
Learning to Avoid Collisions

Elizabeth Sklar1,4, Simon Parsons1,4, Susan L. Epstein2,4, A. Tuna Özgelen4,
J. Pablo Muñoz4, Farah Abbasi3, Eric Schneider2 and Michael Costantino3

1Brooklyn College,2Hunter College,3College of Staten Island,4The Graduate Center
The City University of New York

New York, NY USA
sklar@sci.brooklyn.cuny.edu, parsons@sci.brooklyn.cuny.edu, susan.epstein@hunter.cuny.edu,

tunaozgelen@gmail.com, jpablomch@gmail.com, farah.abbasi@cix.csi.cuny.edu,
nitsuga@pobox.com,michael.costantino@cix.csi.cuny.edu

Abstract

Members of a multi-robot team, operating within close quar-
ters, need to avoid crashing into each other. Simple collision
avoidance methods can be used to prevent such collisions,
typically by computing the distance to other robots and stop-
ping, perhaps moving away, when this distance falls below a
certain threshold. While this approach may avoid disaster, it
may also reduce the team’s efficiency if robots halt for a long
time to let others pass by or if they travel further to move
around one another. This paper reports on experiments where
a human operator, through a graphical user interface, watches
robots perform an exploration task. The operator can manu-
ally suspend robots’ movements before they crash into each
other, and then resume their movements when their paths are
clear. Experiment logs record the robots’ states when they are
paused and resumed. A behavior pattern for collision avoid-
ance is learned, by classifying the states of the robots’ en-
vironment when the human operator issues “wait” and “re-
sume” commands. Preliminary results indicate that it is possi-
ble to learn a classifier which models these behavior patterns,
and that different human operators consider different factors
when making decisions about stopping and starting robots.

Introduction
We are interested in deploying human-robot teams to solve
problems that are dangerous for human teams to tackle,
but are beyond the capabilities of robots alone. Exam-
ples of such tasks includeurban search and rescue(Ja-
coff, Messina, and Evans 2000; Murphy, Casper, and Mi-
cire 2001) andhumanitarian de-mining(Habib 2007; San-
tana, Barata, and Correia 2007). In urban search and rescue,
robots explore an enclosed space, such as a collapsed build-
ing, and try to locate human victims. In humanitarian de-
mining, robots explore an open space, such as a field in a
war zone, and search for anti-personnel mines that may be
concealed. The goal is to locate mines so that they can be
disarmed and the region rendered safe.

In both cases, teams of robots are deployed to locate tar-
gets of interest in terrain that is potentially unsafe for people,
and in both cases the robots typically need a human operator
to help with parts of the task that they cannot easily han-
dle on their own. In urban search and rescue, this might be

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

identifying a human victim; and in de-mining, this might be
defusing a device that the robot team has located.

In our work (Sklar et al. 2011; 2012), we focus on the use
of inexpensive, limited-function robots since we believe that
teams of such robots are more practical for wider deploy-
ment on the kinds of tasks we are interested in than teams of
fewer, more expensive and more capable robots. Although
individual robots may require human assistance, large teams
of robots present additional challenges for human-robot in-
teraction. There are many ways in which robots can prof-
itably learn from a human trainer, and perhaps lessen the
need for human assistance in some circumstances.

This paper reports on a feasibility study of one such in-
stance, where a human operator suspends robot movement
in order to avert collisions. Our preliminary investigation in-
volved collecting data from 5 human subjects and assessed
the possibility of learning effective behavior patterns from
this data. The results detailed here are promising and war-
rant further investigation.

Related Work
The idea that an interactive system can improve its behavior
through observation of human users’ key strokes and mouse
clicks, i.e.,data mining the clickstream, is not new. In the
1960’s and 1970’s, Teitelman developed an automatic error
correction facility that grew into DWIM (Do What I Mean)
(Teitelman 1979). In the early 1990’s, Cypher created Eager,
an agent that learned to recognize repetitive tasks in an email
application and take them over from the user (Cypher 1991).
Maes used machine learning techniques to train agents to
help with email, filter news messages, and recommend enter-
tainment. These agents gradually gained confidence in their
understanding of users’ preferences (Maes 1994).

In robotics, the idea that robots can learn from humans
has been explored withlearning from demonstration(Ar-
gall et al. 2009), also known asprogramming by demon-
stration (Hersch et al. 2008). This is commonly viewed as
a form of supervised learning, which learns a policy from a
sequence of state/action pairs (Argall et al. 2009). Other ap-
proaches to robots learning from people include (Katagami
and Yamada 2000), where human teachers provide exam-
ples that seed evolutionary learning; (Lockerd and Breazeal
2004), where a robot tries to identify a human’s goal and
make its own plan to achieve it; and (Nicolescu and Matarić



Figure 1: The robots’ physical environment.

2001), where a robot observes while the human carries out
actions in its domain and learns the outcomes of its own
actions from these observations. Little of this work is con-
cerned with multiple robots, however. There is a long his-
tory of multi-robot learning, for example (Matarić 1997;
Parker 2000; Bowling and Veloso 2003; Pugh and Marti-
noli 2006), but these involve learning by trial and error, not
learning from a human teacher.

In earlier related work, we learned behaviors from
data collected while humans played video and educational
games, using these data to train neural networks that then
served as controllers for opponents playing these games
(Sklar 2000; Sklar, Blair, and Pollack 2001). The aim was
not to produce the best player, but rather to derive a pop-
ulation of players that represented different characteristics
of play. This technique was later extended beyond games to
generate populations of agents that emulated students per-
forming at different skill levels on an educational assessment
(Sklar et al. 2007; Sklar and Icke 2009). The same idea is
applied here, to capture and then represent characteristicbe-
haviors of different human operators as they interact with a
multi-robot team performing a complex task.

Our Approach
The work reported here involves a single human operator in-
teracting with a team of three robots. This section describes
the physical environment in which experiments were carried
out and the design of the experiments.

Physical setup
Our experimental testbed, orarena, models the interior of
a building, with a large space of six rooms and a hallway.
The robots explore this space, as described below. The phys-
ical testbed is shown in Figure 1, and maps of the arena are
shown in Figures 3 and 4. The area of the arena is approxi-
mately 400 square feet.

The robots used for the experiments described here are
Surveyor SRV-1Blackfins1, which is a small tracked plat-

1http://www.surveyor.com/SRV_info.html

(a) unmodified (b) with hat

Figure 2: The Surveyor SRV-1 Blackfin.

form equipped with a webcam and802.11 wireless. The
Blackfin is pictured in Figure 2a. Localization is provided
by a network of overhead cameras (Sklar et al. 2011). To
help these cameras distinguish between robots, a “hat” is
mounted atop each Blackfin (see Figure 2b). Each hat con-
tains a unique symbol, selected from the set of Braille letters
that do not have any rotational symmetry; thus the hat pro-
vides orientation as well as position.

Because the Blackfin has limited on-board processing,
the controller for these robots runs off-board, communicat-
ing with the robot over a wireless network. The robot con-
trollers, software that allocates tasks to robots (described in
(Sklar et al. 2012)), and software that extracts robot posi-
tions from the overhead cameras run on a small network of
computers facilitated by a central server process. Detailsof
the software architecture are described in (Sklar et al. 2011).

Motivation
As explained above, efficient exploration of the physical
space is a key feature of the tasks that we would like our
robot team to perform. We have been running experiments
in which robots are allocated particularinterest pointsto
visit. As described in (Sklar et al. 2012), a market-based
component allocates these points to the robots on the team.
Each robot controller then calculates a path that spans all the
points allocated to that robot, with no knowledge of what
other robots are planning to do. The robots then simultane-
ously manoeuvre to their allocated points.

Given that the robots are in a restricted space, that they
may start in the same part of the space (modeling situations
where all robots enter a space from the same point), and that
they have no knowledge of what the other robots are plan-
ning to do, the robots naturally get in each other’s way. This
mutual interference is clear in Figure 3, which shows the
motion of three robots during one experimental run. Because
of this interference, the robot controller is programmed to
prevent collisions, and it does so very conservatively: it sus-
pends any robots that get too close to one another, based
on a fixed threshold distance. The robot that is closest to its
target interest point is given right-of-way and plans a modi-
fied route around the stationary robots. Meantime, the other
robot(s) wait until their paths are cleared and then they are
allowed to move again. The amount of time the robots wait



Figure 3: Paths traced by three robots exploring the arena.
The robots start in the lower left “room,” at the points
marked with black�’s. Each robot visits an assigned sub-
set of the 8 “interest points” indicated by red×’s.

is recorded asdelay time, which can accrue rapidly if many
robots are trying to manoeuvre in the same small space.

Thisfixed-threshold methodis a näıve way to prevent col-
lisions. So we wanted to investigate the question of whether
a human operator could provide a better model of how avoid
collisions, in a way that ultimately reduces overall delay
time. The next section describes our initial attempt to learn
such behaviors from human operators.

Experimental setup
The robot team was set up in the configuration shown in Fig-
ure 3, with all three robots starting in the same room in the
arena. The team was allocated eight interest points, and these
were distributed among the robots as described in (Sklar et
al. 2012). The robots then planned how to visit their assigned
points and started to follow the paths that they had planned.
The conservative collision avoidance mechanism mentioned
above was disabled.

In the experiments described here, collision avoidance
was handled by the human operator. This person sat at a
workstation physically remote from the robots’ arena, in a
separate section of the research lab. The human operator
could not see or hear anything from the arena. The only in-
formation that the operator had about the robots appeared
on a user interface, shown in Figure 4. The interface dis-
plays the current position and orientation of each robot and
its planned path to its current interest point. The robots’ po-
sition information is derived by the overhead cameras and is
therefore subject to error and time lag.

The operator could send two different commands to the
robots using the interface:wait andresume. To send a com-
mand, the user first clicks on the robot’s icon to select it, and
then presses a key corresponding to the command. Feedback
from human subjects participating in the experiment indi-
cated that this input method was somewhat cumbersome. An

Figure 4: The user interface presented to the human trainer.

alternate input method is under consideration where the user
clicks on a robot to pause it if the robot is moving or to re-
sume its movement if the robot is stopped.

For each experimental run, three robots were positioned
in the same starting locations (as per Figure 3), eight interest
points were allocated, and the robots visited their assigned
points while the human operator monitored the team for col-
lisions. In each run, the operator made the robots wait when
she thought stopping was necessary to avoid a collision, and
she resumed their movement when she judged that the dan-
ger of collision was past. A run ended when the robots all
reached their final interest point or when a robot collided
with another robot or a wall.

Experiments and Results
The results reported here were obtained from data collected
on five human subjects (considered “trainers” for the pur-
poses of the behavior learning described below), each of
whom was an undergraduate researcher working in our lab
(2 female, 3 male). Some of the trainers had previously
tested the interface, while others had not used it before; but
in neither case was any extensive training required. When a
run ended with a robot colliding with a wall, we discarded
the data and repeated the run. Thus, each trainer completed
five runs which ended either with a robot-robot collision or
with successful completion of the full task.

During each run, the system logged data continuously, in-
cluding the current positions of the robots and each robot’s
path to its target location (i.e., sequence of waypoints).
Each time the human operator sent a command to stop a
robot (presumably to avoid a collision with another robot),a
“Wait” command was logged for that robot. Similarly, when-
ever the operator sent a command to a robot to resume its
movement, a “Resume” command was logged. Thus, the log
file for each run can be used to reconstruct the world state for
each robot, at each point in time; and these states can be la-
beled with the human trainer’s decision to perform an action
or to do nothing (i.e., let the system perform autonomously).



number four categories two categories
of moving- moving- waiting- waiting- no-

samples moving waiting moving waiting action action
complete set of training data
H1 20, 800 20, 768 16 16 0 20, 768 32

H2 17, 103 17, 058 23 22 0 17, 058 45

H3 22, 503 22, 457 23 23 0 22, 457 46

H4 15, 221 15, 148 35 35 3 15, 151 70

H5 17, 451 17, 389 31 31 0 17, 389 62

balanced subset of training data
H1 65 32 16 16 0 32 32

H2 91 45 23 22 0 45 45

H3 92 45 23 23 0 45 46

H4 146 72 35 35 3 70 70

H5 125 62 31 31 0 62 62

Table 1: Training data. EachHi indicates one of the 5 human trainers.

A robot’s state is represented as:

〈r1, θ1, r2, θ2, Vx, Vy, Hx, Hy〉 (1)

wherer1, θ1 andr2, θ2 are the range (in cm) and angle (in
radians), respectively, from the subject robot to the othertwo
robots in the arena;Vx andVy are thex andy velocities of
the subject robot, andHx andHy are the heading of the
subject robot (i.e., thex andy distance from its current loca-
tion to the next waypoint in its planned path). Distances are
computed as straight-line Euclidean distances, without con-
sideration of intervening walls or other robots or obstacles.

We analyzed the collected data to address three questions:
(1) the ability to learn behaviors from log data, (2) the abil-
ity to distinguish between trainers, and (3) the differencebe-
tween the trainers’ methods and the fixed-threshold method
for collision avoidance.

Learning from log data
To address the question of whether the log files could be
used to learn behavior patterns for collision avoidance, we
first needed to label the logged data. As detailed below, we
compare two methods of labeling the data. The first method
assigned labels from four different categories, and the sec-
ond method assigned labels from two different categories.

Table 1 describes the data collected from the five trainers,
listed as H1 through H5. The first column contains the to-
tal number of samples in the training set produced by each
operator; the next four columns contain the number of in-
stances labeled in each of four categories; and the last two
columns contain the number of instances labeled in each of
two categories. The four-category labels are:

• moving-moving, which indicates that the robot was mov-
ing when the message was logged;

• moving-waiting, which indicates that the human operator
sent a moving robot a command to suspend its motion;

• waiting-moving, which indicates that the human operator
sent a suspended robot a command to resume its motion;
and

• waiting-waiting, which indicates that the robot was wait-
ing when the message was logged.

The two-category labels are:

• action, which indicates that the human operator did some-
thing: either sent a moving robot a command to suspend
its motion or sent a suspended robot a command to resume
its motion; and

• no-action, which indicates that the human operator did
not enter any input when the message was logged.

First, we describe our efforts to learn which states, rep-
resented as in equation (1), belong to which of the four-
category labels. The upper portion of Table 1, however,
clearly indicates that the vast majority of instances are
moving-moving. This imbalance has a serious negative im-
pact on learning: most classifiers will simply default to the
moving-moving label, since assignment of this overwhelm-
ing majority label will be correct 99.72% of the time. A
robot guided by such a classifier would never wait. In or-
der to mitigate this situation, we created a balanced train-
ing set by selecting a subset of the complete training set of
each human operator. The balanced subset was created by
retaining all the non-moving-moving instances, and then se-
lecting an equal number ofmoving-moving instances from
the complete data set, at equally-spaced intervals in the
chronologically-ordered log file. Statistics for the balanced
training set appear in the lower half of Table 1.

We employed the WEKA2 tool (version 3.6.7) (Witten,
Frank, and Hall 2011) and tested 10 different classifiers, us-
ing 10-fold cross validation:k-nearest neighbors, C4.5 deci-
sion trees, a rule extractor from a decision tree (PART), naı̈ve
Bayes, Holte’s OneR rule learner, a support vector machine
(SMO), logistic regression, AdaBoost, logit boost, and de-
cision stumps. The default parameters were used for each
method (values are listed in the Appendix).

We ran each classifier on the balanced subset data, at-
tempting to learn the four-category labels. Table 2 shows

2http://www.cs.waikato.ac.nz/ml/weka



the accuracy of the best classifier for each trainer and con-
tains the percentage of correctly classified instances. None
is much better than random.

H1 rule learner 54.69%
H2 support vector machine 50.00%
H3 C4.5 decision tree 59.34%
H4 logistic regression 56.16%
H5 rule learner 56.80%

Table 2: The best results on learning 4 classes from the bal-
anced subset data.

The resulting confusion matrices clearly indicate that the
moving-waiting andwaiting-moving labels are not reliably
distinguished. For example, Table 3 shows the confusion
matrix for the best result learning four categories from the
balanced subset data for trainer H3 (corresponding to the
third row in Table 2). Clearly,moving-waiting andwaiting-
moving are confused with each other more often than either
is classified correctly. Inspecting the state data reveals that
the conditions under which the human operator chooses to
suspend a robot’s movement because it is about to collide
with another robot are almost identical to the conditions un-
der which the operator determines that it is safe for a sus-
pended robot to begin moving again.

classified as→ moving- moving- waiting-
moving waiting moving

moving-moving 38 4 3

moving-waiting 5 13 5

waiting-moving 5 15 3

Table 3: Confusion matrix for the best result learning four
classes from the balanced subset data for H3. This training
set did not contain any instances ofwaiting-waiting because
H3 never invoked that state.

Next, we describe our efforts to learn which states, rep-
resented as in equation (1), belong to which of the two-
category labels. The two categories distinguish between
the states in which the human performs an action and
when the human does nothing. Themoving-moving and
waiting-waiting instances were relabeled asno-action in-
stances, and themoving-waiting and waiting-moving in-
stances were relabeled asaction instances. We ran each clas-
sifier again, on the balanced subset data, this time attempting
to learn the two-category labels. Table 4 shows the best re-
sults, which represent a considerable improvement over Ta-
ble 2.

Table 5 shows the confusion matrix for the best of these
classifiers, on the balanced subset data for trainer H1. Again,
this is a substantial improvement over the results shown in
Table 3. Our current work is investigating other techniques
to address the imbalanced data, in order to be able to use
more of the data for training.

H1 k-nearest neighbor 90.63%
H2 logit boost 76.67%
H3 logit boost 87.91%
H4 AdaBoost 82.86%
H5 k-nearest neighbor 87.10%

Table 4: The best stratified 10-fold cross validation results,
learning 2 classes from the balanced subset data.

classified as→ no-
action action

no-action 30 2

action 4 28

Table 5: Confusion matrix for the best result learning 2
classes from the balanced subset data (H1).

Distinguishing between trainers
To address the question of whether the data could be used
to differentiate between trainers, we examine the decision
trees produced by the C4.5 classifier. Although the operator-
guided collision avoidance task appears relatively simple
and straightforward, distinct differences between operators’
behaviors are detected. Figure 5 shows the C4.5 trees learned
for the two most accurately modeled trainers.

It is interesting to note that the decision trees for differ-
ent trainers depend on different aspects of the robot’s state.
The decisions of H1, as captured by the decision tree, de-
pend on the direction that the robot is heading (headingY,
its speed (velX (Vx) andvelY (Vy)), and the directions that
the other two robots are heading (theta1 (θ1) and theta2
(θ2)). In contrast, the decisions of H3 depend on the distance
from one of the other robots (range2 (r2)), the robot’s head-
ing (headingX (Hx) andheadingY (Hy)), its speed (velX
(Vx)) and the direction of the third robot (theta1 (θ1)), not
the same robot as the one whose distance is considered. H1
appears to focus on trajectories alone, while H3 attends first
to proximity.

We also analyzed the differences in behaviors identified
by the decision stump results. Table 6 shows the rules ob-
tained using this method for the five trainers. Again, it is
clear that the decisions of different humans, as extracted
by the decision stump algorithm, are influenced by different
components of the robot’s state.

While these observations are preliminary, and we have
not yet collected enough data from human subjects to pro-
duce definitive models of particular individuals’ behaviors,
these results do tell us that our direction is promising. Cur-
rent work is focused on programming the decision trees and
decision stump rules into the robot controllers in order to
evaluate how well the system performs when following the
strategies modeled on different human subjects.

Comparison to the fixed-threshold method for
collision avoidance
To address the question of how collision avoidance decisions
made by human operators compare to our fixed-threshold



H1 (85.94%) H3 (86.81%)

Figure 5: Decision Trees (C4.5) for the two most accurately modeled trainers. The percentage of correctly identified instances
appears in parenthesis.

H1 (68.75%) act if you are heading not too far
to the south

H2 (66.67%) act if you are going quickly west

H3 (71.43%) act if you are closer than 77cm to one
of the other robots

H4 (75.00%) act if you are heading not too far to
the east

H5 (78.23%) act if you are closer than 124cm to one
of the other robots

Table 6: Decision Stump rules for all five trainers, with the
percentage of correctly classified in instances in parenthesis.

method, we analyzed the distances between robots when the
trainers suspended and resumed robots’ motion. Our intu-
ition and initial hypothesis was that the human operators
would allow robots to get closer to each other than the fixed-
threshold method would. As a result, the amount of time
that a robot spent waiting for others to move out of the way
would decrease. The fixed-threshold method used a distance
of 50cm, with results reported in (Sklar et al. 2012).

Interestingly, the human operators who made decisions
based on distances between robots (i.e., eitherr1 or r2) acted

on distances greater than50 cm:77cm and124cm in the de-
cision stump rules for H3 and H5, respectively; and76cm,
61cm and75cm in the decision trees for H3, H4 and H5,
respectively. The other trainers, however, did not consider
the distance to other robots at all. Instead, they examined
other factors, such as the directions in which robots were
heading. In the decision trees, where more complex deci-
sion rules can be coded, even those trainers who did con-
sider distance also considered the directions in which the
robots were heading. So our preliminary conclusion is that
the fixed-threshold method does not take into consideration
all the important factors in collision avoidance. Our current
work is analyzing the delay time for all the experiments de-
scribed here to identify whether the humans’ performance in
regard to this metric is better than that of the system when
using the fixed-threshold method for collision avoidance.

Summary
This paper presents preliminary results from experiments
in which a human guides a team of robots to avoid colli-
sions. We recorded data from human operators who were
instructed to help members of a robot team to avoid colli-
sions with one another. Operators could suspend or resume
robots’ movement. Based on data recorded while the human
subjects were engaged in this task, we trained different clas-



sifiers to predict when the robots should change state (tog-
gling from moving to waiting and waiting to moving). The
best-fitting classifier achieved 90% accuracy. A more rigor-
ous evaluation will use the learned classifier rules to control
the robots autonomously and measure their ability to avoid
collisions. This is necessary since the fact that we can learn
a classifier that performs well on the data we logged does
not mean that we have learned a classifier that will be good
at stopping robots from colliding. Performing this validation
step on the robots is the next major activity in this investiga-
tion.

Acknowledgments
This work was supported by the National Science Founda-
tion under grants #IIS-1117000 and #CNS-0851901.

Appendix: WEKA defaults
weka.classifiers.trees.J48 (C4.5): confidence threhold for
pruning =0.25; minimum number of instances per leaf =
2; seed for random data shuffling =1.

weka.classifiers.lazy.IBk (k-nn): nearest neighbour search
algorithm = weka.core.neighboursearch.LinearNNSearch;
number of nearest neighbours (k) used in classification =
1.

weka.classifiers.rules.PART: confidence threhold for prun-
ing = 0.25; minimum number of instances per leaf =2; seed
for random data shuffling =1.

weka.classifiers.bayes.NaiveBayes (naı̈ve Bayes without
kernel): use normal distribution for numeric attributes.

weka.classifiers.rules.OneR (OneR): minimum number of
objects in a bucket =6.

weka.classifiers.functions.SMO (svm): kernel =
weka.classifiers.functions.supportVector.PolyKernel;
complexity constantC = 1; normalize; epsilon for round-off
error = 1.0e − 12; use training data for internal cross-
validation; random number seed =1; size of the cache =
250007; exponent =1.0; do not use lower-order terms.

weka.classifiers.functions.Logistic (logistic regression):
maximum number of iterations =−1 (until convergence).

weka.classifiers.meta.AdaBoostM1 (AdaBoost): percentage
of weight mass to base training on =100; random num-
ber seed =1; number of iterations =10; base classifier =
weka.classifiers.trees.DecisionStump.

weka.classifiers.meta.LogitBoost (logit boost): percentage
of weight mass to base training on =100; number
of folds for internal cross-validation =0 (no cross-
validation); number of runs for internal cross-validation
= 1; threshold on the improvement of the likelihood =
−Double.MAX VALUE; shrinkage parameter =1; random
number seed =1; number of iterations =10; base classifier
= weka.classifiers.trees.DecisionStump.

References
Argall, B.; Chernova, S.; Browning, B.; and Veloso, M.
2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems57(5):469–483.
Bowling, M., and Veloso, M. 2003. Simultaneous adversar-
ial multi-robot learning. InProceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence.
Cypher, A. 1991. Eager: Programming repetitive tasks by
example. InProceedings of the ACM Conference on Human
Factors in Computing Systems.
Habib, M. K. 2007. Humanitarian Demining: Reality and
the Challenge of Technology.Interational Journal of Ad-
vanced Robotic Systems4(2):151–172.
Hersch, M.; Guenter, F.; Calinon, S.; and Billard, A. 2008.
Dynamical system modulation for robot learning via kines-
thetic demonstrations.IEEE Transactions on Robotics.
Jacoff, A.; Messina, E.; and Evans, J. 2000. A standard test
course for urban search and rescue robots. InProceedings
of PerMIS.
Katagami, D., and Yamada, S. 2000. Interactive classifier
system for real robot learning. InIEEE International Work-
shop on Robot and Human Interaction, 258–263.
Lockerd, A., and Breazeal, C. 2004. Tutelage and socially
guided robot learning. InProceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.
Maes, P. 1994. Agents that reduce work and information
overload.Communications of the ACM37(7):31–40.
Mataríc, M. 1997. Reinforcement learning in the multi-robot
domain.Autonomous Robots4:73–83.
Murphy, R. R.; Casper, J.; and Micire, M. 2001. Potential
tasks and research issues for mobile robots in RoboCup Res-
cue. InRobot Soccer World Cup IV, volume 2019 ofLecture
Notes in Artificial Intelligence. Springer.
Nicolescu, M. N., and Matarić, M. J. 2001. Learning and
interacting in human-robot domains.IEEE Transactions on
Systems, Man, and Cybernetics31(5):419–430.
Parker, L. 2000. Multi-robot learning in a cooperative obser-
vation task. InProceedings of the Fifth International Sym-
posium on Distributed Autonomous Robotic Systems.
Pugh, J., and Martinoli, A. 2006. Multi-robot learning with
particle swarm optimization. InProceedings of the 5th Inter-
national Conference on Autonomous Agents and Multiagent
Systems.
Santana, P. F.; Barata, J.; and Correia, L. 2007. Sustainable
Robots for Humanitarian Demining.International Journal
of Advanced Robotic Systems4(2):207–218.
Sklar, E. I., and Icke, I. 2009. Using simulation to eval-
uate data-driven agents. InMulti-agent Based Simulation
IX, volume 5269 ofLecture Notes in Artificial Intelligence.
Springer-Verlag.
Sklar, E. I.; Salvit, J.; Camacho, C.; Liu, W.; and Andrewle-
vich, V. 2007. An agent-based methodology for analyzing
and visualizing educational assessment data. InProceeding
of the Sixth International Conference on Autonomous Agents
and Multiagent Systems.



Sklar, E. I.;Özgelen, A. T.; Mũnoz, J. P.; Gonzalez, J.; Man-
ashirov, M.; Epstein, S. L.; and Parsons, S. 2011. Designing
the HRTeam framework: Lessons learned from a rough-’n-
ready human/multi-robot team. InProceedings of the Work-
shop on Autonomous Robots and Multirobot Systems.
Sklar, E. I.;Özgelen, A. T.; Schneider, E.; Costantino, M.;
Muñoz, J. P.; Epstein, S. L.; and Parsons, S. 2012. On trans-
fer from multiagent to multi-robot systems. InProceedings
of the Workshop on Autonomous Robots and Multirobot Sys-
tems.
Sklar, E. I.; Blair, A. D.; and Pollack, J. B. 2001. Training
intelligent agents using human data collected on the internet.
In Agent Engineering. Singapore: World Scientific. 201–
226.
Sklar, E. I. 2000.CEL: A Framework for Enabling an Inter-
net Learning Community. Ph.D. Dissertation, Department
of Computer Science, Brandeis University.
Teitelman, W. 1979. A display oriented programmer’s assis-
tant.International Journal of Man-Machine Studies11:157–
187.
Witten, I. H.; Frank, E.; and Hall, M. A. 2011.Data Mining,
Practical Machine Learning Tools and Techniques. Elsevier
Inc., third edition.


