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Abstract. We use simulation to evaluate data-driven agents that will
act as learning partners in multi-user educational interactivities. Data on
human learners has been collected in an adaptive educational assessment
environment, and we use these data to train agents to emulate humans.
These agents will be deployed in a companion on-line interactive system
designed to help students learn new skills and overcome deficiencies high-
lighted in the assessment portion of the environment. Human users are
grouped according to particular features, and agents are trained to em-
body the group’s behavior. The burden of creating a meaningful training
set is shared across a number of users instead of relying on a single user to
produce enough data to train an agent. This methodology also effectively
smooths out spurious behavior patterns found in individual humans and
single performances, resulting in an agent that is a reliable representative
of the group’s collective behavior. Our demonstrated approach takes data
from hundreds of students, learns appropriate groupings of these students
and produces agents which we evaluate in a simulated environment. We
present details and results of these processes.

1 Introduction

Computerized student assessment tools provide educators with a number of dif-
ferent ways to assess student knowledge via standardized tests. While most stan-
dardized tests provide results in terms of a single numeric score and its relation
to the mean, the on-line, adaptive, multi-dimensional testing tool developed by
Children’s Progress Inc (CPI)3 gathers a robust data set for each student, high-
lighting specific areas of strength and weakness. We are working with CPI to
develop individualized tutoring modules and two-player educational games that
will be provided for students after they take the assessment, tailored to offer

3 http://www.childrensprogress.com



targeted instruction and learning experiences, personalized to the needs of indi-
vidual students, as identified by the test.

To support this work, we employ agent-based simulation techniques for three
tasks. First, we construct agents that simulate human learners, by training prob-
abilistic controllers from the assessment data set. The goal is to deploy these
agents as artificial learning peers to engage in two-player games with human
learners. Second, we evaluate (and validate) these agents by placing them in a
simulated assessment environment, measuring their performance in comparison
to the corresponding behavior patterns of their human trainers. Third, we use
the validated agents to help predict outcomes in newly developed assessments.
The work described here presents results from the first two tasks.

Most intelligent tutoring systems that employ agent technology do so to
provide a knowledgeable, automated teacher. These types of agents are typically
designed by computer scientists, in collaboration with human teachers, pedagog-
ical specialists and developmental psychologists [1]. While others have explored
the notion of simulated students [2], few have deployed these as learning peers
in an interactive system. Some of our earlier work has accomplished this with
simple games and data collected during the games [3], but not using a priori

assessment data to train agents, as is the case here.

We are not the first to suggest constructing agents to emulate humans inter-
acting in an on-line system [4–6]. Previous work has shown that training agents to
emulate humans produces better results if the training set is a composite of mul-
tiple humans grouped according to application-specific metrics [7]. A large data
set is generally desirable when training agents, and grouping human data sets
with similar characteristics helps smooth out anomalies. In the study presented
here, we analyze log files from student interactions with CPI’s standardized test-
ing system, called the Children’s Progress Academic Assessment (CPAA), using
a data-mining perspective. Related work has been reported previously (e.g., [8–
10]), but within different user modeling contexts and not with the purpose of
subsequently using the models to control agent-based learning partners.

Here, we outline our processes for creating agents to simulate humans based
on standardized test data and for evaluating the agents in a simulated assess-
ment environment. First, we partition the large standardized test data set to
serve as the basis for training a suite of distinct, agent-based, probabilistic con-
trollers. This step is crucial to the success of each agent as an emulator of a
specific class of human behaviors. If the data used to train the agents is not
well defined, then the agents in the suite will not be distinct from each other—
their behavior patterns will overlap too much. The longterm goal is to create
individual agents whose behavior patterns differ, each designed to target par-
ticular curricular deficiencies and help human learners advance in these areas.
Second, we compare two different techniques for partitioning the data, using
standard clustering techniques from the literature. For each cluster, we produce
an agent whose actions should typify behaviors characteristic of members of the
cluster. Finally we evaluate the results, by placing all the agents we generated in
a simulated assessment environment and measuring which agents most closely



resemble the human counterparts they are meant to be simulating. Our results
demonstrate that one clustering technique clearly produces a better approxima-
tion of group behavior patterns than the other, as evaluated in the simulated
assessment environment.

2 Our approach

The CPAA is organized around an underlying lattice structure [11]. An illus-
tration is shown in figure 1. Each node represents a question in the assessment,
and links indicate possible paths from one node to another. All students start
at the same node, the leftmost one in the figure. Students who answer the ques-
tion correctly move along the green link (up and to the right). Students who
answer the question incorrectly move along the short red link (down and to
the right), where they are given a follow-up “hint” question. Lattices are de-
signed by developmental psychologists and educational specialists for a set of
core concepts that are essential to early learning of fundamental numeracy and
literacy skills. Each lattice contains different numbers of nodes and patterns of
links. Within each core concept, the questions in the test are organized into four
sub-concept levels and each sub-concept has a prime question and a hint. The
content and structure of the tests are designed manually, with the educational
specialist developer virtually drawing links from one node to the next indicating
the order in which questions should be presented to students, based on student
performance. We created the plot shown in figure 1 by manually assigning (x, y)
coordinates to each node, corresponding to its relative location within the 2-
dimensional landscape of the assessment “map”. The lattice shown is used to
assess “phonemic awareness” (PA) — the ability to recognize sounds made by
single and combinations of letters at the beginning and end of words, as well as
in the middle.

We were given the log files (records of user interactions) from 117 first grade
students (ages 6-7 years old) who took the assessment in Fall 2006. From the
student log files, we extracted the sequence of the questions, student answers and
elapsed time information into separate files for each portion of the test. We built
an application to visualize the paths each student took during the assessment
using the JUNG Graph Visualization tool [12]. Figure 2 illustrates the paths
taken by two different students in the PA portion of the assessment, drawn
using our visualization tool. In these drawings, the green nodes represent correct
answers, red nodes incorrect answers and the numbers on the edges represent the
time it took the student to answer that particular question. Student A (top half
of the figure) did well, answering most questions correctly. Student B (bottom)
did poorly at first, rallied, slumped, rallied, and slumped again to the end of the
test. The differences in performance of different students is clearly visible.

2.1 Partitioning training data

Most assessments compare students by examining the final score achieved; but
we are interested in grouping students by examining the similarities in their tra-



Fig. 1. Example lattice (“PA”, for phonemic awareness). The node labels are not im-
portant here; what is important is the structure of the graph.

student A student B

Fig. 2. PA paths for two students (“A” and “B”). The node labels are not important
here; what is important is the shape of the trajectory of each student.

jectories through the lattice landscape. It is important to note that the students
do not make directed choices about which paths to take, but rather the system
chooses each next node in reaction to the student’s performance so far. Currently,
CPI has over 50,000 students taking the assessment three times per year. This
large data set gives us the opportunity to create agents that simulate a range of
human behaviors. As mentioned earlier, we wish to create a suite of agents that
each mimics certain categories of human behavior. We partition the complete
data set into clusters, grouping humans with similar behavioral characteristics,
as exhibited by following similar trajectories through the CPAA.

Data clustering is a well-studied field in the literature, and the particular
algorithm chosen for a clustering task varies depending on the characteristics of
the data set and the goals of the task. Our aim is to produce coherent grouping
that will train agents that are distinct from each other. We investigated a va-
riety of techniques and here we compare two of these methodologies: Euclidean
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Fig. 3. Hierarchical clustering of PA student response vectors, using Euclidean distance
with 012 coding. Vertical axis indicates ID numbers of individual students. Horizontal
axis contains h values.

distance based on feature vectors and Hausdorff distance based on geometric
similarity.

Euclidean distance. We generated “feature vectors” to encode the student
responses during the test. For example, for PA, we generated 94-dimensional
feature vectors for each path, each dimension representing a student’s response
to one question. Note that sequences of questions are chosen for students dy-
namically, based on the their performance and the connections in the lattice;
so students do not see all the questions. We experimented with different cod-
ings for the student responses including: 0=incorrect, 2=correct, 1=not seen
(021 coding), −1=incorrect, 1=correct, 0=not seen (-110 coding), 0 =incorrect,
1=correct, 2=not seen (012 coding), and also a 3 variable coding: seen ({1|0}),
incorrect({1|0}), correct ({1|0}). We used a hierarchical clustering algorithm in
Matlab [13] using the Euclidean distance between the feature vectors as the dis-
tance measure. As can be seen in figure 3, the algorithm found 8 main clusters at
level h = 8 using the 012 coding. The 012 coding gave the best results compared
to the other Euclidean codings.

Examing the clusters, we realized that the groups were not really homoge-
nous, either with respect to the assessment scores or the paths taken during
the assessment. This could be because Euclidean Distance was not an appropri-
ate measure for this type of data, since it does not contain any information on
the relationship between the questions. As will be shown later, this intuition is
correct, and the next methodology provides better results.

Hausdorff distance. Since our aim is to group students according to the
similarity of trajectories followed on the assessment maps, we decided to em-
ploy clustering techniques on sequential data. Similar work has been reported
in [14] on classifying Linux users with respect to their experience level based on
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Fig. 4. Hierarchical clustering of PA trajectories, using Hausdorff distance. Vertical
axis indicates ID numbers of individual students. Horizontal axis contains h values.

command logs and in [15] on clustering financial time series data. We assigned
coordinates to each node with respect to their closeness on the assessment maps
and used Hausdorff Distance to compute the dissimilarity between any two paths.
After computing the pairwise distances between each path, we applied a hierar-
chical clustering algorithm in Matlab. As can be seen in figure 4, the algorithm
found 8 main clusters at level h = 2. Also, note that within each cluster there
are smaller groupings of paths that are closer to each other than the others in
the same cluster.

We evaluate the clustering techniques in two ways: first, by measuring the
coherence of the clusters generated by each. We use metrics described in [16]
which are used to compare clusters of trajectories. Two metrics are employed.
The first is “shape complexity”, or σ, which is computed as:

σ = disp/length

where disp is the displacement or the distance between the first and last points
in a trajectory and length is the number of points in the trajectory. The second
is “divergence”, or covariance of the first, middle and last points in the trajec-
tory. Figure 5 compares these values for the two clustering techniques: Euclidean
distance and Hausdorff distance. The size of each cluster (number of students
belonging) is shown as well as the average number of points in the trajectories
of all student members. The columns to focus on are the two rightmost, which
contain the standard deviation of σ and cov for the trajectories that comprise
each cluster. The absolute numbers are not important here; what is important is
the relationship between the numbers within each column. Smaller numbers in-
dicate tighter coherence amongst cluster members—this is our aim. The average
σ for the Hausdorff is 3.95, whereas for Euclidean, the average σ = 4.77. The



Hausdorff clustering Euclidean clustering, 012 coding
cluster size points σ cov

1 11 121 2.64025 5687.83
2 6 64 2.42758 3871.61
3 19 203 2.22529 6487.44
4 28 298 4.43650 6841.44
5 4 37 4.89523 6909.63
6 12 108 4.55438 5109.01
7 18 197 4.91468 8704.28
8 19 206 5.40067 8579.10

cluster size points σ cov

1 6 68 4.87123 8353.60
2 19 204 8.83936 15166.20
3 4 41 2.20674 4062.49
4 8 89 2.14947 7424.48
5 16 175 3.29415 4157.30
6 15 159 1.60082 4469.70
7 21 223 7.63581 12024.50
8 28 275 7.57357 7320.25

Fig. 5. Cluster similarity measures, showing for each cluster: the number of tra-
jectories in the cluster, the total number of points covered by all the trajectories
in the cluster, the standard deviation for σ and the standard devation for cov
(see text for further explanation).

average covariance for Hausdorff is 6523.79, whereas for Euclidean, the average
cov = 7872.31. Using these metrics, the Hausdorff distance clustering technique
results in better coherence. We note that a cluster-by-cluster comparison reveals
that the Hausdorff coherence is better for the clusters on either end of the spec-
trum, while the Euclidean is better for those in the middle. This is an interesting
result which bears further investigation.

The second method we used for evaluating clustering techniques is described
in the next section, where we used the clusters to train agents and our evaluation
is based on the correlation between the behavior of the trained agents and the
groups of humans the agents are emulating, as well as the separation between
agents (i.e., distinctiveness of behavior patterns).

2.2 Training agents

The next step in our procedure is to create agents whose behavior typifies that
of each cluster. We did this for both sets of Hausdorff distance and Euclidean
distance clusters. First, we generated a profile for each cluster as follows. For
each node in the lattice, we tally the number of students in the cluster who
visited that node. We compute statistics based on students’ responses to each
node as the basis, aggregated for all members of a cluster into an agent training
set. For each cluster, we generate one representative agent.

Each node represents a question in the assessment, and each question is de-
signed to elicit information about students’ skills and deficiencies. Each question
has four multiple-choice answers, only one of which is right. Associated with each
incorrect answer are one or more error codes. There is a master list of error codes
and a mapping between that and each node in the lattice. As an example, take
the generic lattice illustrated in figure 6a. All students start at the node labeled
q0 ∈ Q in the figure. There are one or more deficiencies, each of which we will
refer to as dj ∈ D, that each node (question qi) is assessing. Essentially a table



with |Q| rows by |D| columns is engineered when the lattice is designed, by edu-
cation specialists who assign a Boolean value to each cell in the table indicating
which deficiencies are intended to be revealed by each question. We use this table
to pose two types of questions:

1. a modeling question—what is the probability that a student possesses de-
ficiency dj , given that they answered question qi incorrectly, i.e., what is
Pr(dj |qi)?

2. a prediction question—what is the probability that a student will answer
question qi incorrectly, given that they possess deficiency dj , i.e., what is
Pr(qi|dj)?

In actuality, there is not a one-to-one correspondence between deficiencies and
questions. In other words, for each deficiency column in the table, multiple
question rows will contain data; and for each question row, multiple deficiency
columns will contain data. This multiplicity is one of the great strengths of
CPI’s assessment system. It is also a feature that we capitalize on here. Thus we
rephrase our two questions:

1. modeling—what is the probability that a student possesses the deficiencies
in set D, given that they answered the questions in set Q incorrectly?

2. prediction—what is the probability that a student will answer the questions
in set Q incorrectly, given that they possess the deficiencies in set D?

The influence diagram [17, 18] shown in figure 6b provides a graphical illustra-
tion of this situation. There are two types of variables represented: deficiencies
{d0, d1, d2} and questions {q0, q1}. Question q0 is designed to assess whether a
student possesses deficiencies in set D′ = {d0, d1}; question q1 is designed to
assess whether a student possesses deficiencies in set D′′ = {d1, d2}.

pr4

q1q0

d0 d1 d2

q2

pr2
pr3

pr0
pr1

(a) generic lattice (b) example influence diagram

Fig. 6. Agent training structures.

We use the student logs and cluster assignments, in collaboration with CPI’s
error code definition table, to fill in probability tables, one per cluster. We tally



the number of students within the cluster who visited each node and the per-
centage of them who answered the question incorrectly, indicating particular
deficiencies. Thus, for each cluster, we have a table that indicates how likely it
is that a member of that cluster possesses each deficiency. This probability table
becomes the heart of the control function for each “cluster agent.” Eventually,
these tables will be used to guide the behavior of an agent acting as a peer learner
in the educational games component of our project. For now, we use them to
simulate each agent stepping through the lattice.

2.3 Evaluating agents

Finally, we evaluate the efficacy of our methodology by simulating an assessment
using each agent generated. We performed 999 evaluation trials for each agent—
since the agents are controlled probabilistically, they will not behave exactly
the same way in each simulation run. In order to evaluate these agents, we
wish to determine how well each agent fits the cluster profile from which it was
modeled. Based on our experiments during clustering, we had determined that
taking into account the geometry of the assessment paths rather than a vector of
student responses resulted in more meaningful clusterings. We decided to utilize
the same notions to evaluate the agents as well. We used the shape complexity
(σ) metric described earlier to compare the relationship between trajectories
generated by agents with those generated by humans. Figure 7 plots the average
σ for each cluster based on the trajectories exhibited by humans (x-axis) against
the corresponding value for trajectories generated by the agent representing each
cluster in the 999 evaluation runs. The correlation with the Hausdorff technique
is quite high.
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Fig. 7. Correlation between Agents and Humans.

We also want to compare the separation between agents, recalling our goal to
produce a suite of agents, each of which represents different behavior patterns.
Figure 8 shows the mean and standard deviation of σ for each of the clusters



computed for each clustering technique. The black bars represent the clusters
based on human trajectories; the grey bars represent the trajectories generated
by the agents in the 999 evaluation runs. Once again, the Hausdorff produces
superior results because greater distinction between each cluster can be seen in
the lefthand plot.
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Fig. 8. Separation between Agents.

Finally, a sampling of trajectories for each cluster (using the Hausdorff tech-
nique) are shown in figure 9. For each cluster, the first (leftmost) plot shows
the trajectories (blue lines) over 999 test runs of the agent. The remaining plots
show a representative sample of human student trajectories (red lines) for each
cluster. The point is that the blue lines should represent a composite set of red
lines within the same cluster.

3 Conclusion

We have described a methodology for generating agent-based simulations of hu-
man learners using probabilistic student models based on data collected during
students’ interactions with a specialized on-line, adaptive, multi-dimensional as-
sessment environment. We used the data to create clusters of students with
similar behaviors and then trained agents whose actions typify cluster members.
We explored two methods of clustering, one based on a feature-vector comprised
of right/wrong answer choices made by each student and employing a Euclidean
distance metric to determine groupings. The second is a graphical approach,
based on examining the paths students take through the underlying lattice struc-
ture of the assessment and employing a Hausdorff distance metric to determine
groupings. From these, we generated a profile for each cluster of students based
on inferred deficiencies of students on that skill. We used these deficiency pro-
files to train agents to emulate cluster members, and finally, we evaluated the
efficicacy of these methods by comparing the trajectories produced by agents
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Fig. 9. Comparing agent and human trajectories.

acting in a simulated assessment to those of cluster members produced in the
real assessment. Our results show that the trajectory analysis and Hausdorff
metric is superior to the Euclidean methodology for our purposes.

Selecting the proper number of clusters for the problem at hand is an issue. As
shown in figures 3 and 4, the choice of where to draw the vertical line determines
how many clusters are selected. In the work presented here, we picked the number
of clusters manually, by examining these dendrograms. In the future, we will
explore a variety of automated methods for selecting the appropriate number of
clusters, with the goal of finding groups that offer the most coherence while at the
same time, the most data compression. We will also investigate the possibility
of selecting clusters essentially by drawing vertically stepped lines across the
dendrograms.

Our approach has proven to be promising, and we are looking into the ap-
plication of an expectation-maximization (EM) algorithm to estimate the condi-
tionals on the deficiencies in order to make the agents fit better to the underlying
student models.
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