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Abstract— In order to fulfill its mission, a search and rescue
system must be able to both quickly and reliably locate
victims within the search space. Current search and rescue
approaches generally rely on either teleoperated robots, or
teams of wireless robots. Since typically the robots used in
these systems employ sophisticated hardware components and
are few in number, system cost tends to be high and the loss or
destruction of even a single robot may seriously compromise
mission integrity. We present an alternate approach utilizing
robot-sensor networks — ad-hoc wireless networks comprised
of large numbers of small, simple, and inexpensive wireless
sensors and robots. Limiting the use of sophisticated, expen-
sive hardware for rescue system components may be more
than compensated for in both cost and performance by the
advantages of density and redundancy that smaller, simpler,
less costly sensors and robots can provide. In this paper we
describe a robot-sensor network for target tracking without
reliance on localization services such as GPS or magnetic com-
pass, focusing on simple algorithms for distributed decision-
making and information propagation. We demonstrate the
efficacy of our system in simulation, providing empirical
results and discussion of future work.

I. I NTRODUCTION

The past several years have shown great advances in both
the capabilities and miniaturization of wireless sensors.
These advances herald the development of systems that
can gather and harness information in ways previously
unexplored. Sensor networks provide a new way of exam-
ining environments of interest, delivering numerous small
snapshots over time. By fusing these snapshots, a coherent
picture of the scene may be produced—rivaling output
currently provided by large, complex and expensive remote
sensing arrays. Likewise, sensor networks can facilitate
propagation of communication through areas unreachable
by centralized broadcast due to obstacles and/or irregular-
ities in the connectivity landscape. While traditional non-
mobile sensor networks possess tremendous potential, they
also face significant challenges. Such networks cannot take
an active role in manipulating and interacting with their en-
vironment, nor can they physically reconfigure themselves
to effect more efficient area coverage, in-depth examina-
tion of targets, reliable wireless connectivity, or dynamic
protection against inclement environmental developments.

By incorporating intelligent, mobile robots directly into
sensor networks, all of these shortcomings may be ad-
dressed. Simple, inexpensive, easily programmed, commer-

cial off-the-shelf kits like the Sun SPOT system [13], or
LEGO NXT [8] could provide inexpensive test platforms
and wireless networking capabilities. Mobile robots provide
the means to explore and interact with the environment in
a dynamic and decentralized way. In addition to enabling
mission capabilities well beyond those provided by sensor
networks, these new systems of networked sensors and
robots allow for the development of new solutions to
classical problems such as localization and navigation [3].

The set of capabilities provided by robot-sensor networks
match up well with those needed to build an effective
search and rescue system. In order for a search and rescue
system to fulfill its mission, the system must be able to both
quickly and reliably locate victims within the search space.
Moreover a search and rescue system must be able to handle
a dynamic and potentially hostile environment. As rescuers
move around an uncertain environment, not only do their
relative positions change, but also it is not unlikely that their
environment will change; collapsed buildings may settle,
flood waters may recede or swell, earthquake sites may shift
due to aftershock. Current search and rescue approaches
generally focus on either teleoperated robots, or teams of
wireless robots. Since typically the robots used in these
systems employ sophisticated hardware components and are
few in number, system cost tends to be high. Consequently
such systems can examine only a small portion of the search
space at any given moment and the loss or destruction
of even a single robot may seriously compromise mission
integrity. By leveraging a large number of less sophisticated
components, all of which can work in parallel, robot-sensor
networks offer an alternate (and potentially complementary)
approach that addresses many of the shortcomings of cur-
rent search and rescue approaches. Specifically, we build
a robot-sensor network system that autonomously conducts
target tracking in a fully distributed and scalable manner —
and does so without any component possessing localization
capabilities (e.g., GPS or magnetic compass). The key
contribution of our approach is that we provide a solution
with minimal hardware assumptions (in terms of sensing,
localization, broadcast, memory/processing capabilities), all
while subject to a dynamically changing environment.

This paper begins with background in robot-sensor net-
works, highlighting current challenges in the field. Starting
with section III, our approach to the problem is described,



focusing on the algorithms used for distributed decision-
making and information propagation. In section IV, we
discuss the implementation-level details, outlining our sim-
ulator capabilities and the assumptions our model makes.
Experimental results from our simulated USAR environ-
ment are provided in section V. We close with a summary
and discussion of future work.

II. BACKGROUND

Robot-sensor networks have evolved from both work in
sensor networks and also in mobile robotics, particularly
autonomous robot teams. Given this lineage, sensor-robot
networks need to address the technical challenges posed
in both these fields, along with novel challenges unique to
robot-sensor networks.

A. Robot-Sensor Networks

Recently a small group of researchers has begun explor-
ing the synergy between autonomous robots and sensor net-
works. Kotay et al. [7] have explored several issues, using
the synergy between GPS-enabled robots and networked
sensors to provide network-wide localization services, path
planning, and improved robot navigation. The Centibots
project examined the use of large-scale mobile robotic
teams for mapping and areas surveillance [6], while a
method for the transportation of resources by combining
robots with sensor network services was suggested by
Gupta et al. [5]. A method by which robot-sensor swarms
can effect detection of radioactive materials in a role-
based system was suggested in [9]. Work by Sukhatme
and colleagues discusses how sensor networks can be used
to mediate robot task allocations [1] and algorithms for
optimizing sensor placement [15]. Finally, Reich and Sklar
[10] considered the use of traditional shortest-path network
routing discovery algorithms for guiding robotic searchers
to targets detected by an ad-hoc wireless network. These
results, produced at the boundary where robotic teams and
sensor networks intersect, suggest a large and fascinating
problem space open for exploration.

Following is a sampling of the interrelated issues for
which techniques, algorithms, and hardware solutions need
to be devised:

1) target tracking,
2) localization and mapping,
3) communications and routing,
4) path planning,
5) high-level team formation and mission fulfillment,
6) standardization of hardware services/interfaces, and
7) asymmetric wireless broadcast and network interfer-

ence/congestion.

While our work touches somewhat on all of these issues, it
focuses primarily on first three, exploring how such systems
can provide useful and robust base-level behaviors—and do
so with minimal hardware requirements or dependence on
favorable environmental conditions.

B. Limitations of Previous Work

One commonality amongst much of the works cited
above is the reliance on sophisticated hardware and/or
friendly or over-simplified environmental conditions. Most
work either assumes the existence of basic services such
as localization and orientation, or considers only the cases
where at least a fraction of the agents possess essential
hardware used for global positioning. While these assump-
tions hold in many situations of interest, they fail to provide
techniques that will be effective when such hardware ser-
vices (e.g., GPS, magnetic compass) fail or are unavailable
(e.g., indoor or USAR environments). Currently, wireless
sensor sizes range from centimeters to millimeters. The
smallest robots are generally one to two orders of magni-
tude larger, in the centimeter to meter range, although they
are quickly shrinking [12]. Such equipment, while small
and inexpensive enough for ubiquitous deployment, may
also be severely constrained in offering sophisticated hard-
ware services. To allow for the widest range of deployable
systems, our work examines systems that make minimal
assumptions concerning hardware capabilities. Limiting the
use of sophisticated, expensive hardware for network nodes
may be more than compensated for in both cost and
performance by the advantages of density and redundancy
that smaller, simpler, less costly sensors and robots can
provide. This approach would be particularly advantageous
in harsh operational environments where loss, destruction,
or failure of network components becomes likely.

III. A PPROACH ANDASSUMPTIONS

A fully featured search and rescue system should:

1) quickly and accurately locate victims
2) map the search space and locations of victims
3) maintain communication with human responders
4) assess victim status and assist with rescue efforts.

While our immediate goal is to achieve the first step
in this program, future work will extend this system to
latter stages. Once victims have been located by robotic
searchers (in the sense that some robot is directly adjacent
to the victim), the searchers can proceed to assess victim
condition, initiate rescue, or attempt localization (i.e., using
odometry readings, triangulation, or other techniques such
as multilateration [11]). We desire that the system be able to
autonomously fulfill its mission requirements without any
component that has localization capabilities (in a global
sense) — and to do so in a distributed manner. Moreover the
system should be able to respond automatically to environ-
mental change including target movement and loss/addition
of network components. The range of sensors and wireless
broadcast are assumed to be significantly restricted with
respect to the search space. The only knowledge primitives
that the system is assumed to possess are: awareness of
neighbors and nearby targets and (for robots) approximate
distance from neighbors and approximate direction towards
targets. We assume that the targets are beacons (i.e., they



generate some detectable signal such as heat, CO2, or
sound). Real-world implementations would likely use as
many sensing modalities as possible to gain the highest
confidence on these readings; however, for our purposes,
we simplify the situation assuming a generic target sensing
modality.

A. Network-wide Gradient Algorithm

In order to guide the robot searchers quickly to targets
under these considerable constraints, we have adopted a
biologically inspired model. Simple creatures can effec-
tively reach desirable locations by simply following some
gradient (e.g., heat, light). While no naturally existing
gradient (within bounds of the robots’ simple sensors) is
available, a network-wide gradient can be established by
having each of the many sensors scattered in the search
space take on a gradient value. By assigning sensors close
to the targets “hot” values and those far from targets
“cold” values, robotic searchers can make their way towards
“hot” spots and thereby reach the targets. Moreover such a
gradient will naturally respond to movement, appearance,
or disappearance of targets. Our gradient propagation (GP)
algorithm is entirely distributed and straightforward to
implement. Each sensor independently executes the GP
algorithm, broadcasting after some independent, randomly
chosen time interval.
Algorithm 1 : GP algorithm (running on all nodes)
Data: tg - the gradient value
maxTG - the maximum target gradient value
if target nearby then

tg ← 0;
broadcasttg as update;

else
listen for neighbor broadcasts;
tg ← minneighbors(tgi) + 1;
if tg < maxTG then

broadcasttg as update;

The GP algorithm guarantees (under certain conditions,
proof omitted) that each sensor’s individual target-gradient
value will converge to the minimum number of hops
between that sensor and one detecting a target. By only
updating whentg <= maxTG we avoid an infinite count-
up when no targets are visible to the network. Furthermore
when tg > maxTG, sensors can broadcast a message
informing robots to look elsewhere as no targets are in the
vicinity.

The algorithm is not only fully distributed, allowing for
dynamic and automatic addition and deletion of sensors
to the network; but will also dynamically respond to move-
ment, appearance or disappearance of targets—the speed of
the response being controlled by expected size and variance
of the random update intervals. Moreover, this update
algorithm provides for some measure of protection against
broadcast collisions as the updates occur asynchronously.
Future implementations could responsively decrease the

update likelihood to provide for a back-off mechanism
analogous to the kind used in standard wireless networking
protocols such as the 802.11 family.

The theoretical performance of this mechanism is quite
good: the number of broadcast operations scales linearly
with the total number of sensors, and the number of listen
operations scales linearly with the average number of neigh-
bors. Each sensor broadcasts on the average once per time
interval and needs to store and choose the minimum target-
gradient value from the broadcasts made by its neighbors.

Bandwidth (and therefore power) requirements for each
broadcast can be made very low. With 6 bits of information
(ignoring CRC codes and header information), sensors up
to 64 hops away from targets can acquire active target-
gradient values (notably this update mechanism does not
require sensors to broadcast their ID, or even necessarily
possess an ID).

robot obstacle target sensors

Fig. 1. Simulation environment, gradient runs from low (red) to high
(green) target-gradient values.

B. Robot Architecture

Our goal for robot behavior is for each robot to make
independent decisions (as opposed to receiving orders from
a centralized node in the network), but at the same time
to avoid the computational costs associated with sophisti-
cated decision-making. Consequently, we imbue each robot
with a simple hierarchy of behaviors, using a simple
subsumption architecture [2], along with state transitions,
as illustrated in Figure 2.

The hierarchy contains three states, numbered in in-
creasing order of precedence. The most dominant state is
state 2 in which a target has been detected. The robot’s
behavior in state 2 is to search for the target until (a) the



robot finds the target, (b) another robot finds the target,
or (c) the robot loses the target signal. In the first case
the robot initiates further action (e.g., target inspection or
localization inference). In the two latter cases, the robot
returns to behavior state 0 (from which it may immediately
jump to state 1). State 1 is reached from state 0; when
no target signal is present but some sensor is in range,
the robot’s behavior is to traverse the network towards a
target some hops away. To traverse the network, all the
robot need do is move towards the neighboring sensor with
the lowest target-gradient value. To find these values the
robot can either actively query sensors within broadcast
range, or passively listen for sensors declaring their target-
gradient values during gradient update as described in
III-A. In practice this could be done either with a local
gradient search on the broadcast (or other) signal produced
by this sensor (e.g., RSSI), or via use of a directional
antenna/sensor. Finally, in state 0 the robot conducts a blind
search, looking first for target signals (transition to state 2)
and second for sensor signals (transition to state 1).

Lost

State 0 State 1

State 2

Blind Search Follow Sensors

Approaching Target

Lost 
Target Signal

Target Signal Target Signal
AcquiredAcquired

 Sesnor Signal Acquired

Sensor Signal

Fig. 2. Robot behavior hierarchy.

IV. I MPLEMENTATION

A. Software Platform

We have used the NetLogo (version 3.0.2) multiagent
programming environment [14] for constructing our initial
simulation. All results presented here are based on experi-
ments executed in this simulator (figure 1).

B. Robot Movement and Obstacles

Robot movement is modeled probabilistically. When a
robot moves forward, it turns randomly a bit to one side or
the other. The degree to which the movement of robots is
skewed can be adjusted to consider different robot platforms
or surfaces.

The gray regions in figure 1 represent obstacles to phys-
ical movement but not sensing or wireless broadcast. In the
white areas on the figures, the robots are free to travel. We
note that in the real world, some physical obstructions may
not interfere with wireless connectivity and vice versa; for
ease in constructing our initial implementation, we chose
to consider obstructions that only block movement. Future
work will explore more complex and realistic situations.
The simulation allows for the investigation of areas with

obstacles to robot movement and can adjust both obstacle
density (the percentage of area covered by obstacles) and
clustering tendency.

C. Broadcast & Sensing Models

For the present, we have adopted a simplified non-proba-
bilistic model of wireless broadcast. We assume a spherical
broadcast model, and, for the moment, consider neither
broadcast collisions nor other types of signal propagation
effects. The sensing model (similarly non-probabilistic)is
also spherical, while the robots are assumed to possess
directional sensing arrays. While these assumptions are
admittedly simplified, they do provide a reasonable first-
approximation for the very short range broadcast a system
such as ours would use.

D. Sensor Dispersal

We currently have examined only uniform random distri-
bution of the sensors throughout the environment (this could
correspond to release of sensors from above the rescue
space). We are planning to develop, experiment with and
evaluate three additional distributions in the near future:

1) release of bouncing sensors — encasing the sensors in
rubberized spherical cases will allow them to bounce
off obstacles and hopefully penetrate further into the
environment before coming to rest

2) robot driven distribution — in which the robots would
each carry a store of sensors that could be dropped
or spread out from desired locations.

3) sensor mobility — sensors that can periodically move
themselves (and potentially interchange roles with
robotic searchers) for periods of time.

V. EXPERIMENTS& RESULTS

In previous work we have shown that areas with 25% ob-
stacle density prove significantly more difficult than lower
density (i.e.,< 15%) environments, but not so difficult as
to prevent comparison of the robot-sensor network (RS)
with an unaided robot-only (RO) system [10]. Therefore
we have selected an obstacle density of 25% for the exper-
iments done in the paper. The environment was randomly
generated on a 2-dimensional grid (43X43 patches). In all
experiments, a trial consisted of 1000 time-steps, during
which targets were presented one at a time. Our primary
fitness metric was percentage of targets found. We also used
average time to find a target as a secondary metric. The
target starting positions were selected according to uniform
random distribution, as was the point selected at which all
robots started. Half of the trials examined randomly moving
targets (MT) and half examined stationary targets (ST). Any
target not found within 300 time-steps disappeared and was
replaced. For consistency, each generated environment was
used for 4 trials: (RS:MT), (RS:ST), (RO:MT), (RO:ST).

It worth noting that systems excelling on the our primary
metric may be more likely to locate difficult to find targets
(which will tend to require longer than average search



times). Since undiscovered targets did not contribute to the
average time to find a target, improved performance of a
system with respect to our primary fitness metric could
conceivably have a negative impact its performance on our
secondary metric.
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Fig. 3. Percentage Targets Found vs. Inverse Broadcast Radius
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Fig. 4. Percentage Targets Found vs. Update Likelihood

Before attempting to assess the quality of our system,
we wanted to develop our understanding of the various
parameters involved. Consequently the first set of exper-
iments consisted of 1200 trials comprising 1,200,000 ticks
worth of data. The trials were taken over 2 system types
(RS, RO), 2 target types (MT, ST) and three variables:
update likelihood (the percent likelihood of update for a
given sensor on any time-step),inverse sensing range, and
inverse broadcast range. We tabulated the results for each
variable over all values over the other two variables for
each case (RS:MT, RO:MT, RS:ST, RO:ST). 10 robots and
150 sensors were used in each trial, both robots and sensor
sensing and broadcast ranges were held identical.

Unsurprisingly, as sensing range decreased, target loca-
tion became markedly more difficult — as can be seen from
figure 3. More interestingly, one can clearly see a marked
divergence in performance between RS and RO systems by
inverse broadcast range of 18 (a divergence which seems
to stay fairly consistent thereafter). Based on this trial,we
selected a sensing range between1/20th and1/21st of the
search space width for subsequent experiments in order to
provide for a task difficult enough to easily separate the
performance of RS and RO.

The results on broadcast range indicated a slight decline
in performance as the range decreased. Given that it is
reasonable to assume a broadcast radius significantly larger
than the sensing radius for most modalities, we chose
to use a broadcast radius of1/7th the search space for
future experiments (which yields approximately a 3:1 ratio
between broadcast and sensing radii).

Lastly, we examined the effect of update likelihood and
found that for both MT and ST, as the likelihood of an
update decreased from 100% to 6.25%, the system perfor-
mance dropped about 10%, with the seeming appearance
of a logarithmic curve (figure 4)—for every halving of
likelihood, the system performance dropped about 2.5%.
(Note that RO measurements do not appear in figure 4 as
RO is unaffected by update likelihood.) This is an exciting
result insofar as it indicates the potential robustness of
our gradient propagation algorithm and low performance
cost of doubling bandwidth and power savings. Since our
primary goal in the following experiments was to get a clear
idea of the performance benefits a robot-sensor network
might provide as opposed to maximizing power efficiency,
we choose to use update likelihoods between 33–50% for
subsequent experiments.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60  70  80  90  100

T
ar

ge
t F

ou
nd

 (
%

)

Area Coverage by Sensors (%)

 RS:ST
 RO:ST
 RS:MT
 RO:MT

Fig. 5. Percentage Targets Found vs. Sensor Coverage

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60  70  80  90  100M
ea

n 
T

im
es

te
ps

 U
nt

il 
T

ar
ge

t F
ou

nd

Area Coverage by Sensors (%)

 RS:ST
 RO:ST
 RS:MT
 RO:MT
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For the next series of experiments, we examined the
effect of sensor coverage on system effectiveness. As our
world was not overly large, we reduced the number of
robots used by half to 5 robots, examining the results
used from 4400 trials over 11 sensor densities. As we



examined the same 4 combinations of system and target
types as previously, each point in figures 5 and 6 represents
the averages over 100 trials or 100,000 time-steps. The
results of our experiment were quite encouraging. From
40% area coverage and on RS systems clearly dominate the
performance of RO systems with respect to the first metric
and by 60% with respect to both metrics. Our robot-sensor
network was able to find targets both more quickly and
with significantly better success than a robot only system.
Moreover this result is even more striking in light of our
earlier argument that high target detection rates should, if
anything, diminish average speed.

From 60% coverage and up, search and rescue success-
fully found an additional 24% of the stationary targets on
average and 25% additional moving targets. In terms of
the total targets, the RS found, respectively, 36% and 35%
more targets than RO. Concurrently, the RS system took an
average of 34 fewer time-steps than RO to find stationary
targets—RO took more than half-again as much time as
RS. For moving targets this difference declined, RO took
only 28% longer, with RS’s average advantage being 21
time-steps.

VI. SUMMARY & FUTURE WORK

We have presented an algorithmic framework for utilizing
an ad-hoc wireless network comprised of large numbers
of small, simple, and inexpensive wireless sensors and
robots to conduct efficient and robust target tracking -
and do so in absence of the hardware services required
by previous approaches. Moreover we have shown this
framework to adjust dynamically to both target movement
and addition/deletion of network components. The network
gradient algorithm provides an advantageous trade-off be-
tween power consumption and performance and requires
relatively low bandwidth. Our system functions well in
simulation, locating 70-99% of the targets (dependent on
network density and vagarities of search space and target
placement and movment) in the time allotted, outperform-
ing robot-only systems significantly in both accuracy and
speed.

Our future goals are to introduce new system capabilities,
improve our simulator and models (including a comparison
with GPS-based systems), and begin implementation of a
prototype system in hardware. Likely the most significant
addition we will be making to our system in the near
future is the introduction of what we have termednetwork-
based stigmergy. Stigmergy can be defined as the use of
environmental elements to provide a means of indirect
communication between agents. The classic examples of
stigmergy involve creatures such as termites or ants that
can effectively create complex buildings and find efficient
paths towards food sources by leaving chemical messages
at appropriate spatial locations. By storing spatially related
messages at actual locations to which the messages relate,
very simple creatures manage to coordinate large scale
and complex behavior [4]. Practical attempts at building

robotic stigmergic systems have had minimal success due
to the obvious difficulty of encoding messages in a physical
environment. However with the availability of a large
number of wireless nodes located around the environment,
it becomes feasible to encoding spatially related messages
at or near the spatial locations to which the message relate
simply by writing them to the nearest sensor. We are
conducting work to incorporate this idea of network-based
stigmergy into our robot-sensor network towards the end
of providing estimates of obstacles density near sensors,
assessing reliability of network components, and helping
guide the robots actively towards unexplored or under-
explored areas.

Concurrently, we will continue to improve our simulator
and introduce new modeling aspects along the lines de-
scribed in section IV and begin implementing a hardware
prototype of our system. We are particularly enthused
to examine robot-assisted and sensor-mobility distribution
models as these could provide for significant additional
system capabilities (e.g., increased sensor coverage, active
environmental mapping) and fit well with our focus on
testing these methods in hardware.

REFERENCES

[1] M. Batalin and G. S. Sukhatme. Sensor network-mediated multi-
robot task allocation. InThe Third International Naval Research
Laboratory Multi-Robot Systems Workshop, pages 27–38, Naval
Research Laboratory, Washington, DC, Mar 2005.

[2] R. Brooks. A robust layered control system for a mobile robot. IEEE
Transactions on Robotics and Automation, 2:14–23, 1986.

[3] P. Corke, R. Peterson, and D. Rus. Localization and navigation
assisted by cooperating networked sensors and robots.International
Journal of Robotics Research, 24(9), 2005.

[4] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithmsand
stigmergy.Future Generation Computer Systems, 16:851–871, 2000.

[5] A. K. Gupta, S. Sekhar, and D. P. Agrawal. Efficient event detection
by collaborative sensors and mobile robots. InFirst Annual Ohio
Graduate Student Symposium on Computer and Information Science
and Engineering, 2004.

[6] K. Konolige, C. Ortiz, and R. Vincent. Centibots large scale robot
teams. InAAMAS, 2003.

[7] K. Kotay, R. Peterson, and D. Rus. Experiments with robots
and sensor networks for mapping and navigation. InInternational
Conference on Field and Service Robotics, 2005.

[8] LEGO. http://mindstorms.lego.com/.
[9] H. V. D. Parunak, S. A. Brueckner, and J. Odell. Swarming pattern

detection in sensor and robot networks. InAmerican Nuclear So-
ciety (ANS) 10th International Conference on Robotics and Remote
Systems for Hazardous Environments, 2004.

[10] J. Reich and E. Sklar. Toward automatic reconfigurationof robot-
sensor networks for urban search and rescue. InFirst International
Workshop on Agent Technology for Disaster Management (ATDM):
Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, Hakodate, Japan, May 2006. ACM.

[11] A. SAVVIDES, H. PARK, and M. B. SRIVASTAVA. The n-hop
multilateration primitive for node localization problems. In Mobile
Networks and Applications, 2003.

[12] G. T. Sibley and M. H. a. Rahimi. Robomote: A tiny mobile
robot platform for large-scale ad-hoc sensor networks. InIEEE
International Conference on Robotics and Automation, 2002.

[13] Sun. http://sunspotworld.com/.
[14] U. Wilensky. NetLogo.

http://ccl.northwestern.edu/netlogo, 1999.
[15] B. Zhang and G. S. Sukhatme. Controlling sensor densityusing

mobility. In The Second IEEE Workshop on Embedded Networked
Sensors, pages 141 – 149, May 2005.


