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ABSTRACT
An urban search and rescue environment is generally ex-
plored with two high-level goals: first, to map the space in
three dimensions using a local, relative coordinate frame of
reference; and second, to identify targets within that space,
such as human victims, data recorders, suspected terror-
ist devices or other valuable or possibly hazardous objects.
The work presented here considers a team of heterogeneous
agents and examines strategies in which a potentially very
large number of small, simple, sensor agents with limited
mobility are deployed by a smaller number of larger robotic
agents with limited sensing capabilities but enhanced mo-
bility. The key challenge is to reconfigure the network auto-
matically, as robots move around and sensors are deployed
within a dynamic, potentially hazardous environment, while
focusing on the two high-level goals. Maintaining informa-
tion flow throughout the robot-sensor network is vital. We
describe our early work on this problem, detailing a simu-
lation environment we have built for testing and evaluating
various algorithms for automatic network reconfiguration.
Preliminary results are presented.

1. INTRODUCTION
This work explores the use of “robot-sensor networks” for

urban search and rescue (USAR), where the topography and
physical stability of the environment is uncertain and time
is of the essence. The goals of such a system are two-fold:
first, to map the space in three dimensions using a local,
relative coordinate frame of reference; and second, to iden-
tify targets within that space, such as human victims, data
recorders, suspected terrorist devices or other valuable or
possibly hazardous objects. Our approach considers a team
of heterogeneous agents and examines strategies in which a
potentially very large number of small, simple, sensor agents
with limited mobility are deployed by a smaller number of
larger robotic agents with limited sensing capabilities but
enhanced mobility. While every node in the network need
not be directly connected to every other node, it is vital
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that information be able, eventually, to make its way to
designated “contact” nodes which can transmit signals back
to a “home base”. It is advantageous for the network to pos-
sess reliable and complete end-to-end network connectivity;
however, even when the network is not fully connected, mo-
bile robots may act as conduits of information — either by
positioning themselves tactically to fill connectivity gaps, or
by distributing information as they physically travel around
the network space. This strategy also enables replacement
of failed nodes and dynamic modification of network topol-
ogy to provide not only greater network connectivity but
also improved area coverage. The robotic component of our
agent team can leverage its mobility capabilities by allowing
dynamic spatial reconfiguration of the robot-sensor network
topology, while the sensor components help to improve local-
ization estimates and provide greater situational awareness.

The past several years have shown great advances in both
the capabilities and miniaturization of wireless sensors [16].
These advances herald the development of systems that can
gather and harness information in ways previously unex-
plored. Sensor networks may provide broader and more
dynamic perspectives if placed strategically around an envi-
ronment, delivering numerous small snapshots over time. By
fusing these snapshots, a coherent picture of an environment
may be produced — rivaling output currently provided by
large, complex and expensive remote sensing arrays. Like-
wise, sensor networks can facilitate propagation of commu-
nication in areas unreachable by centralized broadcast due
to obstacles and/or irregularities in the connectivity land-
scape. While traditional non-mobile sensor networks possess
tremendous potential, they also face significant challenges.
Such networks cannot take an active role in manipulating
and interacting with their environment, nor can they physi-
cally reconfigure themselves for more efficient area coverage,
in-depth examination of targets, reliable wireless connectiv-
ity, or dynamic protection against inclement environmental
developments.

By incorporating intelligent, mobile robots directly into
sensor networks, all of these shortcomings may be addressed.
Simple, inexpensive, easily programmed, commercial off-
the-shelf robotics kits like Garcia [7], or even the new LEGO
NXT [15], could provide inexpensive test platforms and wire-
less networking capabilities. Mobile robots provide the abil-
ity to explore and interact with the environment in a dy-
namic and decentralized way. In addition to enabling mis-
sion capabilities well beyond those provided by sensor net-
works, these new systems of networked sensors and robots
allow for the development of new solutions to classical prob-



lems such as localization and navigation [3]. Arguably, the
development of mixed sensor-robot networks will allow for
exploration of and interaction with environments in ways
previously infeasible.

One of the biggest challenges in an urban search and
rescue environment is the need to maintain consistent and
reliable network communication amongst remote rescuers,
whether they are human or robot or both. As rescuers move
around an uncertain environment, not only do their relative
positions change, but also it is not unlikely that their envi-
ronment will change; collapsed buildings may settle, flood
waters may recede or swell, earthquake sites may shift due to
aftershock. The capability for a team of agents to map their
space collaboratively, identify victims and other targets of
interest, while maintaining information flow is crucial; and
given the dynamic nature of the environments they are ex-
ploring, it is also important that such ad-hoc networks be
able to reconfigure automatically, not only due to changes
in position of the agents but also caused by failure of one or
more nodes.

The work presented here, in very early stages of develop-
ment, examines the issue of automatic reconfiguration of a
network of agents under such conditions as described above.
The longterm goal of this work is to deploy a physical sys-
tem in an urban search and rescue test arena [11], but the
present stage of work involves development of a simulator
in which crucial features are emulated and where design
of algorithms for automatic network reconfiguration can be
tested and evaluated. This paper begins with background
in sensor and robot networks, highlighting current areas of
challenge within the field. Starting with section ??, our ap-
proach to the problem is described, including detailed dis-
cussion of our testbed, the algorithm we are evaluating and
preliminary experimental results from testing the algorithm
in a simulated USAR environment. We close with discussion
of future work.

2. BACKGROUND
The challenges to realizing the potential of sensor-robot

networks exist at both hardware and software levels. Open
problems include power management, communication, in-
formation fusion, message routing, decision-making, role as-
signment, system robustness, and system security. Current
research has begun to address many of these issues. Sev-
eral methodologies have been tested for target detection and
tracking, both with fixed sensors [5] and using large-scale
mobile robotic teams [12]. Researchers are actively investi-
gating novel message routing protocols, some of which en-
able self-organization of networks nodes [17]. As many of
these approaches rely on some type of geographic routing
scheme, sensor localization has become an area of inquiry
[2]. Fundamental issues such as dealing with power supply
limitations [6] and ensuring coverage of the area to be sensed
[10] are also being explored.

Recently a small group of researchers has begun explor-
ing the synergy between autonomous robots and sensor net-
works. Kotay et al. [2005] have explored several issues us-
ing the synergy between GPS-enabled robots and networked
sensors to provide network-wide localization services, path
planning, and improved robot navigation. Gupta et al.
[2004] have suggested a method for the transportation of
resources by combining robots with sensor network services.
The Centibots project [12] examines how large numbers of

more sophisticated robots may collaborate to create maps
and subsequently surveil the area by leveraging ad-hoc wire-
less networking capabilities. These results, produced at the
boundary where robotic teams and sensor networks inter-
sect, suggest a large and fascinating problem space open
for exploration. Following is a sampling of the interrelated
issues for which techniques, algorithms, and hardware solu-
tions need to be devised:

1. high-level team formation and mission fulfillment,

2. communications and routing,

3. localization and mapping,

4. path planning,

5. target tracking,

6. standardization of hardware services/interfaces, and

7. asymmetric wireless broadcast and network interfer-
ence.

While our work touches somewhat on all of these issues, it
focuses mostly on the fifth, third and second, in that order,
exploring how such systems can provide useful and robust
base-level behaviors — and do so with minimal hardware re-
quirements or dependence on favorable environmental con-
ditions.

One commonality amongst much of the works cited above
is the reliance on sophisticated hardware and/or friendly
or over-simplified environmental conditions. Most work ei-
ther assumes the existence of basic services such as local-
ization and orientation, or considers only the cases where
at least a fraction of the agents possess essential hardware
used for global localization (e.g., global positioning system
or GPS). While these assumptions allow for investigation
of important problems, they fail to provide techniques that
will be effective when such hardware services (e.g., GPS,
magnetic compass) fail or are unavailable (e.g., indoor or
USAR environments). Currently, wireless sensor sizes range
from centimeters to millimeters. The smallest robots are
generally one to two orders of magnitude larger, in the cen-
timeter to meter range. Such equipment, while small and
inexpensive enough for ubiquitous deployment, may also be
severely constrained in offering sophisticated hardware ser-
vices. To allow for the widest range of deployable systems,
this work examines systems that make minimal assumptions
concerning hardware capabilities. Limiting the use of so-
phisticated, expensive hardware for network nodes may be
more than compensated for in both cost and performance
by the advantages of density and redundancy that smaller,
simpler, less costly sensors and robots can provide. This
approach would be particularly advantageous in harsh op-
erational environments where loss, destruction, or failure of
network components becomes likely.

3. OUR METHODOLOGY
Our immediate goal is to guide robot searchers effectively

to targets by leveraging communications and sensing ser-
vices provided by a dense network of non-mobile agent-based
sensors. Additionally, we desire that the system be able to
fulfill its mission requirements without any component that
has localization capabilities (in a global sense) — and to do



so in a distributed manner. The only knowledge primitives
assumed by the simulation are: for all agents, awareness of
neighbors and nearby targets, and (for robots) approximate
distance from neighbors and approximate direction towards
targets.

We employ a network routing scheme to route not just
our system’s communications, but also the movement of its
mobile components. We note that there exist a family of
algorithms currently used to do route planning within net-
works, so as to produce routes with minimal hop distance [8].
In most networks, hop distances are not highly related to the
physical distance over which a piece of information is passed.
An email to one’s next door neighbor might pass over al-
most as many hops as one sent to a correspondent overseas.
However, in high density, short-range sensor networks this
tends not to be the case; the correspondence between min-
imal hop path and physical distance between nodes being
fairly strong in many environments. Consequently, knowl-
edge of the minimal hop paths could not only enable efficient
message routing in the network but also provide a good ap-
proximation of the shortest physical paths from one sensor
to another several hops away.

As an example, consider the simple robot-sensor network
illustrated in Figure 1. The robot arrives at node A, which
has been informed that node D, three hops away, has de-
tected a target in its vicinity (the target is the star in the
figure, to the northeast of node D). Node A can then inform
robot that D is detecting a target and that node B is the
next hop along the shortest routing path to D. By following
some detectable gradient towards B (e.g., signal strength),
robot will be able to come close enough to B to receive infor-
mation about and a signal from the next-hop on path to D,
namely node C. In this fashion robot is able to quickly find
its way towards D without any a priori localization knowl-
edge. Once robot has reached D, it will be close enough to
directly detect the target itself.

A C D

B

robot

*

Figure 1: Sample robot-sensor network.
Node D detects a target to its northeast. The network can route
the robot along the nodes from its present location, within range

of A, to the node which has detected the target, D.

In order to make the above scheme work several algorith-
mic questions need to be addressed:

• Where should the network routing information be cal-
culated and stored?

• How should information regarding which sensors are
detecting targets be distributed?

• How should robots go about choosing a course of action
(e.g. follow path or search for nearby target)?

• What information should be exchanged between net-
work components (both robots and sensors)?

In the remainder of this section, we address these questions
and explain the choices we have made in our implementa-
tion.

3.1 Network routing and distribution of target
information

Our hard requirements for network routing are that any
sensor in the system should provide both hop-distance and
next-hop to a given destination, if a path exists. Addition-
ally, in the interest of system scalability and responsiveness,
we desire path computation and storage to be local to each
sensor. A number of options are available, the most straight-
forward of which is simply to employ a slightly modified ver-
sion of the popular Distributed Vector (DV) routing algo-
rithm [14], one of the two main Internet routing algorithms.
The DV algorithm itself operates in a very straightforward
fashion. Each node in the network keeps a routing table con-
taining identifiers of every node to which it knows a path,
along with the current hop-distance estimate and next hop
along that path. Each asynchronously sends its routing ta-
ble to all neighboring nodes which, in turn, check their ta-
bles to learn of new destinations. Additionally, when node
A sends its routing table to node B, B will check its list of
known nodes and hop-distances against the table sent by A

and choose A as the next hop for any nodes that would be
more quickly reached through A. If B does make any ad-
ditions or adjustments to its table, it will send the revised
table to all of its own neighbors to alert them to these new
or shorter paths. In this manner, routing information will
be diffused throughout the network.

The theoretical performance of DV is quite good and its
wide adoption attests to its reliability, simplicity, and scal-
ability. However, in our simulation we found a significant
time lag once network density increased past an average of
10 neighbors — reflecting the high number of messages be-
ing sent before the nodes converged. Additionally, the size
of the routing table held at each node scales linearly with
the network size — possibly making this approach infeasible
for very dense networks, at least not without modification.
Lastly, while DV provides a sophisticated means for passing
unicast messages, it may not provide competitive advantage
justifying its cost in applications where much information
may be expressed in the form of a network-wide gradient. In
our current work, we are comparing the performance of DV
to a network gradient, where nodes learn only hop-distance
from the nearest sensor detecting a target, supplemented by
a more expensive direct message-passing service.

3.2 Robot behavior
Our goal for robot behavior is for each robot to make an

independent decision (as opposed to receiving orders from a
centralized node in the network), but at the same time to
avoid the computational costs associated with sophisticated
decision-making. Consequently, each robot is given a simple
hierarchy of behaviors, using a simple subsumption architec-
ture [1], along with state transitions, as illustrated in Figure
2. The hierarchy contains three states, numbered in increas-
ing order of precedence. The most dominant state is state 2
in which a target has been detected. The robot’s behavior
in state 2 is to search for the target until (a) the robot finds
the target, (b) the robot discovers another robot has gotten



there first, or (c) the robot loses the target signal. In the
first case the robot settles near the target and broadcasts a
signal of ownership. In the two latter cases, the robot re-
turns to behavior state 0 (from which it may immediately
jump to state 1). State 1 is reached from state 0; when
no target signal is present but some sensor is in range, the
robot’s behavior is to traverse the network towards a target
some hops away. Finally, in state 0 the robot conducts a
blind search, looking first for target signals (transition to
state 2) and second for sensor signals (transition to state 1).

Lost

State 0 State 1

State 2

Blind Search Follow Sensors

Approaching Target

Lost 
Target Signal

Target Signal Target Signal
AcquiredAcquired

 Sesnor Signal Acquired

Sensor Signal

Figure 2: Robot behavior hierarchy.

3.3 Information exchange
In our initial implementation, agents only provide each

other with path information to sensors’ nearby targets. Our
current work involves expanding the information exchange
capabilities of the system so that additional data may be
passed between nodes in an efficient manner. We are look-
ing for this to improve system performance in several ways.
First, once a target has been found and its surroundings ex-
plored (for any additional targets), the sensors close enough
to receive the target signal should be marked by the network
accordingly. This information should then be propagated
throughout the network, preventing these sensors from be-
ing continually revisited by curious robots. Second, sensors
may mark the passage of robots with a time-stamp and/or
visit counter. By doing so, robots may decide to avoid sen-
sors visited very often or very recently, choosing to explore
paths less traveled or even areas entirely out of the network
coverage. Third, robots may leave “trails” [4], in order to
facilitate quick transference of information back to the home
base.

4. IMPLEMENTATION
We have used the NetLogo (version 3.0.2) multiagent pro-

gramming environment [18] for constructing our initial sim-
ulation. All results presented here are based on experiments
designed and executed in this simulator. Figures 3, 4 and 5
illustrate the environment. The gray regions represent ob-
stacles, both for physical travel by the robot and wireless
connectivity of the network. We note that in the real world,
some physical obstructions may not interfere with wireless
connectivity and vice versa; for ease in constructing our ini-
tial implementation, we chose to make this assumption, but
current work is exploring situations in which the two types
of obstructions are handled separately. In the white areas on
the figures, the robots (and the signal) are free to travel. The

dark circles represent agent sensors which are immobile, and
the lines between them show the connectivity of the network.
The bug-like symbols represent the mobile, robotic agents.
Section 3.2 describes the hierarchical control algorithm we
have implemented for the robots. The sensor agent behav-
ior is even more simplistic. In our current implementation,
these agents do not possess any decision-making capabili-
ties; as described below, they merely broadcast any target
information as well as beacon signals for mobile agents.

For the present, we have adopted a simplified non-prob-
abilistic model of wireless broadcast. We assume a spher-
ical broadcast model, and, for the moment, consider nei-
ther broadcast collisions nor other types of signal propaga-
tion effects. Current work is exploring this aspect in de-
tail, incorporating models of trust in the existing system
and endowing the sensor agents with decision-making abil-
ities such that broadcast becomes non-deterministic. The
sensing model (similarly non-probabilistic) is also spherical,
while the robots are assumed to possess directional sensing
arrays. The simulation allows for the investigation of ar-
eas with obstacles to robot movement and can adjust both
percentage of area covered by obstacles as well as their clus-
tering tendency.

Robot movement is modeled probabilistically. When a
robot moves forward, it turns randomly a bit to one side
or the other. The degree to which the movement of robots
is skewed is controlled by a global variable and can be ad-
justed to consider different robot platforms or surfaces. The
robots have the ability to move around the environment and
disperse a potentially large number of non-mobile sensor
agents. Currently two types of sensor dispersal algorithms
have been compared: random distribution radially from the
center of the robot start location, and uniform random dis-
tribution throughout the environment.

5. PRELIMINARY EXPERIMENTS
The primary issue we aimed to assess with our initial im-

plementation was whether at system’s current level of de-
velopment, a performance difference could be ascertained
between our sensor-robot network and a system employing
robots alone. In order to evaluate the problem space, we
conducted 1152 runs, sampling over the following six ad-
ditional variables: obstacle density, number of robots, num-
ber of non-mobile sensors, dispersal method, broadcast radius
and spread of communication. The metric used for all ex-
periments was the number of time steps taken until 90% of
the targets had been discovered.

The variable with the clearest effect was obstacle density.
Spaces with few obstacles, like Figure 5, were easily solved
by both sensor-robot teams and robot-only teams. Spaces
with many obstacles (like Figures 3 and 4) proved signifi-
cantly more difficult, often taking upwards of 5 times longer
to find 90% of the targets. Consequently, we chose to focus
our set of experiments on environments with 25-30% of the
area occupied by obstacles. Sensors were distributed accord-
ing to a uniform random distribution, as were targets. We
used 30 robots and 90 sensors for the trials and a broadcast
radius varying between 1/8th and 1/12th of the area’s width.

The results of our experiments so far are statistically in-
conclusive; as yet, we are unable to show a comparative ad-
vantage between the sensor-robot and robot-only teams un-
der the parameterization chosen. However, by viewing sev-
eral simulations and examining system performance, we are



Figure 3: Many Obstacles: Open.

key (applies to figures 3, 4 and 5):

robot obstacle

target sensors

able to generate some qualitative observations that encour-
age us to continue with this line of inquiry. On individual
trials, the sensor-robot teams often significantly outperform
the robot-only teams, but these are offset by occasions in
which the sensor-robot teams becomes bogged down in parts
of the network already explored. The sensor-robot teams do
very well in situations where the environment is highly seg-
mented and both sensor and targets are fairly well spread
out (e.g., Figure 4). The robots are able to follow the net-
work paths successfully through small crevices to reach new
compartments and thereby find targets effectively; in con-
trast, with only random guessing about where to move next,
the robot-only teams tend to do rather poorly in such spaces.
In the space shown in Figure 4, for example, the robot-only
team took 1405 time steps to complete the search, while the
sensor-robot team managed it in only 728.

In relatively open spaces, like (Figure 3), the robot-only
teams have much less trouble (in this case the two approaches
both took around 450 time steps). The sensor-robot systems
perform badly when some of the targets have several sensors
nearby, while others have few or no nearby sensors. In these
cases, the robots continually revisit the sensors near targets
already discovered, keeping too many robots from exploring
other areas. The robot-only teams ignore the network in
these situations and perform considerably better.

The main problem the sensor-robot teams experience is
that each robot keeps its own list of target-detecting sen-
sors that it has visited. Since robots choose the sensors
they will visit randomly from the list of unvisited target-
detecting sensors, every robot can end up visiting a multiply-
detected target several times for each time it looks for a
singly-detected target. Moreover robots try to visit every

Figure 4: Many Obstacles: Segmented.

detectable target before looking for targets un-sensed by the
network! Consequently, in certain trials, the network effec-
tively traps the robots in one portion of the environment for
a significant time-span. We believe that once additional in-
formation sharing facilities outlined in section 3.3 have been
implemented, the sensor-robot system will statistically out-
perform robot-only systems when repeating the experiments
outlined above.

6. SUMMARY AND FUTURE WORK
We have presented early work in the development of strate-

gies for controlling teams of heterogeneous agents, possess-
ing a mixture of sensing and mobility characteristics. Taking
advantage of recent advances in sensor networks and routing
schemes, we are interested in exploring situations in which a
potentially very large number of small, simple, sensor agents
with limited mobility are deployed by a smaller number of
larger robotic agents with limited sensing capabilities but
enhanced mobility. Our longterm goal is to apply techniques
developed to urban search and rescue problems.

In the short term, our work is focusing primarily on con-
tinued development of simulation platform. The immediate
steps involve: (a) introduction of gradient-based routing,
(b) incorporation of enhanced information sharing facilities,
and (c) improvement of robot behavior to incorporate new
information. The next steps entail producing comprehensive
empirical results, evaluating hardware platforms and build-
ing prototype hardware systems for testing our strategies.
Our plan is to contrast simulated results with those from
our physical prototype, using data collected in the physical
world to seed learning algorithms for building error models
in the simulator, which can then be used to improve perfor-
mance in the physical setting.
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