be placed on a R-CODE-
ready memory stick in the OPEN-R/APP/PC/AMS directory [28]. To execute the
program, insert the memory into Aibo, turn on the power and watch Aibo come
to life!

Throughout the process, there are multiple places where errors could occur;
this includes lexical, syntactic and semantic errors. The lasm2aibo translator
attempts to handle errors gracefully. If the error is fatal, a blank R-CODE.R

file will be generated; however, if the error is non-fatal then the translator will
continue to process the source file. In both cases, a descriptive error message
and the line number where the error occurred is displayed on the console via
standard output.

3.1 Example

A detailed example follows. First, the RoboLab behavior-based program (shown
in Figure 5a) is constructed. The resulting LASM is contained in Figure 5b.
Second, our lasm2aibo module is executed, taking the LASM file as input and
creating an R-CODE equivalent, illustrated in Figure 5c. This gets written to a
Sony memory stick, which also contains the R-CODE virtual environment, and
is ready to be executed on the Aibo.



(a) RoboLab code

delt 0

task 0
sent 0,3
senm 0,4,0
sent 1,1
senm 1,1,0
Label1002:
chkl 2,100,1,9,0,Label1003
chkl 2,1,0,9,1,Label1004
plays 2
wait 2,100
wait 2,0
jmpl Label1005
Label1004:
pwr 2,2,2
dir 0,2
out 2,2
wait 2,0
Label1005:
pwr 1,2,100
dir 2,1
out 2,1
pwr 4,2,7
dir 2,4
out 2,4
wait 2,0
wait 2,50
ping
jmpl Label1002
Label1003:
endt

plays 5

:Start
PLAY:ACTION:STAND
WAIT
WHILE:100:<:Distance
IF:1:>:Head_ON:THEN
PUSH:2471
CALL:Play_Sound:1
PUSH:1000
CALL:Wait_For_Time:1
WAIT
ELSE
PUSH:2260
CALL:Display_LED:1
WAIT
ENDIF
CLR:SENSORS
PUSH:100
CALL:Forward:1
WAIT
PUSH:500
CALL:Wait_For_Time:1
WEND
CLR:SENSORS
EXIT

***************************************************
* BEHAVIOR FUNCTIONS *
***************************************************

/***********************************************
* walk forward for a specified distance in mm
***********************************************/
:Forward //pass a distance
ARG:distance
PLAY:ACTION:WALK:0:distance
RETURN

/***********************************************
* wait for a specified amount of time
***********************************************/
:Wait_For_Time
ARG:time
WAIT:time
RETURN

/***********************************************
* plays a specified sound
***********************************************/
:Play_Sound
ARG:sound
PLAY:MWCID:sound
RETURN

/***********************************************
* plays a specified led pattern
***********************************************/
:Display_LED
ARG:pattern
PLAY:MWCID:pattern
RETURN

(b) LASM code (c) R-CODE

Fig. 5. Example
This program will test whether the head sensor is pressed or not. If the head sensor is
released, it will play sound number 3, otherwise if the head sensor is pressed it will
display LED pattern number 2. The Aibo will then move forward 100mm and wait

half a second. This process will repeat while the distance sensor reads a value greater
than 100mm.



4 Summary

We have presented the design and implementation of our prototype framework
for providing a simple, graphical, behavior-based interface to the Sony Aibo
robot. Built into the popular RoboLab graphical programming environment and
connected to the Aibo via a translater, lasm2aibo, this framework represents the
proof-of-concept for a longterm project aimed at bringing educational robotics
into a broad range of classrooms. The successful implementation of the direct
translation from RoboLab to Aibo demonstrates the feasibility and viability of
the process. A user study is planned for Summer 2006.

Although our direct translation is appropriate for small-scale solutions, cur-
rent work on this project is exploring a more abstract, generalized framework
for linking RoboLab (or other graphical programming interfaces) to a variety of
robot platforms [15]. Recent press releases have revealed that the LEGO Mind-
storms will be succeeded in August 2006 by a more sophisticated platform called
NXT [29], and Sony has announced that production of Aibo halted in March
2006 [30]. Given the changing face of consumer robotics, a flexible framework
such as ours will help classrooms ease transitions from one robot platform to
another by providing teachers and students with a familiar interface and an in-
tuitive behavior-based methodology for programming, no matter what hardware
lies beneath.
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