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Abstract

Internet agents are frequently designed to be personal
assistants, helping a single user accomplish a specific
task. The work presented here explores the idea of
agents as independent entities existing in a virtual vil-
lage, geared towards education. Three classes of agents
are presented, designed to meet the varied and chang-
ing needs of a population of human learners.

Introduction.

With the advent of the Internet, humans have found
new and exciting ways to interact, with each other and
with a seemingly infinite network of information and
shopping sources. The explosive popularity of elec-
tronic mail, instant messaging, on-line chat, virtual
shopping outlets and auction houses is proof that, like
the telephone and the department store, the World
Wide Web is here to stay.

Humans are not alone in populating the Internet;
software agents also inhabit cyberspace. Internet agents
are generally built to be personal assistants, helping
a single user accomplish a specific task. Over the
last decade, Internet agents have gained prominence
as browsing assistants (Lieberman 1995), matchmakers
(Foner 1997; Kuokka & Harada 1997), recommenders
(Balabanović 1998) and filterers of email and news
group messages (Goldberg et al. 1992; Lashkari, Me-
tral, & Maes 1994; Lang 1995). Some agents use var-
ious machine learning techniques to adapt their be-
havior to the needs of individual users (Qureshi 1996;
Balabanović 1998).

The existence of interactive Internet agents allows us
to establish the notion of a virtual village, wherein hu-
mans in diverse places and time zones can meet, shop
and trade just as in a traditional village, but the need
for spatially or even temporally co-locating participants
and goods is now eliminated. This notion is not only
useful for shopping and trading, but also — and maybe
more importantly — it is useful for education. If stu-
dents populate the village, they can learn from each
other, anytime and anywhere.
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The work discussed here explores the idea of agents
existing in a virtual village geared toward education,
designed to meet the varied and changing demands of
a population of human learners. We surmise that a
learner needs to interact with a variety of others exhibit-
ing different talents and abilities in order to maintain
interest and to progress. In school, students learn from
teachers, from doing their homework and from partici-
pating in group projects where they interact with their
peers. To support this type of environment in a virtual
setting, we define three classes of agents that a student
may interact with:

• instructors: agents that emulate the behavior of a
human expert

• peers: agents that capture the mode of a group of
humans sharing similar behavioral characteristics

• clones: agents that copy the behavior of an individ-
ual human

Students can have the option of interacting with only
one or a combination of two or all three classes of agent,
just as at different stages in a learner’s development,
s/he will need to receive instruction from a teacher,
practice on her own and collaborate with her peers.
Within the village, there will be a variety of agents of
each class, embodying behaviors suitable for interacting
with humans at different stages of learning.

We have two overriding implementation goals: one
technical and one pedagogical. Our technical goal is
to minimize the amount of knowledge engineering that
goes into building and maintaining the village. Per-
haps the largest cost associated with any educational
software product is the amount of effort required to ar-
chitect and enable domain-specific learning sequences
for users. Our second, pedagogical goal is to create
varied learning experiences for each participant, to ac-
commodate different types of learners at different stages
of development. We want a participant’s experience to
remain challenging and exciting as a s/he progresses.

In order to meet both of these goals, we are using evo-
lutionary computation (EC) to evolve the agents that
populate our virtual village. This methodology meets
our first goal of minimizing knowledge engineering be-
cause the behaviors of the agents are controlled by neu-



ral networks and the neural networks are trained using
human interactions in the village. This is based on the
premise that the behavior or responses of one human
can be used to teach another human how to behave
or respond; thus an agent emulating the first human
could also be used to teach humans how to behave or
respond. The methodology also meets our second goal
because of the way in which we have implemented the
evolutionary techniques. While EC has typically been
used to train one agent to emulate a single user (or type
of user), here we use EC to train a population of agents
that can interact with human participants in a variety
of ways.

This paper describes methodologies for constructing
the three classes of agent. As a prototype and to demon-
strate the viability of the techniques, we draw from our
prior work on two Internet games and use as the basis
for training the agents human data collected in these
games. We detail our methodology and describe ex-
amples for constructing instances of the first two agent
classes. Then we discuss our current work which is in-
volved in bringing an entire village to fruition within an
educational resource web site.

Theoretical framework.
The examples presented in the ensuing sections are
based on data collected at two web sites, both of which
contain games, one is educational and the other is
purely for fun. Computer games are great for edu-
cational purposes, because of the motivational aspects
they provide (Malone 1981; Soloway 1991; Brody 1993).

A game can be played by using a certain strategy, or
set of strategies — a method and order for applying the
rules of the game, with the intent of achieving the fixed
goal. If we sat down and enumerated all the possible
ways of playing a game, the result would typically be a
huge list. So the question becomes a matter of search.
Given a very large list of possible strategies, how can
we find the ones that will result in achieving the game’s
goal? Many games are dynamic, so players must adjust
to changes in environment, opponents and teammates;
how can we adapt a player’s strategies in accordance
with these changes?

Machine learning has often been applied in attempts
to answer these questions. Here, computer programs
advance “automatically”, developing better and more
efficient ways to accomplish given tasks without need-
ing humans to retrain them manually or update behav-
ioral databases by hand. Since at least the 1950’s, re-
searchers have experimented with games including tic-
tac-toe (Michie 1961; Angeline & Pollack 1993), check-
ers (Samuel 1959), chess (Shannon 1950) and backgam-
mon (Berliner 1980; Tesauro 1992; Pollack, Blair, &
Land 1996; Pollack & Blair 1998).

The following is an evolutionary approach to ma-
chine learning (Fogel 1962; Holland 1975; Koza 1992):
rather than try to engineer a winning strategy, enumer-
ate a manageable number of strategies, use these to play
games and see how well they perform. Then keep the

strategies that do well and use selection and reproduc-
tion techniques to replace the ones that do poorly with
other strategies that have not yet been tried. Using this
method, a population of successful strategies is built up
gradually. At any time, the population will represent
some ways of playing the game; eventually, hopefully,
the population will contain the optimal way(s).

The definition of optimal varies depending on re-
searchers’ goals. The goal of the Deep Blue project
was to create a chess player that could beat the hu-
man world champion. The goal of RoboCup is to de-
velop a team of soccer-playing robots that are capa-
ble of defeating the human world champions (H. Ki-
tano 1997). However, in some applications the goal is
not for agents to embody experts but rather human
peers. In an educational game, it is not always benefi-
cial for a human to play with an expert; it is sometimes
more desirable for human learners to interact with play-
ers whose abilities are similar to their own, providing
motivation through appropriate challenges (Sklar 2000;
Sklar & Pollack 1998).

Our goal is to characterize the types of human behav-
iors that work in various settings and to build agents
that embody these behaviors, automatically deploying
them as inhabitants in our virtual village. The agents
can maintain a constant presence in the village, sus-
taining it when not enough humans are logged into the
system. The system will be able to recognize which
types of agents are needed in the village at any given
time, depending on the behavior of the humans who are
connected and what activity they are engaged in.

All of the activities in our village are modeled after
games, so we have identified several characteristics of
on-line games to help us distinguish the types of envi-
ronments in which our agents will interact:

• single player vs multi-player

• synchronous (i.e., turn-taking) vs asynchronous (i.e.,
players do not wait between turns but may act con-
tinuously)

• episodic vs non-episodic (in an episodic game, all
players make a move simultaneously, without knowl-
edge of their opponents’ moves, then the system pro-
cesses all the moves and returns an outcome; exam-
ples include iterated prisoner’s dilemma or silent auc-
tions)

• dynamic vs static environment (in a dynamic game,
changes that occur are not only due to moves of the
other player(s), but the environment itself might be
changing; e.g., in soccer, the ball keeps rolling even
after a player contacts it, whereas in chess, once a
player has made her move, the board remains un-
changed until another move is made)

• deterministic vs non-deterministic (i.e., at any given
time, a player has one or many choices of legal
move(s) to make)

• simple vs complex strategy space (the branching fac-
tor in the game tree is a good measure of complexity)



• accessible vs inaccessible (i.e., player has access to all
necessary information required to make an informed
decision about what move to make next)

• discrete vs continuous strategy space (in some games,
moves may be defined discretely, while with others,
the difference between two moves may simply be a
matter of degree)

• time-critical vs non-time-critical (i.e., value of a
player’s move depends on how fast she makes it)

Over the last few years, we have been building and
experimenting with different games that exhibit some
of these characteristics. Several of these have been im-
plemented as interactive games on the Internet. We
describe two of the games in the ensuing sections.

Tron.

Tron is a video game which became popular in the
1980’s, after the release of the Disney film with the same
name. We characterize Tron as: multi-player, asyn-
chronous, non-episodic, environmentally static, non-
deterministic, simple, accessible, discrete and time-
critical.

In Tron, two futuristic motorcycles run at constant
speed, making right angle turns and leaving solid wall
trails behind them — until one crashes into a wall and
dies. In earlier work (Funes et al. 1998), we built a
Java version of the Tron game and released it on the
Internet1 (illustrated in figure 1). Human visitors play
against an evolving population of intelligent agents,
controlled by genetic programs (Koza 1992). During
the first 30 months on-line (September 1997 through
April 1999), the Tron system collected data on over
200,000 games played by over 4000 humans and 3000
agents.

Figure 1: The game of Tron.

In our version of Tron, the motorcycles are abstracted
and are represented only by their trails. Two players
— one human and one software agent — each control
a motorcycle, starting near the middle of the screen
and heading in the same direction. The players may
move past the edges of the screen and re-appear on the

1http://www.demo.cs.brandeis.edu/tron

opposite side in a wrap-around, or toroidal, game arena.
The size of the arena is 256× 256 pixels.

The agents are provided with 8 simple sensors with
which to perceive their environment (see figure 2). Each
sensor evaluates the distance in pixels from the current
position to the nearest obstacle in one direction, and re-
turns a maximum value of 1.0 for an immediate obstacle
(i.e., a wall in an adjacent pixel), a lower number for an
obstacle further away, and 0.0 when there are no walls
in sight. The game runs in simulated real-time (i.e.,
play is regulated by synchronized time steps), where
each player selects moves: left, right or straight.
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Figure 2: Agent sensors.

Our general performance measure is the win rate,
calculated as the number of games won divided by the
number of games played. Figure 3 illustrates the distri-
bution of performances within the human population,
grouped by (human) win rate for the fifty-eight humans
who played the most games on the site during the first
30 months of the experiment.
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Figure 3: Distribution of win rates of human players
who participated in the Tron Internet experiment.

Keyit.

Keyit is a simple two-player typing game in which par-
ticipants are each given ten words to type as fast as they
can (see figure 4) (Sklar 2000). We characterize Keyit
as: multi-player, asynchronous, episodic, environmen-
tally static, deterministic, simple, accessible, discrete
and time-critical.

Both players are presented with the same set of
words, selected automatically from a dictionary, dis-
played one at a time and in the same order. For each
player, a timer begins when she types the first letter
of a word and stops when she presses the Enter key
to terminate the word — at which time, the system



presents her with the next word to type. Players are
scored based on speed and accuracy.

Figure 4: The game of Keyit.

Each word in the dictionary is characterized by a
vector of seven feature values: word length, keyboard-
ing level2, Scrabble score, number of vowels, number of
consonants and number of 2 and 3-consonant clusters.
These feature values are used in attempt to capture the
relative difficulty of each word.

Our general performance measure is the typing
speed, calculated in letters per second. During the
first half of 1999, we conducted a 6-month classroom
study involving forty-four 10-12 year old students. Fig-
ure 5 illustrates the distribution of performances within
the student population, grouped by typing speed.
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Figure 5: Distribution of typing speeds of students who
participated in the Keyit classroom experiment.

Methodology.

This section describes the methodology used to evolve
agents that can play each of the games discussed in
the previous section. All the agents are controlled by
neural networks, and here we outline the architecture
of each network as well as the training methods

2Based on a standard order for introducing keys to stu-
dents learning typing.

employed. Note that these are similarly structured,
despite the variants between the domains.

The task for a Tron agent is as follows: given the
state of the arena, as determined by evaluating the eight
sensors, decide whether it is best to turn left or right
or to keep going straight. Play is controlled through
simulated time steps, and this decision is made at each
time step.

For training Tron agents, we used game data collected
on the Internet site. This includes the content of each
game, i.e., every turn made by either player, the global
direction of the turn and the time in the game at which
the turn was made. There were 58 humans who played
more than 500 games on our Internet site during the
first 30 months of data collection. In earlier work (Sklar
et al. 1999), we trained agents to play Tron using games
played by these humans as the training set. Note that
we split this data set in half and reserved one half for
post-training evaluation.

The Tron agents are controlled by a full-connected,
two-layer, feed-forward neural network, as illustrated in
figure 6. Each network has 8 input nodes (one for each
of the sensors in figure 2), 5 hidden nodes and 3 out-
put values. Each output represents a value of merit for
choosing each of the three possible actions (left, right,
straight); the one with the largest value is selected as
the action for the agent.

nodes

straighttanh sigmoid

left

right

sensors

input

nodes
hidden

output
nodes

Figure 6: Agent control architecture.

We trained agents using supervised learning (Pomer-
leau 1993; Wyeth 1998), designating a player to be the
trainer and replaying a sequence of games that were
played by that player against a series of opponents.
We suspended play after each simulated time step
and evaluated the sensors of the trainer. These values
were fed to a third player, the trainee (the agent being
trained), who would make a prediction of which move
the trainer would make next. The move predicted
by the trainee was then compared to the move made
by the trainer, and the trainee’s control mechanism
was adjusted accordingly, using the backpropagation
algorithm (Rumelhart, Hinton, & Williams 1986).

The task for a Keyit agent is as follows: given a word,
characterized by its corresponding set of seven feature
values, output the length of time to type the word. In
addition to using the feature values for input, we also



consider the amount of time that has elapsed since the
previous word was typed.

For training Keyit agents, we used game data col-
lected on the Internet from the 44 students who partic-
ipated in the classroom study described in the previous
section (Sklar 2000). For each student, we gathered all
the moves from all games of Keyit. A “move” includes
a timestamp, the word being typed, the amount of time
that the player took to type the word and the time that
had elapsed between moves. We split this data set in
half and reserved one half for post-training evaluation.

The Keyit agents are controlled by fully-connected,
two-layer feed-forward neural networks. The network
architecture is shown in figure 7. There are 8 input
nodes, corresponding to each of the seven feature val-
ues (normalized) plus the elapsed time. The elapsed
time is partially normalized to a value between 0 and
(close to) 1. There are 3 hidden nodes and one output
node, which contains the time to type the input word,
in hundredths of a second.

number of consonants

number of vowels

scrabble score

keyboarding level

word length

elapsed time
since last entry

clusters
number of 2-consonant

number of 3-consonant
clusters

input hidden layer output

time

Figure 7: Neural network architecture.

Again, we used supervised learning to train the
agents, designating a player to be the trainer and
replaying a sequence of games. For each move in a
game, the network predicted the trainer’s speed for
that move based on the feature vector of the word
to type and the length of time that elapsed since the
last move. Based on the accuracy of the trainees’
predictions, the network weights were adjusted using
backpropagation.

Clones.

Clones are agents that capture the behavior of an in-
dividual human. The goal in training a clone is for it
to emulate the human as closely as possible. We have
trained clones for both Tron and Keyit.

From the Tron data set, fifty-eight clones were pro-
duced and figure 8 shows the results. The win rate of
each trainee is compared with its trainer. If the results
were perfect, then each mark on the plot would fall on
a line of slope 1.

From the Keyit data set, forty-four clones were pro-
duced and figure 9 shows the results. The typing speed
for the trainees (horizontal axis) versus their trainers
(vertical axis) is shown, for both the test and training
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Figure 8: Tron clones.

data sets. Again, if the results were noiseless, then each
mark would fall on a line of slope 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

typing speed (in letters/sec) of trainees (clones)

ty
pi

ng
 s

pe
ed

 (
in

 le
tte

rs
/s

ec
) 

tr
ai

ne
rs

 (
hu

m
an

s)

Figure 9: Keyit clones.

Peers.

Peers are agents that represent the behavior of a group
of human users. Users can be clustered based on a fea-
ture like age or gender or win rate (of a game), and the
behavioral data for all humans exhibiting the same fea-
ture value can be grouped and analyzed, in an attempt
to recognize characteristics of different user groups. In-
dividual peers are intended to be representative of all
the humans within a single cluster. Populations of peers
are meant to be representative of all the clusters. We
have trained peers in two domains: Tron and Keyit.

From the Tron data set, ten peers were produced, by
dividing the 58 individual humans into 10 groups based
on their win rates (e.g., group 1 had 0-10% win rate,
group 2 had 10-20% win rate, etc.). Since the objec-
tive with peers is to produce a small group of agents
representative of a larger population, the direct corre-
lation between trainer and trainee is less important to
evaluate. Instead, we look at the distribution of peers
across the range of characteristics they are intended to
represent — in this case, win rate.

Figure 10 shows these results. The peer trainers (i.e.,
grouped human data) and trainees are sorted within
each population according to their win rate, so the com-
parison is not a direct one between individual trainees
and their trainers, but rather a population-based com-



parison looking at the distributions of the trainer and
trainee populations. The horizontal lines denote bound-
aries for grouping players (according to win rate). The
plot demonstrates that the controllers have learned to
play Tron at a variety of different levels and that, as
a whole, the trainee population is representative of the
respective trainer population.
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Figure 10: Tron peers

From the Keyit data set, ten peers were produced, by
dividing the 44 students into eight groups based on typ-
ing speed. Group 1 – the slowest group – had a typing
speed of less than 0.5 letters per second. Group 8 – the
fastest group – had a typing speed of over 3.5 letters per
second. Figure 11 compares the average speeds of the
trainers and trainees, using the same population-based
analysis described above for the Tron peer data. The
comparison is made by first sorting both populations
according to speed and then plotting the corresponding
values. Again with Keyit, as with Tron, the resulting
trained population is representative of the distribution
of the original population.
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Figure 11: Keyit peers.

Instructors.
Instructors are agents that emulate the behavior of a
human expert. In some domains, there is always a right
answer or a correct response, such as the correct spelling
of a word or the solution to a arithmetical expression.
In other domains, such as Tron, the “right” move at a
given time is not deterministic.

For a simple domain like Keyit, we can define the
behavior of an instructor merely by setting the typing

speed and producing the correctly spelled word after a
fixed amount of time has passed. For a complex do-
main like Tron, we can define instructors by using the
technique described above for peers and only use the
humans with the highest win rates to train the agents.

Current and future work.

We have provided a theoretical framework for the de-
velopment of a virtual village, populated by a variety
of software agents geared towards education. The ba-
sis for our work is the pedagogical belief that students
need to experience a variety of learning opportunities,
by themselves, with peers and with teachers. So we
have defined three classes of agents and we presented
examples for constructing these agents using techniques
from evolutionary computation.

Our village contains educational games, for reasons of
human motivation. Thus we include in our framework a
scheme for characterizing the features of on-line games
so that as our work progresses, we can devise a myriad
of agents that can behave in settings exhibiting various
combinations of these features.

Our current work involves deploying all three classes
of agents in our on-line educational system. We are
continuing to develop educational games — more com-
plex than those described here — exhibiting the vari-
ety of features listed in section and reinforcing partic-
ular curricular topics, as advised by classroom teach-
ers. As well, we are building agents to help humans
navigate our educational web site, which contains not
only games, but also resources for teachers including a
database of lesson plans and information on classroom
technologies.

In our view, learning doesn’t stop just because a stu-
dent leaves school, either at the end of a school-day or
upon graduation. Rather, life itself is a learning experi-
ence and the everyday interactions one has with people
all around can provide additional learning experiences
as well. Thus, the long-term goal of this work is to de-
velop techniques for automatically building interactive
agencies that can help humans navigate through any
virtual setting.
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