
Automatic acquisition of robot motion and sensor
models

A. Tuna Ozgelen, Elizabeth Sklar, and Simon Parsons

Department of Computer & Information Science
Brooklyn College, City University of New York

2900 Bedford Avenue, Brooklyn NY 11210 USA
{tuna,sklar,parsons}@sci.brooklyn.cuny.edu

Abstract. For accurate self-localization using probabilistic techniques, robots
require robust models of motion and sensor characteristics. Such models are sen-
sitive to variations in lighting conditions, terrain and other factors like robot bat-
tery strength. Each of these factors can introduce variations in the level of noise
considered by probabilistic techniques. Manually constructing models of noise is
time-consuming, tedious and error-prone. We have been developing techniques
for automatically acquiring such models, using the AIBO robot and a modified
RoboCup Four-Legged League field with an overhead camera. This paper de-
scribes our techniques and presents preliminary results.

1 Introduction

Robots in RoboCup have two main requirements in order to playeffective soccer. They
have to be able to self-localize with reasonable accuracy [6], and they have to be able
to detect and track the ball [13]1. The current state-of-the-art in localization is to use
Bayesian filter models [22, chap. 3–4], and a particularly popular approach is the parti-
cle filter [23]. This is especially popular in RoboCup because it allows robots to track
multiple position hypotheses, helpful when robots are regularly kidnapped by referees,
while running on modest computational hardware. To apply any Bayesian filter model,
a robot requires a model of its own motion, which it uses to predict new poses from
old ones following motion, and a model of its sensor behavior, which the robot uses to
choose between multiple possible poses. The sensor model isclearly also important for
detecting and tracking the ball.

Now, it is clear that the sensor and motion models are of importance to obtaining
effective behavior from any robot, but they are especially important in vision-based
soccer-playing robots. As a number of authors have pointed out, for example [6, 15],
vision-based robots have much less sensor data to work with than robots equipped with
sonar or laser range-finders (at least when the vision is based on landmark detection
as it so often is in RoboCup). This comparative paucity of sensor data argues for the
importance of making each datum as accurate as possible (though it should be noted

1 Successful soccer-playing robots clearly need to be able to do a lot of other things as well, but
these other things — effective moving of the ball, tactical positioning, and coordinated team
play, for example — have good self-localization and ball-detection as pre-requisites.



Fig. 1. An AIBO with a color marker.

that if sensor data is too accurate, the performance of the particle filter degrades slightly
[23]). The paucity of sensor data also argues for making the motion model as accurate
as possible — with infrequent sightings of landmarks, robots have to run for several
seconds at a time without sensor data [15], and during that time can only update their
notion of where they are using motion data. Furthermore, when tracking the ball, the
robot may not see a landmark for considerably longer, and so will have to rely on what
is effectively dead-reckoning from its last confirmed position.

This requirement on the vision sensor model holds not only for models of the kind
that we deal with here, which use information about distanceand bearing to landmarks,
but also for models that deal only with bearing [12] (and recent work [15] shows that
distance information helps to improve the precision of localization provided that the
distance information is adequately calibrated).

In this paper, we are concerned with the SonyAIBO ERS-7, the robot used by our
Legged League team MetroBots2. To construct both motion and sensor models for the
AIBO we are usually reduced to taking measurements “by hand and tape measure”
[18]—running the robot for a given time and measuring how far it moved, or having
the robot estimate how far it is from a landmark and comparingthat with the measured
distance. This gives relatively few measurements from which to construct and evaluate
models, and the work described here is a response to that situation.

In this paper we describe how we have been using a global vision system, a system
which uses an overhead camera, and from that image data determines the position of
the robot, to automatically acquire motion and sensor data.This approach allows us to
collect data sufficiently easily and rapidly — several hundred data points in an hour3

— that we can use data-intensive machine learning techniques to construct models of
motion and sensor error.

2 Experimental setup

For our experimental work, we have adapted a modified setup derived from the RoboCup
E-League [1]. The E-League makes use of a simplified small-size league environment,
where global vision data is provided by a common vision server. This data is sent to

2 http://agents.sci.brooklyn.cuny.edu/metrobots
3 A limit set, effectively, by the fact that at the moment we have to have the robot write image

data to its memory stick, which takes several seconds, and then upload theimage by ftp and
that we use just a single robot. A group of several robots could collect data faster, as suggested
in [11].
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Fig. 2. The experimental setup.

both teams using UDP broadcast. Teams decide how to move their robots, and package
instructions for the robots into a common format. These instructions are then combined
into messages by the communication server, and broadcast tothe robots via an infra-red
transmitter. Each robot on each team unpacks the messages tofind out what to do next.

At the heart of our setup is the Mezzanine visual tracking package [9]. Suitably cal-
ibrated, this software provides 2D tracking of objects — establishingx, y coordinates
and orientation — provided that the objects are color coded for easy recognition from
above. Mezzanine provides accurate tracking even with veryunsophisticated camera
hardware and can handle considerable image distortion. We currently use an XCam2
WideEye from X10, an inexpensive wide-angle security camera4. The original vision
tracking system used by the E-League was Doraemon [2], whichprovides robust posi-
tion estimates even when the camera is mounted at an angle rather than directly over-
head. We are using Mezzanine because it more accurately handles the type of fish-eye
images obtained from the wide-angle camera that is needed inorder to get the whole
soccer pitch in a single field-of-view.

As mentioned above, instead of the type of small, wheeled robots that have typically
been used in the E-League, we have been working with SonyAIBO ERS-7 robots. To
make them visible to Mezzanine, we simply attach a color marker to the back of the
robot as in Figure 1. Since theAIBO is equipped with a wireless ethernet card, we can
send data between the robot and the computer that is running the control code and the
data logger (both are the same machine, though logically distinct), and we can send the
position data from Mezzanine directly to the robot as well. The setup is as in Figure 2.

The idea of the experimental setup is to provide a completelyautomated mechanism
for data-collection. The control module polls Mezzanine for location data and simulta-
neously sends instructions to theAIBO telling it how to move around the pitch, and
when to gather data from its internal camera. When the robot ismoving, we can con-
tinuously collect data about its position, and collate thisposition data with the motion
commands sent to the robot. As we discuss below, this data canbe used, amongst other
things, to learn a motion model for the robot.

In addition to collecting this motion data, we can collect sensor data from the robot.
Of particular interest, given the fact that the data used by the robot for self-localization

4 www.x10.com
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Fig. 3. The motion model for walking forward: (a) scatter plot of rates of motionin the x and
y directions (x on the horizontal axis,y on the vertical) when walking forward; (b) histogram
of motion in thex direction when walking forward; (c) Gaussian mixture fitted to the forward
motion data; and (d) Gaussian mixture scaled and plotted with histogram of forward data.

is visual data, is the collection of camera images. Currently we do this by causing the
robot to pause—thus allowing us to get an accurate idea of where each picture was
taken without having to synchronise the clocks on the robot and the machine running
Mezzanine—and then take a picture (which takes a few seconds to write to the robot’s
memory stick) and then upload the picture to the data logger.

3 Results

We used the setup described in the previous section to construct models for the robot’s
standard trot gait and the error in its perception of the Legged League markers. The
robot gait is that from the motion module of the Carnegie Mellon University Legged
League team CMPack’04 from the 2004 RoboCup competition [4].

3.1 Motion model

Data for the motion model was collected by making theAIBO walk forwards and back-
wards for 10 seconds at a time, while Mezzanine measured the coordinates of the robot
at one second intervals. From these measurements, we computed the velocity of the



robot over the relevant period in the three coordinate directions of the global frame of
reference used by Mezzanine5. Since the robot takes time to accelerate and decelerate,
we effectively had two sets of data—measurements for the robot moving continuously,
and measurements for the robot when it was speeding up or slowing down.

For both forwards and backwards motion, we then plotted a histogram of around
3600 velocity measurements, obtaining two-peaked distributions — the lower valued
peak corresponding to times when the robot was changing veocity, and the larger peak
corresponding to constant velocity motion — that were approximately Gaussian. We
then learnt the parameters of a two-Gaussian mixture that fitted the data. This learning
was carried out using the standardEM algorithm [5]. A sample of this procedure for the
x component of forward motion (that is the component in the direction of motion) is
provided in Figure 3. Looking at Figure 3 (a) the two sets of measurements are clear,
and these emerge as two distinct peaks in the histogram in Figure 3 (b) and (d). As
Figure 3 (c) and (d) show, the two-Gaussian mixture closely fits the data.

The two forward motion distributions have means of77 and204, and standard de-
viations of22 and28 respectively, while the two backward motion distributionshave
means of87 and174, and standard deviations of27 and23, respectively.

3.2 Sensor model

Our second use of the experimental setup was to measure the error in the robot’s esti-
mates of its distance from the Legged League beacons. To do this, we first used the ex-
perimental setup to have the robot move around the pitch taking pictures, and recording
the robot’s position when these pictures were taken6. We used these images to build a
color map and to calibrate a distance coefficient, based on the number of pixels counted
for each beacon shape and the robot’s distance measured fromthe beacon by hand.
We then used the experimental setup to have the robot take a much larger set of images,
again recording the position at which each picture was taken. For each of this second set
of images we had the perception system of the robot calculatethe distance to the bea-
con, and we compared this with the real distance as measured by the global vision—the
difference is then the error in the local vision system.

Given this error data, we then carried out exactly the same kind of learning as in the
previous section, and the steps in this process are as depicted in Figure 4.

3.3 Discussion

The main thrust of the work described here has been the use of the external camera
to measure robot pose and the subsequent use of this information, in conjunction with
information computed on board the robot, to develop a motionmodel for the robot and
a sensor error model. This is rather different to most existing work on developing vi-
sion models within RoboCup, for example [3, 10, 16, 17, 24], which has tended to con-
centrate on the automated segmentation of images, especially with an eye to handling

5 Taking due account of the orientation of the robot in that frame of reference.
6 In fact we combined taking pictures with the motion measurements requiredfor the motion

model.
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Fig. 4. The sensor error model (a) histogram of the error established from the global vision; (b)
the model learnt from the data (adjusted for a measurement of 1200 mm).

changing illumination of the playing field, or work such as [21], which has concentrated
on automatically identifying landmarks from sensor data.

Of course, there are problems with using the overhead cameraas a measure of
“ground truth”, since, as [14] points out, overhead camera-based global vision systems
tend to suffer from quantization problems and are adverselyaffected by noise in the im-
age. However, these problems are much reduced for us in comparison with [14] thanks
to the unique beacons used by the Legged League — [14] studiesthe small size league
setup. These beacons greatly simplify the problem of localizing a robot by uniquely
anchoring points on the image. Furthermore, while an occasional error in robot local-
ization can have catastropic effects on the way that the robot plays soccer, which is the
concern in [14], in our work an error will only introduce a little more noise, and create
distributions with slightly more variance.

Our work described here is clearly related to the simultaneous learning of sensor and
motion models described by [18, 19]. That exciting work promises to supercede what
we are doing here, but for now is only capable (at least as reported in the literature) of
learning models that work in the same single dimension — in the case of [18, 19] that
is motion towards and away from a beacon, along with sensing of the distance to the
beacon. In contrast our approach, while requiring data external to the robot — which is
clearly a limitation in some domains — can aquire multi-dimensional models (and so,
for example, can easily acquire models for they direction and rotation).

4 Future work

We began this work not just to obtain data from which we could learn motion and sensor
models off-line, but in order to be able to learn them on-line. In particular, we wanted to
be able to run the robot, have it self-localize, and then adjust the parameters that control
its motion and sensor models in order to improve its self-localization in much the way
that [11] adjust parameters in order to optimize the robot gait (though clearly in a less
autonomous way). This is still our aim, and we are continuingto work towards it. At the
moment, as an intermediate between our overall goal and whatwe have reported here,



we are using the experimental setup we have described to evaluate our use of particle
filtering to localize theAIBO while it is playing soccer.

There have been many previous evaluations of localization.For example [7] exam-
ine a range of different probabilistic algorithms, while [6], and [20] evaluate RoboCup
specific approaches, and [8, 12] look at the quality of localization on theAIBO in a
RoboCup setting. However, all of these use rather contrivedscenarios. For example, [6]
required the robot to be manually placed around the pitch in order that the true location
be known, while [8] controlled the robot with a joystick and obtained measurements by
moving the robot over a known location and seeing where the robot thought it was as it
passed over that location. [12] comes closest to what we are working on, using a laser
range-finder to monitor continuously the real location of the robot, but never carried
this out during a game (the addition to the robot to allow the laser to detect the robot
presumably prevented this). As a result, we have no data on the extent to which actually
playing, and thus, as described above, having to focus on theball, affects the quality of
the localization.

5 Summary

This paper has described the use of a global vision system as ameans of automatically
acquiring motion and vision sensor data for a legged robot. Despite the fact that these
models are essential in order that robots can accurately self-localize, there has been little
work to try and acquire them automatically. In addition to describing the process by
which we collect the data in order to construct the motion andsensor models, we have
demonstrated the kinds of results that it is possible to obtain in this way. In particular,
we gave two components of the motion model for anAIBO ERS-7 that we learnt in this
way, and the error model for the extraction of the beacons on the Four-Legged League
pitch. While the learning process currently involves some human intervention, and is
run on an off-board computer, there is no especial reason whythe process could not be
completely automated and run on-board.
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