
Co-evolution of Aution Mehanisms and Trading Strategies:Towards a Novel Approah to Miroeonomi DesignSteve Phelps1 Simon Parsons1;2 Peter MBurney1 Elizabeth Sklar31Dept. of Computer Siene, 2Center for Coordination Siene, 3Dept. of Computer Siene,University of Liverpool, Sloan Shool, M.I.T., Columbia University,Liverpool, UK Cambridge, MA, USA New York, NY, USAsphelps,p.j.mburney�s.liv.a.uk sparsons�mit.edu sklar�s.olumbia.eduAbstratMehanism design is the eonomi theoryof the design of e�etive resoure alloationmehanisms, suh as autions. Traditionally,eonomists have approahed design problemsby studying the analyti properties of di�er-ent mehanisms. An alternative is to viewa mehanism as the outome of some evolu-tionary proess involving buyers, sellers andthe autioneer. As a �rst step in this alter-native diretion, we have applied geneti pro-gramming to the development of an autionpriing rule for double autions in a wholesaleeletriity marketplae. For this purpose weadopted the multi-agent simulation model ofNiolaisen, Petrov and Tesfatsion.1 IntrodutionMuh reent work in the �eld of Multi-Agent Systems(MAS) has foused on resoure alloation problems,for example (Fatima & Wooldridge 2001; Jennings etal. 2001). These problems are espeially diÆult tosolve eÆiently in an open system if the values whihagents plae on resoures, or the values of their humanprinipals, are private and unobservable. In suh asituation, the diÆulty faing somebody wishing togive the resoures to those who value them most highlyis that partiipating agents annot neessarily be reliedupon to report their private values truthfully; there isnothing to prevent \greedy" agents from exaggeratingtheir resoure requirements.Aution mehanisms attempt to overome this diÆ-ulty by having agents support their value-laims withhard ash. Suh mehanisms an be designed so as toindue agents to reveal their true valuations, therebyenabling the alloation of resoures to those agentswho genuinely value them most highly.

Designing mehanisms to ahieve spei� eonomirequirements, suh as ahieving market eÆieny ormaximising soial welfare, against self-interested in-telligent traders, is no trivial matter as an be seenfrom aounts of the aution design proess for the re-ent radio spetrum autions in the UK (Klemperer2002). The eonomi theory of mehanism design ap-proahes the task of designing eÆient resoure allo-ation mehanisms by studying the formal, analytialproperties of alternative mehanisms (Jakson 2000;Sandholm 1999). Beause of the omplexities involvedin market design problems, eonomists are inreasinglyturning to omputational methods in an attempt totake an engineering approah to \miroeonomi de-sign" (Roth 2001).Our approah applies the notion of o-evolutionarymahine learning (Hillis 1992; Angeline & Pollak1993; Miller & Cli� 1994) to the miroeonomi designproblem. In suessful appliations of o-evolution,populations of agents interat with eah other, an\arms rae" spiral develops wherein eah populationspurs the other(s) to advane and the result is ontin-uous learning for all populations. However, this hasbeen notoriously diÆult to ahieve. Often popula-tions settle into a mediore stable state, reahing a lo-al optima and being unable to move beyond it.Consequently, there is a growing body of work exam-ining the dynamis of o-evolutionary learning envi-ronments in an attempt to identify phenomena thatontribute to suess (Cli� & Miller 1995; Pollak &Blair 1998; Fiii & Pollak 1998; Blair, Sklar, & Funes1999). The following aspets are of partiular impor-tane:1. hoie of representation for individuals withineah population;2. de�nition of a �tness funtion for determiningwhih individuals in a population will reprodue;3. methodology and proportion for reprodution;



4. seletion of learning experienes for individuals(i.e., who interats with whom, how many timesand how frequently);5. avoidane of ollusion1 wherein members of di�er-ent populations an work together to make non-optimal moves that may produe better short-term results for eah but ause the populationsas a whole to get stuk in loal optima; and6. a learly de�ned vision of the landsape and howto measure progress so that one an even reognizeif a loal (or indeed global) optimum has beenreahed.We see eÆient mehanisms evolving through repeatedinterations between partiipants who may also beevolving individually | thus we believe that the o-evolutionary methodology is highly appropriate for ourproblem. In our work, we are using geneti program-ming (GP) (Koza 1992) to represent individuals withdi�erent roles in an aution: the autioneer, and thetwo types of traders (buyers and sellers). Through theinterations of the traders, individual and group trad-ing strategies evolve, as well as aution mehanismsthemselves. We view the mehanisms as \hosts" andthe trading strategies as \parasites"; as greedy, non-truthful strategies emerge, it would be hoped thatthe mehanism population will adapt defenses, andthat strategy-proof, inentive-ompatible mehanismswould evolve.Suh an approah is the long-term aim of our researh,and to our knowledge we are the �rst to apply genetiprogramming and o-evolution to mehanism design.Here, we report our initial work towards this aim. Toprovide a multi-agent test-bed for suh an approah wehave adopted the wholesale eletriity market autionsimulation model of (Niolaisen, Petrov, & Tesfatsion2001), hereafter referred to as NPT. In Setion 2, wedesribe the NPT model, and our work to repliatetheir results. Setion 3 then desribes our use of ge-neti programming to o-evolve trading strategies forbuyers and sellers in these autions. Setion 4 presentssome of our preliminary results in using geneti pro-gramming to evolve aution priing rules. The �nalsetion onludes with a brief desription of our fu-ture researh.2 The NPT modelIn the NPT experiments (Niolaisen, Petrov, & Tesfat-sion 2001), a number of traders buy and sell eletriityin a disriminatory-prie ontinuous double aution.1Note that this is not neessarily the same as the notionof ollusion in aution theory.

Every trader has a private value for the eletriity thatthey trade; for buyers this is the prie that they anobtain in a seondary retail market and for sellers thisreets the osts assoiated with generating the ele-triity. Trade in eletriity is a�eted by apaity on-straints; every trader has a �nite maximum apaityof eletriity that they an generate or purhase forresale. The market proeeds in rounds of trading. Ineah round, all the traders are given the opportunityto bid in a random order. Eah trader selets a prieand submits a bid or an ask at that prie and witha quantity equal to their generating apaity. Tradeproeeds until the maximum number of aution roundsis reahed.Agents use a myopi reinforement learning algorithmwhih is a modi�ation of the Roth-Erev algorithm(Roth & Erev 1995); the learner hooses possible a-tions from K possible mark-ups, and reeives a re-ward diretly proportional to the pro�ts that resultfrom this o�er. The learner hooses ations by gen-erating random numbers aording to a probabilitydistribution built up linearly from the umulative re-wards for eah possible ation. The modi�ed Roth-Erev algorithm (MRE) has three main parameters: rthe reeny parameter; e the experimentation param-eter and s(1) the saling parameter.NPT is interested in the market power that an be ex-erised by buyers or sellers under di�erent market on-ditions. Market power is de�ned as the di�erene be-tween atual pro�ts earned versus the theoretial prof-its available in ompetitive-equilibrium, expressed as aratio of the equilibrium pro�ts. The di�erent marketonditions are represented by two parameters: relativeonentration (RCON) and relative apaity (RCAP).RCON is the ratio of the number of buyers (NB) tothe number of sellers (NS) and RCAP is the relativegenerating apaity of eah group.2.1 NPT resultsThe main results from NPT are summarised in Table1. Eah ell of the table orresponds to partiularvalues for RCON and RCAP. The outome under theseonditions is summarised by the variables:- Buyer MP { market power exerised by buyers- Seller MP { market power exerised by sellers- EÆieny { ratio of total pro�ts earned to totalpro�ts theoretially available in ompetitive equi-librium, expressed as a perentageBeause traders use stohasti strategies, the sensi-tivity of these outomes to partiular values of thepseudo-random number generator (PRNG) seed is



tested by running the experiment 100 times with dif-ferent PRNG seeds on eah iteration. For eah variablewe present the average result, followed by the standarddeviation in parentheses.These results are signi�ant beause they indiate thatthere are market biases inherent in the disriminatory-prie aution rules. For example, one would expetthat Seller MP should inrease as RCAP inreases, butthis is not what is found by experimentation. NPTonludes that the inherent market-struture is re-sponsible for failure of this hypothesis.2.2 Repliation of resultsThis senario was seleted for our researh beause ofthe fous on market power. As agents evolve suessfulextra-marginal strategies, their market power indieswill inrease. For example, if sellers were able to em-ploy ollusive prie-�xing strategies, we should expetto see their market power indies grow. Di�erent au-tion rules may have di�ering abilities to ounter thiskind of tati; hene, market power outomes are animportant quantative metri to onsider in assessingaution designs.We began our implementation of the NPT modelby attempting to repliate the results presented inthat paper. The software used to run the au-tion experiments was written in Java. The soft-ware is available under an open-soure liense athttp://jasa.soureforge.net/. The 4-heap algo-rithm (Wurman, Walsh, & Wellman 1998) was used tomaintain aution state; all prie information was en-oded using double-preision oating point variablesand all quantity information was enoded using inte-gers. The Mersenne Twister PRNG was used to gen-erate the random numbers required for MRE.The repliated results are presented in Table 2. Al-though similar market power and mean eÆieny out-omes are obtained, the standard deviations we ob-tained for the eÆieny outomes are onsiderablylarger than those reported in NPT. These results giveus some on�dene that our experimental setup is a-urate, although we are ontinuing to try and trakdown the soure of these inreased standard devia-tions.3 Co-evolution of Trading Strategiesusing Geneti-ProgrammingWe next ompare the reinforement learning algorithmused by NPT with o-evolution of trading strategiesusing geneti programming. In this work, we evolve aseparate population of strategies for eah trader in theeletriity market senario. These strategies evolve in

ompetition with the simultaneously evolving strate-gies of other traders. For these experiments we madeuse of a Java-based evolutionary omputation systemalled ECJ.2 The senario is similar to the NPT exper-iments, but instead of using the modi�ed Roth-Erevalgorithm to selet pries, agents selet pries by eval-uating a funtion that was evolved using geneti pro-gramming (GP).ECJ implements a strongly-typed GP (Montana 1993)version of Koza's (Koza 1992) original system. Forall of the GP experiments in this paper, the standardKoza parameters were used in ombination with thestandard Koza GP operators. The funtions given inTables 3 and 4 were used as the GP funtion-set, andthe initial populations are generated randomly usingthese funtions. As is usually the ase with GP, in-dividuals are tree strutures omposed of these fun-tions. We used six populations of GP-evolved strate-gies, that is one population for eah buyer and sellerin the market. Eah population ontained 100 tree-individuals. When breeding trees for the next gener-ation, the rossover operator is applied with a proba-bility of 0.9, and the reprodution operator is appliedwith a probability of 0.1, as per standard Koza GP(Koza 1992). Individuals are seleted for breeding us-ing tournament seletion, with a tournament size of7.To evaluate the �tness of individuals in eah genera-tion, one member of eah population was randomly se-leted. The strategies that orresponded to these treeswere then played against eah other in a 10-round ver-sion of the eletriity market, and eah individual's�tness was set in proportion to the pro�ts obtainedfor the orresponding strategy. This ontinued untilall individuals in all populations had been evaluated,giving a �tness measure for eah individual. Note thatwherever evaluation of the tree resulted in a negativeprie, or in a division by zero exeption, the prie wasset to 0 and this was used as the requisite bid or ask.These �tness values, established by ompetition be-tween populations are then used, as desribed above,to selet whih individuals from a single populationwill get to reprodue (both in terms of being opied tothe next generation and undergoing rossover).Initially, we are interested in whether high-eÆienyoutomes are sustained in this experiment. As withthe NPT experiments, high levels of market eÆienyindiate that overall, traders are suessfully \disov-ering" pro�ts that are available in the market. Wewould not neessarily expet to see stability, or grad-ual improvement, of eah strategy's individual pro�tsin this o-evolutionary senario. But if overall mar-2http://www.s.umd.edu/projets/plus/e/ej/



Relative Capacity
1/2 1.00 2.00

stdev stdev stdev
Buyer MP -0.13 (0.09) Buyer MP -0.15 (0.09) Buyer MP 0.10 (0.30)
Seller MP 0.55 (0.38) Seller MP 0.38 (0.33) Seller MP -0.10 (0.25)

2
Efficiency 99.81 (0.02) Efficiency 96.30 (0.05) Efficiency 99.88 (0.06)

Relative Buyer MP -0.22 (0.12) Buyer MP -0.13 (0.10) Buyer MP 0.13 (0.33)
Concentration Seller MP 0.80 (0.53) Seller MP 0.28 (0.35) Seller MP -0.10 (0.26)

1
Efficiency 92.13 (0.09) Efficiency 94.59 (0.07) Efficiency 100.00 (0.00)
Buyer MP -0.21 (0.12) Buyer MP -0.14 (0.08) Buyer MP 0.09 (0.24)
Seller MP 0.67 (0.46) Seller MP 0.30 (0.31) Seller MP -0.07 (0.19)

1/2
Efficiency 91.84 (0.09) Efficiency 94.24 (0.07) Efficiency 100.00 (0.00)Table 1: Original NPT market power and eÆieny outomes for the best-�t MRE algorithm with 1000 autionrounds and parameter values s(1) = 9.00, r= 0.10, and e = 0.20. Refer to the original NPT paper for a detaileddesription of the MRE parameters: r the reeny parameter; e the experimentation parameter and s(1) thesaling parameter.

Relative Capacity
1/2 1.00 2.00

stdev stdev stdev
Buyer MP -0.33 (0.07) Buyer MP -0.27 (0.08) Buyer MP 0.10 (0.11)
Seller MP 1.12 (0.31) Seller MP 0.72 (0.32) Seller MP -0.15 (0.10)

2
Efficiency 94.46 (3.87) Efficiency 95.04 (3.43) Efficiency 96.71 (0.51)

Relative Buyer MP -0.39 (0.07) Buyer MP -0.28 (0.08) Buyer MP 0.10 (0.08)
Concentration Seller MP 1.19 (0.40) Seller MP 0.76 (0.30) Seller MP -0.15 (0.07)

1
Efficiency 91.01 (7.61) Efficiency 95.34 (3.26) Efficiency 96.63 (0.47)
Buyer MP -0.38 (0.09) Buyer MP -0.27 (0.08) Buyer MP 0.04 (0.07)
Seller MP 0.84 (0.45) Seller MP 0.72 (0.29) Seller MP -0.10 (0.06)

1/2
Efficiency 84.86 (9.93) Efficiency 94.62 (3.92) Efficiency 96.79 (0.42)Table 2: Repliated market power and eÆieny outomes for the best-�t MRE algorithm with 1000 autionrounds and parameter values s(1) = 9.00, r = 0.10 and e = 0.20

Funtion Arguments Return-type Desription+ (+ number number) number Addition� (� number number) number Subtration= (= number number) number Division� (� number number) number Multipliation1 none number 1DoubleERC none number A double preision oating point ephemeralrandom onstant in the range (0..1).QuoteBidPrie none number The urrent bid quoteQuoteAskPrie none number The urrent ask quoteTable 3: GP funtions ommon to all funtion-sets



Funtion Arguments Return-type Desription< (< number number) boolean Less-than funtion= (= number number) boolean Equals funtion> (> number number) boolean Greater-than funtionTrue none boolean TruePrivateValue none number The agent's private valuation foreletriityNand (Nand boolean boolean) boolean Not-and boolean operatorIfElse (IfElse boolean number number) number Return 2nd argument if ondi-tion is true, otherwise return 3rdargument.Table 4: Additional GP funtions used in evolving trading strategies
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Figure 1: Evolution of mean eÆieny for RCON=1 and RCAP=1 over 10,000 generations using a �xeddisriminatory-priing autioneer, and 6 sub-populations of o-evolving strategies eah of size 100.ket eÆieny does deline temporarily, we would ex-pet the o-evolving strategy set as a whole to adaptand reaquire the \lost" pro�ts; thus if strategy sub-populations are suessfully adapating to new marketonditions, we would expet to see market eÆienyremain stable at near to 100%.Figure 1 shows the evolution of the mean market ef-�ieny for eah generation of the experiment in thease RCAP=1 and RCON=1 over 10,000 generations.Note that by generation 2000, the market eÆienyhas beome stable, and the mean eÆieny is 74.3.The use of o-evolution to evolve trading strategiesis not new in experimental eonomis; for example,see (Prie 1997). Our interest in o-evolving strate-gies was to verify that suh an approah worked forthis senario, and also as a step towards the use of

o-evolutionary tehniques to evolve trading strategiesand aution rules|in other words to evolve meha-nisms along with the best way to trade within them.To our knowledge no one has yet done this, and ourpreliminary work towards doing this will be the fousof the next setion.4 Co-evolution of Aution PriingRules and StrategiesAn additional population of autioneers was intro-dued into our experiment. These agents were derivedfrom the autioneer lasses that we implemented forour previous experiments, but instead of using thestandard ode to set the learing prie for a giventransation, they used a funtion that was evolvedusing GP. The set of funtions used for the aution
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Figure 2: Evolution of mean eÆieny for RCON=1 and RCAP=1 over 10,000 generations using an autioneerwith a GP-evolved priing rule, and 6 additional populations of o-evolving strategies.priing rule onsists of those funtions in Tables 3 and5. The �tness for the autioneer population was setproportional to the total pro�ts earned in the market.Intuitively, the autioneer population an be thoughtto be \learning" aution-priing rules that maintainmarket eÆieny in the fae of o-evolving strategies.Our hypothesis is that in this version of the experi-ment, in whih there are a small number of traderswith �xed private values, the most robust aution pri-ing rule is the one that sets the prie for eletriityat the equilibrium prie, regardless of what tradersatually bid. We believe that the autioneer popu-lation should disover this rule; i.e it should disoverthe equilibrium prie for the market. This is beauseprivate values are �xed, and the autioneer popula-tion has indiret aess to meta-information about themarket | market eÆieny | that is based on the(in-pratie unobservable) private values. Of ourse,this priing rule would not work in pratie, beause inpratie private values are not from a �xed, prede�nedset. However, this hypothesis gives us a basis to testsome of our assumptions about this experiment. Fu-ture work will onsider senarios in whih agents withrandomized private-values enter and leave the market.The experimental set-up was a slight variation of theprevious experiment. We added a seventh population,autioneers, and evaluated their �tness by runningautions with randomly seleted buyer and seller in-dividuals (again piking one random individual fromeah of the six populations) and looking at the over-

all pro�ts obtained. The same autions were used toevaluate the buyers and sellers, though their �tnesswas still based on loal pro�t.Figure 2 shows the evolution of the mean market eÆ-ieny for eah generation of this version of the exper-iment in the ase RCAP=1 and RCON=1 over 10,000generations. As an be seen from the graph, the adap-tive autioneers are able to improve mean market ef-�ieny when ompared to the �xed disriminatory-prie autioneer used in the previous setion | themean eÆieny for the adaptive autioneer is 94.5. Inaddition, the market reahes stability more quikly,after only 500 generations.Figure 3 shows the funtion tree evolved for the au-tioneers' priing rule in the �nal generation, and Table6 shows the trading strategy-set for that aution. Weare urrently investigating whether our hypothesis re-garding the disovery of the equilibirum prie is borneout by this experiment.5 Conlusions and Further WorkIn this paper we have reported on the preliminarystages of work aiming to explore the evolution of eo-nomi aution mehanisms. In our initial work, wehave adopted a multi-agent systems test-bed involvingautions in an eletriity marketplae, �rst developedin NPT. In that work, the trading agents in the au-tions were equipped with a modi�ed Roth-Erev learn-ing model, enabling them to hange their bids on the
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using CIAO (Current Individual vs. Anestral Oppo-nents) metris as proposed in (Cli� & Miller 1995), inorder to gain insights into the o-evolutionary dynam-is of these experiments. We are also thinking aboutthe possibility of using pareto o-evolution (Watson &Pollak 2000) in order to ensure that aution designsare robust in the fae of a diverse range of strategies.Our researh work is part of a larger, European-wide e�ort, the Sustainable Lifeyles in InformationEosystems Projet3 exploring the use of biologialparadigms in the study of multi-agent systems. Inpartiular, reent work by our projet partners (Sierraet al. 2002) has shown how generi MAS systems maybe designed by evolutionary proesses. In this ontext,our work fouses spei�ally on the design of eletroniinstitutions for multi-agent trading systems.AknowledgementsThis work was partially supported by the EU IST Pro-gramme through the SLIE Projet (IST-1999-10948).We also thank Mihael Phelps, Leigh Tesfatsion andPeter Wurman for their assistane.3http://www.dai.ed.a.uk/groups/ssp/slie/
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